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Model reduction problem of linear discrete systems:
Admissibles initial states

A. ABDELHAK and M. RACHIK

Given a linear discrete system with initial state x0 and output function yi , we investigate
a low dimensional linear system that produces, with a tolerance index ǫ , the same output function
when the initial state belongs to a specified set, called ǫ-admissible set, that we characterize
by a finite number of inequalities. We also give an algorithm which allows us to determine an
ǫ-admissible set.
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1. Introduction

The tendency to analyze and design systems of ever increasing complexity is
becoming more and more a dominating factor in progress of chip design. Along
with this tendency, the complexity of the mathematical models increases both
in structure and dimension. Complex models are more difficult to analyze, and
it is also harder to develop control algorithms. Therefore model order reduction
(MOR) is of utmost importance [3, 8].

The problem of model reduction is to replace a given mathematical model of
a system or process by a model that is much smaller than the original ones, yet
still describes (at least approximately) certain aspects of the system or process (in
control theory that is input-output behaviour of the system). If the approximation
error is within a given tolerance, only the smaller system’s model needs to be
simulated, which will in general take much less time and computer memory
than the original large-scale system would do. The reduced model might be
used to replace the original system as a component in a large simulation, or
it might be used to develop a low dimensional controller suitable for real-time
applications [10].
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It must be stressed that achieving faster simulation and optimization times
is not the only goal for applying the model reduction. Sometimes, it is most
important to get the model with the lowest number of variables [13, 27].

Most methods of model reduction focus on linear systems, which, in many
cases, provide accurate descriptions of the physical systems. Depending on the
properties of the original system that are retained in the reduced model, there
are different model reduction methodologies. Hence, there are techniques based
on: singular perturbation analysis [16, 25], modal analysis [4, 6, 15, 18], singular
value decomposition [13,14,19], moment matching [5,20] and methods based on
a combination of singular value decomposition and moment matching [1, 2, 11].

In this paper, we develop an original method for model order reduction prob-
lem, which takes into account the initial state.

Consider the class of discrete linear systems described by
{

xi+1 = Axi +Bui ,

x0 ∈ Rn (1)

with the output
yi = Cxi ,

where xi ∈ Rn, ui ∈U ⊂ Rp, with U a given set of constraints, yi ∈ Rq, A ∈ Rn×n,
B ∈ Rn×p and C ∈ Rq×n. The model reduction problem we are interested in can
be stated as follows: Given the matrices A, B and C, we investigate matrices
M ∈ Rm×m, P ∈ Rm×n, and L ∈ Rq×m, where m < n, such that the output function
hi = Lzi , zi ∈ Rm, of the low dimensional system

{
zi+1 = Mzi +PBui ,

z0 = Px0
(2)

satisfies, for some initial state x0 and some tolerance index ǫ , the constraints

‖yi − hi‖ ¬ ǫ , ∀i ­ 0, ∀u ∈ U, (3)

where u ∈ U means that ui ∈ U, ∀i ­ 0 and ‖.‖ denotes the ∞-norm, i.e., for
x = (xi) ∈ Rn,

‖x‖ =max {|xi |, i = 1, . . .,n} .
The set of all x0 which verify (3), called ǫ-admissible set, is denoted by
Oǫ∞(M,P,L), or simply O∞, when the arguments are clear from context, i.e.,

Oǫ
∞(M,P,L) =

{
x0 ∈ Rn; ‖yi − hi‖ ¬ ǫ, ∀i ­ 0, ∀u ∈ U }

.

Recursion and finite determination play a critical role in the characterization of
the ǫ-admissible set [9, 17, 23, 24]. Indeed, let

Oi =
{
x0 ∈ Rn; ‖yk − hk ‖ ¬ ǫ, ∀k = 0, .., i, ∀uk ∈ U, k = 0, .., i

}
. (4)
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If there exists an i ∈ N such that O∞ =Oi, we say that O∞ is finitely determined.
It will be shown that a necessary and sufficient condition for O∞ to be finitely
determined is that there exists an i ∈ N such that Oi+1 =Oi. Thus if O∞ is finitely
determined it can be computed in a finite number of steps.

The set definition (4), and others which appear later on, can be expressed
compactly in terms of a set operation called the P-difference. Suppose U,V ⊂ Rn,
then the P-difference of V from W is

V ∼W =
{
z ∈ Rn, z+w ∈ V, ∀w ∈W

}
.

The prefix P acknowledges Pontryagin who in the context of game theory [21],
seems to have originated the difference. The difference also apears in the book
by Demyanov and Rubinov [7].

The paper is organized as follows, section 2 contains the material on P-
difference. Basic results are considered in section 3. The computation of O∞ is
treated in section 4. An example is given in section 5.

We conclude this section with notations. We mean by ‖x‖ the ∞-norm of a
vector x. The superscript T indicates matrix transpose. A ∈ Rm×n means that A is
a matrix of m rows and n column of real scalar. The interior, closure and convex
hull of a set are denoted respectively by int, cl, co. The set V is symmetric if
V = −V . The support function of V , evaluated at η ∈ Rn, is hV (η) = sup

v∈V
ηT

v.

2. P-difference

Basic properties of P-difference are summarized in the following theorem.
See for example, [12, 22, 26]

Theorem 1 Let V,W ⊂ Rn and assume that V ∼W = {z; z+W ⊂ V } , Ø. Then
the following results hold.

(i) V ∼W =
⋂

w∈W
(V −w).

(ii) (V ∼W )+W ⊂ V .

(iii) 0 ∈W implies V ∼W ⊂ V .

(iv) suppose W =W1+W2. Then, V ∼W = (V ∼W1) ∼W2.

(v) Suppose V = V1∩V2. Then, V ∼W = (V1 ∼W )∩ (V2 ∼W ).

(vi) For α ∈ R, αV ∼ αW = α(V ∼W ).

(vii) If V is (bounded)[closed]{convex}, (V ∼W ) is (bounded)[closed]{convex}.

(viii) If V, W are symmetric, (V ∼W ) is symmetric.

(ix) If V, W are symmetric and convex, 0 ∈ V ∼W .

(x) Suppose V is convex. Then, (V ∼W ) = V ∼ coW .

In certain cases it is possible to obtain a concrete characterization of V ∼W .
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Theorem 2 [17] Suppose V is a polyedron given by,

V =
{
z ∈ Rn; sT

i z ¬ ri, i = 1, ..,N
}
,

where si ∈Rn, si , 0, and ri ∈R, i = 1, ..,N . Assume hW (si) is defined for i = 1, ..,N .
Then,

V ∼W =
{
z ∈ Rn; sT

i z ¬ ri − hW (si), i = 1, ..,N
}
.

3. Basic results

The output yk of system (1) is given by

yk = CAk x0+

k∑

j=1

CAk− j Bu j−1, k ­ 1

and the output hi of system (2) is given by

hk = LM k Px0 +

k∑

j=1

LM k− j PBu j−1, k ­ 1.

It follows that

yk − hk = (CAk − LM k P)x0 +

k∑

j=1

(CAk− j − LM k− j P)Bu j−1 .

Let’s define the matrix Hi by

Hi = CAi − LM iP (5)

then

yk − hk = Hk x0+

k∑

j=1

Hk− j Bu j−1 . (6)

On the other hand
Hi A = CAi+1 − LM iPA (7)

and from (5) and (7) we deduce that

Hi+1−Hi A = LM iPA− LM i+1P

= LM i (PA−MP).
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Hence, {
Hi+1 = Hi A+ LM i (PA−MP),

H0 = C− LP.
(8)

If we choose the matrices P and M such that PA = MP, then equatiom (8)
becomes {

Hi+1 = Hi A,

H0 = C− LP
(9)

which gives,
Hi = H0 Ai

= (C− LP)Ai, i ­ 0.

It follows from (6) that

yk − hk = H0 Ak x0+

k∑

j=1

H0 Ak− j Bu j−1

= H0(Ak x0+

k∑

j=1

Ak− j Bu j−1)

= H0xk, k ­ 1

which is also true for k = 0. Hence

yk − hk = H0xk, ∀k ­ 0.

Let M = (mi j )1¬i, j¬m, P = (pi j ), i = 1, . . .,m, j = 1, . . .,n and Define the matrice
HM by

HM =



AT −m11In −m12In . . . −m1mIn

−m21In AT −m22In . . . −m2mIn

...
...

...
...

−mm1In −mm2In . . . AT −mmmIn


,

where In is the identity matrix of order n, then we have the following result.

Proposition 1 The equation MP = PA has nonzero solution P if and only if
det(HM ) = 0.

Proof. Denote by P the vector

P = (p11, . . ., p1n, p21, . . ., p2n, . . ., pm1, . . ., pmn).

Then PA = MP is equivalent to HMP = 0. Hence there exists a matrix P , 0
such that PA = MP if and only if det(HM ) = 0.
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Proposition 2 If the matrix AT has at least one nonzero real eigenvalue then
there exists a matrix M ∈ Rm×m such that det(HM ) = 0.

Proof. Define a nonzero diagonal matrix M = diag(mii), i = 1, . . .,m, where mii

is a real eigenvalue of AT , then det(HM ) =

m∏

i=1

det(AT −miiI) = 0.

Denote
C = C− LP

and Bǫ the closed ball of radius ǫ , i.e.,

Bǫ =
{
y ∈ Rq . ‖y‖ ¬ ǫ } .

Then inequalities (3) are equivalente to

Cxk ∈ Bǫ, ∀k ­ 0, ∀ui ∈ U

which implies that

O∞ =
{
x0 ∈ Rn, Cxk ∈ Bǫ, ∀k ­ 0, ∀ui ∈U

}
,

Oi =

{
x0 ∈ Rn, Cxk ∈ Bǫ, ∀k = 0 . . . i, ∀u j ∈U

}
.

(10)

Define the set
Γ =

{
φ ∈ Rn, Cφ ∈ Bǫ

}
.

Then, from (10) and the defintion of the P-substraction, it is easy to see that

Oi = {x0 ∈ Γ; Ax0 ∈ Oi ∼ BU} . (11)

Define, as in [17], the sequence of sets by

T0 = Bǫ ,

Ti = Bǫ ∼ CBU ∼ CABU ∼ . . .C Ai−1BU, i ­ 1.
(12)

Then Oi can be described by

Oi =

{
x0 ∈ Rn, C Ak x0 ∈ Tk, k = 0 . . . i

}
(13)

and we have

Ti+1 = Ti ∼ C AiBU,

T0 = Bǫ ;
(14)

Oi+1 =Oi ∩
{
φ ∈ Rn, C Ai+1φ ∈ Ti+1

}
,

O0 = Γ =
{
φ ∈ Rn, Cφ ∈ Bǫ

}
.

(15)
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Remark 1 O∞ =
⋂

i­0

Oi.

We have the following result.

Proposition 3

i) The sets Ti are convex, symetric and compact.

ii) If U is symetric then Ti is symetric.

Proof.

i) The set Bǫ is bounded, closed and convex, then by theorem (1) we deduce
that T1 is bounded, closed and convex, and by recurence we deduce that Ti

is bounded, closed and convex for all i.

ii) suppose that U is symetric then, since Bǫ is symetric it follows from theorem
(1) that T1 is symetric and by recurence we prove that Ti is symetric for all i.

Remark 2 If U is symetric and Ti , Ø for all i, then it follows from proposition
(3) that Ti is convex and symetric and since Ti is not empty then 0 ∈ Ti for all i.
This and (13) implies that 0 ∈ O∞.

4. Algorithmique determination of O∞

Suppose that Oi =Ø for some i ∈ N, then O∞ =
⋂

i­0

Oi =Ø. Also, if there exists

an i such that Ti = Ø, then it follows from (13) that O∞ = Ø. Now, if there exists
an i such that Oi+1 =Oi, then it follows from (11) that Oi+2 = Oi+1 and O∞ = Oi.
This observation is the basis for the following conceptual algorithm.

Algorithm

step 1: i = 0, if O0 = Γ, then stop, set O∞ = Ø and i∗ = 0

step 2: determine Ti+1 by (14)
if Ti+1 = Ø, then stop, set O∞ = Ø, i∗ = i.

step 3: determine Oi+1 by (15)
if Oi+1 = Ø, then stop, set O∞ = Ø, i∗ = i.

step 4: if Oi+1 = Oi, then stop, set O∞ = Oi, i∗ = i.

step 5: replace i by i+1 and return to step 2.

To make algorithm practical we need to describe how the sets Oi and Ti can be
calculated, and also how to test if Oi = Ø, Ti = Ø and Oi+1 =Oi.
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Suppose that hU can be evaluated, then relation (14) can be implemented as
follows: The set Bǫ can be described by

Bǫ = {y ∈ Rq, Sy ¬ r },
where S = [s1, . . ., s2q]T ∈ R2q×q is given by

{
s2i−1 = ei ,

s2i = −ei ,
i = 1, . . .,2q

with (ei) the canonical basis of Rq, and r = [ǫ, . . ., ǫ]T ∈ R2q. Then Ti is given by

Ti =
{
y ∈ Rp, Sy ¬ ri

}
, (16)

where ri ∈ R2q is given recursively by


r

j

0 = ǫ,

r
j

i+1 = r
j

i
− hU

(
(CAi B)T s j

)
, j = 1, . . .,2q

with r
j

i
the j-th component of ri.

We have Ti , Ø if and only if r
j

i
­ 0, ∀ j = 1, . . .,2q.

Recursion (15) allows us to construct the set Oi by

Oi =
{
x0 ∈ Rn; Ri x0 ¬ gi

}
,

where ni = 2(i+1)q and Ri ∈ Rni×n, gi ∈ Rni are given by


R0 = SC,

Ri+1 =

[
Ri

SC Ai+1

]
,


g0 = r = [ǫ, . . ., ǫ]T,

gi+1 =

(
gi

ri+1

)
.

To avoid redundante inequalities in the definition of Oi+1 we can proceed as fol-
lows: The process begins by checking the first, added scalar inequality, sT

1 C Ai+1,
for redundancy. For this, let R̄i+1 be the matrix obtained by removing the ni+1 row,
sT

1 C Ai+1, of Ri+1, and ḡi+1 the vector obtained by removing the ni+1 component
of gi+1 and consider the linear programming

m1 = sup
R̄i+1x0¬ḡi+1

sT
1 CAi+1x0

if m1 ¬ r1
i+1, then the constraint sT

1 C Ai+1x0 ¬ r1
i+1 is redundante and Ri+1 is

updated to R̄i+1 and gi+1 is updated to ḡi+1, else, Ri+1 and gi+1 are kept without
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change. We proceed similarly with the next constraint, sT
2 C Ai+1x0 ¬ r2

i+1, and

so until the last constraint sT
2q

C Ai+1x0 ¬ r
(2q)

i+1 . The test of redundance alows

us to test also if Oi+1 = Oi, indeed if all the constraints sT
j

C Ai+1x0 ¬ r
( j)

i+1 are
eliminated, then Ri+1 = Ri and Oi+1 =Oi, else, Oi+1 ,Oi.

Here after we will need the following known result.
Consider the set Fi of all possible states, of system (1) which can occur at time i,
starting from x0 = 0

Fi =

xi =

i−1∑

j=0

Ai− j−1Bu j, u j ∈ U

 , i ­ 1,

F0 = {0}
with some added conditions, the sequence of sets (Fi) has a limit.

Theorem 3 Assume U is bounded and A is asymptotically stable. Then there
exists a compact set, F ⊂ Rn, with the following properties

i) Fi ⊂ F, ∀i ­ 0;

ii) For every ǫ > 0 there exist i ­ 0 such that F ⊂ Fi + ǫB,
where B is the closed unit ball of Rn.

Now we can prove the following result.

Theorem 4 If the pair (C, A) is observable, A is asymptotically stable and U is

bounded, then for every ǫ > θ‖C‖ we have Oǫ∞ , Ø and is finitely determined,

where θ is the smallest real such that F ⊂ Bθ and ‖C‖ is the norm of C induced
by the∞-norm.

Proof. Since U is bounded then clearly the sets Fi are also bounded and from ii)
of theorem (3) we deduce that F is bounded. Let θ > 0 be the smallest real such
that F ⊂ Bθ . It follows from (12) that

Tǫ =


x0 ∈ Rn; x0+

i−1∑

j=0

C A j Bu j ∈ Bǫ, ∀u j ∈U


suppose x0 ∈ Bγ, then x0+

∑i−1

j=0
C A j Bu j ∈ B

γ+‖C‖θ, ∀u j ∈ U, ∀i ­ 1. This im-

plies that

Bγ ⊂ T
γ+‖C‖θ
i

, ∀i ­ 1. (17)
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Define the matrix Φ =
(
C T, (C A)T, . . ., (C An−1)T

)T ∈ Rnq×n. The observability

of (C, A) implies that rankΦ = n, hence the matrix (ΦΦT )−1 is well defined. Let
ǫ > θ be fixed. Denote ǫ = γ+ ‖C‖θ, with γ > 0. Then it follows from (13) that

Oǫ
n−1 =

{
x0 ∈ Rn; ΦT x0 ∈ T ǫ

0 × . . .×T ǫ
n−1

}
.

Consequently, x0 ∈ Oǫ
n−1 ⇒ ΦT x0 ∈ T ǫ

0 × . . . ×T ǫ
n−1 ⇒ ΦΦT x0 ∈ Φ(T ǫ

0 × . . . ×
T ǫ

n−1)⇒Oǫ
n−1 ⊂ (ΦΦT )−1

Φ(T ǫ
0 × . . .×T ǫ

n−1). Since the sets T ǫ
i

are bounded, then

Oǫ
n−1 is bounded. The asymptotic stability of A implies that C Ak → 0. Since Oǫ

n−1

is bounded then we have CAk+1Oǫ
n−1 ⊂ Bγ for k sufficiently large. By (17) we

deduce that C Ak+1Oǫ
n−1 ⊂ T ǫ

k+1. If we choose k ­ n sufficiently large, then Oǫ
k
⊂

Oǫ
n−1 ⇒ C Ak+1Oǫ

k
⊂ C Ak+1Oǫ

n−1 ⊂ T ǫ
k+1. This and (13) implies that Oǫ

k
⊂ Oǫ

k+1
and consequently Oǫ

k
= Oǫ

k+1. This proves that Oǫ∞ is finitely determined for all
ǫ > θ. Finally, it follows from (17) that 0 ∈ T ǫ

i
, ∀i ­ 1, ∀ǫ > 0, and from (13) we

deduce that 0 ∈ Oǫ∞, ∀ǫ > 0.
An other way to determine O∞(C−LP, A) is to choose (C−LP, A) unobserv-

able. In this case, there exists an integer t and a system coordinate such that the
matrices A and (C− LP) have the form

Ã =

(
A1 0

A3 A2

)
, C̃ =

(
C̃1, 0

)
, (18)

where Ã = Q−1 AQ and C̃ = (C − LP)Q, with A1 ∈ Rt×t and the pair
(
C̃1, A1

)

observable. In this case,

yi − hi = (C− LP)xi = C̃ x̃i = C̃1 x̃1i ,

where x̃i =Q−1xi =

(
x̃1i

x̃2i

)
, with x̃1i ∈ Rt and

{
x̃i+1 = Ãx̃i + B̃ui

x̃0 = Q−1x0
(19)

with B̃ =Q−1B. From (19) and (18) we deduce that x̃1(i+1) = A1 x̃1i+ B̃1ui, where

B̃ =

(
B̃1

B̃2

)
. Hence,

x0 ∈ O∞(C− LP, A,B) ⇔ x̃01 ∈ O∞(C̃1, A1, B̃1)

⇔ x̃0 ∈ O∞(C̃1, A1, B̃1)×Rn−t

which implies that O∞(C− LP, A,B) =Q(O∞(C̃1, A1, B̃1)×Rn−t ). Since the pair
(C̃1, A1) is observable, results of the previous section can be applied to determine
O∞(C̃1, A1, B̃1).
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5. Example

We take

A =

(
a11 a12

a21 a22

)
, B =

(
b1

b2

)
, C = (C1, C2), P = (p1, p2),

L = l ∈ R, M = m11 ∈ R, and U = [−α, α].

In this case: n = 2, m = 1, p = 1, q = 1 and

HM =

(
a11−m11 a12

a21 a22−m11

)
.

We have det(HM ) = m2
11− (a11+ a22)m11+ a11a22− a12a21.

Let∆= (a11+a22)2−4(a11a22−a12a21). If∆ < 0 then det(HM ) , 0,∀m11 ∈ R
and the equation PA = MP has only P = 0 as solution. Suppose that ∆ ­ 0 and
choose M such that det(HM ) = 0, i.e., m11 = (a11+ a22±

√
∆)/2. In this case the

equation PA = MP is equivalent to (a11−m11)p1+ a21p2 = 0, or equivalently



p2 =
(m11− a11)p1

a21
if a21 , 0,

p1 = 0, p2 ∈ R if m11 , a11, a21 = 0,

P ∈ R2 if a21 = 0, m11 = a11 .

We choose L and P such that PA = MP, (C− LP, A) observable and ‖C− LP‖∞
as small as possible.

Remark 3 From the expression of C− LP (we suppose that a21 , 0)

C− LP =

(
c1− lp1, c2 − m11− a11

a21
lp1

)

we see that if c1 =
a21c2

m11− a11
where m11 = (a11+ a22±

√
∆)/2 then there exists L

and P such that C− LP = 0. In this case we have yi = hi, ∀i ­ 0, ∀u ∈ U .

Numerical simulation

Let A =

(
4/9 −1/18
−1/9 7/18

)
be an asymptotically stable matrix, B =

(−0.1
0.1

)
,

C = (−20, 10), α = 0.5. In this case we have c1 =
a21c2

m11− a11
with
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m11 = (a11 + a22 +
√
∆)/2. Then it follows from remark 3 that we can find L

and P such that C − LP = 0, the reduced system produces the same output for
every x0 ∈ R2 and every u ∈ U . Let C = (−19.999, 10) then application of the al-
gorithm described above with m11 = (a11+a22+

√
∆)/2, L = 1, p1 = c1+0.0001,

p2 =
(m11− a11)p1

a21
shows that for ǫ = 0.0001 we have Oǫ∞ = Oǫ

2. The graphical

representation of Oǫ
2 is given by Fig. 1.

Figure 1: The ǫ-admissible set

6. Conclusion

To resolve the model order reduction problem, we have developed an original
method which takes into account the initial state. Indeed, we have investigated a
low dimensional system that produces, with a tolerance index ǫ , the same output
than the original one when the initial state belongs to a set called ǫ-admissible
set. Results of existence and steps of determining the low dimensional system
parameters are described. We have characterized the ǫ-admissible set by a finite
number of inequalities. We have given an algorithm for determining Oǫ∞. This
algorithm is practical since it uses only linear programming problems. Result of
convergence is also given.
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