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Swing-up time analysis of pendulum

K. FURUTA* and M. IWASE**

Department of Computers and Systems Engineering, Tokyo Denki University

Hatoyama-cho, Hiki-gun, Saitama 350-0394, Japan

Abstract. Swing-up control of a single pendulum from the pendant to the upright position is firstly surveyed. The control laws are comparatively
studied based on swing-up time from a given initial state to the upright position. The State Dependent Riccati Equation is found effective for
designing the swing-up control law under saturating control input. The control law is extended to a linear combination of sine function of the
angle and the angular velocity, and a variable structure control with a sliding mode given by the linear combination. Making the swing-up
time correspond to a colour, which is similar to the Fractal analysis, colour maps of the swing-up time for given control parameters and initial
conditions yield interesting Fractal-like figures.
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1. Introduction

The equiperiodic swing motion of a hanging lamp (pen-
dulum) is said to be first observed by Galilei at his age of
19 in the cathedral in Pisa, which led him to design a pen-
dulum clock. Foucault used a pendulum to demonstrate
the rotation of the earth. A hanging pendulum thus has
interesting and attractive characteristics, and has been
studied.

Stabilizing a pendulum at the upright unstable posi-
tion has become an interesting object for physicists. Such
stabilization was first done using feedforward vertical vi-
bration of the pivot of a pendulum by A. Stephenson in
the beginning of 20th century [1], and it was analyzed
and demonstrated by D. J. Acheson [2,3]. It was again
studied by J. Baillieul [4].

A pendulum at the upright position has been used
in the lectures [5] and text books [6] as an example
of unstable controlled objects which can be stabilized
by horizontally controlling the pivot position according
to the angle and the angular velocity of the pendulum.
It has been also employed in many control laboratories
worldwide. Not only a single but also multiple inverted
pendulums up to triple ones have been stabilized by [7–
9]. Such multiple pendulums are found controllable, and
many advanced control technologies have been applied to
evaluate the controller’s performance. For example, the
stabilization of a triple spherical pendulum [10] and the
stabilization and transfer of a pendulum over robot hands
[11] have been also successfully done. The mechanical
structure of the spherical triple pendulum was concur-
rently designed with the controller. Use of an observer
could make it possible to stabilize double inverted pendu-
lums without measuring the angle between links [12]. A
hinge actuated pendulum has been called acrobot [13,14],
and has been also stabilized.
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Swinging pendulums from the pendant up to the
upright position is a rather new topic which has first been
studied by one of the authors including double pendulums
case [15–18]. A predetermined feedforward input was
applied to swing a pendulum up to the neighbourhood
of the upright position, and then it is stabilized by
linear feedback control. But this swing-up control was not
robust. Thus more robust swing-up controls have been
developed based on the vector field of a pseudo-state
space, energy and artificial gravity derived by energy or
similar potential function [19,20]. These control strategies
need both control laws for swing-up and stabilization
around the upright position. The region of attraction and
the analysis of the global stabilization were studied by
Zhao and Spong [21]. Instead of switching control laws
for swing-up and stabilization, a nonlinear control based
on State Dependent Riccati Equation (SDRE) has been
also found effective for swinging-up the Furuta Pendulum
shown in Fig. 1 [22].

Fig. 1. Picture of a single Furuta pendulum
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The swing-up motion behaviour, however, has not
been studied in detail. This paper analyzes the swing-up
motion with the saturating actuator from the swing-up
time. To simplify the analysis, this paper considers only
the behaviour of a single pendulum. We consider the
swing-up time may show the degree of stability, and
try to visualize the degree using the colour map with
respect to initial states and control parameters. Unstable
sets of complex-value nonlinear systems with respect to
initial states and parameters has been analyzed by Julia
and Mandelbrot. These famous sets are called Julia set
and Mandelbrot set [23,24], which are coloured using
computer graphics. Taking a hint from their studies,
this paper makes colour maps for the analysis of the
swing-up time on the given condition for initial states
and control parameters. Especially, a variable structure
control presents an interesting colour map of the swing-up
time.

2. Modelling of pendulum

For modeling multiple pendulums, a straight forward
way is based on the projection method [25].

Fig. 2. Schematic figure of an ideal pendulum

The following example illustrates this idea. Let us
consider an ideal pendulum in a local coordinate frame as
shown in Fig. 2. A single pendulum is attached to a pivot
with a free joint. The force mgu is applied to the mass by
the acceleration of the moving pivot. We assume that the
pivot moves left if positive input u is applied.

In the modelling, the pendulum is treated as a con-
strained system described by

Mq̈ = F + CTλ (1)

where

M =
[
m 0
0 m

]
, q =

[
x
y

]
, F =

[
mgu
−mg

]
.

C is the constraint matrix representing holonomic con-
straints and is described below. λ is the Lagrange multi-
plier vector corresponding to constraint forces.

The holonomic constraint in this case is

x2 + y2 = l2.

From its derivative, we obtain

[x y]
[
ẋ
ẏ

]
= 0 (2)

or

Cq̇ = 0. (3)

Hence C is defined as

C = [x y]. (4)

The generalized coordinate q can be represented by the
independent coordinate θ of the reduced dimension as
follows:

q = g(θ) (5)

g(θ) :=
[
l sin θ
l cos θ

]
.

Then

q̇ = Jθ̇

J :=
∂g

∂θ
=

[
l cos θ

−l sin θ

]
.

The constraint (3) means

CJ = 0.

Using (5), the constrained system (1) can be described in
the subspace of the reduced dimension.

JTMJθ̈ + JTMJ̇θ̇ = JTF. (6)

Note that the constraint force is annihilated automatically
by multiplying the matrix J , because the movement of
the system is projected and restricted on the constrained
subspace. Furthermore, each constraint is independent,
that is, C is row full rank, and thus the constraint force
is given by

λ = −(CM−1CT )−1(CM−1F + Ċq̇)

=
−xmgu + mgy − mẋ2 − mẏ2

l2
. (7)

The constraint force is a function of the pendulum length
and mass, and the position and velocity of the center of
gravity. This force should be taken into consideration in
control system designs, for example, not to exert excessive
force at the hinge.

Arranging (6), the ideal pendulum is described by the
independent coordinate θ as

ml2θ̈ = mgl sin θ + mglu cosθ. (8)

This system (8) is known to be uncontrollable at the
state of θ = π/2 (mod 2π), but reachable to the upright
position by proper controls. Let g/l = 1.0 to discuss the
dynamic behaviour of the pendulum more simply. In this
case, the pendulum is called a normalized pendulum, and
is represented by

θ̈ = sin θ + u cos θ. (9)

Let us consider several general dynamic behaviours of the
normalized pendulum in the following.
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3. Control strategy for swing-up pendulum

3.1. Map showing swing-up time. In this paper, our
focus is on a time required for swinging-up a pendu-
lum from the pendant to the upright-position. We call
it swing-up time, and consider that the swing-up time
may show the degree of stabilities. Julia and Mandelbrot
have analyzed unstable sets of complex-value nonlinear
systems with respect to initial states and control pa-
rameters, respectively. These famous sets are called Julia
and Mandelbrot sets, which have been drawn using com-
puter graphics. Taking a hint from their studies, this
paper makes colour maps for the analysis of the swing-up
time on the given condition for initial states and control
parameters.

However, the proposed method to make the colour
map is different from Julia and Mabdelbrot sets. In our
method, a colour is decided according to the time when
a trajectory started from an initial state with control
parameters goes into a cylinder whose radius is small
enough, as shown in Fig. 3. The radius means a tolerance
of the equilibrium point. If the trajectory goes into the
cylinder so fast, black colour is chosen, conversely, if the
trajectory converges so slowly or does not go into the
cylinder, red colour is chosen. The relation between the
swing-up time and the colour is represented by a colour
code bar.

Fig. 3. Schematic figure how to make a colour map showing the
swing-up time: the colour is decided according to the time when
a trajectory started from the initial state goes into a cylinder

showing tolerance

Finally, if we analyze an influence of the given initial
state on the swing-up time, a map is made by plotting
at the position of the initial state with the corresponding
colour, like Julia set. In other case, that is, if we analyze
an influence of the given control parameters on the swing-
up time, a map is made by plotting at the position in
the parameters’ space with the corresponding colour, like
Mandelbrot set. We will apply this analysis way to several
swing-up methods, and present some interesting results.

3.2. Artificial gravity. The dynamic behaviour of pen-
dulums has been studied for a long time, but controlling
pendulums from the pendant to the upright position is

a relatively new topic. Several control laws to swing-up
pendulums have been studied based on energy, artificial
gravity and so on. For example, the control law u(t) for
the system (8) by the artificial gravity is given as

u(t) = −2 tan θ, (10)

and yields

ml2θ̈ = −mgl sin θ. (11)

In this case, the direction of gravity is artificially changed
to upward. The pendulum can be swung-up from any
initial state, and also be stabilized at the upright position
by adding a proper damping factor to this control. A
colour map showing the swing-up time from each initial
state on the map is presented in Fig. 4. The control input,
however, becomes infinitely large when the pendulum is
horizontal.

Fig. 4. A colour map showing the swing-up time from the corre-

sponding initial state on the map by the artificial gravity

3.3. Energy based swing-up control. Let us survey a
swing-up control based on energy [4]. The ideal pendulum
behaviour is described in equation (8). The total energy of
the pendulum including kinematic and potential is given
by

E =
1
2
ml2θ̇2 + mgl cos θ.

In order to swing-up the pendulum from the pendant
to the upright equilibrium position, its energy must be
increased from −mgl to mgl. We set E0 = mgl. Now
investigate the relationship between the control input u
and the energy E. By simple computation,

Ė = mgluθ̇ cos θ

is easily yielded. From the derivative, the energy increases
if uθ̇ cos θ > 0. Hence, in order to swing-up the pendulum
to the upright position, u should be chosen so that
(E − E0)2 decreases, that is,

u = −umax sgn((E − E0)θ̇ cos θ)

or

u =
{
umax if (E − E0)θ̇ cos θ < 0
−umax if (E − E0)θ̇ cos θ > 0

.
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A simulation result is shown in Fig. 5. In the simu-
lation, we used the parameters, m = 1.0 [kg], l = g =
9.8 [m/s2] and umax = 1.0, and also the initial state of
[θ(0), θ̇(0)]T = [−π, 0]T .

Fig. 5. A trajectory and input in simulation by the energy based
swing-up control: the pendulum angle is the red solid line, and the

input is blue line

From the graph, it is found that the swing started in
the opposite direction to the swing-up direction toward
the upright position. If the maximum amplitude of the
input is small, the number of the swings may increase
before the pendulum has been swung-up to the upright
position. Figures 6 are colour maps showing the swing-up
time from the given initial state to the upright position
by the energy-based control. These figures clearly show
that the swing-up time becomes longer if the maximum
amplitude is small. From all initial state, the pendu-
lum can swing-up to the upright position in the time
corresponding to the colour.

4. Nonlinear control for swing-up

In order to discuss the intrinsic characteristics of
swing-up control laws, let us study a simple pendulum by
using colour maps. The normalized pendulum (9) can be
rewritten as

d

dt
x =

[
0 1

sin θ
θ 0

]
x +

[
0

cos θ

]
u (12)

where
x = [θ, θ̇]T .

One of effective swing-up approaches is a LQ type control
law using State Dependent Riccati Equation (SDRE) [26],
which considers a criterion function:

J =
∞∫
0

(q̄1 sin2 θ + q̄2θ̇
2 + cos2 θu2)dt. (13)

The control law based on SDRE is given by

u = −(cos θ)−1[f,
√
q̄2 + 2f ]x (14)

Fig. 6. The energy-based approach gives colour maps showing the
swing-up time from given initial states to the upright position. In
the upper map, the maximum amplitude of the input is umax = 1.0,

and in the lower map the maximum amplitude is umax = 0.1

where

f =
sin θ
θ

+

∣∣∣∣ sin θ
θ

∣∣∣∣ √
1 + q̄1.

The control law is actually given by a positive definite
solution of the following SDRE:[

0 sin θ
θ

1 0

]
P (x) + P (x)

[
0 1

sin θ
θ 0

]

+
[
q̄1

(
sin θ

θ

)2
0

0 q̄2

]
− P (x)

[
0 0
0 1

]
P (x) = 0.

Then

2
sin θ
θ

p12 + q̄1

(
sin θ
θ

)2

− p2
12 = 0 (15)

2p12 + q̄2 − p2
22 = 0 (16)

where pij is the (i, j) component of P (x). Figures 7 show
the swing-up time with the SDRE-based control law. The
left-side map shows the swing-up time from the initial
state θ = 179π/180, θ̇ = 0 using the feedback gain de-
signed with the weights of q̄1 = 5.0 and q̄2 = 5.0. The be-
low map shows the time for each initial state on the
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Fig. 7. The left-side map shows the swing-up time for each weight (q̄1, q̄2) from the initial state θ = 179π/180 and θ̇ = 0. The right-side map
shows the swing-up time from each initial states on the map with the weight q̄1 = 5 and q̄2 = 5

map with the weight of q̄1 = 5.0 and q̄2 = 5.0. From
Figs. 7, we find that the swing-up from almost all initial
state to the upright position can be achieved by the
SDRE-based control.

Fig. 8. A colour map showing the swing-up time from each initial
state on the map by SDRE-based control law: The input limit of

K = 1.5 and the weights of q̄1 = 5 and q̄2 = 5 are used

However, this control law also becomes infinitely large
at the uncontrollable state. Such control laws include
the singularity at the uncontrollable state, and then
the input becomes infinitely large. Thus the behaviour
with saturated input should be studied if we consider
applications to real systems. We introduce the following
input saturation:

u =

{
K u > K
u −K � u � K.
−K u < −K

(17)

For example, setting K = 1.5 in Fig. 8, the colour map of
the swing-up time for each initial state has been separated
into two regions. The red region means the swing-up is
impossible, and the other means the swing-up is possible.
Even if the SDRE-based controller is used, the system
cannot be stabilized from some initial states. Then, we

try to analyze the case in that a simplified control law is
used. The control law is obtained by keeping the structure
of (14) and introducing constant coefficients f0 and f1,
and is given by

u(t) = −(cos θ)−1(sin θ + f0 sin θ + f1θ̇). (18)

The closed loop system is represented by

d

dt
x =

[
0 1

−f0
sin θ

θ −f1

]
x. (19)

Fig. 9. Colour map showing the swing-up time from each initial state
on the map using the simplified control with its feedback gains of

f0 =
√

6, f1 =
√

5

Figure 9 is the colour map of the swing-up time in this
case. To compare the result of this case with the SDRE
case, the control parameters f0 and f1 were chosen as
f0 =

√
6 and f1 =

√
5. From the figures, we can find that

almost same result can be obtained by using the simplified
control law, if the input saturation exists. Paying our
attention to this interesting fact, let us consider and
analyze the swing-up by a more simple control law in the
following section.
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5. Linear-like controller for swing-up of
pendulum

In this section, a non-singular control law is used to
swing-up a pendulum, and its behaviour will be analyzed.
Since the angle has cyclic characteristics, a sine function
is used to give a linear-like control law:

u = −(f0 sin θ + f1θ̇). (20)

The normalized system (9) has a stable equilibrium point
around θ = π (mod 2π) and an unstable one around θ =
0 (mod 2π) with no input. (In the following, (mod 2π) will
be omitted.) Unfortunately, this control law is impossible
to swing-up the pendulum from all initial states. Let us
study the set of swung-up initial states.

By properly choosing the input, the system becomes
stable around θ = 0. Let

x = [sin θ, θ̇]T .

The normalized pendulum controlled by (20) is repre-
sented as

d

dt
x =

[
0 cos θ

(1 − f0 cos θ) −f1 cos θ

]
x. (21)

Characteristics of this type of control are analyzed by
making a colour map of controller parameters (f0, f1)
with respect to the swing-up time from the initial states
(θ0 = π + ε, θ̇0 = 0) to the upright position. If the
pendulum is in the steady state at the pendant position,
the pendulum does not move since the pendant position
is the unstable equilibrium by the given control law. In
order to avoid this condition, a small perturbation ε is
added to the initial state, and is also added to the control
input when θ = π and θ̇ = 0. The result is shown in
Fig. 10, where ε = −π/180. The horizontal coordinate
of the figure is f0 and the vertical one is f1. The red
colour shows that it takes long time to swing-up the
pendulum, and the other colours indicate the swing-up
can be achieved quickly. If once the state moves outside of

Fig. 10. Colour map of the swing-up time with respect to controller’s
coefficients (f0, f1): The colour in the map has been decided from
the colour code bar corresponding to the swing-up time from the

initial state θ = 179π/180, θ̇ = 0 to the upright position

the non-red areas, the successive motion does not reach to
the upright position, but to certain limit cycle. Therefore,
the map shows reachable sets to the upright position by
the swing-up time. It is an interesting characteristic that
the non-red areas in the map are not connected, and
stripe shapes appear in the map. From the result, note
that small changes of the control parameters may cause
to fail the swing-up from the given initial state to the
upright position.

Fig. 11. Colour map of the swing-up time with respect to initial
states, where the control parameters of (f0 = 1.5, f1 = 0.5) are

chosen

Fig. 12. Colour maps of the swing-up time with respect to initial
states, which are drawn with various control parameters f0 = 1.5

and f1 = 0.5, 1.0, 1.5, 2.0, 2.5, 3.0
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Figure 10 has been drawn by fixing the initial state and
changing the controller parameters. On the other hand,
Figs. 11 and 12 has been drawn by fixing the control
parameters and changing the initial state. θ0 is chosen as
the horizontal axis, and θ̇0 is chosen as the vertical axis.
The range of θ0 is taken from −π to π, and the range of θ̇0

is taken from −2.5 to 2.5. In Figure 11, the feedback gains
of (f0, f1) = (1.5, 0.5) are used. From the figure, we find
that small changes of the initial states may also cause to
fail the swing-up. Moreover, in order to investigate the
influence of choice of the control parameters on the map,
we have drawn Figs. 12 with various parameters, that is,
f0 = 1.5 and f1 = 0.5, 1.5, 2.0, 2.5, 3.0. The possibility of
swing-up from the initial state near the pendant position
is also changed as the control parameters are changed.
This fact leads to Fig. 10. Especially, these maps show
that the closed loop system with smaller f1 is more
sensitive to the initial state. Sets taking the coordinate
of (sin θ, θ̇) instead of (θ, θ̇) are shown in Fig. 13. Note
that the swung-up region is transparent and the others
are plotted by red colour.

Fig. 13. Maps of the swing-up time with respect to initial states tak-
ing the cylinder coordinate (sin θ, θ̇): These maps are corresponding
to the maps in Figs. 12, and are drawn with various control param-
eters f0 = 1.5 and f1 = 0.5, 1.0, 1.5, 2.0, 2.5, 3.0. However, the
colours used in these maps are digitized with two colours of red and

transparency

6. Sliding mode type controller for swing-
up

In previous section, the control law for swing-up of the
normalized pendulum with fixed control coefficients has
interesting characteristics. The swing-up of the pendulum
by a sliding mode type control will be also analyzed. For
equation (9), a sliding mode is designed by s = 0 where s
is given by

s = θ̇ + a sin θ (22)

with a positive constant a. Its derivative is

ṡ = θ̈ + a cos θθ̇ = sin θ + cos θu + a cos θθ̇. (23)

In order to decrease V = s2, a sliding mode control should
be designed so as to make the derivative of V be negative.
If we take

u = −K sgn(s cos θ) (24)

where K > 0, K should be infinite in order to make the
derivative of V be always negative in the swing-up of the
pendulum. But, it actually is not necessary to take so
large K in order to swing-up from the initial states to
the upright position. In this section, the swing-up time
is analyzed for the choices of (K, a). In usual sense,
if the amplitude of input becomes larger, the swing-up
time might become shorter. However, in this type of
control, the swing-up time is not always shortened by
large amplitude K of input as shown in Fig. 14.

The following interesting characteristics is found from
Fig. 14. The number of preparatory swings before the
swing-up has been completed depends on the control
parameters K and a. However, the large K does not
necessarily give the small number of the preparatory
swings. In order to analyze these parameters, a colour
map of the coefficients (K, a) is made, where each colour
shows the swing-up time from the pendant position (θ =
π, θ̇ = 0) to the upright position. As a result, a picture as
a set showing the swing-up time for each parameters K
and a, which is like a Fractal, can be obtained.

Given a pair of the coefficients, sets of the swing-up
time from each initial state to the upright position are
also analyzed. A colour map of the sets with the fixed
parameter of a = 1.4 and K = 1.8 is shown in Fig. 16.
This map also has interesting shape, that is, it is also like
a Fractal. From the figure, note that a small difference of
the initial state around which the colour changes sharply
might cause a large difference of the swing-up time. In
order to investigate this observation, let us pick up two
initial states around the center of a spiral which has
the prismatic colours in Figs. 18, and check the time
response of each initial state. Figs. 18 are some parts of
the zoomed colour map of Fig. 16, and Fig. 19 are the
time responses. It is easily found that these observation
is true, and we should pay attention to the fact in design
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of nonlinear controllers. The effect of the parameters can
be also checked by using Figs. 17.
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Fig. 14. The simulation results of the sliding mode type control with
different control parameters: The above result is of a = 1.0, and the
below one is of a = 1.4. Both results shows the fact that even if the
large amplitude input is used, the swing-up time is not necessarily
shortened. The number of preparatory swings is also different under

different parameters a and K

Fig. 15. A colour map showing the swing-up time by the sliding
mode type controller with different parameters K and a

Fig. 16. A colour map showing the swing-up time by the sliding mode
type controller from different initial states. The control parameters

of a = 1.4 and K = 1.8 are used

Fig. 17. Colour maps showing the swing-up time from each initial
states with different control parameters of a = 1.4 and K = 1.60,

1.64, 1.68, 1.72, 1.76, 1.80
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Fig. 18. Some pieces of the enlarged colour map of Fig. 16

Fig. 19. Time responses of swing-up of the normalized pendulum: these two graphs show the time responses from the initial states around the
center of a spiral which has prismatic colours in Fig. 18. Actually, the left-side graph is of θ = 3.16007, θ̇ = 0.136364, and the ride-side one

is of θ = 3.16, θ̇ = 0.13. The control parameters of a = 1.0 and K = 2.6 are used in both graphs

If unknown parameters are introduced and an adaptive
control scheme is applied, more interesting results can be
obtained. Instead of (9), let us consider

θ̈ = c sin θ + cos θu (25)

where c is an unknown parameter to be estimated. The
same sliding mode is considered by s = 0 where s is given
by (22), and

V =
1
2

(s2 + γĉ2)

is chosen as a Lyapunov function. ĉ is the estimated
parameter of c. Then the derivative of V is

V̇ = sṡ + γĉ ˙̂c

= (aθ̇ + u)(s cos θ) + γ(c − ĉ)s sin θ, (26)

where the parameter update law is given by

˙̂c = − 1
γ
s sin θ.

Then, a control input is obtained by

u = −K sgn(s cos θ).

We investigate the effect of the gain of input K through
the following simulations under almost same conditions
used in the previous sliding mode control. The simulation
has been done under the different condition on K from
K = 1.0 to K = 10.0 with 1.0 step. The parameter a
is set as a = 3.0, and the initial value of ĉ is set as
ĉ0 = 0.5. Figures 20 show the results of the simulation,
which are colour maps showing the swing-up time from
each initial state by adaptive sliding mode controller with
each K, like Julia-like sets. As it is seen in Figs. 20, the
stability is not always improved even if K is increased.
These interesting phenomena can be seen in the control
pendulum.
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Fig. 20. Colour maps of initial states showing the swing-up time
by adaptive sliding mode type controller with a = 3.0 and several
K = 1.0, 2.0, 3.0, 4.0, 5.0 in the left column, K = 6.0, 7.0, 8.0,

9.0, 10.0 in the right column

7. Conclusion

The several swing-up controls of a single pendulum
from the pendant to the upright position have been stud-
ied. We first restudied the traditional control methods
from the swing-up time point of view. Nonlinear controls
for swing-up of pendulum based on State Dependent Ric-
cati Equation and sliding mode have been also presented.
In these studies, the colour maps have been made and
utilized for analyses of the swing-up time. The swing-up
time of controlled pendulums for controller parameters
and initial states has been studied by using the maps.
These maps are interesting and complicated similar to
Mandelbrot and Julia sets in Fractals.
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