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Abstract. The concept of strong stability is extended for positive and compartmental linear systems. It is shown that: 1) the asymptotically

stable positive and compartmental systems are strongly stable if the eigenvalues of the system matrix are distinct, 2) electrical circuits

consisting of resistances, capacitances (inductances) and source voltages are strongly stable.
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1. Introduction

In positive systems inputs, state variables and outputs take on-

ly non-negative values. Examples of positive systems are in-

dustrial processes involving chemical reactors, heat exchang-

ers and distillation columns, storage systems, compartmental

systems, water and atmospheric pollution models. A variety

of models having positive linear behavior can be found in en-

gineering, management science, economics, social sciences,

biology and medicine, etc.

Positive linear systems are defined on cones and not on

linear spaces. Therefore, the theory of positive systems in

more complicated and less advanced. An overview of state of

the art in positive systems theory is given in the monographs

[1, 2]. The compartmental systems are a special subsets of

the positive systems [3–4].

The concept of strong stability of linear time-invariant

systems are introduced in the paper [5]. The strong stability

has been related to the asymptotic stability, system structure

and skewness of eigenframe and the state-space transforma-

tions under which the strong stability is a system invariant has

been also characterized.

In this note the concept of strong stability will be extend-

ed for positive and compartmental linear systems. It will be

shown that the asymptotically stable positive and compart-

mental systems are strongly stable if the eigenvalues of the

system matrix are distinct and electrical circuits consisting

of resistances, capacitances (inductances) and source voltages

are strongly stable.

To the best knowledge of the author the strong stability

of positive and compartmental linear systems has not been

considered yet.

2. Positive linear systems

In this section we recall the basic definitions and theorems

concerning the positive linear systems.

Let Rn×m be the set of real n × m matrices with and

Rn = Rn×1. The set of real n × m matrices with nonnega-

tive entries will be denoted by Rn×m
+ . The set of nonnegative

integers will be denoted by Z+ and the n×n identity matrix

will be denoted by In.

Consider the linear continuous-time system:

ẋ = Ax + Bu x(0) = x0 (1a)

y = Cx + Du (1b)

where, x = x(t) ∈ Rn, u = u(t) ∈ Rm, y = y(t) ∈ Rp

are the state, input and output vectors and, A ∈ Rn×n,

B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m.

The system (1) is called (internally) positive if x(t) ∈ Rn
+ and

y(t) ∈ R
p
+, t ≥ 0 for any x0 ∈ Rn

+ and every u(t) ∈ Rm
+ ,

t ≥ 0.

A = [aij ] ∈ Rn×n
+ is called the Metzler matrix if its

off-diagonal entries are nonnegative, aij ≥ 0 for i 6= j,

i, j = 1, ..., n.

Theorem 1 [1, 4]. The system (1) is positive if and only if A

is a Metzler matrix and B ∈ Rn×m
+ , C ∈ R

p×n
+ , D ∈ R

p×m
+ .

The positive continuous-time system (1) is asymptotically

stable if and only if all eigenvalues of the Metzler matrix A

have negative real parts [1, 2].

Consider the linear discrete-time system:

xi+1 = Axi + Bbi i ∈ Z+, (2a)

yi = Cxi + Dui (2b)

where,xi ∈ Rn, ui ∈ Rm, yi ∈ Rp are the state, input and

output vectors and, A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n,

D ∈ Rp×m.

The system (2) is called (internally) positive if xi ∈ Rn
+,

yi ∈ R
p
+, i ∈ Z+ for any x0 ∈ Rn

+ and every ui ∈ Rm
+ ,

i ∈ Z+.

Theorem 2 [1, 4]. The system (2) is positive if and only if

A ∈ Rn×n
+ , B ∈ Rn×m

+ , C ∈ R
p×n
+ , D ∈ R

p×m
+ (3)
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3. Strong stability

Consider the positive autonomous continuous-time system

ẋ = Ax (4)

where A ∈ Rnxn is a Metzler matrix.

Let ‖x‖ be the Euclidean norm of the state vector x = x(t)

and S0, r) be the sphere with the radius r = ‖x‖
1

2 and origin

at x = 0.

The system (4) exhibits state-space overshoots it for at

least one initial condition x0 in the sphere S(0, r) the trajec-

tory of the system x(t) satisfies the condition ‖x(t)‖ > r for

some interval [t0, t1] [5].

In [5] it was shown that the system (4) has no overshoot

for initial conditions in the sphere S(0, r) if the quadrat-

ic form xT Ax is negative definite. It is well-known that

xT Ax = xT Āx where Ā = 1
2 (A + AT ). In [5] the condi-

tions were given such that Ā is negative definite.

Definition 1. The system (4) is called strongly stable if for any

initial condition x0 ∈ Rn
+ in the sphere S(0, r) the following

conditions are satisfied:

i. ρ(x0, t) ≤ ρ(x0, 0) for t ≥ 0 and x0 ∈ S(0, r)

ii. lim
t→∞

ρ(x0, t) = 0

If the positive system (4) is strongly stable then the system

has no overshoot for any initial conditions.

Theorem 3. Let the positive system (4) be asymptotically

stable. Then the system is strongly stable if the matrix has

distinct eigenvalues.

Proof. If the matrix A has distinct eigenvalues, λk 6= λj for

k 6= j, λk = −αk + iβk, k = 1, ..., n, i =
√
−1 then from

the Sylvester formula [6, 7] we have

eAt =
n
∑

k=1

Zkeλkt (5)

where

Zk =
n
∏

j=1
j 6=k

A − Inλj

λk − λj

, k = 1, ..., n (6)

n
∑

k=1

Zk = In (7)

From (5) and (7) we have

x(t) = eAtx0 =
n
∑

k=1

Zkeλktx0 ≤
(

n
∑

k=1

Zk

)

x0e
−αt =x0e

−αt,

t ≥ 0
(8)

where

α = min
1≤k≤n

αk (9)

By assumption the positive system (4) is asymptotically stable

(α < 0) and from (8) we obtain

ρ(x0, t) ≤ ρ(x0, 0)e−αt (10)

and this implies ii.

The following example shows that if the matrix has at least

one multiple eigenvalue then the system may not be strongly

stable.

4. Example

Consider the positive system (4) with the Metzler matrix

A =

[

−α γ

0 −β

]

α, β, γ > 0. (11)

The following two cases will be considered

Case 1. The matrix (11) has distinct eigenvalues λ1 = −α,

λ2 = −β (α 6= β)

Case 2. The matrix (11) has one double eigenvalue λ1 =
λ2 = −α (α = β)

In case 1 we have

x(t) = eAtx0 = (Z1e
λ1t + Z2e

λ2t)x0

=









1
γ

β − α

0 0



 e−αt +





0
γ

α − β

0 1



 e−βt



x0

=





(

x10 +
γ

β − α
x20

)

e−αt +
γ

α − β
x20e

−βt

x20e
−βt





where x0 = [x10 x20]
T

and

ρ(x, t) =

[((

x10 +
γ

β − α
x20

)

e−αt

+
γ

α − β
x20e

−βt

)2

+
(

x20e
−βt
)2

]
1

2

=











































































[

((

x10 +
γ

β − α
x20

)

+
λ

α − β
x20e

(α−β)t

)2

+
(

x20e
(α−β)t

)2

]
1

2

e−αt for β > α .

[

((

x10 +
γ

β − α
x20

)

e(β−α)t +
γ

α − β
x20

)2

+ x2
20

]
1

2

e−βt for α > β

(12)

From (12) it follows that the positive system (4) with (11) is

strongly stable since ρ(x, t) satisfies the conditions of defini-

tion 1.
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In case 2 we have

x(t) = eAtx0 =

[

(x20 + γx20t)e
−αt

x20e
−αt

]

and (13)

ρ(x, t) =
[

(x10 + γx20t)
2

+ x2
20

]
1

2

e−αt.

From (13) it follows that in this case the system (4) with (11)

(α = β) exhibits overshoots for enough small value of α and

big value of γ.

The simulation results are shown in Figs. 1–5.
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Fig. 1. Simulation for x0 = [x10, x20]T = [1, 1]T , α = 0.01; 0.1; 1 ; 5;

γ = 0.01, t ∈ [0, 100]
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Fig. 2. Simulation for x0 = [x10, x20]T = [1, 1]T , α = 0.01; 0.1; 1 ; 5;

γ = 0.01, t ∈ [0, 100]
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Fig. 3. Simulation for x0 = [x10, x20]T = [1, 1]T , α = 0.01; 0.1; 1 ; 5;

γ = 1, t ∈ [0, 100]
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Fig. 4. Simulation for x0 = [x10, x20]T = [1, 1]T , α = 0.01; 0.1; 1 ; 5;

γ = 10, t ∈ [0, 41]
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Fig. 5. Simulation for x0 = [x10, x20]T = [1, 1]T , α = 0.01; 0.1; 1 ; 5;

γ = 0.01, t ∈ [0, 41]

The considerations can be extended for positive discrete-time

systems. Consider the positive autonomous discrete-time sys-

tems

xk+1 = Axk, k ∈ Z+ (14)

where A ∈ Rnxn
+ .

Definition 2. The system (14) is called strongly stable if for

any initial condition x0 ∈ Rn
+ in the sphere S(0, r) the fol-

lowing conditions are satisfied:

i. ρ(x0, k) ≤ ρ(x0, 0) for k ∈ Z+ and x0 ∈ S(0, r)

ii. lim
k→∞

ρ(x0, k) = 0

Theorem 4. Let the positive system (14) be asymptotically

stable. Then the system is strongly stable if the matrix has

distinct eigenvalues.

The proof is similar to the proof of the Theorem 3.

5. Compartmental systems

Consider a compartmental continuous-time system consist-

ing of n compartments. Let xi = xi(t), i = 1, ..., n, be the

amount of a material of the ith compartment. It is assumed

that the output flow Fij ≥ 0 from the jth to the ith com-

partment (i 6= j) depends linearly on xj , Fij = fijxj , where

the coefficients fij are independent of xj and time-invariant.

Bull. Pol. Ac.: Tech. 56(1) 2008 5



T. Kaczorek

Let F0i be the output flow of the material from the ith com-

partment to the environment (F0i = f0ixi, i = 1, ..., n) and

ui = ui(t) be the input flow of the material to the ith compart-

ment from the environment. From the balance of the material

of the ith compartment [4] we obtain the state equation

ẋ = Fx + u (15)

where x =
[

x1 x2 ... x
n

]T

, u =
[

u1 u2 ... u
n

]T

,

F = [fij ]i,j=1,...,n
and the sum of entries of every column of

the matrix F is not positive, i.e.

−fij ≥
n
∑

i=1
i6=j

fij ≥ 0 and fij ≥ 0

for i 6= j (i, j = 1, ..., n),

(16)

The compartmental matrix F is a particular case of the Met-

zler matrix, since fij ≥ 0 for i 6= j. Note that if

−fij >

n
∑

i=1
i6=j

fij ≥ 0 (17)

then the compartmental system is asymptotically stable.

Therefore, we have the following theorem:

Theorem 5. The compartmental system (15) is strongly sta-

ble if its matrix F satisfies the condition (17) and has distinct

eigenvalues.

Similar results can be obtained for discrete-time linear com-

partmental systems [4]. The considerations can be extended

for 2D compartmental systems [2].

6. Electrical circuits

Consider the electrical circuit shown in Fig. 6. with known

resistances R1, R2, R3, capacitances C1, C2 and a source

voltage e = e(t). The voltages u1 = u1(t), u2 = u2(t) on the

capacitances are chosen as the state variables.

Fig. 6. Electrical circuit

Applying the Kirchhoff laws we may write the equations

R1C1u̇1 + u1 + R3(C1u̇1 + C2u̇2) = e

R3(C1u̇1 + C2u̇2) + u2 + R2C2u̇2 = e

which can be written in the form
[

u̇1

u̇2

]

= A

[

u1

u2

]

+ Be (18)

where

A =











− R2 + R3

C1[R1(R2 + R3) + R2R3]

R3

C2[R1(R2 + R3) + R2R3]

R3

C1[R1(R2 + R3) + R2R3]

R1 + R3

C2[R1(R2 + R3) + R2R3]











,

B =











R2

C1[R1(R2 + R3) + R2R3]

R1

C2[R1(R2 + R3) + R2R3]











(19)

From (19) it follows that A is the Metzler matrix and B has

positive entries. Therefore, the electrical circuit is an example

of continuous-time positive system.

Note that the matrix A can be written as a product

A = DĀ (20)

of the nonsingular diagonal matrix

D = diag

[

1

C1

1

C2

]

(21)

and the symmetric matrix

Ā =











− R2 + R3

R1(R2 + R3) + R2R3

R3

R1(R2 + R3) + R2R3

R2

R1(R2 + R3) + R2R3

− R1 + R3

R1(R2 + R3) + R2R3











(22)

In the sequel the following lemma will be used.

Lemma. Let A=AT ∈ Rn×n, D = diag
[

d1 d2 ... dn

]

,

di 6= 0, i = 1, . . . , n and

A1 = D−1A, A2 = AD−1. (23)

Then both matrices A1 and A2 have the same real eigen-

values λ1,λ2,...,λn which are related with the eigenvalues

λ̄1,λ̄2,...,λ̄n of the matrix A by

λ̄i = diλi, i = 1, ..., n (24)

Proof. The eigenvalues λ̄i, i = 1, ..., n are real since by as-

sumption A is symmetric. From (23) we have

det[Inλ − A1] = det[Inλ − D−1A] = det[D−1(Dλ − A]

= detD−1 det[Inλ̄ − A]
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where

Inλ̄ = Dλ. (25)

The equality (25) implied the relation (24).

Note that

AT
1 = (D−1A)T = AT D−1 = AD−1 = A2

Hence A1 and A2 have the same eigenvalues since the matri-

ces A and AT have the same spectrum.

Applying this lemma to the matrix A defined by (19) we ob-

tain:

Let s̄1 and s̄2 be the real eigenvalues of the symmetric

matrix (22). Then the eigenvalues s1, s2 of the matrix A are

also real and are given by the equalities

s1 = C1s̄s, s2 = C2s̄2

In the general case of electrical circuit with n known capaci-

tors C1,C2,...,Cn resistors and source voltages we obtain the

matrix A which can be written as the product A = DĀ of

the nonsingular diagonal matrix

D = diag
[

1
C1

1
C2

... 1
Cn

]

(26)

and the symmetric matrix

Ā =













−R11 R12 · · · R1n

R21 −R22 · · · R2n

...
...

. . .
...

Rn1 Rn2 · · · −Rnn













,

Rii >
n
∑

j=1
j 6=i

Rij , i = 1, ..., n.

(27)

It is well-known that the matrix (27) is negative definite

and has only negative real eigenvalues s̄1, s̄2, ..., s̄n. From

(24) it follows that matrix has also only negative eigenvalues

s1, s2, ..., sn given by

si = Cis̄i, i = 1, ..., n. (28)

Therefore, the matrix A is negative definite and the following

theorem has been proved.

Theorem 6. Electrical circuits consisting of resistances, ca-

pacitances and source voltages are strongly stable.

A dual theorem is valid for electrical circuits consisting of

resistances, inductances and source voltages.

7. Concluding remarks

The concept of strong stability has been extended for positive

and compartmental linear systems. It has been shown that: 1)

the asymptotically stable positive and compartmental systems

are strongly stable if the eigenvalues of the system matrix are

distinct, 2) electrical circuits consisting of resistances, capac-

itances (inductances) and source voltages are strongly stable.

The considerations can be extended for positive and compart-

mental 2D linear systems.
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