
INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2019, VOL. 65, NO.2 , PP. 211-216

Manuscript received March 18, 2019; revised April, 2019. DOI: 10.24425/ijet.2019.126303

Abstract—The biggest software development companies

conduct daily more than hundreds deployments which influence

currently operating IT (Information Technology) systems. This is

possible due to the availability of automatic mechanisms which are

providing their functional testing and later applications

deployment. Unfortunately, nowadays, there are no tools or even a

set of good practices related to the problem on how to include IT

security issues into the whole production and deployment

processes. This paper describes how to deal with this problem in

the large mobile telecommunication operator environment.

Keywords—IT security, devops, cloud security

I. INTRODUCTION

RESENTLY, more and more organizations are deciding to

move their assets into the cloud environments. Current

market conditions clearly justify this trend. It is more than

enough to support this hypothesis just by analyzing the offers of

cloud services by companies like Google and Amazon which

provide solutions, such as Google Cloud Platform or Amazon

Web Services [10]. There are also plenty of other platforms

which are being offered by smaller companies working in

Infrastructure as a Service (IaaS) [10] models which are based,

for example, on the Open Source OpenStack [9] platform.

 This trend is caused by many factors, such as the price of such

service or possibility to integrate most popular project

methodology i.e. an agile development of IT system life cycle

[4]. Currently, more and more teams are deciding to work in

DevOps [1] methodology (clipped compound of the

Development and Operations) which combines software

development with information technology operations. The main

goals of these two approaches are to shorten system

development life cycle while delivering features, fixes and

updates. Thanks to the mentioned cloud infrastructure

architecture all together (methodology and tools) are being

easily integrated with each another.

In this paper we will introduce a novel approach to managing

security of IT systems, which is based on the metric that allows

to evaluate in real-time manner the security level

Grzegorz Siewruk is with Warsaw University of Technology, Institute of
Telecommunications, Faculty of Electronics and Information Technology and

Orange Poland, Department of ITN Security, Warsaw, Poland (e-mail:

g.siewruk@tele.pw.edu.pl)
 Wojciech Mazurczyk is with Warsaw University of Technology, Institute of

Telecommunications, Faculty of Electronics and Information Technology,

Warsaw, Poland (e-mail: w.mazurczyk@tele.pw.edu.pl)
 Andrzej Karpiński is with Orange Poland, Department of ITN Security,

Warsaw, Poland (e-mail: andrzej.karpinski@orange.com)

of an IT system (or particular change during patching process)

and evaluates if it meets requirements which are described in

Section V.

The rest of the paper is structured as follows. Section II briefly

introduces the most relevant existing works related to the topic

of this paper. Then in Section III DevOps and cloud computing

concepts are described with the special focus on their security

aspects. Next, in Section IV solutions that enable measuring

security levels are characterized, while in Section V a novel

metric to express this level is described. Finally, in Section VI a

case study is presented to prove the usefulness of the proposed

approach, and Section VII concludes our work.

II. RELATED WORKS

There are many works which are focused on investigating the

level of security for the cloud infrastructure environment, e.g.,

[3], [8], [11], or [12]. Some of them are focused on creating a

set of tests (benchmarks) for the infrastructure provider layer

(OpenStack [10]), while other introduce interesting

implementations of SAST (Static Application Security Testing)

and DAST (Dynamic Application Security Testing) security

scanners [2], [14]. A system which aim is to detect violations of

IT Security principles, described in [17] can be used as Intrusion

Detection System (IDS) in projects operating on a public cloud.

The closest to the approach described in this paper is the

solution presented in [19], which proposes to evaluate IT

security of the cloud environment based on the defined metric

which describes an acceptable level of security (which is

calculated based on the number of discovered vulnerabilities).

The complete process of security management for the

mentioned work is illustrated in Fig. 1.

Security Assurance in DevOps Methodologies

and Related Environments

Grzegorz Siewruk, Wojciech Mazurczyk, and Andrzej Karpiński

P

Fig. 1. Security Management in [16]

212 GRZEGORZ SIEWRUK, WOJCIECH MAZURCZYK, AND ANDRZEJ KARPIŃSKI

 The proposed system architecture is a good starting point

from where IT Security evaluation of the cloud environment

could be made. It covers multiple areas which should be taken

into consideration during threat management process. It gathers

information about the system components as well as

requirements for the configuration and vulnerabilities.

Unfortunately, in order to create fully automated process there

also has to also available an information about the context which

should describe application running inside particular system

ecosystem.

 Each of the above mentioned solution lacks application

context and environment in which the application is deployed.

In this work we would like to fill this gap by proposing a metric

which will take both – the application-level context and the

application run time environment into consideration.

III. DEVOPS AND PUBLIC CLOUD SECURITY

DevOps methodology was presented for the first time in 2009

[1] but its real expansion can be observed during the last few

years. This trend is related to the fast development of tools

within the class Continuous Integration / Continuous

Deployment (CI/CD) which are ideally designed to ensure a

proper level of tasks automation, such as virtual machine

deployment or running newly created source code onto proper

machine. Discussing the details of the DevOps model is outside

the scope of this paper, but in a nutshell its essence is related to

treating the whole infrastructure as a code written in ansible or

terraform [12]. Both tools are opensource software that

automates software provisioning and configuration

management. This approach allows to prepare the piece of a

source code that is responsible for configuring the virtual

machine, configuring firewall rules, pulling the source code

from the repository and then start the web application server.

Taking IT security into consideration, such an approach has

many advantages like recurrence of operations (a user may

forget to implement one of hundreds firewall rules, however

once prepared program cannot), homogeneity of the

environment and the speed of action. Considering above, there

are also disadvantages to be acknowledged, such as – broad

range of permissions given to a tool that is widely available.

Critical vulnerability found in one element (CI/CD) which

contains provider configuration may put the whole platform at

risk as it can be compromised. In the whole process of software

development, many other points are related with the identified

threats such as identity management, verification of images used

(which are installed on the servers), software testing or checking

for available updates. In each of these areas, security

management is necessary and can be performed in several ways.

 Development methodologies are not the only “location”

where IT security should be considered. The other is the

infrastructure layer. The primary goal of the OpenStack (which

now is leading technology for the cloud computing

infrastructure) was to create global standards for the cloud

environments. Continuous need for more computing power,

increased disk storage and faster than before data access have

led to the development of this platform. It must be also

emphasized that OpenStack has significantly evolved from the

first published version of this software in 2010 which had only

two modules – Nova and Swift. The version of Queens

published in February 28, 2018 has as many as 39 modules. It

must be also noted that a lot of new factors have been considered

from the security point of view. That could compromise both

software infrastructure and stored information.

Table I illustrates how the OpenStack platform has developed.

More and more important features are being added by the

platform itself (and can be automated), for example, managing

Domain Name Server (DNS) or storing encryption keys. Each

release of a new version contains new possible attack vectors,

so securing such an environment should be a continuous

process.

Therefore, in this case, it is crucial to perform a risk analysis to

identify areas that require special attention. It should be

performed to adopt appropriate security mechanisms that would

minimize the probability of launching a successful attack on a

system.

Note, that the security within public cloud environments (the

whole or a part of so-called hybrid cloud [6]) can be described

on several levels:

– IaaS Layer – continuous verification of settings, including a

list of administrator accounts and an analysis of the permissions,

– Operating System Layer of running virtual machines –

continuous verification of the current software updates,

– Network Layer – continuous verification of the method of how

the system is being exposed in various network segments,

verification of launched services (if there are no running ports

that are typically used in the well-known network attacks),

verification of whether multiple machines do not have excessive

connection permissions to each other,

– Application Layer – continuous security tests of the web

applications, mobile applications and APIs as well as source

code analysis from the security perspective,

– CI / CD Layer – verification of the running scripts.

TABLE I

SELECTED OPENSTACK MODULES

SECURITY ASSURANCE IN DEVOPS METHODOLOGIES AND RELATED ENVIRONMENTS 213

IV. METHODS FOR MEASURING SECURITY LEVEL

A. IaaS Layer

Every of currently available IaaS platform has an API that

allows both reading and modifying data in order to obtain full

information on how resources are used. It is necessary to be able

to automatically retrieve information about currently running

servers along with information about addresses of interfaces and

the configuration of firewalls rules. Another important aspect is

the list of users who have access to the IaaS layer and their

permissions. The whole functionality consists of the necessary

component which is called Service Discovery module that is

responsible for gathering information about assets that build

system.

B. CI/CD Layer

As CI/CD tools can be described as a software designed to

support whole deployment process it is hard to define it as a

separate layer, but for the purpose of this paper we will do so

(full automation processes are going through CI which makes it

great place to put security evaluation mechanisms).

In a fully automated environment, all resources will be run by

previously prepared scripts, e.g., using ansible or terraform. The

mere appearance of a new virtual machine without information

about running a script that creates such a machine may indicate

a security breach (but it does not necessarily have to). If

configured and used appropriately, the CI layer is an invaluable

source of information that feeds the Service Discovery module.

We are able, for instance, to obtain information on the

parameters of the machine that is running or the branch of code

which is currently compiled in order to be published on the

server soon. And in addition to information obtained from the

IaaS layer, it gives us full knowledge about what applications

are running on what resources.

C. The Operating System Layer

In this case we are considering if components of the solution

like operating systems are configured properly. Organizations

like the Center for Internet Security (CIS [3]) are preparing a list

of good practices which should be fulfilled in order to create as

much secure as it is possible component. CIS is sharing security

benchmarks for OSes like: Centos, Redhat, or Ubuntu. In

addition, test suites are available for solutions such as

Kubernetes and Docker. Proper source codes are possible to be

downloaded from the Github which implements CIS

requirements and checks the system on which it runs against

them (requirements). The outcome is in the form of

“requirement – result”. The second important element to be

examined is the presence of the automatic updates (at least when

it comes to the updates that are marked as security fixes).

D. Network Layer

Assuming that we are in the possession of complete information

on how an IT system has been built (from the Service Discovery

element which gathered information about IaaS platform and

obtained information from the CI/CD) it is possible to prepare a

set of security tests by automated tools like Tenable Nessus or

OpenSource solution like w3af [5]. The results of such a

network test is complete information on how certain server is

being used, i.e., information on currently opened ports and

which services are listening on them. The last step to fully

evaluate this layer is to compare the discovered opened ports

with the intended configuration. It is possible by utilizing a

configuration file which is used by the CI and is called the

docker file. An exemplary docker file is presented in Fig. 3.

In this case, the application is using only port TCP “8888”. If

security test discovers opened TCP “80” port with an active

web application server listening on it, this could be an indicator

that the hardening process did not go well and it should be

repeated.

E. Application Layer

If we are considering the security of applications, there are two

sets of tests to be mentioned: automatic security tests (done by

a specific tools) and manual penetration testing (done by a

qualified expert). The latter is always more accurate (a human

can try to examine context which machines typically do not

understand) but in environments like the one we are mentioning

in this paper (where changes are deployed frequently) it is

almost impossible to implement. The main reason for this is the

time which an expert needs to perform the penetration test.

During the time required for performing a single test, a team of

developers could prepare several changes. Thus, waiting for the

test to be completed delays the release of application version

which is ready to be put on production infrastructure(one of the

key reasons why to switch to DevOps methodology is related to

shorter releases time).

 Automatic security tests can be done by several types of

scanners: static application security testing (SAST – mostly

source code analysis) which conducts a set of tests on the static

source code. Unfortunately, results of the SAST scanning often

contain multiple false positives, for example, identified

vulnerability could be impossible to exploit in the context of

running application. In contrast, the Dynamic Application

Fig. 2. An exemplary configuration of the dockerfile

214 GRZEGORZ SIEWRUK, WOJCIECH MAZURCZYK, AND ANDRZEJ KARPIŃSKI

Security Testing (DAST) which conducts automatic penetration

security testing, e.g., by crawling a website and use well-known

web application vulnerabilities in order to evaluate its security

are more accurate. But they also have some issues – from which

the biggest one is the limited scope of testing scenarios which

depends on type of tool used. There is also another class of

automated testing tools – Interactive Application Security

Testing (IAST) which combines static and dynamic testing. In

this paper we do not consider IAST scanners which are available

to use (both opensource and commercial ones) as they are

strongly attached to the software development strategy. Most of

the IAST scanners are being executed during functional unit

testing (where it is known which part of the source code is

responsible for the certain website functionality). However, it is

crucial that the unit tests of application should be created

properly for the IAST to function. The solution presented in this

paper will be evaluated within the Telecommunication Provider

environment where dozens of development teams work

simultaneously and each one of them is using different testing

strategy.

 In the course of our future work, as a long-term goal, we

would like to introduce an alternative to the IAST scanners

which are available on the market today. Its main advantages

are that it will be independent of the run time environment and

it will be based on the findings from the DAST and SAST

scanners. Using obtained results, the machine learning

algorithms will group vulnerabilities in a way that each

vulnerability found from the dynamic scan will be linked with a

specific vulnerability found during the static analysis. In this

way a developer will be able to get information which particular

line of the source code is responsible for vulnerability in the web

application, which in the end will expedite the fixing process. In

order to achieve this purpose there two types of algorithms to be

used. First one is to create relation between findings which came

from different sources – therefore a clustering algorithm is

necessary to be applied. Then in order to determine if the

identified vulnerability is exploitable or it is just not an issue a

classifying algorithm would be needed. In this moment of

maturity of the project it is not yet decided if it will be basic

implementation of k-means[13], LDA [8] or SVM[7] or

modified version of those.

V. THE PROPOSED GRADING METRIC

From the layers described in Section IV, first two (IaaS and

CI/CD layers) can be described as part of a system responsible

for providing information about the environment and assets in

an automatic manner. The rest of them are related to the

anomaly detection.

 The quality of the created classifier can be measured with the

four standard binary classification metrics:

• 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 which is the ratio of

correctly classified events to the whole set.

• 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 which describes classification

ability not to detect false events.

• 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 which describes classification ability

to detect actual anomalies.

• 𝐹1 =
2∗𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
 which is a weighted average of

the classifier precision and recall.

where, TN – is true negative (vulnerability which is not possible

to be exploited in a described context), TP – true positive

(vulnerability which is possible to be exploited), FN – false

negative (vulnerability which can be exploited but is inversely

marked by a classifier), FP – false positive (vulnerability which

cannot be exploited but is marked as exploitable). Properly

created classificator to be considered useful should has both

precision and recall at the highest possible level..

 While having one source of data and one classifier problem,

we are limited just to calculating its precision and recall. When

having multiple data sources (e.g. more vulnerability scanners)

metrics are harder to be evaluated because each vulnerability

found will have different significance (it depends on the data

source, scanner and application context). It is easy to imagine

that the Cross Site Scripting (XSS) vulnerability will be treated

as more important threat while occurring in the web application

graphic user interface (GUI) and differently while occurring in

web application used only by an application programming

interface (API). A good starting point could be analyzing

OWASP [13] top 10 vulnerabilities report in order to describe

metrics for the most popular vulnerabilities in web applications

(see Fig. 3).

The proposed approach to calculate security level metric of the

solutions deployed in the cloud environment is as follows:

𝐿𝐶 ∗ ∑ (
𝑇𝑃∗𝑊

𝑇𝑃
)𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟𝑠 ∗ 𝑃 (1)

where,

LC – Coverage level of the security events collection,

TP – True positive count for the particular classifier,

W – Weight of the detected vulnerability,

P – Precision value for the evaluated classifier.

We believe that a single metric which indicates the level of

security based on the coverage level and depends on the

Fig. 3. OWASP top 10 vulnerabilities for web applications [13]

SECURITY ASSURANCE IN DEVOPS METHODOLOGIES AND RELATED ENVIRONMENTS 215

classifier recall (classifier ability to detect existing security

vulnerabilities) and each identified true positive value weight

would be most effective in the scale of the Telecommunication

Operator environments.

It is hard to find information about how other researchers are

calculating this metric and even harder to obtain detailed

information on how it is obtained in the commercial solutions

(e.g. ThreatFix) so in the future works it will be proven by

comparison that the described metric is superior when compared

to other solutions.

VI. CASE STUDY

In order to prove the usefulness of the introduced security

metric, a manual analysis of the vulnerabilities for a single

application has been performed. Experimental data has been

obtained from the real-life security testing processes from one

of the major mobile network operator in Poland. As a test object

a web application built from Java microservices has been

selected. A list of false positives, identified as vulnerabilities but

marked by an expert as not major, and a list of true positives,

treated as vulnerabilities and marked as exploitable, from the

last 5 deployments in DevOps model of a given application have

been prepared. Only two security issue sources were available

for the presented IT system – source code security audit and CIS

kubernetes and docker benchmark compliance. SAST analysis

is being conducted by using MicroFocus Fortify software, and

CIS benchmark compliance verified using set of scripts

prepared by Github’s user - dev-sec (kubernets 2.11 and docker

1.13 version). Single run described the particular deployment

made on the production ecosystem. In this case study we have

analyzed last 5 deployments, where run 1 is the farthest in time

and run 5 is the latest one. Overall scheme of the study is

presented in Fig 4.

Fig. 4. Case study scheme

TABLE II

EVALUATION OF THE PRESENTED METRIC

Application 1

Run Scanner TP FP Weight Precision sum score

1 Code 172 807 0.5 0.18 0.09 0.33

Audit 84 89 0.5 0.49 0.24

2 Code 177 912 0.5 0.16 0.08 0.32

Audit 82 89 0.5 0.48 0.24

3 Code 230 798 0.5 0.22 0.11 0.43

Audit 115 68 0.5 0.63 0.31

4 Code 175 805 0.5 0.18 0.09 0.33

Audit 81 90 0.5 0.47 0.24

5 Code 164 804 0.5 0.17 0.08 0.28

Audit 65 104 0.5 0.38 0.19

Based on the results depicted in Table II it is possible to observe

that for one particular deployment the overall score is much

larger than for the other runs (by approximately 10%) –

calculated using equation from Section V. Utilization of the

automated security quality gate run 3 should not be allowed to

be deployed in the production environment, however, without

an automated process it would be impossible to be achieved.

Even if the introduced vulnerabilities were fixed before the next

run, there was still a brief time when newly created

vulnerabilities were exploitable in the production environment.

The weight for each security issue source was set equally to 0.5

(as it was decided that each source was equally important).

When having more than 2 vulnerability sources a risk analysis

should be performed and based on the results the weights to set

should be decided. For example when the process is built from

4 security issue sources – DAST, SAST, Infrastructure scanner

and compliance data it could be set as follow:

- SAST – 0.3 – in most cases the static source code

analysis covers full code base so it is very accurate

source of information.

- Infrastructure – 0.3 – the infrastructure scans detect

vulnerabilities in the installed software and in most of

the cases provide information with high severity.

- DAST – 0.25 – the dynamic tests in the described

scenario are being conducted from the behind a proxy

which strips requests and thus in turn makes the tests

results not fully accurate.

- Compliance – 0.15 – as issues from this source are

often considered as supplementary information.

On the other hand in run 2 we can see that a single increase of

the FP value was not making the difference on the overall

security score.

 It was proven in this section that using presented security

metric (section V) and implementing quality gate inside

DevOps pipeline we will add possibility to block changes of

application which contain security vulnerabilities in the

automatic manner.

216 GRZEGORZ SIEWRUK, WOJCIECH MAZURCZYK, AND ANDRZEJ KARPIŃSKI

VII. CONCLUSION

To authors’ best knowledge there are no existing methods or

tools able to measure and evaluate in a complex manner the IT

security levels of solutions deployed in the cloud environments.

The scope and quantity of the processed data and the pace at

which new environments are being built, strengthen our belief

that the current development methodologies lack a generic way

to calculate system overall security level. This paper proposed

areas which should be taken into consideration while preparing

the system architecture. Having all areas covered for the Service

Discovery module, it is possible to grade the level of security of

the whole solution, which depends only on the environment

configuration, services running on the assets, and vulnerabilities

found in the deployed software. Note, that the proposed

approach does not need developers to create additional test

cases.

 Next step will be to implement described solution in the

environment of a large telecommunication provider. The first

step has already been accomplished i.e. integration with the IaaS

layer. Integration with CI/CD layer is difficult enough that

multiple CI tools and scripting techniques exist. When the full

integration with CI/CD is accomplished, it will be possible to

get complete information for the Service Discovery module and

then based on this information create security scanners in order

to start classifier learning process.

REFERENCES

[1] Abubaker Wahaballa, Osman Wahballa, Majdi Abdellatief, Hu Xiong and

Zhiguang Qin, “Toward unified DevOps model” in 2015 6th IEEE

International Conference on Software Engineering and Service Science
(ICSESS).

[2] Adnan Masood and Jim Java, “Static analysis for web service security -

Tools & techniques for a secure development life cycle” in 2015 IEEE
International Symposium on Technologies for Homeland Security (HST).

[3] Center for Internet Security. Downloaded from

https://www.cisecurity.org/cis-benchmarks/
[4] Chirag Doshi and Dhaval Doshi, “A Peek into an Agile Infected Culture”

in 2009 Agile Conference.

[5] Daniel Ståhl, Kristofer Hallén and Jan Bosch, “Continuous Integration and
Delivery Traceability in Industry: Needs and Practices” in 2017 43rd

Euromicro Conference on Software Engineering and Advanced

Applications (SEAA).
[6] Adam Gordon, “The Hybrid Cloud Security Professional” in IEEE Cloud

Computing (Volume: 3, Issue: 1, Jan.-Feb. 2016) .

[7] H. Drucker, Donghui Wu and V.N. Vapnik, “Support vector machines for

spam categorization” in IEEE Transactions on Neural Networks (Volume:

10 , Issue: 5 , Sep 1999)

[8] Hongchen Gui, Qiliang Liang and Zhiqiang Li, “An improved AD-LDA

topic model based on weighted Gibbs sampling, 2016 IEEE Advanced

Information Management” in Communicates, Electronic and Automation
Control Conference (IMCEC)

[9] Ionel Gordin, Adrian Graur, Alin Potorac and Doru Balan, “Security

Assessment of OpenStack cloud using outside and inside software tools” in
14th International Conference on DEVELOPMENT AND APPLICATION

SYSTEMS, Suceava, Romania, May 24-26, 2018.

[10] Lindita Nebiu Hyseni and Afërdita Ibrahimi, “Comparison of the cloud
computing platforms provided by Amazon and Google” in 2017 Computing

Conference.

[11] Marco Anisetti, Claudio A. Ardagna, Ernesto Damiani and Filippo
Gaudenzi, “A Security Benchmark for OpenStack” in 2017 IEEE 10th

International Conference on Cloud Computing.

[12] Nishant Kumar Singh, Sanjeev Thakur, Himanshu Chaurasiya and
Himanshu Nagdev, “Automated provisioning of application in IAAS cloud

using Ansible configuration management” in 2015 1st International

Conference on Next Generation Computing Technologies (NGCT).

[13] OWASP. Downloaded from https://www.owasp.org/index.php/

Main_Page

[14] P. P. W. Pathirathna, V. A. I. Ayesha, W. A. T. Imihira, W. M. J. C. Wasala,
Nuwan Kodagoda and E. A. T. D. Edirisinghe, “Security testing as a service

with docker containerization” in 2017 11th International Conference on
Software, Knowledge, Information Management and Applications

(SKIMA).

[15] Shruti Kapil, Meenu Chawla and Mohd Dilshad Ansari, “On K-means data
clustering algorithm with genetic algorithm” in 2016 Fourth International

Conference on Parallel, Distributed and Grid Computing (PDGC)

[16] Shubham Awasthi, Anay Pathak and Lovekesh Kapoor, “Openstack-
paradigm shift to open source cloud computing & its integration” in 2016

2nd International Conference on Contemporary Computing and

Informatics (IC3I).
[17] Turki Alharkan and Patrick Martin, “IDSaaS: Intrusion Detection System

as a Service in Public Clouds” in 2012 12th IEEE/ACM International

Symposium on Cluster, Cloud and Grid Computing.
[18] Wu Qianqian and Liu Xiangjun, “Research and design on Web application

vulnerability scanning service” in 2014 IEEE 5th International Conference

on Software Engineering and Service Science.
[19] Xuexiu Chen, Chi Chen, Yuan Tao and Jiankun Hu, “A Cloud Security

Assessment System Based on Classifying and Grading” in IEEE Cloud

Computing Published by The IEEE Computer Society.
[20] Yasuharu Katsuno, Ashish Kundu, Koushik K. Das, Hitomi Takahashi,

Robert Schloss, Prasenjit Dey and Mukesh Mohania, “Security,

Compliance, and Agile Deployment of Personal Identifiable Information
Solutions on a Public Cloud” in 2016 IEEE 9th International Conference

on Cloud Computing.

[21] Ziqiang Zhou, Changhua Sun, Jiazhong Lu and Fengmao Lv, “Research
and Implementation of Mobile Application Security Detection Combining

Static and Dynamic” in 2018 10th International Conference on Measuring

Technology and Mechatronics Automation (ICMTMA).

