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Abstract: In multi-axis motion control systems, the tracking errors of single axis load
and the contour errors caused by the mismatch of dynamic characteristics between the
moving axes will affect the accuracy of the motion control system. To solve this issue,
a biaxial motion control strategy based on double-iterative learning and cross-coupling
control is proposed. The proposed control method improves the accuracy of the motion
control system by improving individual axis tracking performance and contour tracking
performance. On this basis, a rapid control prototype (RCP) is designed, and the experiment
is verified by the hardware and software platforms, LabVIEW and Compact RIO. The
whole design shows enhancement in the precision of the motion control of the multi-
axis system. The performance in individual axis tracking and contour tracking is greatly
improved.
Key words: iterative learning control, cross-coupled control, contour tracking performance,
double-iterative learning and cross coupling

1. Introduction

With the fast development of computerized numerical control (CNC) in manufacturing sys-
tems, modern manufacturing technology is more and more demanding on the precision of NC
machine tool movement and the movement precision of CNC systems depends on the single-axis
tracking performance and the contour tracking performance [1]. Among most multi-axis systems,
the controllers are individually designed for each motion axis. In order to improve individual axis
tracking accuracy, various control methods, such as sliding mode controllers [2], iterative learning
controls [3], Discrete Loop Shaping Controllers [4], and zero phase error tracking algorithms [5],
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have been developed. But the improvement of the single axis tracking performance does not solve
the problem of reduced tracking accuracy when the synchronization between the motion axes is
poor [6].

In order to reduce the contour tracking error, a contour control method must be introduced
into high-precision multi-axis motion. Results show that the cross-coupling controller (CCC) is
an effective method to improve the accuracy of the system [7].

The first CCC and variable-gain CCC were proposed by Koren [8, 9]. Subsequently, cross-
coupling control and modern control techniques were integrated by some scholars to further
reduce the contour error. Li-Mei, Wang, and S. Lu designed the ILC controllers based on the
robust condition of the direct-driven system with uncertainty and the robust convergence condition
of the ILC in L2 norm sense, which improved the tracking and contour performances [10]. Yang
Lidong, Y. Liu, and H. Han presented a variable-weight position synchronous error, which can
reduce the influence of dynamic nonlinearity through adjusting the error of each axis according
to robot’s inertia distribution [11]. Po Ray Chen, Y.P. Yang, and J.J. Chou proposed a time-
optimal path-tracking strategy of cross-coupling control for a wheelchair driven by dual power
wheels, which is robust to driver’s weight and road disturbances [12]. Li Baoren et al. proposed
cross-coupled synchronization fuzzy control based on the synchronization error of a double
valve to solve the asynchronization problem during the working process [13]. Long Li proposed
an adaptive zero phase error tracking controller (ZPETC), which could effectively improve the
tracking accuracy and the contour accuracy combined with internal model control (IMC) control
strategy [14]. Wu and Barton proposed the use of iterative learning control and cross-coupled
control to design a cross-coupled iterative learning controller that can effectively improve contour
performance in the case of stable convergence [15, 16]. Zhao Xi-Mei proposed zero phase
adaptive robust cross-coupling control, combined with a phase error tracking controller (ZPETC),
an adaptive robust controller (ARC), and a cross-coupled controller (CCC) [17]. Ouyang et al.
proposed a position-domain cross-coupling control to improve contour tracking performance and
to reduce the dependency on coupling operator accuracy compared to time-domain cross-coupled
controllers [18, 19]. Li Xiang Fei et al. proposed a contour error compensation method based
on the precise calculation of the contour error that the accuracy of the contour control can be
improved by increasing the matching degree of the dynamic characteristics of the servo axes [20].
All of these methods can effectively improve the tracking performance of the system, but cannot
effectively reduce the tracking error of a single axis. Therefore, there is a need for a method to
improve the motion accuracy of the multi-axis system by combining the individual axis tracking
accuracy and contour tracking performance.

In this paper, because mechanical parts in the processing industry usually undergo a repetitive
processing movement, a control method combining iterative learning control and cross-coupled
control was designed. The tracking performance of the single axis was improved by iterative
learning control of the single axis, therefore the single axis tracking errors were decreased. The
dual axis cross-coupled control was used to increase the matched degree among axes, thus the
contour errors were reduced.

The iterative learning control of contour errors could further increase contour tracking per-
formance. In this way, the system is designed to improve the individual axis tracking accuracy
and contour tracking performance.
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2. Double iterative learning and cross-coupling control

This section presents a contour error model of a motion trajectory, provides a brief review
of cross-coupling control (CCC) and single axis iterative learning control (ILC), and proposed a
double iterative learning and cross-coupling control (ILC and CCILC).

2.1. Contour error model of motion trajectory
In a multi-axis motion control system, mechanical error and control system error will affect

the control accuracy of each axis, and the contour error caused by the uniaxial tracking hysteresis
and the dynamic characteristic mismatch between the motion axes will reduce the accuracy of the
motion control system. In a two-dimensional motion system, the contour trajectories are mainly
linear and non-linear trajectories, and Yeh and Sun proposal the contour error model of two kinds
of motion trajectories [21, 22]. The contour error is defined as the distance between the actual
position point and the nearest point of the reference trajectories. At the same time, where P and
P∗ are the desired position and actual position.

As known from Fig. 1, the contour error of the linear trajectory is expressed as follows:

ε = Ey · cos θ − Ex · sin θ. (1)

o
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Fig. 1. Contour error model of linear trajectory

For non-linear contour trajectories, take any curve as an example. As known from Fig. 1, the
contour error of the non-linear trajectory is expressed as follows:

ε = Ey ·
(
cos θ +

Ey

2ρ

)
− Ex ·

(
sin θ − Ex

2ρ

)
. (2)

2.2. Cross-coupled control (CCC)
The cross-coupled control method is proposed to coordinate the motion of each axis to

eliminate the contour error of the multi-axis motion system. The contour error is generated by
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the cross-coupling controller to generate a new control signal, and the new control signal is
compensated to the coordinate axes by seeking and establishing the optimal compensation rate,
so as to achieve the purpose of reducing the motion system contour error [23]. The establishment
of the contour error model is the key of the cross-coupled controller. The contour error estimation
model for linear trajectories and non-linear trajectories is shown in Eq. (1) and Eq. (2).

In Fig. 1, where Cx = sin θ, Cy = cos θ, θ is the angle between the x-axis and the desired
linear motion. Cx and Cy are the coupling coefficients of linear trajectories in cross-coupling
control. Similarly, in Fig. 2, where

Cx = sin θ − Ex

2ρ
, Cy = cos θ +

Ey

2ρ
,

θ is the angle between the tangent at the reference position and x-axis. Cx and Cy are the coupling
coefficients of non-linear trajectories in cross-coupling control. Then Fig. 1 and Fig. 2 can be
written as follows:

ε = −Cxex + Cyey . (3)

Fig. 2. Contour error model of non-linear trajectory
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Fig. 3. The structure of the cross-coupling controller

The CCC consists of a contour error model and a contour error compensation strategy.
The contour error compensation is determined by the weight gain coefficient. In this paper, the
variable-gain CCC is used to coordinate the motion of each axis to eliminate the contour error of
the multi-axis motion system. The block diagram of the variable-gain cross-coupling controller
is illustrated in Fig. 3.

2.3. Cross-coupled iterative learning control (CCILC)

Cross-coupled iterative learning control is a control method that applies iterative learning
directly to the contour error of the multi-axis control system. It can reduce the contour error of the
system in finite time intervals. The contour of the motion system has a significant improvement,
and the system block diagram of the cross-coupled iterative learning system is shown in Fig. 4.
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The iterative learning law of a PD type system for the contour error can be expressed as follows:

uccj+1(t) = uccj(t) + Lε (q−1)ε j (t + 1), (4)

where Lε (q−1) is defined as the learning function of the contour, and ε j is the contour error.
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Fig. 4. Block diagram of the cross-coupled iterative learning control system

2.4. Double iterative learning and cross coupling control (ILC and CCILC)

Iterative learning control is a modeless integrated control method. The accuracy of the
mathematical model and parameters of the motion system are not very strict. It does not need a
lot of prior knowledge and computation, and can improve the tracking performance effectively.
The cross-coupling controller is based on the contour error model, which can compensate the
contour error of each axis effectively, and can improve the contour tracking ability of the multi-
axis motion system to reduce the contour error. Cross-coupled iterative learning control applies
the iterative learning control to the cross-coupled controller; it can improve the contour trajectory
tracking performance of the system by studying the coupling error to modify the control signal,
which can reduce the contour error to a certain extent. But it cannot improve single-axis tracking
performance. Based on these characteristics, a double iterative learning and cross-coupling control
method is proposed by combining the single axis iterative learning control and multi-axis cross-
coupling iterative learning control. The system block diagram is shown in Fig. 5. Where xr and
yr are the desired trajectories of the x-axis and y-axis. Ex and Ey are the tracking errors of the
two axes, respectively. x j and yj are the actual trajectories of the two axes. ε is the contour error
of the biaxial motion system.

The iterative learning law of the contour error is shown in Eq. (4). Combining individual axis
ILC update laws (5) for the x-axis and y-axis with the CCILC update law (7), the combined ILC
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Fig. 5. Block diagram of the double Iterative learning and cross-coupling control

and CCILC update law can be written as:

ux j+1 = (ux + LxEx − CxLεε) j , (5)

uy j+1 =
(
uy + LyEy + CyLεε

)
j
, (6)

where Lx and Ly are the learning function of the x-axis and y-axis, respectively. Lε is defined as
the learning function of the contour. The tracking errors of the two axes are

Ex j (t) = xr (t) − x j (t), Ey j (t) = yr (t) − yj (t).

Substituting Eq. (4) into Eq. (5) and Eq. (6), a matrix relating to the update control input with
the previous input and periodic disturbances can be found.

ux

uy

 j+1

=


M11 M12

M21 M22

 ·


ux

uy

 j +


dLx

dLy

 , (7)

where

M11 = I − (Lx + CxLεCx )Px ,

M12 = CxLεCyPy ,

M21 = CyLεCxPx ,

M22 = I − (Ly + CyLεCy )Py .
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In order to guarantee the convergence of iterative learning control,

lim
j→∞

���u∞ − u j
��� = 0

must be met.
The sufficient and necessary conditions for the convergence of iterative learning control can

be written as: ������λi *,
M11 M12

M21 M22
+-
������ < 1, (8)

where: i ∈ [1, n], λ is the spectral radius and max |λi | < 1. A sufficient condition for monotonic
convergence of the combined system is given by







M11 M12

M21 M22







i < 1, (9)

where ∥ · ∥2 represents the 2-norm of the matrix. In Eq. (9), σ(M) < 1 is the necessary and
sufficient conditions for monotonicity and stability of the control system. From Eq. (9), the double
Iterative learning and cross-coupling controller can be decomposed into two matrix forms of ILC
and CCILC, Eq. (11) and Eq. (12). The convergence and stability conditions of the integrated
motion controller can be expressed as Eq. (10). Devising the controllers individually and then
merging them into a single control input permits tuning the ILC or CCILC parameters respectively
to improve a certain performance.


[ILCx,y] + [CCILC]


2

< 1, (10)

[ILCx,y] =


(I − LxPx ) 0
0 I − LyPy

 , (11)

[CCILC] =


(I − CxLεCxPx ) CxLεCyPy

CyLεCxPx (I − CyLεCyPy )

 . (12)

The necessary condition for monotonicity (12) is easily verified on a generic desktop computer
for small matrices. Moreover, this can be shown to provide more flexibility in designing a controller
for the combined system.

3. Experimental verification

In order to test the performance of the double-iterative learning and cross-coupling control
method, two sets of experiments with linear contour trajectories and non-linear contour trajectories
were carried out. Each experiment was conducted by a CCILC experiment, a cross-coupled
control of biaxial contour error and a single-axis ILC and CCC experiment, and an ILC and
CCILC experiment. The single axis tracking error and contour error of the three control methods
were compared by the experimental results of the three groups.
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In this paper, the double-iterative learning and cross-coupling control algorithm is mainly
verified by the actual control experiment. The experimental equipment is mainly composed of
three parts: the host computer, motion controller and control target. The experimental system is
shown in Fig. 6.

   
Host computer:

    PC +Labview2013

Motion controller: CompactRio 9082

Motion control board

NI9516

(Motion output /

Acquisition)

Local ARea Network:

TCP/IP

X-axis motor

Y-axis motor

Y-axis grating

X-axis grating

X-axis driver

Y-axis driver

X-Position

Motion control board

NI9516

(Motion output /

Acquisition)

Y-Position

D
riv

e interface m
o

dule

Fig. 6. Experimental system

As can be seen from Fig. 6, the host computer is HP z238 (OS Windows7, Inter(R), Xeon(R),
CPU E3-1230 v5 of 3.40 GHz, memory 8 GB), running LabVIEW. The host computer is mainly
used for programming and monitoring the data during the experiment. The motion controller
is composed of NI CRIO-9082 and motion control board NI9516. The control target is an X-Y
working platform consisting of a servo motor and a screw guide and the lead of the screw is 5 mm.
In this paper, in order to make the dynamic characteristics inconsistent between the two axes,
two different parameters of the permanent magnet synchronous motor are used in the x-axis and
y-axis. One is using a MR-JE-10A series drive and HF-KN13J-S100 servo motor of Mitsubishi,
the other is using a MSDA023A1A series drive and MSMA022A1C servo motor of Panasonic.
The position information is collected by a line displacement series of closed grating with a
resolution of 5 um.
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3.1. Experiment of linear contour trajectory

When performing a linear contour trajectory experiment, the reference contour runs for 34 s
and the sampling step is 0.005 s. The position controller parameter is kpx = 80 and the speed
controller parameter is kvp = 200, kvi = 50 for the x-axis. The position controller parameter is
kpy = 100 and the speed controller parameter is kvp = 120, kvi = 20 for the y-axis. The PD-type
iterative learning rate parameters of the ILC and CCILC are shown in Table 1.

Table 1. PD-type iterative learning controller parameters for linear contour trajectories

Controller kp kd

x-axis 18 0.01

Contour 8 0.005

y-axis 20 0.02

In the experiment of the proposed control method, the stability of the control system is related
to the parameters, and the tuning of the controller parameters is a very complicated process.
Therefore, some guidelines for the choice of these parameters are given below:

1) Tuning PID gain for single-axis closed-loop controller through the simulation, this can
minimize the tracking errors and maintain system stability.

2) The simulation of ILC is carried out based on step 1. Tuning parameters of iterative learning
controller and fine-tuning PID gain on step 1 to ensure that the tracking error can converge to the
minimum quickly.

3) Tuning PID gain for single-axis closed-loop controller through the simulation, this can
minimize the tracking errors and maintain system stability.

4) The simulation of ILC is carried out based on step 1. Tuning parameters of iterative learning
controller and fine-tuning PID gain on step 1 to ensure that the tracking error can converge to the
minimum quickly.

5) The simulation of CCC is carried out based on step 1. Tuning coupling error PID gain of
cross-coupling controller and fine-tuning PID gain on step 1 to ensure that the contour error can
converge to the minimum quickly.

6) The simulation of CCILC is carried out based on step 3. Fine-tuning the parameters on
step 2 and step 4 to ensure that the tracking error and the contour error can converge ensures that
the tracking error can converge to the minimum quickly.

7) The simulation of ILC and CCILC is carried out based on step 2 and step 4. Fine-tuning
the parameters determined by step 2 and step 4 to ensure that the tracking error and the contour
error can converge to the minimum quickly.

8) Repeat step 1 to step 5 on NI Compact RIO. Fine-tuning the parameters determined by the
above simulations.

The linear contours are shown in Fig. 7. The desired contour is compared with the CCILC
experiment, ILC and CCC experiment, and ILC and CCILC experiment of three convergent
contours. In Fig. 8, (a) and (b) are partial magnifications of two parts in Fig. 7, respectively.
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As shows in Fig. 8, (a) and (b), compared with CCILC and ILC and CCC, the ILC and CCILC
is closer to the desired contour and is more stable at the corner of the track when the trajectories
are convergent.
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Fig. 7. Linear contour trajectories
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Fig. 8. Partial magnifications of two parts in Fig. 8

The contour errors of the three control methods are shown in Fig. 9, Fig. 10 and Fig. 11. The
three figures show the contour error of the ILC and CCILC is smaller than that of the CCILC and
ILC and CCC, and can significantly reduce the system’s contour error. It can be seen from Fig. 12
that the ILC and CCILC has good stability and convergence for the linear contour trajectory, and
the contour error in Fig. 12 is represented by the mean.
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Fig. 10. Contour errors of ILC and CCC
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Fig. 12. Mean contour error values of ILC and CCILC

The errors of the three different control methods are shown in Table 2. When moving on the
linear contour trajectory, the CCILC can improve the accuracy of contour control, but the single-
axis tracking performance is not good, and the single axis tracking error of the ILC and CCILC
and ILC and CCC is significantly less than that of the CCILC control method. Among them, the
x-axis tracking error of ILC and CCILC is 72.65% of ILC and CCC, the y-axis tracking error of
ILC and CCILC is 79.46% of ILC and CCC, and the contour error of ILC and CCILC is 87.71%
of ILC and CCC. The contour error of ILC and CCILC is 65.15% of CCILC. The experimental
results show the double-iterative learning and cross-coupling control (ILC and CCILC) has a
significant improvement in both the single-axis tracking performance and the contour tracking
performance on linear contour trajectories.



438 W. Xu, J. Hou, W. Yang, C. Wang Arch. Elect. Eng.

Table 2. RMS Errors of the three control methods on linear contour trajectory

Control method RMS value (um)

RMS X RMS− RMS Y

CCILC 49.57 7.23 23.44

ILC and CCC 9.03 5.37 6.67

ILC and CCILC 6.56 4.71 5.30

3.2. Experiment of non-linear contour trajectory
When performing a non-linear contour trajectory experiment, the reference contour runs for

34 s and the sampling step is 0.005 s. The position controller parameter is kpx = 60 and the speed
controller parameter is kvp = 150, kvi = 30 for the x-axis. The position controller parameter is
kpy = 80 and the speed controller parameter is kvp = 120, kvi = 12 for the y-axis. The PD-type
iterative learning rate parameters of the ILC and CCILC are shown in Table 3.

Table 3. PD-type iterative learning controller parameters for linear contour trajectories

Controller kp kd

x-axis 14 0.01

Contour 2 0.05

y-axis 18 0.02

The parameter tuning method of the non-linear contour trajectory can refer to the parameter
tuning of the linear contour trajectory. The non-linear contours in the experiment are shown in
Fig. 13. Taking the “8” trajectory as an example, the desired contour is compared with the CCILC
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Fig. 13. Non-linear contour trajectories



Vol. 68 (2019) A double-iterative learning and cross-coupling control design 439

experiment, ILC and CCC experiment and ILC and CCILC experiment of three convergent
contours. Figs. 14 (a) and (b) are partial magnifications of two parts in Fig. 13, respectively. As
shows in Figs. 14 (a) and (b), compared with the CCILC and ILC and CCC, the ILC and CCILC
is closer to the desired contour and is more stable at the corner of the track when the trajectories
are convergent.
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Fig. 14. Partial magnifications of two parts in Fig. 14

The contour trajectories of the “8” for the three control methods are shown in Fig. 15, Fig. 16
and Fig. 17. The three figures show the contour error of the ILC and CCILC is smaller than the
CCILC and ILC and CCC, and can significantly reduce the system’s contour error. It can be seen
from Fig. 18 that the ILC and CCILC has good stability and convergence for the linear contour
trajectory, and the contour error in Fig. 18 is represented by the mean.
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The errors of the three different control methods are shown in Table 4. When moving on
the non-linear contour trajectory, the CCILC can improve the accuracy of contour control, but
the single-axis tracking performance is not good, and the single axis tracking error of the ILC
and CCILC and ILC and CCC is significantly less than that of the CCILC control method.
Among them, the x-axis tracking error of ILC and CCILC is 54.39% of ILC and CCC, the
y-axis tracking error of ILC and CCILC is 62.5% of ILC and CCC, and the contour error of
ILC and CCILC is 62.22% of ILC and CCC. The contour error of ILC and CCILC is 75.68%
of CCILC. The experimental results show the ILC and CCILC has a significant improvement in
both the single-axis tracking performance and the contour tracking performance on linear contour
trajectories.

Table 4. RMS Errors of the three control methods on non-linear contour trajectory

Control method RMS value (um)

RMS X RMS RMS Y

CCILC 49.68 3.66 45.22

ILC and CCC 5.71 4.55 4.03

ILC and CCILC 3.12 2.79 2.50

4. Conclusions

This paper has presented the double iterative learning and cross-coupling controllers (ILC
and CCILC) for multi-axis systems. Compared to the result using CCILC and ILC and CCC,
experiment data indicated that the proposed method of the ILC and CCILC can improve the single-
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axis tracking performance and reduce the multi-axis contour error significantly. The convergence
and stability condition was developed to tuning the ILC or CCILC parameters. The paper provides
the six step tuning guidelines for the choice of the controller coefficients for specific tracking
improvements.
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