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Abstract

New measurement technologies, e.g. Light Detection And Ranging (LiDAR), generate very large datasets.
In many cases, it is reasonable to reduce the number of measuring points, but in such a way that the datasets
after reduction satisfy specific optimization criteria. For this purpose the Optimum Dataset (OptD) method
proposed in [1] and [2] can be applied. The OptD method with the use of several optimization criteria
is called OptD-multi and it gives several acceptable solutions. The paper presents methods of selecting
one best solution based on the assumptions of two selected numerical optimization methods: the weighted
sum method and the €-constraint method. The research was carried out on two measurement datasets from
Airborne Laser Scanning (ALS) and Mobile Laser Scanning (MLS). The analysis have shown that it is
possible to use numerical optimization methods (often used in construction) to obtain the LiDAR data. Both
methods gave different results, they are determined by initially adopted assumptions and — in relation to
early made findings, these results can be used instead of the original dataset for various studies.
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1. Introduction

Many new data acquisition technologies, e.g. LIDAR (Light Detection and Ranging), collect
large amounts of measurement datasets in a relatively short time. These datasets can be used
to develop e.g. Digital Terrain Model (DTM), isoline maps, 3D visualizations, architectural
modelling. For the DTM generation and 3D visualizations, such an even coverage is not optimal
and is characterized by a large data redundancy. The uneven distribution of measurement points is
the most advantageous for proper casting of terrain forms: more points in the area of occurrence
of small, distinct morphological forms and less — in the area of large, “smooth” field forms.
Therefore, LIDAR data are characterized by an excess density in the area with an uncomplicated
terrain. Therefore, the reduction of LiDAR data should take into account the local complexity of
terrain and should be based on spatial data analysis.

For decreasing the number of points in a dataset different approaches can be used. The first
group contains methods based on a regular grid called generation grid, presented, for example,
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in [3] The authors defined a new metric named grid oversampling factor (GOF) that estimates the
local data oversampling appearing during the projection of generic satellite images onto a regular
raster grid. Based on the common map projections, we defined sets of spatial grids optimized
to minimise the data oversampling. In another work [4] also referring to this subject, the author
describes generation of a DTM by applying a combination of interpolation methods. The criterion
of method selection takes into account the dispersion of measurement points around a grid node.
This solution enables successive complementing the resultant dataset of the computed dataset
with values determined with a specific error and as a result improves the accuracy of the generated
model.

The second group contains the methods of data reduction. The grid structure generates new
coordinates, while the reduction enables to preserve raw data in the reduced dataset. This group
of methods includes the Optimum Dataset (OptD) method presented in [1, 2].

The third group of methods refers only to data reduction in the case of DTM, in particular to
DTM generalization. This problem was presented, among others, in [5-8].

In this work, the authors deal with the reduction of LiDAR data using the OptD method. It is
a method of optimization of measurement datasets that contain spatial coordinates. It can be used
in the OptD-single variant, when there is one optimization criterion, or in the OptD-multi one
when there are more criteria. The OptD-single method was tested, among others, in [1, 9], while
the OptD-multi method in [2]. In the case of processing by means of the OptD-single method, one
solution is obtained, while the OptD-multi gives as a result more than one solution. Therefore, the
next step is to choose the best solution among the found Pareto-optimal solutions. The decision-
making stage is based on the pre-defined preferences and can also be performed before and
during optimization. Choosing one solution is very important, therefore this paper focuses on this
problem. The best solution from among the results satisfying the assumed optimization criteria
can be selected, among others, using the following methods:

— weighted sum method [10, 11] — it is the best known and simplest multi-criteria decision-
making method for evaluating the number of alternatives in terms of the number of decision
criteria;

— E-constraint method [12] — it consists in selecting one objective function, on the basis
of which the optimization is carried out, and then, in an interval defined by the user, the
optimization of the remaining criteria is continued;

— weighted metric methods [13—15] — instead of using a weighted sum of the objectives, other
ways of combining multiple objectives can be considered;

— Benson’s method [16] — finds the efficient extreme points in the outcome set. The primary
concept in Benson’s algorithm is to evaluate the upper image of the vector optimization
problem by cutting planes.

The paper presents the results of study on the LiDAR dataset reduction by means of the
OptD method. The result of the method is a dataset of permissible solutions from which one
solution should be chosen. Not all methods of numerical optimization in the scope of the general
multi-objective optimization are used in the geodetic data processing. In this study two methods
were used: the weighted sum method and the €-constraint method.

The essence of research is not the effect of reduction by the OptD method, therefore it is not
compared with other reducing methods. The work focused on choosing the optimal solution from
a set of acceptable solutions. It is important that the OptD-multi method automatically gives only
one solution.
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2. Numerical optimization methods
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The general multi-objective optimization (MOO) problem is posed as follows:

Minimize F(x) = [Fi(X), Fs(x), ..., Fr(x)]", (1)
subjectto: gi(x) <0; j=12...,m,

where k is the number of objective functions and m is the number of inequality constrains.

Typically, there are infinitely many Pareto-optimal solutions for a multi-objective problem.
Thus, it is often necessary to incorporate user preferences for various objectives in order to
determine a single suitable solution. With a posteriori articulation of preferences, users can
select manually a single solution from a representation of the Pareto-optimal dataset.

Alternatively, with methods that incorporate a priori articulation of preferences, the user
indicates preferences before running the optimization algorithm and subsequently enables the
algorithm to determine a single solution that presumably reflects such preferences.

How to decide which one to take and what the method can be used?

The possible approaches are: (1) the weighted sum method (WSM); (2) the E-constraint
method (CM).

Using the weighted sum method (WSM) to solve the problem in (1) entails selecting scalar
weights w; and minimizing the following composite objective function:

k
U= wiFi(x). @)
i=1

If all of the weights are positive, as assumed in this study, then minimizing (2) provides a
sufficient condition for Pareto-optimality, which means that the minimum of (2) is always Pareto-
optimal [17, 18]. Although in some literature there is indicated that Z{.‘:] w; = land w > 0 if any
one of weights is zero, there is a potential for solution to be only weakly Pareto-optimal [19].

The relations between the adopted weights and the objective function need to be always
determined. A preference function is an abstract function (of points in the criterion space) in
the mind of the decision-maker, which perfectly incorporates the user’s preferences. Most MOO
methods that involve minimizing a single aggregated objective function, attempt to approximate
the preference function with some mathematical representation, called a utility function. The
gradients of the preference function P [F(x)] and the utility function in (2) are given respectively
as follows [19]:

5 oP
VeP [F)] = ) == VFi(x), (3)
i=1 !
k
ViU = > wiViFi(x). )
i=1

Each component of the gradient Vi P qualitatively represents how the decision-maker’s sat-
isfaction changes with a change in the design point and a consequent change in function values.
Comparing (3) and (4) suggests that if the weights are selected properly, then the utility function
can have a gradient that is parallel to the gradient of the preference function.

oP opP
The above relationship indicates that w; represents 3 Conceptually, 3F is the approximate

L 3
change in the preference function value (change in the decision-maker’s satisfaction) that results
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from a change in the objective function value for F;. However, it only makes sense to consider the
importance of an objective or change in the preference function value, in relative terms. Thus,
the weight value is significant relative to the values of others weights, the independent absolute
magnitude of a weight is irrelevant in terms of preference (Marler and Arora, 2010).

Another approach is presented for the E-constraint method (CM). The CM method was
proposed by Haimes et al. (1971). It consists in selecting one objective function, on the basis
of which the optimization is carried out, and then the (£) optimization of the remaining cri-
teria is continued in the range defined by the user. The method can be formulated as follows:
Minimum/maximum F;, (x):

F,(x) <&, where m=1,2, ..., M and m # n,
gi(x) >0 where j=1,2,...,/J,
hr(x) =0 where k=1,2, ..., K,

w

i

®)

xl(.L) <x;<x ) where i=1,2,...n,
where:

— parameter &, represents the upper constraint for an objective function F,,, for which the

optimization was carried out;

— n —a selected objective function;

— m — the next constraint;

— M — the number of all constraints;

— g;j(x), hi(x) — constraint functions, where jand kdenote selected functions, J and K denote

the number of all functions;

— x; — a selected solution,;

- xEL), xEU) — the lower and upper bounds (constraints).

An advantage of this method is finding different Pareto-optimal solutions, using different
values of the & parameter. In comparison with WSM, there is a possibility of finding the optimal
solution belonging to the Pareto dataset of optimal solutions when the space of the problem is
either convex or concave. However, a disadvantage of that solution is a significant dependence of
the result on the selected parameter € and the original optimization function. In some cases, a
wrong choice of parameters in CM may not return any solution, or give the entire searched field
as a solution. However, the most important problem of the CM method is the fact that a simple
one-criterion problem is solved on the basis of only one parameter (after eliminating solutions
that do not satisfy the criterion &).

3. Tests

Algorithms of the OptD-multi method were implemented in Java v.9 programming language.
The application was tested with both Oracle and OpenJDK runtime environment. A fragment of
the program code with main steps of the method is presented below:
def main(argv):

parser = argparse.ArgumentParser(description="Reduce LiDAR data set with OptD-Multi
method”)

parser.add_argument(’—input’, dest="file’,

help="Input file’)
parser.add_argument(’—action’, dest="action’,
help="One of: reduce, stats’)
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parser.add_argument(’—criteria’, dest="criteria’,
help="Yaml file containig optimalisation criteria settings’)
parser.add_argument(’—output’, dest="out_file’,
help="Output file. No file will be written unless specified”)
parser.add_argument(’—save-plot’, dest="plot_filename’,
help="Save result in plot.”)
Wrapper(validate_args(parser)).execute()
The optimization criteria are determined in the file config.yaml:
# parse yaml file here
criteria = { }
with open(args.criteria) as f:
criteria = yaml.safe_load(f)
opts = { **opts, **criteria}
return opts
As the optimization criteria in our tests two parameters were assumed: 1) standard deviation
(SD) in the dataset after reduction and 2) the percentage of points after reduction in the original
point cloud (p).
In the OptD-multi method the Douglas-Peucker [20] algorithm was used:
## Douglas-Peucker algorithm implementation:
def dp(points, tolearnce):
if len(points) <= 2:
return points
# obtain max distance point:
max_distance = 0
max_point_index = None
for i in range(1, len(points) - 1):
if self.distance(points[0], points[-1], points[i]) >max_distance:
max_distance = self.distance(points[0], points[-1], points[i])
max_point_index = i
if max_distance >tolearnce:
left = dp(points[0:max_point_index + 1], tolearnce)
right = dp(points[max_point_index:], tolearnce)
return left[0:-1] + right
else:
return [points[0], points[-1]]
return sorted(
dp(points, tolerance),
# list(set(dp(points, tolerance))),
key=lambda x: x.id)
In the Douglas-Peucker algorithm, the tolerance parameter is very important. The degree of
reduction depends mainly on tolerance.

19),'NG! 2 B! 2531066.

3.1. Example 1

A point cloud from airborne laser scanning was provided by Vimap from Olsztyn. The
measurements were taken on July 6, 2017 in Sweden, with a RIEGEL VUX1-UAV laser scanner
at an altitude of around 100 m. The fragment of point cloud used in the work contains 651142
points (dataset 2) and is presented in Fig. 1.
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Fig. 1. ALS point cloud provided by Vimap: a) a side view; b) a top view.

The characteristics of Q are presented in Table 1.

Table 1. Characteristics of Q.

Parameter value
Number of points 651 142
Zmax [m] 107.620
Znin [m] 84.980
Zmean [m] 89.370
SD [m] 5.569
Daverage [m] 0.058
Dmax [m] 0.062

where: Znax — the maximum height in ALS dataset; Z,;, — the minimum height in ALS dataset,
Zmean — the mean height in ALS dataset; SD — standard deviation; Dyyerage — the average absolute
distance between closest points; Dy — the maximum absolute distance between closest points.

In the OptD-multi method the following criteria were adopted:

— the differences between SD for the original data and SD for the data obtained after applying

the OptD method, SD < 0.400 m;

- 59% < p < 62%.

To satisfy the optimization criteria, in the OptD-multi method four different values of strip
widths (s) and tolerance (t) in the Douglas-Peucker algorithm were adopted:

— t=0.077 m, s = 0.175 m for 59% of original points in 11 iterations;

— t=0.061 m, s =0.172 m for 61% of original points in 10 iterations;

— t=0.066 m, s =0.171 m for 62% of original points in 11 iterations.

The initial values of s and t are determined on the basis of the minimum distance between points
in the dataset; subsequent values are changed in iterations. These two parameters determine the
degree of reduction. For the initial values of s, the values of parameter t are checked in succession.
It may turn out that at this stage we will find a set that satisfies the optimization criteria. If not,
the width of the strip is changed and different tolerance ranges are tested again.
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The parameter s controls the number of points in the X0Y plane, while the t parameter controls
the number of points removed in the X0Z plane. This approach enables a spatial analysis of the
set [1, 2].

As a result of processing by means of the OptD-multi method four datasets that satisfy the
optimization criteria were obtained: Q;, Qp, Q3, Q4.

Fig. 2. ALS point cloud after applying the OptD-multi method: a) Q; — 59% of original points; b) Qy — 60% of original
points; ¢) Q3 — 61% of original points; d) Q4 — 62% of original points.

The datasets obtained after reduction with the OptD-multi method are characterized in Table 2.

Table 2. Characteristics of datasets obtained after reduction with the OptD-multi method.

Parameter Q Q Q3 Qy
Zmin [m] 84.980 84.980 84.980 84.980
Zmax [m] 107.620 107.620 107.620 107.620
Zmean [m] 91.067 91.070 90.989 90.943
Number of points 387708 388 768 396 997 402 326
Daverage [m] 0.097 0.098 0.097 0.099
Dmax [m] 0.104 0.106 0.104 0.106
SD [m] 5.956 5.950 5.946 5.947
ABS (SDQ-SD Q;_1,2,3,4) [m] 0.387 0.381 0.377 0.378

As it is seen in Table 2, for each of the reduced datasets Q;, Q,, Q3, Q4 the Zy.x and Zyin
values are the same and equal to the values presented in Table 1 for the original dataset. It results
from the way of working of the algorithm OptD — it preserves extreme values of the examined
dataset. Due to the changes in the number of points after reduction Ze,n adopts various values.

The datasets obtained in the criteria space are presented in Fig. 3.

Assuming that f; = SD, f, = the number of points, and thus f; = minimum and f, = maximum
of the objective functions, it can be stated that in the given case solutions Q3 and 4 dominate
over solutions Q; and Q,. In solution Q3 f, is worse than in solution Qg4, while f; is better.
However, in the analysed problem, solutions Q3 and Q4 do not dominate over each other, since
each of the solutions is better due to one criterion, and worse regarding the other. So both of these
solutions constitute a dataset of Pareto-optimal solutions. The choice of one solution will depend
on the purpose of the study and the user’s decision. Among the obtained datasets, the optimal
result should be chosen, which best suits the purpose of the study.
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Fig. 3. Obtained datasets — solutions in the criteria space.

3.1.1. WSM for Example 1

In the analysed example, the following weights were adopted: for f; the weight was 0.4, while
for f, the weight was 0.6. Thus, a better solution is the result with a higher number of points in
the dataset after reduction.

Table 3. WSM calculation for Example 1.

fy f score
Q3 5.946 396 997 238200.578
Q 5.947 402 326 241397.978
w 0.4 0.6

The analysis shows that the best solution is 4.

3.1.2. CM for Example 1

The CM method assumes that one objective function f; must be fulfilled. It was assumed
that f; = 5.950. The set of solutions also includes solutions resulting from rounding the SD
value. Consequently, the set criterion encompasses the following datasets: 2, Q3, Q4. Next, the
interval for f, was set in which the next criterion was to be satisfied (in our example the size of
the dataset after reduction). Following this assumption 3000000 < f, < 4000000 was accepted.
This criterion was achieved by dataset Q3.

3.2. Example 2

The MLS data were acquired during the Fourth International Working Week on Multi-Sensor
Integration for Assured Navigation, October 1 — October 8, 2017. The meeting took place at The
Ohio State University (OSU), Department of Civil, Environmental and Geodetic Engineering
(CEQG) in the Satellite Positioning and Inertial Navigation (SPIN) Laboratory. Two types of
Velodyne LiDAR were used for scanning: one Velodyne HDL-32 on the front top and eight
Velodyne VLP-16 on the side and rear of the vehicle.
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A measurement from one Velodyne LiDAR VLP-16 containing 1730748 points was selected
for processing. The MLS measurement set (dataset @) is presented in Fig. 4.

THILREIH
! o

Fig. 4. MLS point cloud provided by SPIN Laboratory: a) a side view; b) a top view.

The characteristics of @ are presented in Table 4.

Table 4. Characteristics of ®.

Parameter value
Number of points 1730 748
Zmax [m] 87.712
Zmin [m] -63.075
Zmean [m] 2.959
Daverage [m] 0.425
Dmax [m] 0.554
SD [m] 3.780

For the reduction the OptD-multi method was used. As the optimization criteria, similarly to
Example 1, the percentage of points after reduction in the original point cloud (p) and standard
deviation (SD) in the set after reduction were assumed as follows:

— the differences between SD for the original data and SD for the data obtained after applying

the OptD method, SD < 1.000 m;
— 59% < p < 62% (with interval 0.5%).
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To satisfy the optimization criteria, in the OptD-multi method four different values of strip
widths (s) and tolerance (t) in the Douglas-Peucker algorithm were adopted:

— t=0.590 m, s = 0.342 m for 59% of original points in 13 iterations;

— t=0.595m, s = 0.350 m for 59.5% of original points in 12 iterations;

— t=0.600 m, s = 0.342 m for 60% of original points in 11 iterations;

— t=10.608 m, s = 0.342 m for 61% of original points in 11 iterations;

— t=0.610m, s = 0.345 m for 61.50% of original points in 12 iterations;

— t=0.614m, s =0.350 m for 62% of original points in 11 iterations.

As a result of the OptD-multi processing four datasets that satisfied the optimization criteria
were obtained: @, ®,, O3, Dy, D5, .

a) b) )

d) e)

“H‘N" )

wun‘ ‘l )

e 1‘“‘“

M&h\‘

Fig. 5. MLS point clouds after applying the OptD-multi method: a) @ — 59% of original points; b) @, — 59.5% of original
points; ¢) @3 — 60% of original points; d) @4 — 61% of original points; d) @5 — 61.5% of original points; d) ®¢ — 62% of
original points.

The datasets obtained after reduction with the OptD-multi method are characterized in Table 5.

Table 5. Characteristics of datasets obtained after reduction with the OptD-multi method.

Parameter [0 [0 [0} Dy D5 D¢
Zmin [m] 87.712 87.712 87.712 87.712 87.712 87.712
Zmax [m] —-63.075 —-63.075 —-63.075 —-63.075 —63.075 —63.075
Zmean [m] 3.692 3.670 3.670 3.602 3.599 3.602
Number of points 1021143 | 1029798 | 1038453 | 1055760 | 1064410 | 1073060
Daverage [m] 0.720 0.720 0.721 0.720 0.722 0.724
Dmax [m] 0.889 0.889 0.889 0.091 0.090 0.091
SD [m] 4.038 4.020 4.005 4.005 4.017 4.007
ABS (SD® -SD ®;-;53,...¢) [m] 0.258 0.240 0.225 0.225 0.237 0.224
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In this case it also can be observed, that the Z,,.x and Z,;, values are the same for each reduced
®; dataset and equal to the values characteristic for the original MLS set (Table 4). As it was in
the previous study, the Zyean value is changing, depending on the adopted reduction criteria.

The obtained solutions are presented in the criteria space (Fig. 6).

19),'NG! 2 B! 2531066.
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Fig. 6. Obtained datasets — solutions in the criteria space.

For these solutions, it was assumed that f; = SD, f, = the number of points, and then, as in
Example 1, f; = minimum, f; = maximum of the objective functions. It can be concluded, that in
the given case solutions @3, ®4 and ®¢ dominate over solutions @, @, and ®s. In solutions P3
and @4 f| is the same, while f; is better for @4. A very similar solution gives ®¢, where f, is the
best, and f; is only 0.002 m higher than for ®3 and ®4. The datasets of Pareto-optimal solutions
in Example 2 are ®4 and ®g.

3.2.1. WSM for Example 2

In Example 2, the same weights were assumed as in Example 1: for f; the weight was 0.4,
and for f, the weight was 0.6.

Table 6. WSM calculation for Example 2.

f1 f, score
Dy 4.005 1 055 760 633457.602
D¢ 4.007 1 073 060 643837.602
w 0.4 0.6

The analysis shows that the best solution is ®g.

3.2.2. CM for Example 2

The CM method assumes that one objective function f; must be fulfilled (similarly to Exam-
ple 1). It was assumed that f; = 4.005. The set of solutions also includes solutions resulting from
rounding the SD value. The established criterion was satisfied by @3 and ®4.

Next, an interval for f; was set in which the next criterion was to be satisfied (in our example,
the size of the set after reduction). The assumption of 1030000 <f; <1070000 was accepted. This
criterion is satisfied by @s.

263



W. Blascczak-Bak, A. Sobieraj-Zobiniska, M Kowaltk: MULTIOBIECHVE OPTIMIZATION PROBLEM. .

4. Discussion

Applied in the OptD-multi the weighted sum method and the €-constraint method gave differ-
ent results. From the point of view of the assumed optimization criteria, all obtained solutions can
be accepted as optimal. However, to obtain one result as the final one, in the authors’ opinion, one
more parameter should be introduced to evaluate the sets after reduction, namely the processing
time. The shorter it takes to obtain an optimal solution, the better. Therefore, Table 7 summarizes
the processing times of the OptD-multi method spent for selected solutions in the presented
examples. The results were obtained on Dell Precision Intel Core i5-2520M CPU @2.50GHz.

Table 7. Processing times.

Datasets after OptD-multi

Example 1
with WSM with CM
Qy Q3

Processing time [sec]
32 23
Example 2
with WSM with CM
D¢ D3

Processing time [sec]
70 62

The times presented in Table 7 make it possible to clearly distinguish the sets obtained after
reduction with the OptD method for the two presented examples. In both cases the OptD-multi
reduction with using the CM method was shorter than with using the WSM method.

5. Conclusions

In this study the authors analysed the reduced datasets obtained after reduction performed
by the OptD method. Two sets of data from ALS and MLS were used for analysis. The result
of applying the OptD-multi method was four reduced ALS datasets, while in the case of the
MLS data — six datasets. Two methods were used in the work: the weighted sum method and the
€-constraint method to select one solution from among the permissible ones.

General conclusions that can be formulated on the basis of the obtained results are as follows:

1. The OptD-multi method gives a set of Pareto-optimal solutions.

2. The obtained datasets satisfy the set optimization criteria.

3. The weighted sum method and the €-constraint method can be used to analyse the data

from ALS and MLS.

4. The applied numerical optimization methods give different results.

Specific conclusions can be presented as follows:

1. In both Examples, the same assumptions were adopted for both selected methods of nu-

merical optimization.

2. In Example 1, using the weighted sum method, €4 was considered as the best solution,

whereas ()3 was the best in the €-constraint method.
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. In Example 2, for the weighted sum method, ®¢ was considered as the best solution,

whereas in the €-constraint method @3 was the best solution.

. In Example 1, the values of SD parameter for both selected solutions differ by 0.001 m,

while the size of the set differs by 5329 points.

. In Example 2, the value of SD parameter for both selected solutions differ by 0.002 m,

while the size of the set differs by 34 607 points.
The OptD-multi reduction using the CM method lasted shorter than that using the WSM
method, therefore the authors consider the CM-based solution the better one.
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