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The radiation of sound waves from partially lined duct is treated by using the mode-matching method
in conjunction with the Wiener-Hopf technique. The solution is obtained by modification of the Wiener-
Hopf technique and involves an infinite series of unknowns which are determined from an infinite system of
linear algebraic equations. Numerical solution of this system is obtained for various values of the problem
parameters, whereby the effects of these parameters on the sound diffraction are studied. A perfect
agreement is observed when the results of radiated field are compared numerically with a similar work
existing in the literature.
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1. Introduction

Radiation of sound waves is a problem which has
been extensively studied in the literature. Zorumski
(1973) investigated the radiation of sound from the cir-
cular duct with an infinite flange for higher modes. The
diffraction effect at the opening of a soft cylindrical
duct was obtained analytically by Snakowska (2008).
The acoustic impedance of an unflanged cylindrical
duct for multimode wave was analysed (Snakowska
et al., 2017). In their study, a hybrid method was ap-
plied successfully for the solution and some numerical
results were also given graphically.

In particular, the problem of radiation of sound
waves by semi-infnite ducts has been used as a model
for many engineering applications, such as noise re-
duction in architectural and experimental aerodynam-
ics, in road transportation, in radar target scatter-
ing, in modern aircraft jet and turbofan engines, etc.
(Büyükaksoy, Polat, 1997; Büyükaksoy, Demir,
2006; Demir, Rienstra, 2010).

The first analytical solution of the radiation from
a semi-infinite unflanged rigid pipe was obtained by
Levine and Schwinger (1948). An analytical solu-

tion was obtained based on the Wiener-Hopf technique
(Noble, 1958). The Wiener-Hopf technique was ap-
plied later in papers by Weinstein (1969), Rienstra
and Peake (2005), Snakowska et al. (2017), etc.

To overcome the unwanted noise pollution, various
methods can be applied. One of the effective meth-
ods which, proved experimentally, is coating the duct
with acoustically absorbing material. Rawlins (1978),
who showed the effectiveness of this method, consid-
ered the radiation of plane wave from an unflanged
rigid cylindrical duct with an acoustically absorbing
internal surface.

The contributions from the impedance discontinu-
ities are accounted for through the solution of a Modi-
fied Wiener-Hopf Equation (MWHE) (Büyükaksoy
et al., 2008; Tiryakioglu, Demir, 2016). Due
to the difficulties in obtaining and solving the
MWHE, the infinite lining is usually preferred rather
than the finite one. In practice, however, these linings
should be of finite length. In this way, it is both less
costly and more realistic. Demir and Buyukaksoy
(2003) have studied the cylindrical pipe with a rigid
outer surface and finite lined inner surface. In this
study, the inner surface of the pipe was examined with
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the mode matching technique. As a result of this study,
an infinite system of infinite set of unknown coefficients
was obtained. The system is cut out at appropriate
number and solved both analytically and numerically.

This work aims at introducing more realistic con-
ditions to the study of (Demir, Büyükaksoy, 2003).
Here, the acoustic liner materials are examined both
internally and externally in different lengths and ad-
mittances. As a result of the finite outer lining,
the related boundary-value problem is formulated as
a MWHE of the third kind and then reduced to a pair
of simultaneous Fredholm integral equations of the sec-
ond kind which are susceptible to a treatment by it-
erations (Büyükaksoy, Polat, 1998). The solution
of the MWHE involves branch-cut integrals with un-
known integrands and infinitely many unknown coef-
ficients satisfying three infinite systems of linear alge-
braic equations. The branch-cut integrals are evaluated
numerically. The effect of these finite linings on the
radiation phenomenon for fundemental mode is pre-
sented graphically. The results are found to be in good
agreement with the results of the study of (Demir,
Buyukaksoy, 2003) for rigid outer surface.

2. Analysis

2.1. Formulation of the problem

We consider the radiation of sound waves by a semi-
infinite circular cylindrical duct. Duct walls are as-
sumed to be infinitely thin and they occupy the re-
gion {ρ = a, z ∈ (−∞, l2)} (see Fig. 1). The outer
and inner surfaces of cylinder are assumed to be lined
partially with an acoustically absorbing material. The
liner admittances are characterized by β1 and β2, re-
spectively. From the symmetry of the geometry of the
problem and of the incident field, the total field will be
independent of azimuth θ everywhere in the circular
cylindrical coordinate system (ρ, θ, z). We shall there-
fore introduce a scalar potential u(ρ, z) which defines
the acoustic pressure and velocity by p = − (∂/∂t)ρ0u
and v = gradu, respectively, where ρ0 is the den-
sity of the undisturbed medium. Time dependence is
assumed to be e−iωt and suppressed throughout this
paper.

Fig. 1. Geometry of the problem.

For the sake of analytical convenience, the total
field will be expressed as follows:

uT
(ρ, z)=

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

u1(ρ, z); ρ > a, z ∈ (−∞,∞) ,
u2(ρ, z); ρ < a, z > l2,
u3(ρ, z); ρ < a, 0 < z < l2,
u4(ρ, z) + u

i(ρ, z); ρ < a, z < 0,
(1)1

where ui(ρ, z) is the incident field which propagates
the positive z direction

ui(ρ, z) = AmnJm (
jmn
a
ρ) eiσmnz, (1)2

where jmn is the n-th root of the equation

J ′m(jmn) = 0 (1)3

and σmn stands for

σmn =
√

k2 − (jmn/a)
2
. (1)4

Here k = ω/c denotes the wave number of the medium
and c is the speed of the sound. Amn stands for the
amplitude of the incident wave which will be taken
equal to 1 in the analysis.

2.2. Derivation of the modified Wiener-Hopf equation

The unknown fields u1(ρ, z), u2(ρ, z), u3(ρ, z) and
u4(ρ, z) satisfy the Helmholtz equation for z ∈ (−∞,∞)

[
1

ρ

∂

∂ρ
(ρ

∂

∂ρ
)+

∂2

∂z2
+k2

]uj(ρ, z)=0, j=1,2,3,4. (2)

For determination of unknown fields, we need bound-
ary conditions and continuity relations. One can write
these equations from the geometry of the problem

∂

∂ρ
u1 (a+, z) = 0, z < −l1,

∂

∂ρ
u4 (a−, z) = 0, z < 0,

(ikβ1 +
∂

∂ρ
)u1 (a+, z) = 0, − l1 < z < l2,

(ikβ2 −
∂

∂ρ
)u3 (a−, z) = 0, 0 < z < l2,

∂

∂ρ
u1 (a+, z) −

∂

∂ρ
u2 (a−, z) = 0, z > l2,

u1 (a+, z) − u2 (a−, z) = 0, z > l2,

∂

∂z
u2 (ρ, l2) −

∂

∂z
u3 (ρ, l2) = 0, ρ < a,

u2 (ρ, l2) − u3 (ρ, l2) = 0, ρ < a,

∂

∂z
u3 (ρ,0) −

∂

∂z
u4 (ρ,0)

= iσmnAmnJm ((jmn/a)ρ) , ρ < a,

u3 (ρ,0) − u4 (ρ,0)

= AmnJm ((jmn/a)ρ) , ρ < a.

(3)
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In addition to these boundary and continuity relations
one has to take into account the following radiation
condition:

u ∼
eikr

r
, r =

√
ρ2 + z2 →∞.

Consider the Fourier transform of the Helmholtz equa-
tion satisfied by the scattered field u1(ρ, z) in the re-
gion ρ > a for z ∈ (−∞,∞); namely,

[
1

ρ

∂

∂ρ
(ρ

∂

∂ρ
) +K2

(α)]F (ρ,α) = 0, (4)

where K(α) is the square-root function

K(α) =
√
k2 − α2, K(0) = k,

which is defined in the complex α-plane cut as shown
in Fig. 2 and F (ρ,α) is the Fourier transform of the
field u1(ρ, z) defined to be

F (ρ,α) =

∞

∫
−∞

u1 (ρ, z) eiαz dz

= e−iαl1F −
(ρ,α) + F1 (ρ,α)

+ eiαl2F +
(ρ,α) , (5)1

with

F −
(ρ,α) =

−l1
∫
−∞

u1 (ρ, z) eiα(z+l1) dz, (5)2

F1 (ρ,α) =

l2

∫

−l1
u1 (ρ, z) eiαz dz, (5)3

F +
(ρ,α) =

∞

∫

l2

u1 (ρ, z) eiα(z−l2) dz. (5)4

Fig. 2. Complex α-plane with branch cuts.

Owing to the analytical properties of Fourier inte-
grals, F +(ρ,α) and F −(ρ,α) are regular functions in
the upper half plane Imα > Im (−k) and in the lower

half-plane Imα < Imk, respectively. The general solu-
tion of Eq. (4) satisfying the radiation condition for
ρ→∞ can be easily obtained as

e−iαl1F −
(ρ,α) + F1(ρ,α) + e

iαl2F +
(ρ,α)

= A(α)H(1)m (Kρ) +B(α)H(2)m (Kρ), (6)1

where A(α) and B(α) are spectral coefficients to
be determined and H

(1)
m , H(2)m are the Hankel func-

tions of the first and second type of order m, re-
spectively (Abramowitz, Stegun, 1964). The second
term B(α)H

(2)
m (Kρ), which does not fulfill the bound-

ary condition in infinity, is then omitted. We get

e−iαl1F −
(ρ,α) + F1(ρ,α) + e

iαl2F +
(ρ,α)

= A(α)H(1)m (Kρ). (6)2

Consider now the Fourier transform of Eqs (3)1

and (3)3; namely,

e−iαl1F ′−
(a,α) = 0, ikβ1F1(a,α)+F

′
1(a,α) = 0, (7)

where the (′) denotes the derivative with respect to ρ.
By taking the derivative of Eq. (6)2 with respect to
ρ and using Eqs (7), we obtain, after putting ρ = a

e−iαl1W −
(α) + eiαl2W +

(α) = A(α)H(α), (8)1

where

W ±
(α) = ikβ1F

±
(a,α) + F ′±

(a,α), (8)2

H(α) = ikβ1H
(1)
m (Ka) +KH(1)′m (Ka). (8)3

Substituting Eq. (8)1 into Eq. (6)2 yields

e−iαl1F −
(ρ,α) + F1(ρ,α) + e

iαl2F +
(ρ,α)

= [e−iαl1W −
(α) + eiαl2W +

(α)]
H
(1)
m (Kρ)

H(α)
. (9)

In the region ρ < a, z > l2 the field u2(ρ, z) satisfies
the Helmholtz equation for z ∈ (l2,∞) as denoted in
Eq. (2). The Fourier transform of this equation for the
region in question is

[
1

ρ

∂

∂ρ
(ρ

∂

∂ρ
)+K2

(α)]G+
(ρ,α)=f(ρ)−iαg(ρ), (10)

where

f(ρ) =
∂

∂z
u2(ρ, l2),

g(ρ) = u2(ρ, l2).

In Eq. (10)1, G+(ρ,α) is a regular function in the upper
half of the complex α-plane which is defined as

G+
(ρ,α) =

∞

∫

l2

u2(ρ, z)e
iα(z−l2) dz. (11)
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Particular solutions to Eq. (10)1 can be found easily
by using Green’s function which satisfies the Helmholtz
equation

[
1

ρ

∂

∂ρ
(ρ

∂

∂ρ
) +K2

(α)] G̃(ρ, ρ′, α) = 0,

ρ ≠ ρ′, ρ, ρ′ ∈ (0, a)

(12)

with the following conditions:

G̃ (0, ρ′, α) ∼ bounded,

G̃ (ρ′ + 0, ρ′, α) − G̃ (ρ′ − 0, ρ′, α) = 0,

∂

∂ρ
G̃ (ρ′ + 0, ρ′, α) −

∂

∂ρ
G̃ (ρ′ − 0, ρ′, α) =

1

ρ′
,

(ikβ1 +
∂

∂ρ
) G̃ (a, ρ′, α) = 0.

The solution is

G̃ (ρ, ρ′, α) =
1

J (α)
Q (ρ, ρ′, α) , (13)1

with

Q (ρ, ρ′, α) =
π

2

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Jm (Kρ) [J (α)Ym (Kρ′)
−Y (α)Jm (Kρ′)] , 0 ≤ ρ ≤ ρ′,

Jm (Kρ′) [J (α)Ym (Kρ)

−Y (α)Jm (Kρ)] , ρ′ ≤ ρ ≤ a,
(13)2

where Jm and Ym are the Bessel and Neumann func-
tions of order m and J(α), Y (α) are given below:

J(α) = ikβ1Jm(Ka) +KJ ′m(Ka), (13)3

Y (α) = ikβ1Ym(Ka) +KY ′
m(Ka). (13)4

Note that we have

ikβ1Q(a, t, α) +Q′
(a, t, α) = 0. (14)1

The solution of Eq. (10)1 can now be written as

G+
(ρ,α) =

1

J(α)

⎡
⎢
⎢
⎢
⎢
⎣

B(α)Jm (Kρ)

+

a

∫
0

(f(t) − iαg(t))Q(t, ρ,α)tdt
⎤
⎥
⎥
⎥
⎥
⎦

. (14)2

In Eq. (14)2, B(α) is a spectral coefficient to be deter-
mined. Combining Eqs (3)5 and (3)6, we may write

ikβ1G
+
(a,α) +G′+

(a,α) = ikβ1F
+
(a,α)

+ F ′+
(a,α). (14)3

B(α) can be solved uniquely from Eq. (14)3 as

B(α) =W +
(α). (14)4

Inserting now Eq. (14)4 into Eq. (14)2 we get

G+
(ρ,α) =

1

J(α)

⎡
⎢
⎢
⎢
⎢
⎣

W +
(α)Jm(Kρ)

+

a

∫
0

(f(t) − iαg(t))Q(t, ρ,α)tdt
⎤
⎥
⎥
⎥
⎥
⎦

. (15)

Although the left-hand side of Eq. (15) is regular in the
half plane Im α > Im (−k), the regularity of the right
hand side is violated by the presence of simple poles
(see Fig. 3) lying at the upper half-plane, namely, at
α = αmp satisfying

ikaβ1Jm(γmp) + γmpJ
′
m(γmp) = 0,

αmp =

√

k2 − (
γmp

a
)

2

, Imαmp ≥ Imk.

(16)

Fig. 3. Zeros of the function J(α) for f = 5000 Hz,
a = 0.2 m, β1 = 2i, m = 2.

In order to provide regularity of the right hand side
of Eq. (15) in the upper half of the α-plane, these poles
have to be eliminated by imposing that their residues
are equal to zero. This gives

W +
(αmp) =

a

2
Jm (γmp) [1 −

(β1ka)
2
+m2

γ2
mp

]

⋅ [fmp − iαmpgmp] , (17)1

with

[
fmp
gmp

] =
2

a2J2
m (γmp) [1 −

(β1ka)2−m2

γ2
mp

]

⋅

a

∫
0

[
f (t)
g (t)

]Jm (
γmp

a
t) tdt. (17)2,3
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Using the continuity relation (3)6 together with Eq.
(9) and taking into account Eq. (15) give

−
eiαl2

2J(α)

a

∫
0

(f(t) − iαg(t))Jm(Kt)tdt =
a

2
e−iαl1

⋅ F −
(a,α)N(α) +

eiαl2W +(α)
M(α)

−
a

2
F1(a,α), (18)

where
M(α) = πiJ(α)H(α),

N(α) = −
KH

(1)′
m (Ka)

H(α)
.

Owing to Eqs (17)2,3, f(ρ) and g(ρ) can be expanded
into Dini series as follows (Büyükaksoy, Polat,
1998):

f(ρ) =
∞
∑
p=1

fmpJm (
γmp

a
ρ) ,

g(ρ) =
∞
∑
p=1

gmpJm (
γmp

a
ρ) .

(19)

Substituting Eqs (19) into Eq. (18) and evaluating the
resulting integrals term by term we get the follow-
ing modified Wiener-Hopf equation valid in the strip
Im (−k) < Imα < Imk:

a

2
e−iαl1F −

(a,α)N(α) +
eiαl2W +(α)
M(α)

−
a

2
F1(a,α)

= eiαl2
a

2

∞
∑
p=1

Jm (γmp)

α2
mp − α

2
[fmp − iαgmp] . (20)

2.3. Approximate solution of the modified
Wiener-Hopf equation

By using the Wiener-Hopf factorisation method,
the kernel functions M(α) and N(α) can be written as

M(α) =
M+(α)
M−(α)

,

N(α) =
N+(α)
N−(α)

,

(21)

where M+(α), N+(α) and M−(α), N−(α) are the split
functions regular and free of zeros in the upper (Imα >

Im (−k)) and lower (Imα < Imk) halves of the complex
α-plane, respectively (Demir, Rienstra, 2010). Note
that, when we let ∣α∣ → ∞ in their respective regions
of regularity, we have

M±
(α) = O(±α1/2

),

N±
(α) = O(1).

(22)

The multiplication of both sides of Eq. (20) by
e−iαl2/M−(α) and decomposition of the resulting equa-
tion into the Wiener-Hopf form leads to

W +(α)
M+(α)

= −
1

2πi

a

2
∫

L+

N(τ)e−iτ(l2+l1)F −(a, τ)
(τ − α)M−(τ)

dτ

+
1

2πi

a

2
∫

L+

1

(τ − α)M−(τ)

⋅
∞
∑
p=1

Jm(γmp)

α2
mp − τ

2
[fmp − iτgmp] dτ, (23)1

then, multiplying Eq. (20) with eiαl1/N+(α), we write

a

2

F −(a,α)
N−(α)

=
1

2πi
∫

L−

eiτ(l2+l1)W +(τ)
N+(τ)M(τ)(τ − α)

dτ

−
a

2

1

2πi
∫

L−

eiτ(l2+l1)

N+(τ)(τ − α)

⋅
∞
∑
p=1

Jm(γmp)

α2
mp − τ

2
[fmp − iτgmp] dτ. (23)2

For k(l1 + l2) ≫ 1, the coupled system of Fredholm
integral equations of the second kind in Eqs (23)1 and
(23)2 is susceptible to a treatment by iterations

W +
(α) =W +

1 (α) +W +
2 (α) +⋯ ,

F −
(a,α) = F −

1 (a,α) + F −
2 (a,α) +⋯ .

(24)

The first iterations gives

W +
1 (α)

M+(α)
=
a

2

∞
∑
p=1

Jm(γmp) [fmp + iαmpgmp]

2αmp (α + αmp)M−(−αmp)
(25)1

and

a

2

F −
1 (a,α)

N−(α)
= −

a

2

⋅
∞
∑
p=1

Jmp(γmp) [fmp − iαmpgmp] e
iαmp(l2+l1)

2αmpN+(αmp)(α − αmp)
, (25)2

while the second iteration reads

W +
2 (α)

M+(α)
=
a

2

⋅
∞
∑
p=1

Jm(γmp) [fmp − iαmpgmp] e
iαmp(l2+l1)

2αmpN+(αmp)
I1(α),

(25)3

a

2

F −
2 (a,α)

N− (α)
=
a

2

⋅
∞
∑
p=1

Jm (γmp) [fmp + iαmpgmp]

2αmpM−(−αmp)
I2(α), (25)4
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with

I1(α)=
1

2πi
∫

L+

N−(τ)N(τ)e−iτ(l2+l1)

(τ−α)(τ−αmp)M−(τ)
dτ, (25)5

I2(α)=
1

2πi
∫

L−

M+(τ)eiτ(l2+l1)

N+(τ)M(τ)(τ−α)(τ+αmp)
dτ. (25)6

Consider first the asymptotic evaluation of I1(α).
According to Jordan’s Lemma, the integration line L+
can be deformed into the branch-cut C1 +C2 through
the branch point τ = −k (see Fig. 2). I1(α) can be
rearranged as follows:

I1(u) = −
1

2πi

⎡
⎢
⎢
⎢
⎢
⎢
⎣

∫

C1

N−(τ)N(τ)e−iτ(l2+l1)

(τ − αmp)M−(τ)
dτ

(τ − α)

+∫

C2

N−(τ)N(τ)e−iτ(l2+l1)

(τ − αmp)M−(τ)
dτ

(τ − α)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

. (26)1

By using the property

H(1)n (eiπz) = −e−inπH(2)n (z), n integer (26)2

and making the following substitution:

k + τ = te−iπ/2, t > 0 (27)

the integral in Eq. (26)1 can be reduced to the following
one written over R+

I1(u) = −
2kβ1

π2a
eik(l2+l1)

⋅

∞

∫
0

N−(−k − it)
(k + it + αmp)M−(−k − it)P (t)

e−t(l2+l1)

k + it + α
dt,

(28)

where

P (t) = (ikβ1H
(1)
m (Ka) +KH(1)′m (Ka))

⋅ (ikβ1H
(2)
m (Ka) +KH(2)′m (Ka)) .

When l1+ l2 is large, the main contribution to the inte-
gral in Eq. (28) comes from the end point t = 0. Hence,
I1(u) can be approximated by

I1(α) = −
2kβ1

π2a(k + αmp)
eik(l2+l1)

⋅
N−(−k)
M−(−k)

ξ1 (a, l1,2, β1;α) , (29)1

where the function

ξ1 (a, l1,2, β1;α) =

∞

∫
0

e−t(l2+l1)

P (t)(k + it + α)
dt (29)2

is to be evaluated numerically. By proceeding similarly,
we get the following approximate expression for I2(u).
The result can be written as

I2(α) =
1

iπ2(k + αmp)
eik(l2+l1)

M+(k)
N+(k)

ξ2 (a, l1,2, β1;α)

−
1

2

∞
∑
n=1

M+(αmn)eiαmn(l2+l1)

N+(αmn)(αmn−α)(αmn+αmp)αmnA∗ ,

(29)3

with

ξ2 (a, l1,2, β1;α) =

∞

∫
0

e−t(l2+l1)

P (t)(k + it − α)
dt, (29)4

and

A∗
= (1 −

(β1ka)
2 +m2

γ2
mn

) . (29)5

The approximate solution to the system (23)1 and
(23)2 can now be written as

W +(a)
M+(α)

≃
a

2

∞
∑
p=1

B∗

2αmp(α + αmp)M−(−αmp)

+
a

2

∞
∑
p=1

C∗eiαmp(l2+l1)

2αmpN+(αmp)
I1(α),

F −(a,α)
N−(α)

≃ −
∞
∑
p=1

C∗eiαmp(l2+l1)

2αmpN+(αmp)(α − αmp)

+
∞
∑
p=1

B∗

2αmpM−(−αmp)
I2(α),

(30)

where
B∗

= Jm(γmp)[fmp + iαmpgmp],

C∗
= Jm(γmp)[fmp − iαmpgmp].

2.4. Determination of the expansion coefficients

In region ρ < a, 0 < z < l2, u3(ρ, z) can be expres-
sed as

u3(ρ, z) =
∞
∑
n=1

[amne
iχmnz + bmne

−iχmnz]Jm (
ξmn
a
ρ) ,

(31)1

with

χmn =

¿
Á
ÁÀk2 − (

ξmn
a

)

2

. (31)2

Here ξmn’s are the roots of the characteristic equation

ikaβ2Jm(ξmn) − ξmnJ
′
m(ξmn) = 0. (31)3

Consider now the continuity relations in Eqs (3)7 and
(3)8, namely

f(ρ) =
∂

∂z
u2(ρ, l2) =

∂

∂z
u3(ρ, l2),

g(ρ) = u2(ρ, l2) = u3(ρ, l2).

(32)
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Then, substituting Eqs (19), (31)1 and its derivative
with respect to z, into Eqs (32) we obtain

∞
∑
p=1

fmpJm (
γmp

a
ρ) =i

∞
∑
n=1

χmnD
∗Jm (

ξmn
a
ρ),

∞
∑
p=1

gmpJm (
γmp

a
ρ) =

∞
∑
n=1

E∗Jm (
ξmn
a
ρ),

(33)

where

D∗
= [amne

iχmnl2 − bmne
−iχmnl2] ,

E∗
= [amne

iχmnl2 + bmne
−iχmnl2] .

The multiplication of both sides of Eqs (33) with
ρJm (

ξml
a
ρ) and integration of the resulting relations

with respect to ρ from ρ = 0 to ρ = a yields for n = l

amn =
a2e−iχmnl2

2iχmnPmn

∞
∑
p=1

fmp + iχmngmp

γ2
mp − ξ

2
mn

⋅ ξmnJ
′
m(ξmn)Jm(γmp) (1 +

β1

β2
),

bmn = −
a2eiχmnl2

2iχmnPmn

∞
∑
p=1

fmp − iχmngmp

γ2
mp − ξ

2
mn

⋅ ξmnJ
′
m(ξmn)Jm(γmp) (1 +

β1

β2
),

(34)

where

Pmn =
a2

2
[(1 −

m2

ξ2
mn

)J2
m(ξmn) + J

2′
m(ξmn)].

In region ρ < a, z < 0, u4(ρ, z) can be expressed as

u4(ρ, z) =
∞
∑
n=0

cmne
−iσmnzJm (

jmn
a
ρ), (35)

from the continuity relations which is given as (3)9 and
(3)10 we write

∞
∑
n=1

[amn + bmn]Jm (
ξmn
a
ρ)

=
∞
∑
p=0

F ∗
+AmrJm((jmr/a)ρ),

i
∞
∑
n=1

χmn [amn − bmn]Jm (
ξmn
a
ρ)

= −i
∞
∑
p=0

σmpF
∗
+ iσmrAmrJm((jmr/a)ρ),

(36)

where

F ∗
= cmpJm (

jmp

a
ρ) .

Similarly, one can obtain

amn =
a2

2χmnPmn

⎧⎪⎪
⎨
⎪⎪⎩

∞
∑
p=0

cmpG
∗
(χmn − σmp)

+ AmrH
∗
(χmn + σmr)

⎫⎪⎪
⎬
⎪⎪⎭

,

bmn =
a2

2χmnPmn

⎧⎪⎪
⎨
⎪⎪⎩

∞
∑
p=0

cmpG
∗
(χmn + σmp)

+ AmrH
∗
(χmn − σmr)

⎫⎪⎪
⎬
⎪⎪⎭

,

(37)

where

G∗
=
ξmnJ

′
m(ξmn)Jm(jmp)

j2
mp − ξ

2
mn

,

H∗
=
ξmnJ

′
m(ξmn)Jm(jmr)

j2
mr − ξ

2
mn

.

If we consider Eqs (37) together with Eqs (34)

∞
∑
p=1

fmp + iχmngmp

γ2
mp − ξ

2
mn

Jm(γmp) =
β2

β1 + β2
ieiχmnl2

⋅
∞
∑
p=0

cmp
Jm(jmp)

j2
mp − ξ

2
mn

(χmn − σmp)

+Amr
β2

β1+β2
ieiχmnl2

Jm(jmr)

j2
mr−ξ

2
mn

(χmn+σmr), (38)1

∞
∑
p=1

fmp − iχmngmp

γ2
mp − ξ

2
mn

Jm(γmp) = −
β2

β1 + β2
ie−iχmnl2

⋅
∞
∑
p=0

cmp
Jm(jmp)

j2
mp − ξ

2
mn

(χmn + σmp)

−Amr
β2

β1+β2
ie−iχmnl2

Jm(jmr)

j2
mr−ξ

2
mn

(χmn−σmr). (38)2

By substituting α = α1, α2, α3, ... in Eq. (17)1 and using
Eq. (30)1 we obtain

Jm (γmr) [1 −
(β1ka)2+m2

γ2
mr

] [fmr − iαmrgmr]

M+ (αmr)

=
∞
∑
p=1

Jm(γmp) [fmp + iαmpgmp]

2αmp (αmr + αmp)M−(−αmp)

+
∞
∑
p=1

Jm(γmp) [fmp − iαmpgmp] e
iαmp(l2+l1)

2αmpN+(αmp)
I1 (αmr) .

(38)3

Expressions given by Eqs (38)1, (38)2 and (38)3 are the
required linear systems of algebraic equations which
permit us to determine fmp, gmp, and cmp.
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2.5. Far field

To calculate the field outside the duct one has to
consider ρ > a, z ∈ (−∞,∞), and ρ < a, z > l2. In the
present paper we limit ourselves to the ρ > a. For
the field for ρ < a (Snakowska, 1992).

By taking the Fourier transfrom of F (ρ,α), the far
field in the region ρ > a can be obtained from Eq. (8)1

u1(ρ, z) =
1

2π
∫

Γ

ikβ1F
−
(a,α)

H
(1)
m (Kρ)

H(α)
e−iα(z+l1) dα

+
1

2π
∫

Γ

W +
(α)

H
(1)
m (Kρ)

H(α)
e−iα(z−l2) dα, (39)

where Γ is a straight line parallel to the real α-axis,
lying in the strip Im (−k) < Imα < Imk. Utilising the
asymptotic expansion of H(1)m (Kρ) as kρ→∞ and us-
ing the saddle point technique (Snakowska, Idczak,
2006), we obtain

u1(ρ, z) ≈
k

iπ
e−(imπ)/2 [

ikβ1F
− (a,−k cos θ1)

H(−k cos θ1)

eikr1

kr1

+
W +(−k cos θ2)

H(−k cos θ2)

eikr2

kr2
], (40)

where F −(a,α) and W +(α) are given by Eqs (30), re-
spectively. r1, θ1, and r2, θ2 are the spherical coordi-
nates defined by

ρ = r1 sin θ1, z + l1 = r1 cos θ1 (41)1

and
ρ = r2 sin θ2, z − l2 = r2 cos θ2. (41)2

In the far-field region we have (Turetken et al., 2003)

θ1 ≈ θ2,

r1={
r2+(l1+l2) cos θ1, for the phase term,
r2, for the amplitute term,

(42)

and (40) reduces to

u1(ρ, z) ≈D(θ)
eikr1

r1
, (43)1

where D(θ) is directivity given by

D(θ) =
e−(imπ)/2

iπ
[

I∗

H(−k cos θ1)
], (43)2

where

I∗ = ikβ1F
−
(a,−k cos θ1)

+ e−ik(l1+l2) cos θ1W +
(−k cos θ1).

3. Computational Results

In this section some graphics displaying the effects
of the surface admittances β1,2 at some frequencies f
on the radiated field are presented. The far field values
are plotted at a distance 46 m away from the duct edge.
The numerical results are produced for Sound Pressure
Level (SPL), defined by

SPL = 20 log ∣
p

2
√

2 ⋅ 10−5
∣,

where p is the amplitude of the acoustic pressure of
the sound wave, with the observation angle θ1 chang-
ing from 0 to π. Infinite series are truncated at some
number N . Since the series converge rapidly its effect
on the total field is nearly absent. Some parameter val-
ues remain unchanged in all examples. They are given
below

Truncation Number N = 10,
Speed of Sound c = 340.17 m/s,

Density of Un. Med. ρ0 = 1.255 kg/m
3
,

Far Radius r1 = 46 m,
Initial Point of Outer Imp. l1 = 0.1 m,
Duct Extension l2 = 0.2 m.

Figure 4 shows the variation of the sound pres-
sure level against the observation angle θ1 for values
of f = 2000 Hz, a = 0.1 m, β2 = 0.1i, and m = 2. It is
seen that the sound pressure level decreases with lin-
ing compared to the rigid surface, especially after 90
degrees.

Fig. 4. Sound pressure level for rigid-lined duct with
f = 2000 Hz, a = 0.1 m, β2 = 0.1i, m = 2 (order of

Bessel, Neumann and Hankel functions).

In Fig. 5, it is observed that the sound pressure
level decreases at the beginning and end observation
angles when the value of m is increased. For the high
frequency value, the sound pressure level also decreases
with lining like in Fig. 4.

From Fig. 6, one can see that a second mode is
revealed when the duct radius is increased. Similarly,
as the value of m increases, the sound pressure level at
the begining and end angles also decreases.

Figure 7 depicts the variation of the sound pres-
sure level against the observation angle θ1 for values
of f = 3500 Hz, a = 0.2 m, β2 = 0.5i, and m = 10. For
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Fig. 5. Sound pressure level for rigid-lined duct with
f = 5000 Hz, a = 0.1 m, β2 = 0.25i, m = 5.

Fig. 6. Sound pressure level for rigid-lined duct with
f = 2000 Hz, a = 0.5 m, β2 = 0.1i, m = 10.

Fig. 7. Sound pressure level for rigid-lined duct with
f = 3500 Hz, a = 0.2 m, β2 = 0.5i, m = 10.

these parameters, the effect of the sound pressure level
is observed at the angles approximately from 30 to 150.

In Fig. 8, it is seen that a second mode is revealed
for high frequency and small duct radius when it is
compared with Fig. 6. We can see that the main effect

Fig. 8. Sound pressure level for rigid-lined duct with
f = 5000 Hz, a = 0.2 m, β2 = 0.1i, m = 10.

for the second mode depends on the frequency and the
duct radius.

Figures 9 and 10 show the variation of the sound
pressure level against the observation angle θ1 for dif-
ferent parameter values. As it can be seen, the sound
pressure level decreases with increasing value of m for
angles from 0 to 55 and 130 to 180. Moreover, when the
value of m increases, one can see that the first mode is
dominant and the second mode is not revealed.

Fig. 9. Sound pressure level for f = 3500 Hz, a = 0.2 m,
β1 = 4i, β2 = 0.1i.

Fig. 10. Sound pressure level for f = 5000 Hz, a = 0.2 m,
β1 = 2i, β2 = 0.5i.

Finally, Figs 11 and 12 depict an excellent agree-
ment both in normalised radiated field and reflec-

Fig. 11. Comparison of the normalised radiated field with
the study of (Demir, Büyükaksoy, 2003) for kl1 = 0, kl2 =

10, β1 = 0, β2 = 0.1i, m = 0.
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Fig. 12. Comparison of the refflection coefficient ∣c0∣ with
the study of (Demir, Büyükaksoy, 2003) for a = 1, l1 = 0,

l2 = 1, β1 = 0, m = 0.

tion coefficient ∣c0∣, between the present paper (β1 = 0)
and the previous study (Demir, Büyükaksoy, 2003).
With these graphs, we can see the accuracy of all
mathematical operations (factorisations, Fredholm in-
tegral equations, iterations, etc.) which are much
more complicated than the one presented by (Demir,
Büyükaksoy, 2003).

4. Conclusions

A rigorous Modified Wiener-Hopf solution is pre-
sented for the problem of radiation of sound waves
from a semi-infinite circular cylindrical duct whose
outer and inner surface is treated by an acoustically
absorbing material of a finite length. In this work, the
lined region of the outer surface is assumed to be fi-
nite, which makes the problem more complicated. The
problem is reduced to a modified Wiener-Hopf equa-
tion whose solution involves infinitely many expansion
coefficients satisfying an infinite system of linear alge-
braic equations, solved iteratively by using the classical
factorisation and decomposition procedures. A numer-
ical solution to these systems is obtained for various
values of the problem parameters such as rigid-lined
cases, m (order of Bessel, Neumann and Hankel func-
tions), etc.

As is well known, the inner absorbent lining pro-
vided a few decibel of sound wave reduction. In addi-
tion, the effect of partial outer lining on sound pressure
level is clearly seen from Figs 4–8. Considering the cost
and applicability, the importance of a finite coating is
obvious.

When the outer lining is zero (β1 = 0), which
corresponds to the rigid case, the results obtained in
this paper are compared with the results of (Demir,
Büyükaksoy, 2003) and the agreement is perfect. In
addition, these results show that the complex math-

ematical operations encountered are rigorously exam-
ined.
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