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Abstract. The paper presents Gupta’s relational decomposition technique expanded on linguistic level. It allows to reduce the hardware cost

of the fuzzy system or the computing time of the final result, especially when referring to First Aggregation Then Inference (FATI) relational

systems or First Inference Then Aggregation (FITA) rule systems. The inference result of the hierarchical system using decomposition

technique is more fuzzy than of the classical system. The paper describes a linguistic decomposition technique based on partitioning the

knowledge base of the fuzzy inference system. It allows to decrease or even totally remove a redundant fuzziness of the inference result.
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1. Introduction

The general structure of the MISO (Multiple Inputs Single

Output) FIS (Fuzzy Logic Inference System) is shown in Fig. 1.

It consists of the following components: a fuzzification block,

a knowledge base, an inference block and a defuzzification

block [1, 2].
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Fig. 1. General structure of the Fuzzy Logic Inference System

The knowledge base KB[Y,XK , ...,X1] comprises a col-

lection of linguistic rules and definitions of linguistic vari-

ables. The fuzzy system is characterized by the linguistic de-

scription in the form of fuzzy rules

If XK is AKjK
and ... and X1 is A1j1

,

then Y is BjK
...j2j1 , also...

(1)

where XK , ..., X2, X1 are input variables; Y is an output

variable; AKjK
, ..., A2j2

, A1j1
, BjK ...j2j1

are linguistic val-

ues defined by fuzzy sets AKjK
, ..., A2j2 , A1j1 , BjK ...j2j1 on

the corresponding universes of discourse XK , ..., X2, X1 and

Y respectively (jK = 1...NK , ..., j2 = 1...N2, j1 = 1...N1,

where Nk (k = 1...K) denotes the number of the linguistic

values for the kth input variable).

The general inference process usually encompasses four

(or three for a system with exclusively fuzzy outputs) steps:

1) Fuzzification; actual input values x′

K , ..., x′

2, x′

1 are con-

verted into fuzzy sets A′

K , ..., A′

2, A′

1. The most popular

method is singleton fuzzification (systems with no fuzzy

inputs).

2) Inference; the membership functions defined on the input

variables XK , ..., X2, X1 are applied to their actual values

A′

K , ..., A′

2, A′

1 to determine the degree of truth for each

rule premise (the if-parts of the rules) and then applied

to the conclusion part of each rule (the then-parts of the

rules).

3) Aggregation; all of the fuzzy subsets obtained in the previ-

ous step are combined together to form a single fuzzy set

B′ for output variable Y (fuzzy output).

4) Defuzzification; converts the fuzzy output set B′ to a crisp

number y′.

The output fuzzy set B′

jK ...j2j1
for rule RjK ...j2j1 (1) can

be expressed by means of the formula [1, 2]

B′

jK ...j2j1
= A

′ ◦ RjK ...j2j1 (2)

where the symbol ◦ denotes the compositional rule

of inference operators (e.g. sup-min, sup-prod), RjK ...j2j1

represents the relation between antecedent and consequent

part of RjK ...j2j1 rule, and A
′ = A′

K×. . .×A′

2 × A′

1.

The relation RjK ...j2j1 defined in the Cartesian product

XK×. . .×X2 × X1 × Y can be expressed by the formula

(Mamdani) [1–4]

RjK ...j2j1 = AjK ...j2j1 ∧ BjK ...j2j1 , (3)

where ∧ denotes the MIN operator and

AjK ...j2j1 = AKjK
× . . . × A2j2 × A1j1 . (4)

The single output fuzzy set B′ for a collection of rules can

be computed on the basis of two approximate reasoning

methods:
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Method 1

The fuzzy sets B′

jK ...j2j1
are combined together to get

a single fuzzy set by using the aggregate MAX (∨) operator

B′ =
NK

∨
jK=1

. . .
N1

∨
j1=1

B′

jK ...j2j1
(5)

Method 2

A global relation R for all rules is determined

R =
NK

∨
jK=1

. . .
N1

∨
j1=1

RjK ...j2j1 (6)

and then the output fuzzy set is computed according to the

formula

B′ = A
′ ◦ R, (7)

where the symbol ◦ denotes the compositional rule of infer-

ence operators (e.g. sup-min, sup-prod).

2. Gupta’s decomposition method

A decomposition technique based on projection of the global

fuzzy relation R first proposed by M.M. Gupta, B. Kiszka and

G.M. Trojan is presented in [4]. It makes it possible to con-

vert the global multidimensional relation R into a set of two-

dimensional subrelations Ri (i = 1, . . . ,K), thus the classical

relational FATI system can be implemented as a hierarchical

architecture that comprises a set of SISO (Single Input Single

Output) relation-based subsystems. The decomposition tech-

nique reduces hardware cost of the fuzzy system, but compu-

tation of the global relation R is extremely time-consuming

process and a large memory is necessary to store the relation

(hardware cost and computational time depends on number

of inputs and outputs of the system i.e. the dimensionality of

the fuzzy relation [6]). The global fuzzy relation R is used

only to perform decomposition process and it is no longer

necessary afterwards. These disadvantages can be eliminated

if decomposition is used for knowledge base KB[Y , XK , . . . ,

X1] of the FITA system (the fuzzy relation R of the FATI

inference system is computed based on information stored in

knowledge base KB[Y , XK , . . . , X1] (where Y , XK , . . . , X1

stand for outputs and inputs linguistic variables, respectively)

of the FITA inference system [1, 3]. The proposed methodol-

ogy assumes transformation of a classical projection of fuzzy

relation [4] into linguistic projection of knowledge base [13].

It can be expressed by the formula

KBi[Y,X1] = proj
XK ,...,Xi+1,Xi−1,...,X1

KB[Y,XK , ...,X1]

(8)

where proj is a projection operation on linguistic level [13].

It creates the knowledge bases KBi[Y , Xi] (i=1, . . . , K)
through elimination of all the input linguistic variables except

for Xi in the primary knowledge base KB[Y , XK , . . . , X1].

Antecedent parts of fuzzy rules remain unaltered (linguistic

values defined by fuzzy sets AKjK
, . . . , A2j2 , A1j1), but lin-

guistic values of the consequence parts of fuzzy rules in the

knowledge bases KBi[Y , Xi] (linguistic values described by

fuzzy sets BD
iji

) are computed by combination of the conse-

quence parts of fuzzy rules in the primary knowledge base

KB[Y , XK , . . . , X1] (described by fuzzy sets BjK ...j2j1)
according to formula

BD
iji

=
NK

∨
jK=1

. . .
Ni+1

∨
ji+1=1

Ni−1

∨
ji−1=1

. . .
N1

∨
j1=1

BjK ...j2j1 (9)

where NK , . . . , N1 denote number of the linguistic values

of the input linguistic variable XK , . . . , X1, while ∨ denotes

the MAX operator [3, 4].

Figure 2 presents linguistic projection of a three-

dimensional primary knowledge base (dimension of a knowl-

edge base is equal to the number of its linguistic variables [5,

6]).
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Fig. 2. Graphical illustration of the linguistic projection of a three-dimensional

knowledge base into two two-dimensional knowledge bases

For example, the fuzzy sets BD
12 and BD

23 are computed

according to the formulas

BD
12 = B12 ∨ B22 ∨ B32 ∨ B42,

BD
23 = B31 ∨ B32 ∨ B33.

(10)

The obtained knowledge bases KBi[Y , Xi] (8) can be

used for implementation of the FITA hierarchical system or a

one that is converted into subrelation Ri and used to imple-

mentation of the FATI system (Fig. 3). In this case, compu-

tation of a global fuzzy relation R is not required. The FIS

and FISi (i=1, . . . , K) modules are FITA/FATI systems and

have logical architectures presented in [7].
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Fig. 3. Logical architectures of the inference system:

(a) classical, (b) hierarchical

The Gupta’s decomposition technique allows a decrease

in the hardware cost of the fuzzy system and additionally,

expanded on linguistic level, makes it possible to avoid cal-

culation the global fuzzy relation R (it reduces computation
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time and storage requirements), enables implementation of

the FITA system and analyzing behaviour of the fuzzy sub-

systems in the hierarchical architecture and the entire system

in a simple way.

However, the method cannot be applied to every case, due

to the fact that the inference result in classical and hierarchi-

cal architectures of the inference system may differ. In some

cases behaviour of the systems will be different and the de-

composition in this form can not be used.

3. Partitioning the knowledge base

of the inference system

The projection operation (on relational or linguistic level) in

some cases can lead to inevitable loss of an information be-

cause of its approximate nature [6]. Thus the output inference

result in the hierarchical system is deformed. It is not possi-

ble to reconstruct the primary knowledge base KB[Y , XK ,

. . . , X1] from the subbases KBi[Y , Xi] obtained by the lin-

guistic decomposition method. It can be noticed that in the

reconstructed knowledge base KB
ce[Y , XK , . . . , X1] some

of the primary rules have been deformed: instead of the rule

appointed as RJK ...J2J1
(JK = 1, . . . , NK ; . . . ; J1 = 1, . . . ,

N1) the rule Rce
JK ...J2J1

has appeared. The linguistic value of

the consequence part of the Rce
JK ...J2J1

rule can be described

by the fuzzy set:

Bce
JK ...J1

=BJK ...J1
∨

(

NK

∨
jK=1

. . .
N1

∨
j1=1

(BJK ...j2j1 ∧ . . .

... ∧ BjK ...J2j1 ∧ BjK ...j2J1
)
)

(11)

where Nk (k = 1. . . K) denotes the number of the linguistic

values for the kth input variable Xk, while ∨ and ∧ stand

for the MAX and MIN operators, respectively. If the prod-

uct of the fuzzy sets BJK ...j2j1∧. . .∧BjK ...J2j1 ∧ BjK ...j2J1

(jK = 1, . . . , NK ; . . . ; j1 = 1, . . . , N1) is not an empty

set then an inference error appears. All the rules RjK ...j2j1

(for the specific rule RJK ...J1
), for which the aforementioned

product is not an empty set, are referred to as the inconsistent

rules [7].
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Fig. 4. Graphical illustration of the reconstructing process for the primary

knowledge base from its subbases by means of the operation of cylindrical

extension on linguistic level

Figure 4 shows an example of the reconstructed knowl-

edge base KB
ce[Y , X2, X1] that can be created from two

subbases KB1[Y , X1] and KB2[Y , X2] by means of the

cylindrical extension operation expanded on the linguistic

level [7].

The linguistic value of the consequence part of the rule

Rce
32 (J2 = 3, J1 = 2) that is highlighted in Fig. 4 can be

described by the fuzzy set:

Bce
32 = BD

12 ∧ BD
23, (12)

where fuzzy sets BD
12 and BD

23 are defined by formula (10).

Let assume that exclusively for fuzzy sets B12 and B31 their

product is not an empty set (B12∧B31 6= ∅) (primary knowl-

edge base in Fig. 2), then Eq. (12) can be expressed as

Bce
32 = B32 ∨ (B12 ∧ B31). (13)

The rules R12 (j2 = 1, J1 = 2) and R31 (J2 = 3, j1 = 1)

are inconsistent for the specific rule R32 (J2 = 3, J1 = 2)

under consideration.

To avoid deformation of the output inference result, a

modified Gupta’s decomposition technique has been proposed,

which is applicable to all cases. The method is based on re-

moving the inconsistent rules from the primary knowledge

base. It can change behaviour of some systems. Thus, the

primary knowledge base should be expressed as a sum of p

knowledge bases

KB[Y,XK , ...,X1] = ∨
p

KBp[Y,XK , ...,X1] (14)

where each of knowledge base KBp[Y , XK , . . . , X1] in-

cludes all or only some selected rules RjK ...j2j1 (jK = 1,

. . . , NK ; . . . , j1 = 1, . . . , N1) extracted from the prima-

ry knowledge base KB[Y , XK , . . . , X1]. It is important

that each rule from the primary knowledge base appears in

knowledge subbases KBp[Y , XK , . . . , X1] at least once and

neither of the knowledge subbases includes inconsistent rules.

The operation described above is referred to as partitioning

the knowledge base of fuzzy inference systems. It is partition-

ing the primary knowledge base into p knowledge subbases.

They have the same size, but various contents. The linguistic

Gupta’s decomposition can be used for each subbase without

loss of information, thus an inference result in classical and

decomposed system is the same.

The most important problem in the method under consid-

eration is how to achieve optimum partitioning of the primary

knowledge base KB[Y , XK , . . . , X1]. Number of newly cre-

ated subbases (parameter p in Eq. (14)) should be as small

as possible and each of them should be free of inconsistent

rules. The second provision is achieved if

NK

∨
jK=1

. . .
N1

∨
j1=1

(BJK ...j2j1 ∧ . . . ∧ BjK ...j2J1
) =











BJK ...J1

or

∅

(15)

where ∅ denotes an empty fuzzy set.

The partitioning of the primary knowledge base KB[Y ,

XK , . . . , X1] can be performed in many various ways. The
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easiest and the fastest method is based on partitioning to-

wards a defined input linguistic variable Xr (the PDILV

method [7]). In this case the number of newly created sub-

bases KBJK ...Jr+1,Jr−1...J1
[Y , XK , . . . , X1] is given by the

formula

p = NK · . . . · Nr+1 · . . . · N1 (16)

The knowledge subbase KBJK ...Jr+1,Jr−1...J1
[Y , XK ,

. . . , X1] comprises only the rules RJK ...jr...J2J1
(jr = 1, . . . ,

Nr) that are descended from the primary knowledge base.

The selected input variable is that one, for which the number

of linguistic values is the largest. In this case the p coefficient

(Eq. (16)) is the smallest and the sum of products of fuzzy

sets in Eq. (15) is an empty set. Graphical illustration of the

knowledge base partitioning for the fuzzy inference system

into the knowledge base without inconsistent rules is shown

in Fig. 5.
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Fig. 5. Graphical illustration of the partitioning the knowledge base of the

fuzzy inference system into the knowledge base without inconsistent rules

The example knowledge base is partitioned into three sub-

bases towards the X2 linguistic variable (number of linguistic

value for it is 4). Number of linguistic values for variable X1

is three, thus number of subsystems would be four. The last

result is not acceptable, because the first result is lower.

4. Architecture of the inference system

The logical architecture of the fuzzy inference system for the

proposed decomposition method is shown in Fig. 6.

It consists of the p subsystems HFISq (q = 1, . . . , p),
each of them is composed of K SISO (Single Input Single

Output) systems (in Fig. 5 marked as FISpk; k = 1, . . . , K; p

depends on the decomposition technique: for primary Gupta’s

decomposition technique p = 1). They can be implemented as

a rule (FITA) or a relational (FATI) fuzzy inference engines

[7, 8]. The partial fuzzy inference results (in a form of fuzzy

sets B
′D
q ) are added as an additional component. This com-

ponent produces a sum with use of the MAX operator [1, 2,

4]. The behaviour of each subsystem depends on the content

of its knowledge base KBp[Y , XK , . . . , X1] that has been

created as a result of partitioning the primary knowledge base

KB[Y , XK , . . . , X1]. The HFISq (q = 1, . . . , p) subsystem

consists of FISqk (q = 1, . . . , p; k = 1, . . . , K) SISO infer-

ence systems. They are created as a result of performing the

primary Gupta’s decomposition technique on linguistic level

for the knowledge base KB[Y , XK , . . . , X1]. As a result

the knowledge bases KBqk[Y , Xk] (k = 1, . . . , K) have

been obtained. They describe behaviour of each SISO system

FISqk in the hierarchical structure. The basic SISO systems

FISqk can be implemented as FITA (in this case the informa-

tion from the knowledge bases KBqk[Y , Xk] has been used

during the inference process) or FATI (in this case the infor-

mation from the knowledge bases KBqk[Y , Xk] has been

converted to the form of fuzzy relation Rqk) fuzzy inference

engines.
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Fig. 6. Logical architecture of the fuzzy inference system without defuzzifi-

cation module of the inference result

5. Summary

The number of subsystems HFIS in any hierarchical fuzzy

inference system for primary Gupta’s decomposition method

is equal p = 1. To avoid inference error (the output result is

more fuzzy than the output result obtained in the classical sys-

tem architecture) when a modified decomposition technique

based on partitioning the knowledge base KB[Y , XK ,. . . ,

X1] is applied, the number of subsystems p in general case is

greater than 1. The number of subsystems should be increased

to avoid inference error, and consequently the hardware cost

of the system may increase as well (this problem is not cru-

cial for most FATI systems). The number of newly created

subsystems HFIS should be as low as possible. In Section 3,

the method based on partitioning the knowledge base is pro-
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posed. The algorithm is simple and fast, but the results are

not optimal in all cases. Table 1 brings together amounts of

HFIS subsystems for several fuzzy inference systems (used

as benchmarks). The knowledge bases of the fuzzy inference

systems, mentioned in Table 1, describe respectively: fuzzy

controllers (denominated as 1, 3, 4) [4, 9, 10], ENOR gate

(2) [6], truck park controller (5) [2], temperature controller of

a heated air-stream (6) [11], fuzzy controller for stabilization

of an inverted pendulum (7) [12], fan controller (8) [13] and a

fuzzy system for identification of nonlinear systems (9) [14].

It can be noticed that only for four fuzzy systems results are

optimal.

The estimated hardware cost of the fuzzy inference system

can be expressed as

H ≈ HPmem
+ HLconn

+ HLcomp
, (17)

where HPmem
, HLconn

and HLcomp
denote the hardware cost

of the memory modules, connections and components used in

the system, respectively [7]. The hardware cost can be calcu-

lated for classical (H) and hierarchical (HD) structures of the

models described in Section 2. To compare the two structures

a hardware cost reduction coefficient has been defined

υH [%] =
H − HD

H
· 100. (18)

Table 2 brings together results for several fuzzy inference

systems mentioned above (benchmarks). Attention should be

drawn to the fact that only for relational fuzzy inference sys-

tems the hardware cost reduction coefficient is very high.

For rule fuzzy inference systems (FITA), the decomposition

method does not lead to lowering of hardware cost. If the

modified decomposition method based on partitioning knowl-

edge base (PDILV) has been used, the final results are even

worse (results are optimal for merely two systems). It is im-

portant to find an optimal value of p parameter, but it is not

guaranteed, in the aspect of FITA systems, that the hardware

cost coefficient greater than zero would be achieved. If the

fuzzy inference system is implemented as a rule-relational

one the benefits (the FATI system) exceeded wastages, and

the results, achievable with use of the proposed method, are

acceptable.

Table 1

Number of HFIS subsystems for some inference systems

Parameter Realization method
Inference system (benchmark)

1 2 3 4 5 6 7 8 9

Number of HFIS subsystems (p)
Optimal value 3 2 5 3 5 2 3 2 3

PDILV 5 2 5 3 5 3 5 3 5

Table 2

Hardware cost reduction using the partitioning knowledge base towards definite input linguistic variable method (PDILV)

Parameter
Realization method

(decomposition)

Inference system (benchmark)

1 2 3 4 5 6 7 8 9

Relational Fuzzy Inference System (FATI)

Hardware cost reduction [%]
Classic Gupta’s 98 98 98 98 98 98 98 98 98

PDILV 91 94 86 91 86 91 91 94 91

Rule Fuzzy Inference System (FITA)

Hardware cost reduction [%]
Classic Gupta’s 55 −4 51 23 47 34 22 23 49

PDILV 16 −38 −27 −38 −21 −25 −9 −6 16
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