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Abstract. Digital mammography is one of the most widely used approaches for breast cancer diagnosis. Many researchers have demonstrated 
the superiority of machine learning methods in breast cancer diagnosis using different mammography databases. Since these methods often have 
different pros and cons, which may confuse doctors and researchers, an elaborate comparison and examination among them is urgently needed 
for practical breast cancer diagnosis. In this study, we conducted a comprehensive comparative study of the state-of-the-art machine learning 
methods that are promising in breast cancer diagnosis. For this purpose we analyze the largest mammography diagnosis database: Digital Da-
tabase for Screening Mammography (DDSM). We considered various approaches for feature extraction including principal component analysis 
(PCA), nonnegative matrix factorization (NMF), spatial-temporal discriminant analysis (STDA) and those for classification including linear 
discriminant analysis (LDA), random forests (RaF), k-nearest neighbors (kNN), as well as deep learning methods including convolutional neural 
networks (CNN) and stacked sparse autoencoder (SSAE). This paper can serve as a guideline and useful clues for doctors who are going to 
select machine learning methods for their breast cancer computer-aided diagnosis (CAD) systems as well for researchers interested in developing 
more reliable and efficient methods for breast cancer diagnosis.
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breast cancer diagnosis using different mammography data-
bases. Since these methods often have different pros and cons, 
which may confuse doctors and researchers, an elaborate com-
parison and examination among them is urgently needed for 
practical breast cancer diagnosis. In this study, we conducted 
a comprehensive comparative study of the state-of-theart ma-
chine learning methods that are promising in breast cancer di-
agnosis. For this purpose we analyze the largest mammography 
diagnosis database: Digital Database for Screening Mammog-
raphy (DDSM). We considered various approaches for feature 
extraction including principal component analysis (PCA), non-
negative matrix factorization (NMF), spatial-temporal discrim-
inant analysis (STDA) and those for classification including 
linear discriminant analysis (LDA), random forests (RaF), 
k-nearest neighbors (kNN), as well as deep learning methods 
including convolutional neural networks (CNN) and stacked 
sparse autoencoder (SSAE). This paper can serve as a guideline 
and useful clues for doctors who are going to select machine 
learning methods for their breast cancer computer-aided diag-
nosis (CAD) systems as well for researchers interested in de-
veloping more reliable and efficient methods for breast cancer 
diagnosis.

In the past decades, machine learning methods have demon-
strated their great potential in breast cancer diagnosis. Curvelet 
level moments (CLM) method was shown to achieve the ac-
curacy of 91.27% and 81.35% for the Mammographic Image 
Analysis Society (mini-MIAS) database respectively on abnor-

1. Introduction

Breast cancer is the most common disease and also the leading 
cause of cancer death among women. In 2013, it accounted for 
29% of all new cancer cases among women all over the world 
[1]. According to the latest cancer statistics in 2018, this rate is 
expected to rise to 30% [2]. In the treatment of breast cancer, 
early detection plays a key role. Mammography is the most 
commonly-used technology for early detection due to its low 
cost and wide availability [3]. However, it is often not easy to 
accurately identify the breast cancer from the mammograms 
due to the difficulty of mammograms interpretation [4]. Under 
such circumstances, computer-aided diagnosis (CAD) systems 
are necessary for presenting second suggestions for doctors in 
mammography-based breast cancer detection. A CAD system 
in general consists of three steps, namely, cropping the region 
of interest (ROIs) from the mammograms, extracting features 
from the ROIs, and detecting abnormality or malignancy based 
on the extracted features.

Digital mammography is one of the most widely used ap-
proaches for breast cancer diagnosis. Many researchers have 
demonstrated the superiority of machine learning methods in 
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mality and malignancy detection and the accuracy of 86.46% 
and 60.43% for Digital Database for Screening Mammography 
(DDSM) database [4]. Deep Belief Networks (DBN) reached 
a classification accuracy of 99.68% for the Wisconsin Breast 
Cancer Dataset (WBCD) [5]. Convolutional neural network 
(CNN) has already showed its powerful ability for classifica-
tion in various data sets including ImageNet 2012 [6] and is 
widely utilized to solve various pattern recognition tasks such 
as speech recognition [7], objection detection [8], image classi-
fication [6], and etc. It has also demonstrated its effectiveness of 
detection in histopathological images and mammgrams [9‒12]. 
The fusion machine learning models showed their efficiency 
in three databases, namely, Wisconsin Breast Cancer (WBC), 
Wisconsin Diagnosis Breast Cancer (WDBC) and Wisconsin 
Prognosis Breast Cancer (WPBC) [9]. Stacked sparse auto-
encoder (SSAE), a representative learning method, achieved 
a diagnosis accuracy of 88.84% in breast cancer histopatho-
logical images [13]. In [14] authors presented a CAD system for 
mammographic masses which used a mutual information-based 
template matching scheme, and achieved accuracy up to 83% 
for DDSM database.

Many existing methods have presented promising and often 
satisfactory performance on some specific mammography data-
bases. However, comparisons of these state-of-art methods for 
an unified large database have not been investigated till now. 
In this study, in order to better understand the characteristics of 
these methods for mammography diagnosis, we made a com-
prehensive comparative study of the state-of-art methods using 
DDSM database, the largest existing mammography diagnosis 
database [15]. We manually cropped ROIs which contain the 
mass tumor or suspicious texture from the mammograms at 
first. And then significant features of ROIs were extracted by 
applying state-of-art feature extraction methods including prin-
cipal component analysis (PCA), nonnegative matrix factoriza-
tion (NMF) and spatial-temporal discriminant analysis (STDA). 
Then, popular classification methods including linear discrimi-
nant analysis (LDA), random forests (RaF) and k-nearest neigh-
bors (kNN) were employed to classify the extracted features 
into the normal or abnormal category and benign or malignant 
category. In deep learning methods: CNN and SSAE, discrim-
inative features were extracted by the optimized multi-layered 

neural networks structures, and then the softmax function in 
the last layer was implemented to classify the features. Finally, 
we analyzed and ranked the performance of different feature 
extraction and classification methods according to their average 
classification accuracy. The acronyms of the methods used in 
this study are represented in Table 1 and the processing pro-
cedure from mammograms to classifications is illustrated in 
Fig. 1.

2. Materials and methods

2.1. Data set. DDSM is a database resource which is available 
for the mammograms analysis research community, containing 
the cases from Massachusetts General Hospital,Wake Forest 
University School of Medicine, Sacred Heart Hospital and 
Washington University of St.Louis [15], and has already been 
widely explored in mammograms analysis. This database con-
sists of 2620 cases, and each case contains four standard views 
(i.e., left, right, front and back) of full mammograms with the 
labeled location of ROIs. The labels of cases are divided into 
three types: normal, benignant and malignant.

2.2. ROIs extraction. Since the original mammograms in 
DDSM database contain muscles and background areas, we 
need to crop the ROIs from mammograms before our funda-

Table 1 
The methods for comparison in this study.

Acronyms Description

CNN convolutional neural network
SSAE stacked sparse autoencoder
PCA principal component analysis
NMF nonnegative matrix factorization
STDA spatial-temporal discriminant analysis
LDA linear discriminant analysis
RaF random forests
kNN k-nearest neighbors

Fig. 1. A flowchart of processing from mammograms to classifications. The ROIs are cropped manually from mammograms based on the marks. 
And then the compared feature extraction methods are implemented on the ROIs. Finally, the compared classification methods classify the 

extracted features into normal or abnormal, or into benign or malignant

PCA

NMF

SSAE

LDA

kNNSTDA

RaF

CNN
Softmax

Extracted ROIsMammograms Classification methodsFeature extraction methods
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(i = 1, 2, …, N), where H and W are height and width of ROIs 
respectively. First, the mean and covariance can be estimated 
as follows

 x– = 
∑N

i=1xi

N
, (1)

	 Σ = 
1

N ¡ 1 i2N
∑(xi ¡ x–)(xi ¡ x–)T. (2)

Then, the eigenvectors with the largest eigenvalues of the 
covariance matrix Σ are called the principal components of 
the dataset. Essentially, PCA learns a linear transformation 
hi = WTxi where W are just these leading eigenvectors. Con-
sequently, while the output vectors hi are often of significantly 

mental analysis. In this study, to guarantee the success of cutting 
off the mass tumor area, the center of abnormal or suspicious 
ROIs is the location marked manually and the resolution is 
128£128 pixels. The extracted ROIs consist of 11 218 images, 
which include 9215 normal cases, 888 benign cases and 1115 
malignant cases. Figure 2 exhibits nine examples of ROIs 
cropped from DDSM mammograms, where Fig. 2a to c show 
the normal cases, Fig. 2d to f represent the benign cases and 
Fig. 2g to i reveal malign cases.

2.3. Dimensionality reduction and feature extraction 
methods. Principal component analysis (PCA) is a technique 
that reduces the dimensionality of data set with minimum loss 
of variance information [16‒18]. Given a set of input vectors 
xi represented in vectorized form ROIs (x 2 RD, D = H£W) 

Fig. 2. A sample of ROIs cropped from DDSM database. Fig. a–c are normal cases, Fig. d–f are benignant cases, Fig. g–i are malignant cases

b) c)a)

e) f)d)

h) i)g)
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lower dimensionality than the original data, the variance infor-
mation is largely preserved.

Nonnegative matrix factorization (NMF) is an alternative ef-
ficient way to find low rank representation of nonnegative data 
[19]. For a given n£m nonnegative data matrix V represented 
ROIs, where m is the number of data samples, NMF attempts to 
find n£r nonnegative factor matrix W and an r£m nonnegative 
factor matrix H so that

 V ¼ WH . (3)

The columns of W are called basic vectors for the linear com-
bination, and the columns of H are weighted components [20]. 
The objective of the NMF is to find the optimal nonnegative 
W and H by solving e.g. the following minimization problem

 arg min
W ¸ 0, H ¸ 0

kV ¡ WH kF
2 . (4)

The nonnegativity constraints of W and H demonstrate that the 
combinations of W and H are only additive. Therefore, the col-
umns of W can be seen as different parts of images that form 
a full image with corresponding coefficients given by H. These 
important features of NMF are called parts-based representa-
tions [21]. It is possible to obtain two nonnegative matrices 
W and H by solving (4), where each columns of matrix W con-
tain basis vectors, and each columns of matrix H contain the 
weight vectors. As to PCA, matrix W is the eigenvectors matrix 
and matrix H is the eigenprojections matrix [22].

Spatial-temporal discriminant analysis (STDA) is an alter-
native effective approach to reduce the dimension of multiway 
data samples by incorporating discriminative analysis [23‒25]. 
Whereas PCA and NMF are designed for vector data, STDA 
presents a novel idea that can handle high dimensional tensor 
data. In this paper, STDA learns two projection matrices from 
original ROIs instead of vectorized features, which allows us to 
reduce the dimensionality of ROIs more effectively [23]. The 
between-class scatter matrix and within-class scatter matrix can 
be computed as follows

 S j
B = 

k2K
∑Nk(Y j

k ¡ Y– j)(Y j
k ¡ Y– j)

T
, (5)

 S j
W = 

k2K
∑

i2∏k

∑ (Y j
k, i ¡ Y– j)(Y j

k, i ¡ Y– j)
T
, (6)

where Nk is the number of kth class, Y j
k, i is projection of ith 

sample in class k, Y–k
j is the mean of Y–k, i over i, Y– j is the mean 

of all the projected samples, the symbol j denotes the jth way 
of samples, and in our case j 2 {1, 2}. Therefore, the projection 
matrix for the jth way is obtained by solving the following 
optimization problem

 W̃j = arg max
wj

tr(Wj
TS j

BWj)

tr(Wj
TS j

wWj)
. (7)

Problem (7) is a generalized eigenvalue problem

 S j
BWj = S j

WWjΛj , (8)

and the projection matrix W̃j contains the L eigenvectors asso-
ciated with the largest L generalized eigenvalues.

2.4. Classification methods. Linear discriminant analysis 
(LDA) is a basic but quite efficient supervised machine learning 
method for classification, also known as Fisher discriminant 
analysis (FDA) [23]. Supposed we are given a set of data vec-
tors x 2 RN, and N equals the multiplication of ROIs’ height 
and width, whereby the mean and covariance matrices of each 
class can be estimated as [26]

	 µk =  1
mk xk2∏k

∑ xk , (9)

	 Σk =  1
mk xk2∏k

∑ (x ¡ μk)(x ¡ μk)
T, (10)

and ∏k indicates kth class in database, mk represents the number 
of samples in class ∏k.

In this work, ROIs are divided into normal and abnormal 
cases, where abnormal cases contain malignant and benign sub-
classes. The corresponding covariance matrix is computed by

	 Σ = 
k=1

K

∑ mk
m Σk , (11)

where m denotes the number of samples, K represents the 
number of classes. Finally the projection matrix can be com-
puted as [23]

 W = Σ –1(μ2 ¡ μ1) . (12)

With the transformation matrix W, LDA transforms the input 
samples onto the lower-dimensional vector space. In this vector 
space, the ratio of between-class distance to the within-class 
distance will be maximized, so that guarantee maximal dis-
crimination [26].

Random forests (RaF) is an ensemble learning method [27], 
composed of many unpruned decision trees. These decision 
trees grow by the bootstrap samples of the data independently. 
Each node is generated by choosing the best split among all of 
the samples. Therefore an orthogonal hyperplane is conducted 
to split the samples. RaF is robust with respect to noise due to it 
splitting each node by randomly selecting features. In this case, 
decision of each sample is made by voting between these trees.

RaF method for classification can be summarized as fol-
lows:

a. Draw bootstrap samples and grow a corresponding un-
pruned classification tree.

b. At each node, randomly sample a subset of features to 
split.

c. Choose the tree with the maximum votes as prediction.
Another fundamental classification method is kNN, which 

is especially efficient when no prior knowledge about the dis-
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tribution of input data is available [28]. In the feature spaces, 
for each training sample x, points belonging to the same class 
will form a subspace. For a test sample, the nearest k points 
will decide its class. Usually, the distance is measured by the 
Euclidean distance defined as

 d(xi, xj) = kxi ¡ xjkF
2 . (13)

Finally, the predicted class of each sample depends on the class 
that is most common among the nearest k samples. kNN is able 
to classify samples without any assumptions about the charac-
teristics of them, therefore the training process’s cost of kNN 
is relatively easy and fast.

2.5. Deep learning methods. Convolutional neural networks 
(CNN) were first introduced in [29], and achieved promising 
performance for hand-written digits at that time. They regained 
their popularity due to the competitive results for ImageNet 
2012 competition [6]. CNN is a multi-layer artificial neural 
network consisting of convolutional layers, pooling layers and 
fully connected layers. The jth output feature maps Sj of con-
volutional layers are computed as

 Sj = f
Ã

i =1

N

∑ Ii ¤ Ki,  j + bj

!
, (14)

where Ii and Sj are the ith input feature maps and the jth output 
feature maps respectively, ¤ is the convolution operation and bj 
is the jth bias added to each element of the convolution output, 
the convolutional kernel matrices K are small square matrices, 
working over the input feature maps as filters. The sum of con-
volution output and the bias is activated by taking element-wise 
nonlinear activation function f . Then the maximum pooling is 
adopted for dimensionality reduction after activation process. 
As illustrated in Fig. 3, with 10 layers convolution and max 
pooling, the last feature maps are vectorized and then con-
structed three fully-connected layers. In order to reduce the 
test errors and avoid overfitting, dropout technique is exploited 
to the covolutional and fully-connected layers with dropout rate 
p [6, 30]. With labels information incorporated, the cross-en-
tropy error is minimized by adopting stochastic gradient descent 
(SGD) algorithm.

Autoencoder (AE), an alternative unsupervised deep 
learning method, can generate a new representation from the 
input vector x by defining an encoder function fθ. For every 
input vectorized sample x ̂ (m) from data set X = x(1), …, x(m), 
the representation has the form of

 h(m) =  fθ(x(m)), (15)

where h(m) is the representation of the mth input x(m). AE can 
make a reconstruction x ̂  = gθ(h) from representation h by im-

Fig. 3. The optimized detailed architecture of the CNN model evaluated in this study. The connection between L5 and L6 was the Max pooling 
operation, which hasn’t been shown in the figure due to space issues
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plementing the decoder function gθ . In order to evaluate the 
quality of reconstruction, a reconstruction error L(x, x ̂ ) is used 
to measure the similarity between input x and its reconstruction 
x ̂ . An optimal representation defined can be found by mini-
mizing the reconstruction error 

 JAE(θ) = 
m
∑L

³
xm, gθ

³
fθ(x(m))

´́
. (16)

In order to extract more abstract features from ROIs, the 
network is stacked and trained by the greedy-wise strategy [31] 
(see Fig. 4). Sparsity constraints could provide a high-dimen-
sional representation that improve the likelihood so that ROIs 
categories would be more separable [32]. A deep sparse archi-
tecture called Stacked Sparse AutoEncoder (SSAE) can be built, 
for which the objective function is defined as

 JSSAE(θ) = JAE(θ) + β
i
∑KL(ρkρ ̂ i), (17)

where ρ ̂ i is the activation value of the ith neuron, ρ is the desired 
value and KL means Kullback-Leibler divergence, a function to 
measure the difference between two probabilities. Two layers 
stacked autoencoder is illustrated in Fig. 4. After feed forward 
greedy layer-wise training, the output layer computes the loss 
of the full network with the label corresponding to the input 
vector x.

For the purpose of classification, the network is finetuned 
with labels information. The last hidden layer of SSAE is linked 
to the softmax classifier with cross-entropy error function, and 

finally backpropagation (BP) strategy and SGD algorithm is 
exploiting to solve the gradients and optimize the parameters 
respectively.

3. Experimental setup

In clinical diagnosis, doctors usually first determine whether 
the patient contains mass tumors and then eventually determine 
whether the mass tumors are benign or malignant based on 
mammograms. At the same time the CAD systems may provide 
the second suggestions for doctors. Therefore, in this study, we 
mainly carry out two experiments. One is to detect whether the 
ROIs contain mass tumors and the other is to classify the mass 
tumor ROIs into two categories benign or malignant. In order to 
prove the effectiveness of each method, experiments are imple-
mented with fivefold cross-validation. The ROIs were divided 
into five groups followed the standard routine for each category, 
and then every time one group was selected as the testing data 
set and the rest four groups were used as the training data set. 
The accuracy of diagnosis is an essential criterion of the effec-
tiveness of the method because it reflects whether a method 
successfully distinguish between two different categories.

In order to compare the performance of different methods, 
we utilized the dimensionality reduction and classification 
methods, especially CNN, SSAE, PCA, NMF, STDA, LDA, 
RaF and kNN to extract significant features of ROIs and then 
distinguish the extracted features between the normal and ab-
normal case or benign and malignant cases. Note that the fea-
tures extracted by deep learning methods: CNN and SSAE were 
classified by the softmax function at the last layer and they 
do not need to employ feature extraction techniques. After the 

Fig. 4. Left: greedy layer-wise training. The hidden layer 1 and reconstruction layer 1 are the lower dimension representation and reconstruction 
of input layer 1 respectively. And then the hidden layer 1 will be the input layer 2 for training an even lower dimension representation. Right: 

two layer stacked autoencoder. Parameters and neurons in stacked autoencoder are pre-trained on the left
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combinations of different dimensionality reduction and classi-
fication methods, our experiments provided a total of 11 clas-
sification methods (see Table 2 and Table 3).

Some important hyperparameters may greatly influence the 
performance of the compared methods, therefore it is necessary 
to give detailed descriptions for them. The optimal structure of 
CNN is in Fig. 3, we apply our convolutions with 5£5 filters 
and a stride of one, a zero padding of size two and dropout 
rate p = 0.5. Three layers SSAE with 16384 vectorized inputs, 
4096 and 512 hidden features, two class outputs (denoted by 
16384‒4096‒512‒2), β = 10–2 and ρ =  is constructed. For 
PCA, the number of components is selected based on the cu-
mulative percentage of total variation. In this study, the cumula-
tive percentage is set to be 90%. As for NMF, the optimal rank 
is selected to be 30. The required number of eigenvectors of 
STDA is set to be 10. As regards to kNN, k is chosen as 5. And 
concerning about RaF, the choice of k is equals to the square 
root of the number of samples.

All of the experiments were carried out in MATLAB 2016a 
on a PC equipped with an Intel i7‒5830k, 128GB of RAM and 
four NVIDIA Titan X (Maxwell) Graphics Processor Units.

4. Results and Discussion

Table 2 and Table 3 demonstrate the accuracy for abnormality 
and malignancy classification respectively for the various com-
binations of dimensionality reduction and classification tech-
nique in fivefold cross-validation experiments.

From Table 2 and Table 3, we can see that CNN yields 
the highest average accuracy of 93.0% and 62.5% for abnor-
mality and malignancy classification respectively, while SSAE 
is second only to CNN. Unlike PCA, NMF and STDA, deep 
learning methods CNN and SSAE can be stacked to form 
a deeper and more abstract architectures to generate a high-

er-level and well separable features which provides high ef-
ficiency for abnormality and malignancy detection for large 
amounts of ROIs. However, fitting a deep learning model with 
a large number of parameters is very time-consuming. More-
over, such models can be easy to be over-fitting in case when 
the number of training samples are insufficient. Therefore, 
in order to achieve reliable results in clinical breast cancer 
prediction, we should also consider alternatives methods to 
CNN and SSAE. Table 2 and Table 3 have demonstrated that 
NMF + LDA method has achieved 88.7% and 56.5% classi-
fication accuracy in two classification tasks respectively. It is 
probably because that the part-based features of ROIs learned 
by NMF are more distinguishable for LDA classifier.

As Table 3 showed that the average accuracy of malignancy 
classification of all methods are relatively low. This is probably 
because we only used the intensity features of ROIs in this 
study. Therefore, in order to improve the malignancy classifi-
cation performance, some more features such as the shape and 
margin of mass could be incorporated in the feature.

5. Conclusions

Most of the recent studies have discussed different methods in 
various mammography databases. However, till now compar-
ison of these state-of-art methods in one large database was not 
provided. This study has conducted a comprehensive compar-
ative study of different state-of-art machine learning methods 
employed for DDSM database – the largest publicly available 
mammography database. The extensive computer simulations 
results have shown that deep learning methods could learn 
lower dimensional and higher-level features of ROIs, and there-
fore achieve the best classification accuracy. Further more, the 
part-based learning features of ROIs also provides promising 
classification results. However, the average accuracy of malig-

Table 2 
Comparison of performance of various combinations of 

dimensionality reduction and classification methods for abnormality 
detection in DDSM case

Method 
Comparison

Number of Fold

1 2 3 4 5 Ave-acc

PCA + LDA 88.7 88.9 87.6 87.8 88.4 88.3
PCA + RaF 82.3 82.3 82.4 82.5 82.4 82.3
PCA + kNN 86.3 87.3 87.2 86.4 86.3 86.7
NMF + LDA 89.4 88.7 88.4 89.2 85.2 88.7
NMF + RaF 83.0 82.9 82.5 82.8 88.0 82.8
NMF + kNN 86.3 86.8 86.7 86.5 85.4 86.3
STDA + LDA 81.1 83.3 81.2 81.4 81.7 81.8
STDA + RaF 87.0 87.7 86.8 86.2 86.5 86.8
STDA + kNN 85.3 83.6 83.1 84.3 84.6 84.0
CNN 93.8 92.7 93.2 92.4 92.8 93.0
SSAE 92.7 91.5 91.3 91.2 90.8 91.5

Table 3 
Comparison of performance of the same combination of 

dimensionality reduction and classification methods for malignancy 
detection in DDSM database

Method 
Comparison

Number of Fold

1 2 3 4 5 Ave-acc

PCA + LDA 56.6 56.1 58.6 50.5 52.8 54.9
PCA + RaF 55.6 52.1 55.9 56.3 55.6 55.1
PCA + kNN 53.1 48.9 54.1 53.8 50.3 52.0
NMF + LDA 56.6 56.6 55.4 57.3 56.8 56.5
NMF + RaF 56.4 55.9 55.6 56.3 52.0 55.2
NMF + kNN 54.1 52.9 56.6 51.0 50.3 53.0
STDA + LDA 59.1 56.4 53.9 56.3 56.3 56.4
STDA + RaF 58.1 53.1 57.9 55.8 54.3 55.8
STDA + kNN 53.4 50.4 53.6 52.5 48.8 51.7
CNN 63.4 62.8 62.6 61.5 62.4 62.5
SSAE 56.2 57.5 58.9 56.9 55.8 57.1
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nancy classification of all methods are quite low, which implies 
that more features and more sophisticated methods should be 
considered.
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