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Abstract. Electro-dynamic passive magnetic bearings are now viewed as a feasible option when looking for support for high-speed rotors. Nev-
ertheless, because of the skew-symmetrical visco-elastic properties of such bearings, they are prone to operational instability. In order to avoid 
this, the paper proposes the addition of external damping into the newly designed vibrating laboratory rotor-shaft system. This may be achieved 
by means of using simple passive dampers that would be found among the components of the electro-dynamic bearing housings along with 
magnetic dampers, which satisfy the operational principles of active magnetic bearings. Theoretical investigations are going to be conducted by 
means of a structural computer model of the rotor-shaft under construction, which will take into consideration its actual dimensions and material 
properties. The additional damping magnitudes required to stabilize the most sensitive lateral eigenmodes of the object under consideration have 
been determined by means of the Routh-Hurwitz stability criterion.
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equations, leads to parallel action of the elastic and dissipative 
suspending forces. For small-size high-speed rotors, this approach 
has been applied in [3], where it results in theoretical and experi-
mental development of radial EDPMBs, which are characterized 
by sleeve-shaped rotating conductors. With such a form of mod-
elling, the suspension on the EDPMBs was compared for flexible 
rotor-shafts in [4] with analogous support provided by classical 
oil-journal bearings in an industrial centrifugal compressor as well 
as with the support provided by rolling bearings in a single-spool 
gas turbine. EDPMBs with disk-shaped conductors have further 
been modelled in [5] and [6] by applying Kirchhoff’s voltage law 
to electrical circuits, including those generating resistance and 
self-inductance of the conductor. These assume linear proportion-
alities between the bearing levitation force and induced currents 
and between the electromotive force and the radial journal-to-
bushing velocity. In this model, the magnetic levitation force is 
transmitted in a given direction by an elastic spring and a viscous 
damper connected with each other in series.

The EDPMBs possess crucial advantages over AMBs. 
Firstly, EDPMBs do not require a power supply and allow for 
resonant-free operation. Secondly, they have a relatively simple 
structure and, accordingly, are cheaper than AMBs. Neverthe-
less, EDPMBs possess several disadvantages. These include 
their limited load capacity for supporting big rotors and poor 
damping abilities at high rotational speeds. Furthermore, these 
bearings can quite often cause operational instability. In order 
to avoid this drawback and thus maintain the above-mentioned 
advantages, the introduction of additional external damping into 
the rotor-shaft system is necessary. This problem was first raised 
in [1, 2] and [3]. In [7], dynamic analysis has been performed for 
the suspension on AMBs combined with static PMBs, which are 
fitted to the rotor-shaft in order to stabilize its lateral vibrations. 
Static radial PMBs together with a thrust EDPMB have been 
investigated in [8] for a vertical rotor-shaft, where stabilization 

1. Introduction

Due to a significant increase in the nominal rotational speeds of 
rotating machinery (reaching 100,000 rpm or even more), the 
rolling element and the oil-film journal bearings, commonly ap-
plied to rotor-shafts till now, should be gradually replaced with 
more modern contact-less and lubricant-free supports. Conse-
quently, several types of magnetic bearings have already been 
developed for high-speed rotating machines. Generally, these take 
the form of active magnetic bearings (AMB), which are known to 
possess several advantages as well as disadvantages. Other than 
their transverse load transmission ability, AMBs can also function 
as actuators for active control of rotor-shaft lateral vibrations. 
Nevertheless, they must be equipped with complex electronic con-
trol devices, which are usually characterized by massive coils of 
relatively large dimensions, making them problematic for a range 
of technical applications. Moreover, failures in control can result 
in a sudden and significant loss in stability. Thus, during the last 
10–15 years, as a consequence of developments in electrical engi-
neering, electronics and material technology, many types of pas-
sive magnetic bearings (PMB) have been developed, whose appli-
cations have steadily increased. These include: permanent magnet 
static magnetic bearings, superconductor passive magnetic bear-
ings and electro-dynamic passive magnetic bearings (EDPMB). 
The physical fundamentals for a dynamic rotary passive magnetic 
levitation can be found in [1, 2]. Both a theoretical formulation of 
the problem and an experimental realization is presented in those. 
It is worth noting that in these papers mathematical modelling of 
passive magnetic levitation, based on the solution of Maxwell 
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was provided by mechanical touch-down bearings. The ratio-
nale for inserting additional damping into a radial EDPMB sup-
porting a rigid rotor is presented in [9] and [10], where they offer 
combined passive-active magnetic support for rigid rotor-shafts, 
as well as in [11], using external damping generated passively. 
Requirements for stable magnetic suspension of bearing-less 
synchronous motor rotors have been also investigated in [12].

According to the above, in order to assure sufficient sta-
bility limits for a newly designed rotor-shaft supported by the 
EDPMBs, appropriate dynamic analysis must first be carried 
out. One of the main goals of such a study is the selection of 
relevant sources of damping in the object being considered 
and determination of their respective dynamic parameters, in 
particular the proper values of damping coefficients. In the 
paper being presented, for the constructed laboratory flexible 
rotor-shaft suspended magnetically, several approaches are pro-
posed to eliminate instability caused by the skew-symmetry 
of visco-elastic properties of the EDPMBs. These approaches 
may be summarized as an attempt to include additional ex-
ternal damping in the vibrating system to such an extent as to 
satisfy the Routh-Hurwitz stability criterion and to maintain all 
system eigenvalue real parts always negative. This is going to be 
achieved by means of passive damping (which is generated by 
the visco-elastic suspension of the bearing stators in their hous-
ings), by proper selection of the electro-dynamic bearing global 
stiffness, and by the use of active magnetic dampers (AMD).

2. Description and modelling of  
the bearing-rotor-shaft system

The investigations are going to be conducted for a newly designed 
laboratory multi-disk rotor-shaft, supported by two EDPMBs, 
#1 and #2, as shown in Fig. 1. It consists of a relatively slender 
flexible stepped shaft with a total length of 0.813 m and with 

three heavy rotors attached. This rotating system has a total mass 
of 7.3 kg, and a bearing span equal to ca. 0.677 m; it operates 
within a rotational speed range of 0–55000 rpm. Such a structure 
is representative for a broad range of rotor machines currently 
being applied in the industry.

2.1. Modelling the rotor-shaft. In order to obtain sufficiently 
reliable results of the eigenvalue analysis for this rotor-shaft, 
all computations will be performed by means of the hybrid 
structural model consisting of continuous visco-elastic beam 
finite elements and discrete oscillators, as e.g. in [4, 13‒15]. In 
an identical way as in the case of a classical discretized beam 
finite element formulation, the following points are taken into 
consideration when using such a model: the rotor-shaft geom-
etry, its material properties, gyroscopic effects and shaft mate-
rial damping, as described by the standard body model. In the 
hybrid model, successive cylindrical segments of the stepped 
rotor-shaft are represented by flexurally deformable cylindrical 
macro-elements of continuously distributed inertial-visco-elastic 
properties. With an accuracy that is sufficient for practical pur-
poses, some heavy rotors can be substituted with rigid bodies 
attached to the macro-element extreme cross-sections.

Each bearing is represented by a dynamic oscillator pos-
sessing two degrees of freedom, in which apart from the mag-
netic field interaction, the visco-elastic properties of the bearing 
housing and foundation are also included. This bearing model 
makes it possible to represent, with relatively high accuracy, the 
kinetostatic and dynamic anisotropic and anti-symmetric prop-
erties in the form of constant or variable stiffness and damping 
coefficients. Moreover, the oscillator mass can correspond to in-
ertia of the magnetic bearing stator visco-elastically embedded 
in the bearing housing. Thus, the obtained mutual combination 
of continuous finite elements together with discrete oscillators 
and rigid bodies following the structure of real object results 
in the hybrid mechanical model. Figure 2 presents the hybrid 

Fig. 1. Laboratory multi-disk rotor-shaft system

Fig. 2. Hybrid model of the laboratory multi-disk rotor-shaft system
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model of the laboratory rotor-shaft system in relation to which 
the postulated investigations will be carried out. Its stepped 
shaft has been divided into 46 cylindrical segments of lengths, 
diameters and material constants following from the technical 
documentation of the designed object.

2.2. Modelling the electrodynamic passive magnetic bearing. 
The principle of a radial EDPMB’s operation can be reduced 
to mutual, non-contact interaction between a rotating conductor 
(at room temperature) and permanent magnets, thus creating 
a stator, as described in [3‒6]. This is achieved by means of 
bearing support that consists of a conducting sleeve attached 
to the rotor-shaft journal and permanent magnets embedded in 
the bearing housing, as illustrated in Fig. 3. In order to assure 
a sufficiently high transverse load ability for such a bearing, 
the permanent magnets must be mutually placed and properly 
separated by the iron pole shoes in a manner resulting in the 
so-called heteropolar or homopolar type of the radial passive 
magnetic bearing ([3] and [6]). In the case of the heteropolar 
bearing, the magnetic field is sinusoidal just outside the border 
of the permanent magnets and its magnetic vector potential is 
perpendicular to the plane of the flux distribution. However, the 
homopolar bearing is characterized by radial flux distribution, 
which makes it more advantageous for practical engineering 
applications.

Multiphysics. In the case being considered, the bearing’s ‘in 
plane’ transverse global stiffness K can be defined as:

 K(Ω) = –
dF(Ω)

d(∆r)
, where: F(Ω) = 

V
∫ (J£B)dV (1)

is the Lorenz force, J and B denote, respectively, the current 
volume and external magnetic flux densities, ∆r is the journal-
to-bushing radial proximity, as discussed in [3] and [4], and 
Ω denotes the current shaft rotational speed. Then, upon the 
numerical determination of  global stiffness K(Ω) by means of 
formula (1), the main rotor and cross-coupling stiffness compo-
nents have been calculated in the form of shaft rotational speed 
functions, also discussed in [3] and [4]: 

 
and kxx(Ω) = kyy(Ω) = K(Ω)cosθ
and kxy(Ω) = K(Ω)sinθ  = – kyx(Ω),

 (2)

where K denotes the bearing’s ‘in plane’ global stiffness, Ω is 
the current shaft rotational speed and θ = arc tan(R/ΩL) is the 
so-called ‘force angle’ expressed as a function of the magnetic 
bearing coil resistance R and inductance L.

Figure 4a illustrates the rotor main and cross-coupling (cr.-c) 
stiffness characteristics, which have been determined using the 
applied finite element model of the EDPMB that suspends the 
above-mentioned multi-disk rotor-shaft within its entire oper-
ating rotational speed range. These plots are qualitatively iden-
tical with those obtained in [3] and [5] for the high-speed rotor 
machines, other than for the one investigated here. Moreover, 
it is worth noting that, in general, the two above-mentioned 
approaches to EDPMB modelling, described, respectively, in 
[1, 2] and [3] as well as in [5] and [6], result in qualitatively 
identical stiffness characteristics, in spite of the mutually dif-
ferent physical interpretations of elastic and viscous property 
connections, i.e. arranged, respectively, parallelly and in series.

According to [3] and [4], damping coefficients of the 
EDPMB have been calculated by means of the following for-
mulae:

 
dxx(Ω) = dyy(Ω) = kxy(Ω)/Ω

dxy(Ω) = – dyx(Ω) = kxx(Ω)/Ω ,
 (3)

Fig. 3. Scheme of the radial electrodynamic passive magnetic bearing

Here, dynamic modelling of the EDPMBs is intended to cal-
culate their electromagnetic stiffness and damping characteris-
tics. These quantities have been determined using fundamentals 
of the non-contact dynamically stabilized suspension theory, 
which utilizes a combination of static interaction between per-
manent magnets and dynamic interaction between room-tem-
perature conductors and magnets [1]. For this purpose, as in [3], 
computations will be carried out for various rotational speeds 
by means of the advanced 3D finite element code, COMSOL 

Fig. 4. Main (rotor) and cross-coupling (cr.–c) stiffness (a) and damping 
(b) characteristics of the EDPMB
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where the main rotor and cross-coupling bearing stiffness com-
ponents kxx(Ω) = kyy(Ω) and kxy(Ω) = – kyx(Ω) can be deter-
mined using formulae (2). The plots of the corresponding main 
and cross-coupling (cr.-c) damping coefficients for the EDPMB 
under consideration are presented in Fig. 4b.

The rotor-shaft system being considered here is expected 
to experience only small lateral displacements, i.e. ones that 
are much smaller than bearing clearance values, along with 
correspondingly small elastic deformations. Thus, neither geo-
metrical nonlinearities nor so-called strong nonlinear effects, 
e.g. those caused by rubbings, are expected. According to the 
above, the mechanical model of this system has been assumed 
as linear with the bearing stiffness (2) and damping coeffi-
cients (3) regarded constant for given constant rotational speed 
values Ω.

3. Solution of the problem

The complete mathematical formulation and solution for the 
rotor-shaft system hybrid model applied here can be found e.g. 
in [13] and [14]. In this model, the flexural motion of cross-sec-
tions of each visco-elastic macro-element is governed by the 
partial differential equations derived using the Timoshenko and 
Rayleigh rotating beam theory. Such equations contain gyro-
scopic forces mutually coupling rotor-shaft bending vibrations 
in the vertical and horizontal plane. The analogous coupling 
effect caused by the system’s rotational speed-dependent shaft 
material damping, described using the standard body model, is 
also taken into consideration. The solution for the bending vi-
bration analysis has been obtained using the analytical-compu-
tational approach demonstrated in detail in [13, 14] and applied 
e.g. in [15]. In the case being considered, it is to emphasize 
that since, according to formulae (2) and (3), the visco-elastic 
bearing support parameters are rotational speed-dependent, the 
fundamental dynamic properties of the rotor-shaft, e.g. its nat-
ural frequencies, eigenfunctions, modal masses and others, also 
depend on the shaft rotational speed value Ω. But for a con-
stant Ω in time, numerical values of all these quantities are 
also constant. Thus, for each Ω one can solve the differential 
eigenvalue problem for the orthogonal system. Then, an appli-
cation of the Fourier solutions in the form of fast convergent 
series in orthogonal eigenfunctions leads to the following set 
of modal equations:

 M(Ω) ¢ r ̇  ̇ (t) + C(Ω) ¢ r ̇ (t) + K(Ω) ¢ r(t) = 0 , (4)

where: C(Ω) = C0(Ω) + Ω ¢ Cg(Ω)
and K(Ω) = K0(Ω) + Kb(Ω) + Ω ¢ Kd(Ω).

The symbols M(Ω) and K0(Ω) denote, respectively, the 
rotational speed dependent diagonal modal mass and stiffness 
matrices, C0(Ω) is the non-symmetrical damping matrix con-
taining the damping coefficients (3) of the passive magnetic 
bearings and Cg(Ω) denotes the skew-symmetrical matrix of 
gyroscopic effects. Skew or non-symmetrical elastic properties 
of the bearings are described by matrix Kb(Ω). Anti-symmet-
rical effects due to the standard body material damping model 

of the rotating shaft are expressed by the skew-symmetrical 
matrix K d(Ω). Of course, because of the reasons mentioned 
above, for given constant values of Ω all these matrices are 
regarded constant. The modal coordinate vector r(t) consists 
of the unknown time functions standing in the Fourier solu-
tions. The number of equations (4) corresponds to the number of 
bending eigenmodes taken into consideration in the frequency 
range of interest.

Since the main target of the study being carried out is an 
investigation of stability of the considered rotating system, re-
garded here as a linear one, its eigenvalue real parts are going 
to be regarded first as the fundamental measure of asymptotic 
stability. In order to determine eigenvalues of the rotor-shaft 
dynamic model, it is convenient to transform its modal mo-
tion equations (4) into analogous equations in the modal state 
co-ordinates:

 A(Ω) ¢ x ̇ (t) + B(Ω) ¢ x(t) = 0 , (5)

where: 

A(Ω) = 
 0  – M(Ω)

 M(Ω) C(Ω)
,

B(Ω) = 
 M(Ω) 0
 0  K(Ω)

, x(t) = 
x ̇ (t)
x(t)

and x(t) denotes the modal state vector. Assuming the well-
known exponential complex analytical solution for (5), one ob-
tains a system of 2n homogeneous algebraic equations which 
can be finally transformed into the following form: 

 (D(Ω) ¡ λ ¢ I) ¢ X = 0 , (6)

where X and λ are, respectively, the complex eigenvector and 
eigenvalue of the hybrid mechanical model of the rotating 
system, I is the identity matrix, n denotes the number of or-
thogonal eigenmodes considered in (4) and matrix D is equal to:

D = 
 0  I

 
K0(Ω) + Kb(Ω) + Ω ¢ Kd(Ω)

– M(Ω)
 

C0(Ω) + Ω ¢ Cg(Ω)

– M(Ω)

. (7)

It is to emphasize that the non-symmetry of the modal damping 
submatrix C0(Ω) as well as the skew-symmetry of the gyro-
scopic matrix Cg(Ω) and skew-symmetry of both modal stiff-
ness submatrices K d(Ω) and Kb(Ω) can very distinctly in-
fluence dynamic stability properties of the entire rotor-shaft 
system. Because matrix D is a non-symmetrical one, in order 
to effectively determine the complex eigenvalues from (6), it is 
necessary to reduce it to the Hessenberg form using the House-
holder transformation. Then, the final computation of the eigen-
value real and imaginary parts for each bending eigenmode of 
the considered system is achieved by means of the commonly 
known QR algorithm.
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4. Stability analysis

In order to assess the sufficient magnitude of additional damping 
necessary to eliminate the instabilities caused by EDPMBs that 
support the newly constructed laboratory rotor-shaft system, 
thorough dynamic stability analysis of this object should be car-
ried out first. Such analysis will be performed using the hybrid 

model of the rotor-shaft under consideration within a frequency 
range of 0‒1000 Hz, which includes 13 bending eigenforms. 
Investigations were conducted for the bearing visco-elastic 
characteristics (depicted in Fig. 4) in the above-mentioned 
rotational speed range of 0‒55000 rpm, which corresponds to 
0‒920 rev/s. Figure 5 illustrates plots of the imaginary parts 
of system eigenvalues expressed as rotational speed functions. 

Fig. 5. Eigenvalue imaginary parts of the rotor-shaft supported on EDPMBs
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Since these functions play the role of damped natural frequen-
cies ωDi, i = 1, 2,…, 13, their illustration in this figure takes 
the form of the Campbell diagram with marked critical speeds 
that correspond to forward whirls of successive eigenforms. 
For greater clarity, the respective bending eigenfunctions are 
depicted on the left-hand side. This is to emphasize here that, 
as mentioned above, for successive constant rotational speeds 

Ω, the system modal motion equations (4) and motion equa-
tions (5) in the modal state co-ordinates are linear. Then, the 
critical speeds of the first type can be defined only for external 
excitation frequencies coinciding with the rotor-shaft natural 
frequencies. In the case being considered, synchronous exci-
tation due to usually unavoidable residual unbalances seems 
to be most representative. Figure 6 illustrates, in an analogous 

Fig. 6. Eigenvalue real parts of the rotor-shaft supported on EDPMBs
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manner, the real parts µi, i = 1, 2,…, 13, of the rotor-shaft ei-
genvalues. From the plots illustrated in this figure, it follows 
that not all of the eigenvalue real parts are negative, which 
results in instability of the rotating system. This is most no-
ticeable in those real parts that correspond to all precessions of 
the second eigenform; to the backward precession of the first 
eigenform, to the backward precession of the fourth eigenform 
and to the backward precession of the fifth eigenform, when it 
has rotational speeds greater than 500 rev/s, see Fig. 6.

5. Application of Routh-Hurwitz  
stability criterion

In order to avoid this negative consequence of using EDPMBs, 
it is necessary to introduce an adequate amount of additional 
damping into the system. By means of eigenvalue analysis, arbi-
trarily complex linear rotating systems can be investigated, and 
their asymptotic stability limits can be effectively determined. 
In order to find the sufficient additional damping magnitude 
required to stabilize the rotor-shaft system, it would be neces-
sary to apply the trial-and-error quantitative approach, which 
is rather troublesome in computational practice. Consequently, 
for this purpose, the Routh-Hurwitz stability criterion is very 
convenient, but it can only be used effectively for rather simple 
linear rotor-shaft models. Here, as can be seen from the results 
of eigenvalue analysis demonstrated in Fig. 6, the fundamental 
eigenforms, similar in shape to cylindrical and conical ones, are 
most sensitive to instability. Thus, in order to obtain a rough 
estimation of additional damping magnitude, necessary to sta-
bilize the first, ‘quasi-cylindrical’ eigenmode of the rotor-shaft 
being considered, the Routh-Hurwitz stability criterion leads to 
the following formula:

 dstab >  mK sinθ
cosθ

 (8)

derived in [1, 2] for the passive magnetic levitation of the ro-
tating disk. This inequality has also been used in [3] for the 
Jeffcott rotor suspended by radial EDPMBs, and thus it can be 
applied for stabilizing cylindrical eigenmodes of symmetrical 
rigid rotors, when this type of magnetic support is used. In 
the case considered here, m is the rotor mass levitated by one 
bearing of the rotor-shaft depicted in Fig. 1 and regarded as 
semi-rigid and symmetrical. The global stiffness K and the force 
angle θ standing in (8) have already been defined in formulae 
(1) and (2).

Expression (8) was originally determined assuming that 
coefficients (3) of damping generated by the EDPMB are neg-
ligibly small, especially in the case of high rotational speeds Ω. 
Then, dstab denotes the coefficient of additional rotor-to-stator 
damping expected to assure stable dynamic behavior of the 
rotating system. Bearing in mind that the EDPMB generates 
some damping which stabilizes rotor lateral vibrations, albeit 
insufficiently, i.e. the main rotor damping with coefficients 
dxx = dyy defined by (3) and illustrated in Fig. 4b, the actual 

damping coefficient that is expected to stabilize the rotor-shaft 
cylindrical mode can be expressed as:

 
dstab ¡ dxx = dstab ¡ dyy = dadd if dstab ¡ dxx ¸ 0
or dadd = 0 if dstab ¡ dxx < 0 .

 (9)

As follows from relationships (2, 3, 8), the damping coef-
ficients dstab and dxx = dyy are proportional to global stiffness 
K of the EDPMB. This means that the ‘softer’ the bearing, 
the less damping is necessary to stabilize the cylindrical ei-
genmode of the rotor-shaft. Figure 7, by the black thick line, 
plots the characteristic of the additional damping coefficient 
dadd expressed as a function of shaft rotational speed Ω. This 
is obtained for ‘nominal’ global stiffness K(Ω), for which the 
results illustrated in Fig. 4, 5 and 6 have been determined. The 
analogous characteristic of dadd computed for the two-times 
smaller bearing global stiffness, i.e. for K(Ω)/2, is marked by 
the grey thick line in Fig. 7. In order to compare the influence of 
the bearing global stiffness on the characteristics of dadd, using 
the black and grey thin lines in Fig. 7, analogous plots, obtained 
respectively for K(Ω)/4 and for 2K(Ω), are included. From this 
comparison, it follows that the global stiffness realized by the 
EDPMB has a crucial influence on the required values of the 
additional damping coefficient dadd, above which stabilization 
of the rotor semi-cylindrical vibration mode can be expected. 
It is necessary to emphasize that all the rotational speed values, 
at which the maxima of the additional required damping coef-
ficient dadd occur, are contained within the range of Ω corre-
sponding to the greatest positive eigenvalue real parts calculated 
for the rotor-shaft under consideration, see Fig. 6 and 7.

Fig. 7. Characteristics of minimum values of coefficients dadd of addi-
tional damping necessary to stabilize the rotor-shaft cylindrical mode

Nevertheless, it is more difficult to stabilize the conical 
mode of this rotor-shaft, and determination of the analogous ad-
ditional damping coefficient using the Routh-Hurwitz criterion 
requires separate analysis. From general equations of motion of 
rigid rotors suspended by two bearings, e.g. in [16], it follows 
that in the case of symmetrical rotors the cylindrical and conical 
motions are mutually uncoupled. Then, these motion equations 
can be split into two separate sub-sets describing both trans-
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lational and rotational movements. Acting in accordance with 
the Hurwitz procedure, which is presented in detail in [17], it is 
necessary to transform the two-degrees-of-freedom subsystem 
of equations, describing the rigid rotor-shaft conical motion, 
into a first order form with the following matrix E containing 
the inertial-visco-elastic coefficients:

 E = 

 0  1 0 0

 –2l2 k
I

 –2l2 cstab

I
 –2l2 s

I
 

2l2d + Ω I0

I
 0  0 0 1

 2l2 s
I

 –
2l2d + Ω I0

I
 –2l2 k

I
 –2l2 cstab

I

, (10)

where 2l denotes the bearing span, while k = kxx(Ω) = kyy(Ω), 
s = kxy(Ω) = – kyx(Ω) and d = dxy(Ω) = – dyx(Ω) have already 
been defined in (2‒3). For our rotor-shaft I0 = 9.76 ¢ 10–3 kgm2 
and I = 0.341 kgm2 are, respectively, its polar and diametral 
mass moments of inertia. Symbol cstab denotes the coefficient 
of damping expected to assure a stable conical motion in an 
analogous sense as coefficient dstab in inequality (8). Performing 
the successive steps of the Hurwitz procedure, in the case under 
study the stability criterion can be achieved for the damping 
coefficients cstab present in matrix E, if the following inequality 
is satisfied:

 

c4
stab ¡  d ¡ 

Ω I0

2l 2

s
k

 ¢ c3
stab + 

+  d ¡ 
Ω I0

2l 2

2

 ¡ 
I

2l 2

s2

k
 ¢ c2

stab ¡ 

¡  d ¡ 
Ω I0

2l 2

3 s
k

 ¢ cstab ¡  d ¡ 
Ω I0

2l 2

2 I
2l 2

s2

k
 > 0 .

 (11)

Similarly, as for the cylindrical eigen-vibration mode of the 
rigid rotor-shaft, the actual damping coefficient expected to 
stabilize the conical mode can be expressed as:

 
cstab ¡ dxx = cstab ¡ dyy = cadd if cstab ¡ dxx ¸ 0
or cadd = 0 if cstab ¡ dxx < 0 .

 (12)

The black lines in Fig. 8 plot characteristics of the stabi-
lizing additional damping coefficients, expressed as functions 
of shaft rotational speed Ω. These have been obtained for ‘nom-
inal’ global stiffness K(Ω). Here, the thick line corresponds to 
coefficient cadd, which is responsible for stabilization of the 
conical mode. For comparison, the thin line (reproduced from 
Fig. 7) corresponds to coefficient dadd of damping expected to 
stabilize the cylindrical mode. The analogous characteristics of 
cadd and dadd computed for the two-times smaller bearing global 
stiffness K(Ω)/2 have been marked in Fig. 8 by the grey thick 
and grey thin line, respectively. From the plots depicted in this 

figure, it follows that stabilization of the rotor-shaft conical 
mode requires significantly more additional damping than that 
necessary for the cylindrical mode. This is particularly the case 
for the small and very small shaft rotational speeds, for which 
cadd are extremely high.

6. Stabilization of rotor-shaft supported  
on EDPMBs

Since the main causes of the observed instability are the 
skew-symmetrical visco-elastic properties of the EDPMBs (see 
formulae (2‒3)), additional stabilizing external damping should 
be applied. For this purpose, a combined magnetic bearing is 
proposed that consists of main passive electrodynamic shaft 
support and of a magnetic damper, which is characterized by 
a relatively ‘soft’ elastic property and a potentially high ability 
of mechanical energy dissipation. In such a combined bearing, 
four additional independent windings are installed, together with 
ferromagnetic cores that create actuators which will generate 
magnetic forces acting in two mutually perpendicular directions, 
as shown in Fig. 9a, b. The temporary values of these forces are 
determined by the controller, which properly interprets the sig-
nals received from the eddy current sensors measuring relative 
rotor-to-stator displacements. It is necessary to emphasize that 
in order to effectively attenuate rotor-shaft lateral vibrations, 
the controller must be capable of distinguishing between in-
formation received from measured displacements whose com-
ponents vary slowly and quickly. This goal can be achieved 
if, for the magnetic damper, the PD active control strategy is 
applied. Such a concept of the magnetic damper enables us to 
better control the operation of this additional visco-elastic levi-
tation, making it relatively cheap and easy to maintain and more 
electric energy saving. It is worth commenting on the fact that 
this method retains the obvious advantages of the fundamental 
electro-dynamic passive nature of the operation while, at the 
same time, minimizing the disadvantages often associated with 
active magnetic suspensions.

According to fundamentals of the AMB operation given e.g. 
in [18], when using the PD control, such a suspension can be 

Fig. 8. Characteristics of minimum values of coefficients cadd and dadd 
of additional damping necessary to stabilize the rotor-shaft conical and 

cylindrical mode
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interpreted as a single-degree-of-freedom dynamic oscillator 
shown in Fig. 9c. For computational purposes, stiffness kA and 
damping coefficient cA of this oscillator are determined by 
means of the following relationships:

 kA = m ¢ ω0
2  and  cA = 2m ¢ γ  ¢ ω0 , (13)

where m denotes the part of the rotor-shaft mass supported by 
a given bearing, γ  is the dimensionless factor of damping re-
alized by active magnetic suspension and ω0 denotes the os-
cillator natural frequency which can be calculated using the 
following expression:

	 ω0 = 
jln(β)j

tr ¢ γ
, (14)

where tr is the settling time, during which the perturbed signal 
will reach the expected steady-state value with the commonly 
used accuracy tolerance ratio β = 0.04, [18], as illustrated in 
Fig. 10.

Since the passive and active parts of the combined mag-
netic bearing act parallelly and in relatively close proximity 
to each other, the main rotor stiffness components kxx(Ω) and 
kyy(Ω), expressed in (2) and illustrated in Fig. 9d, become in-
creased in their directions by stiffness kA. Similarly, the main 
rotor damping coefficients dxx(Ω) and dyy(Ω) in (3) also become 
increased in their directions by damping coefficients cA of the 

AMD. This way, additional stiffness and damping have been 
introduced to act between the rotor and bearing stator. When 
the proposed AMDs built into each EDPMB are applied, for 
the control gains corresponding to tr = 0.02 s and γ  = 0.5, ad-
ditional stiffness kA = 3.74 ¢ 105 N/m and damping coefficient 
cA = 1168 Ns/m are introduced into both bearing supports. Con-
sequently, almost all of the rotor-shaft’s bending eigenmodes 
have been stabilized with the exception of the second one, as 

Fig. 9. AMD: real object (a), schematic view (b), mechanical model of the AMD (c) and bearing mechanical model (d)

a)

c)

b)

d)

Fig. 10. Graphical demonstration of the mechanical energy dissipation 
ability realized by the AMD
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follows from the respective plots demonstrated in Fig. 11. Here, 
the maximum value of the corresponding eigenvalue real part 
µmax is positive and equal to +6.23 1/s. In order to explain the 
result in this example, the Routh-Hurwitz criterion for determi-
nation of the minimum additional damping coefficient which 
is required for the stabilization of the conical and cylindrical 
modes has been applied. In this case, for the assumed hard 
‘metal-to-metal’ embedding of the EDPMBs in their housings, 
it was necessary to take into consideration the stiffening effect 
caused by the additional constant stiffness kA generated by the 
AMDs. Figure 12a presents the respective characteristics of 
minimum stabilizing, i.e. additional damping coefficients cadd 
and dadd that correspond to the conical and cylindrical modes. 
From these plots it follows that this additional stiffening sig-
nificantly reduces the values of cadd for small and very small 
shaft rotational speeds Ω in comparison with the analogous 
characteristic depicted in Fig. 8. Nevertheless, the maximum 
of required cadd(Ω) in Fig. 12a reaches almost 1300 Ns/m and 

thus cA = 1168 Ns/m generated by the AMDs turns out to be 
insufficient to stabilize the rotor-shaft completely.

In fact, all eigenmodes would become stable if the values 
of stiffness kA and damping coefficient cA of the AMDs were 
dominant in comparison with the main stiffness and damping 
components generated by the EDPMB, respectively. However, 
this would lead to typical active magnetic support and, conse-
quently, the potential advantages from using PMBs would be 
lost. Hence, in order to introduce greater magnitude of pas-
sive damping into the vibrating rotor-shaft system, the hard 
‘metal-to-metal’ embedding of the EDPMBs in their housings 
has been substituted by relatively soft visco-elastic interfaces 
in the form of layers made of vulcanized rubber or polymer 
foil. Stiffness and damping coefficient values of layers made 
of such materials have been determined using proper guidelines 
from [19] and [20]. Figure 12b illustrates the characteristics of 
minimum stabilizing additional damping coefficients cadd and 
dadd corresponding, respectively, to the conical and cylindrical 

Fig. 11. Eigenvalue real parts determined for tr = 0.02 s and γ  = 0.5

Fig. 12. Characteristics of minimum stabilizing additional damping coefficients cadd and dadd determined for global stiffness K and for embedding 
by means of ‘metal-to-metal’ (a) and with vulcanized rubber (b)

a) b)
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modes that have been obtained for the assumed embedding of 
the EDPMBs by means of layers of hard vulcanized rubber. Any 
consequent additional passive damping results in much lower 
values of cadd and dadd seen in comparison with those plotted 
in Fig. 12a. Thus, the maximum of cadd(Ω) in Fig. 12b required 
to stabilize the conical mode amounts to ca. 900 Ns/m and is 
considerably less than the cA = 1168 Ns/m generated by the 
AMDs for the above-mentioned tr = 0.02 s and γ  = 0.5. The 
rotor-shaft system would be stabilized much more easily if the 
choice of global stiffness K of the EDPMBs was smaller. Then, 
according to (2‒3), all the bearing stiffness and damping coef-
ficient components decrease in proportion to one another. This 
fact has already been indicated above, using the Routh-Hurwitz 
stability criterion, resulting in the plots presented in Fig. 7 and 
8. Hence, the stabilization effect can be obtained for relatively 
smaller values of additional damping coefficients cadd and dadd 
determined by means of formulae (8‒9) and (11‒12). Conse-
quently, in order to stabilize a given rotor-shaft supported on the 
EDPMBs, respectively lower values of kA and cA realized by the 
AMDs can be applied. Less control energy will be consumed 
this way, and the entire control mechanism will weigh less and 
have smaller dimensions. For two-times smaller stiffness and 

damping coefficient components than those plotted in Fig. 4, i.e. 
for half the bearing global stiffness K(Ω)/2, Fig. 13 illustrates 
characteristics of minimum stabilizing additional damping co-
efficients cadd and dadd corresponding to the conical and cylin-
drical modes. Fig. 13a presents the characteristics obtained for 
EDPMBs embedded in their housings by means of hard vulca-
nized rubber and Fig. 13b illustrates analogous plots that have 
been determined for an embedding by means of soft polymer 
layers. It is worth noting that in both cases the minimum values 
of the additional damping coefficients necessary to stabilize 
the rotor-shaft being investigated are much lower than those 
plotted in Fig. 12. Namely, the maximum of cadd does not ex-
ceed 750 Ns/m (see Fig. 13a) or it reaches 600 Ns/m only (see 
Fig. 13b) in the case of the EDPMBs embedded, respectively, 
in vulcanized rubber and using soft polymer layers.

Table 1 presents combined properties and numerical param-
eters corresponding to the six stabilization examples performed 
for the investigated rotor-shaft system. In this table, proper nu-
merical values of stiffness and damping coefficients k2x, d2x, k2y 
and d2y marked in Fig. 9d, demonstrating the bearing mechan-
ical model, are assigned to the considered types of bearing stator 
embedding layers in housings, contained in the second column. 

Fig. 13. Characteristics of minimum stabilizing additional damping coefficients cadd and dadd determined for global stiffness K/2 and for embedding 
with vulcanized rubber (a) and with polymer foil (b)

a) b)

Table 1 
Stabilization results for various rotor-shaft-bearing system parameters

Embedding layer Glob. stiffn. tr [s] γ [–] kA [N/m] cA [N/m] i0 [A] μmax [s–1]

I ‘metal-to-metal’ K 0.02 0.5 3.74 ¢ 105 1168 1.5 +6.23

II hard vulc. rubber K 0.02 0.5 3.74 ¢ 105 1168 1.5 –3.26

III hard vulc. rubber K/2 0.03 0.8 0.649 ¢ 105 779 1.0 –10.98

IV soft polymer foil K/2 0.03 0.8 0.649 ¢ 105 779 1.0 –36.13

V soft polymer foil K/2 0.04 0.8 0.365 ¢ 105 584 0.75 –14.57

VI soft polymer foil K/2 0.05 0.8 0.234 ¢ 105 467 0.6 –2.27
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The third column, entitled ‘Global stiffness’, corresponds to 
respective sets of stiffness and damping coefficients kxx, kyy, 
kxy, kyx, dxx, dyy, dxy, and dyx of the EDPMBs (see Fig. 9d). Nu-
merical values of these quantities correspond to global stiffness 
K or K/2, as per expressions (2) and (3). In the subsequent col-
umns, i.e. from the fourth to the seventh one, the AMD control 
parameters tr and γ  are inserted, respectively, as along with 
the coefficients of additional stiffness kA and damping cA. In 
the eighth column, Table 1 also contains the respective damper 
working point currents i0 case by case. The final stabilization 
results expressed by maximum eigenvalue real parts µmax of 
the system eigenmodes, which are most sensitive to instability, 
have been inserted into the ninth column of Table 1.

From a mutual comparison of these values, it follows that 
for a reasonably selected global stiffness K of the EDPMBs as 
well as for their bushings embedded in layers made of relatively 
soft and viscous materials one obtains an entire stabilization 
effect of the rotor-shaft for the gradually decreasing values of 
additional stiffness kA and damping coefficients cA introduced 
into both bearing supports. For this purpose, AMDs of reason-
ably small dimensions and low control energy consumption can 
be used. Namely, in example VI in Table 1, numerical values of 
kA and cA have been reduced, respectively, to 0.234 ¢ 105 N/m 
and 467 Ns/m only. Here, in order to generate sufficient control 
gains to stabilize the object, it was possible to minimize the 
applied control current 2.5 times, i.e. from i0 = 1.5 A to 0.6 A. 
This last case has been illustrated in the form of eigenvalue real 
part characteristics presented in Fig. 14.

7. Benefits following from application  
of EDPMBs combined with AMD 

From the considerations performed above, it follows that, on 
the one hand, the EDPMBs have several advantages in a com-
parison with the classical AMBs, but on the other hand, such 
passive magnetic suspensions had to be stabilized by means of 

additional magnetic dampers which operate using a principle of 
the active magnetic bearing. Since complete AMBs can serve 
not only as rotor-shaft supports, but also as controllable vibra-
tion dampers, an indication of benefits following from appli-
cation of the proposed combined solution seems to be worth 
considering. For this purpose, it is necessary to compare directly 
the proposed magnetic suspension consisting of the EDPMB 
and the AMD with a complete AMB designed to support the 
investigated laboratory rotor-shaft presented in Fig. 1. In addi-
tion to smaller weight and geometrical dimensions as well as 
much easier and robust control of the EDPMB combined with 
the AMD, the electric energy consumption expected from both 
solutions is going to be an essential criterion of this compar-
ison. Here, two aspects of electric power consumption will be 
studied: during static operation under gravitational load only 
and in order to satisfy dynamic stability limits estimated by 
means of the Routh-Hurwitz criterion.

Despite the instability caused by the skew-symmetric 
visco-elastic properties, above certain rotational speeds the 
EDPMB self induces carrying forces without a need of ex-
ternal energy supply. However, in the case of a classical AMB 
its ability to balance static loads is determined by the force 
value F0 corresponding to the bearing working point which is 
a function of the working point current i0. If half the weight 
of the laboratory rotor-shaft, regarded as a symmetrical one, 
is balanced by the AMB in one (vertical) plane, the following 
well-known linearized relationship has to be satisfied: 

 F0 = mg = 
µ0 N 2A

4
i0

2

x0
2 , (15)

where µ0 is the magnetic permeability in a vacuum, N denotes 
the number of bearing coil windings, A is the electromagnet 
cross-section, x0 denotes the nominal bearing clearance, m 
denotes the part of the rotor-shaft mass supported by a given 
bearing and g denotes gravitational acceleration. It turns out 
that for µ 0 = 1.2566 ¢ 10–6 H/m and for the complete AMB 

Fig. 14. Eigenvalue real parts determined for tr = 0.05 s and γ  = 0.8
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with N = 220, A = 9.0678 ¢ 10–5 m2 and x0 = 0.0004 m, de-
signed for the considered laboratory rotor-shaft of the total mass 
2m = 7.3 kg, the working point current i0 determined from (15) 
is equal to 2.04 A. Nevertheless, in order to assure sufficient 
controllability of this AMB, e.g. against dynamic overloadings 
due to residual unbalances, the working point current i0 must 
be of at least two times greater value. Then, for the finally 
assumed i0 = 4 A and for the bearing coil windings resistance 
of 0.85 Ω, such active magnetic suspension consumes electric 
power of 13.6 W in the one, i.e. vertical, plane. Here, the same 
working point current has to be set in the bearing horizontal 
plane. According to the above, the entire power consumption 
of such two AMBs supporting the considered rotor-shaft would 
be equal to 2£(13.6 + 13.6) = 54.4 W.

In the case of combined magnetic support proposed in this 
paper, in the vertical and horizontal plane the AMD introduces 
additional stiffness and damping coefficients which for the PD 
controller can be expressed as functions of the working point 
current i0:

 
and kA = 

µ0 N 2A

4
i0

x0
2 P ¡ 

i0

x0

and cA = 
µ0 N 2A

4
D

i0

x0
2 ,

 (16)

where P and D denote the proportional and derivative control 
gains, respectively. Properly selected numerical values of these 
gains become fundamental parameters of the AMDs responsible 
for rotor-shaft stabilization with respective electric energy con-
sumption ratios. For this purpose, and for the above-mentioned 
accuracy tolerance ratio β = 0.04, an appropriate combination 
of equations (13) and (16) together with (14) leads to the fol-
lowing relationship between the proportional and derivative 
gains:

 P = 
1.6
trγ 2 D + 

i0

x0
. (17)

If the considered active device acts as a classical carrying 
AMB, like the one mentioned above, with the working point 
current i0 = 4 A and the above-listed damping coefficient value 
cA = 1168 Ns/m, the corresponding derivative gain determined 
using (16) is equal to D = 8.471 As/m. Then, for tr = 0.02 s and 
γ  = 0.5 the proportional gain calculated by means of (17) is 
equal to P = 1.2711 ¢ 104 A/m, which results in the bearing ra-
dial ‘in-plane’ stiffness kA = 3.74 ¢ 105 N/m. This stiffness value 
of both AMBs supporting the considered rotor-shaft assures its 
vertical displacement error of less than 0.1 mm caused by the 
gravitational load. When this active device acts as an AMD, 
however, the same values of cA and kA can be obtained for the 
essentially smaller working point current i0 = 1.5 A, i.e. the 
same as in examples I and II contained in Table 1. Then, the 
corresponding control gains determined using (16) and (17) 
are equal to D = 22.6 As/m and P = 1.0979 ¢ 104 A/m. From 
the viewpoint of stabilization effectiveness, it is worth noting 
that while the damping coefficient cA increases linearly with the 
working point current i0, the stiffness value kA is a parabolic 
function of i0, as it follows from expressions (16) and (17)  
as well as from the respective plots in Fig. 15a. The electro-
magnetic stiffness values illustrated in this figure for both pro-
portional gain values are always positive. Here, it needs to be  
remembered that in addition to the supplementary damping ac-
tivity, this feature of the ‘in-plane’ stiffness generated by the AMD  
has an essential positive influence on stabilization of the EDPMB. 
According to the above, in example II listed in Table 1, when 
the rotor-shaft has been successfully stabilized with the working 
point current i0 = 1.5 A, the analogous power consumption of 
this active device operating as an AMD with coil windings resis-
tance of 0.85 Ω amounts to 2£(1.9125 + 1.9125) = 7.65 W for 
two supports in two mutually perpendicular planes.

In the remaining examples of successful rotor-shaft stabi-
lization listed in Table 1, i.e. in III–VI, achieved for gradually 
decreasing working point currents, all additional damping co-
efficient values cA have been obtained for the same derivative 
gain value D = 22.6 As/m. However, the corresponding propor-
tional gains determined by means of relation (17) were equal, 
respectively, to P = 4383.35 A/m in examples III and IV for 

Fig. 15. Characteristics of stabilizing additional stiffness coefficients kA determined for P = 1.2711 ¢ 104 and P = 1.0979 ¢ 104 A/m (a) and for 
P = 4383.35, P = 3286.91 and P = 2629.04 A/m (b)

a) b)
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i0 = 1.0 A, P = 3286.91 A/m in example V for i0 = 0.75 A and 
P = 2629.04 A/m in example VI for i0 = 0.6 A. The analogous 
characteristics of the stabilizing additional stiffness coefficients 
kA determined for these examples are depicted in Fig. 15b. This 
is to emphasize that in all these three cases maxima of the pos-
itive stiffness values generated by the AMDs correspond to the 
above-mentioned working point currents, which assures addi-
tional optimum influence on the rotor-shaft stabilization effect. 
The corresponding electric power consumption ratios are equal, 
respectively, to 3.4 W in examples III and IV, 1.9 W in example 
V, and 1.2 W in example VI, each for two considered AMDs 
acting in two planes. These wattages correspond, respectively, 
to 6.25, 3.5 and 2.2% of the consumption determined for the 
rotor-shaft supported on the carrying classical AMBs.

It needs to be remembered that the above-listed relatively 
small values of working point currents and electric power con-
sumption ratios in examples III–VI corresponding to them have 
been achieved using an active device with technical parameters 
of the classical carrying AMB, i.e. with the above-mentioned 
number of bearing coil windings N, electromagnet cross-sec-
tion A and nominal bearing clearance x0. From formulae (16) 
it follows that for respectively the same working point currents 
i0 identical values of stiffness kA and damping coefficients cA 
could be obtained for different technical parameters N, A and 
x0 and for appropriately different gains P and D. Here, in order 
to minimize, for example, dimensions of the AMD cooperating 
with the EDPMB, it would be necessary to decrease the number 
of coil windings N, the electromagnet cross-section A as well 
as nominal clearance x0. Then, the corresponding gains P and 
D should be appropriately greater, but not exceeding given re-
alistic admissible values. According to the above, a design of 
EDPMBs stabilized by the AMDs requires selection of optimum 
interdependencies between the above-analyzed technical and 
control parameters of the active device.

8. Final remarks

In the paper, stabilization of a laboratory rotor-shaft supported 
by electro-dynamic passive magnetic bearings has been per-
formed by means of three approaches applied simultaneously: 
by introduction of additional damping, using an efficient source 
of energy dissipation in the form of the active magnetic dampers 
built into the EDPMBs; by proper selection of the global stiff-
ness value of the EDPMB, and by selection of optimum vis-
co-elastic properties of bearing supports in housings. The mag-
nitudes of the additional external damping necessary to stabilize 
the object under consideration have been assessed using the 
Routh-Hurwitz stability criterion, which can be regarded as 
a very useful although approximate indicator for stabilization of 
rotating systems. From the results of eigenvalue analyses, it fol-
lows that the additional damping coefficient values determined 
by means of this criterion for the system eigenmodes most sen-
sitive to instability proved to be very effective for total stabiliza-
tion of the investigated object. Moreover, it turned out that the 
softer the electrodynamic passive magnetic bearing as well as 
the softer and more viscous the bearing support in housings, the 

smaller AMD gains are required to stabilize the rotor-shaft com-
pletely. Although, by means of the technical treatments applied 
here, all bending eigenmodes of this high-speed rotor-shaft have 
been efficiently stabilized, it is hoped that an appropriate mutual 
balance between these three stabilization possibilities will be 
achieved in future research by means of a proper optimization 
procedure. It is also worth noting that the EDPMB stabilized by 
the properly designed AMD consumes noticeably less electric 
power than an alternative classical AMB. It should be empha-
sized that the computational findings described above are going 
to be used for final design of the test-rig which will enable 
numerous necessary experimental verifications of the assumed 
theoretical model of the investigated rotor-shaft supported by 
electrodynamic passive magnetic bearings.
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