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Abstract. Continuum models generalized by fractional calculus are used in different mechanical problems. In this paper, by using the conformable 
fractional derivative (CFD) definition, a general form of Eringen non-local theory as a fractional non-local model (FNM) is formulated. It is 
then used to study the non-linear free vibration of a functional graded material (FGM) nano-beam in the presence of von-Kármán non-linearity. 
A numerical solution is obtained via Galerkin and multiple scale methods and effects of the integer and non-integer (fractional) order of stress 
gradient (in the non-local stress-strain relation) on the ratio of the non-local non-linear natural frequency to classical non-linear natural frequency 
of simply-supported (S-S) and clamped-free (C-F) FGM nano-beams are presented.
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gral constitutive equation is difficult, Eringen has approximated 
it with a simplified equation of a differential form (see [10]) and 
showed that approximated dispersion curves based on his model 
are in good agreement with experimental evidence. Forasmuch, 
as other types of approximations are possible, Challamel et al. 
[11] presented a non-local elasticity model in terms of frac-
tional calculus (based on the Caputo definition) that generalizes 
Eringen non-local theory (ENT) and showed that the fractional 
derivative model gives a perfect matching with the dispersive 
wave properties of the Born–Kármán model of lattice dynamics 
and its results are in better agreement with experimental data 
than ENT (cf. also [22]).

Fractional calculus is a branch of mathematical analysis that 
studies differential operators of an arbitrary (real or complex) 
order and is a different approach to non-local mechanics. Frac-
tional differential operators introduce non-locality to the descrip-
tion in a natural way [12] and they make the description more 
realistic. They also are useful in describing the occurrence of 
vibrations in engineering practice [13] which was pointed out by 
many authors [14], therefore attention concentrates on this field.

In solid mechanics, the fractional calculus approach has 
been introduced especially in describing viscous behavior of 
materials [15‒17]. The idea to include a fractional term in the 
governing equation of the elastic problem has been proposed by 
Lazopoulos, who showed in [18] that the strain energy density 
depends both on the local value and on fractional order of strain. 
Demir et al. [13] studied the application of fractional calculus in 
the dynamic analysis of beam and concluded that both the order 
and the coefficient of the fractional derivative have a significant 
effect on the natural frequency and the amplitude of vibrations. 
Palfalvi presented an efficient solution of a vibration equation 
involving fractional derivatives [19]. Atanackovic et al. [20] 
studied the motion of a one-dimensional continuum whose de-
formation was described by a strain measure of non-local type. 

1. Introduction

Nanotechnology is primarily concerned with the fabrication of 
FGM and engineering structures at a nanoscale, which provides 
a new category of materials with revolutionary properties and 
devices with enhanced functionality. One of these structures is 
the nano-beam, which is widely used in many systems and de-
vices such as nano-wires, nano-probes, atomic force microscope, 
nano-actuators and nano-sensors. To avoid the peak resonance, 
the designer must know the natural frequency so the analysis of 
free vibration of structural elements must be performed during 
the designing process. This problem becomes more pronounced 
for nanostructures like oscillators, clocks and sensor devices and 
is still not solved in the mechanical community.

There are two different methods for mechanical analysis 
of nanostructures [1]: the molecular dynamic model and con-
tinuum models. Continuum models provide a simpler descrip-
tion of the nanostructures. Due to the absence of the length scale 
parameter (although the techniques of the traditional micro to 
macro averaging theory – implicit non-locality – are of a broad 
applicability also cf. [37] ), the classical continuum theories fail 
to accurately predict the mechanical behavior of nanostructures 
[2], therefore non-conventional continuum theories which con-
tain an additional material length scale parameter have been 
proposed, such as strain-gradient theories [3, 4], micro-polar 
theories [5–8] or theories of material surfaces [9]. Among these 
models, the non-local theory is one of the most likely used. 
The well-known constitutive relation for non-local elasticity 
involves an integral over the whole body. Since solving the inte-
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Sumelka [12, 21] generalized the Kirchhoff–Love plate’s theory 
by using fractional calculus, and studied the new concept of 
space-fractional continuum body utilizing the Riesz– Caputo 
derivative. He also studied a free axial vibration of a nano-rod 
based on this model [22], and presented a fractional non-local 
Euler-Bernoulli beam theory [23] for better approximation of 
experimental Young modulus values. More recently, Rahimi et 
al. [33, 36] presented a generalized form of non-local elasticity 
theory using the conformable fractional derivatives definition 
(CFDD) and showed its application in analysis of free vibra-
tion of homogenous nano-beams and a study of critical point 
instability of micro- and nano-beams.

As mentioned above, Challamel et al. [11] presented a gen-
eral form of ENT based on the Caputo definition. However, 
the integral form of fractional derivatives definition like Rie-
mann–Liouville, Caputo, and Grunwald-Letnikov makes the 
numerical solution of the governing equations difficult. Due to 
this limitation, this paper presents a general form of ENT based 
on the CFD definition, without an integral form. The presented 
model is used to study the non-linear vibration of a FGM na-
no-beam. To the best of the authors’ knowledge, the application 
of a conformable non-local model in non-linear vibration and 
problems related to FGM has not been studied elsewhere.

1.1. Conformable fractional derivative. There are different 
types of definition of fractional derivatives but herein the 
CFD has been used instead of the most popular ones like 
Riemann– Liouville, Caputo or Grunwald-Letnikov [14]. The 
reason is that RL, C, GL definitions, as well as many others 
that are not mentioned here, have some drawbacks (see Khalil 
et al. [24]). Furthermore, the solution of fractional differential 
equations that is achieved by these definitions is difficult due to 
the necessity of formulation complex numerical approximations 
[25‒29]. This difficulty can limit the application of fractional 
calculus in real life complex problems. The CFD definition 
[24,38,39] has been used because it has no integral form and 
makes it possible to solve the obtained equations in the usual 
way. It also eliminates some of the defects of other definitions 
[14, 30, 31].

The CFD definition is (cf. Appendix A):

 

Dx
α( f)(x, y) = x(α–α) d α f (x, y)

dx α
,

Dx
α = 

∂α

∂xα
,

Dy
α( f)(x, y) = y(α–α) d α f (x, y)

dy α
,

Dy
α = 

∂α

∂yα
,

 (1)

where α is a fractional parameter, α 2 (n ¡ 1, n] and is the 
smallest integer greater than or equal to α.

Here we consider 1 < α ∙ 2 because we want to compare 
our fractional model with the classical non-local theory of the 
Eringen type. It is clear that when α is an integer Eq. (1a) re-
duces to the following (classical/local) form:

 
Dx

n( f)(x, y) = 
d nf (x, y)

dxn ,

Dy
n( f)(x, y) = 

d nf (x, y)
dyn .

 (2)

2. Mathematical modeling of FGM nano-beam

Consider the functionally graded S-S and C-F nano-beams of 
length L, width b, and thickness h. Material properties of the 
beam, i.e., Young and shear modulus and mass density vary 
continuously along the beam thickness as functions of the z co-
ordinate according to the power law distribution

 p(z) = (pl ¡ pu)
µ

2z + h
2h

¶k

 + pu , (3)

where subscripts u and l refer to material properties of the 
upper and lower surfaces, respectively, and k is a non-negative 
number that dictates the material variation profile through the 
thickness of the beam.

The displacement field, based on the Euler-Bernoulli beam 
theory, is restricted to:

 
u(x, z, t) = u0(x, t) ¡ z

∂w0(x, t)
∂x

,

w(x, z, t) = w0(x, t),
 (4)

where u0 and w0 are the axial and the transverse displacements, 
respectively, of any point on the axis, and t denotes time. In ac-
cordance, the von Kármán type non-linear strain–displacement 
relationship is

	 εxx = ∂u
∂x

 + 
1
2

µ
∂w
∂x

¶2

 =  ∂u0

∂x
 ¡ z

µ
∂2w0

∂x2

¶
 + 

1
2

µ
∂w0

∂x

¶2

. (5)

Using the Hamilton principle, the equations of motion are de-
rived as below:

 ∂N
∂x

 = D1
∂2u0

∂t 2 , (6)

 ∂2M
∂x2  +  ∂

∂x

µ
N ∂w0

∂x

¶
 = D1

∂2w0

∂t 2 , (7)

where N and M are the stress resultants:

 N = 
A
∫σxxdA = bA1

µ
∂u0

∂x
 + 

1
2

µ
∂w0

∂x

¶2
¶

 ¡ bB1

µ
∂2w0

∂x2

¶
, (8)

 

M = 
A
∫σxxzdA = 

M = bB1

µ
∂u0

∂x
 + 

1
2

µ
∂w0

∂x

¶2
¶

 ¡ bC1

µ
∂2w0

∂x2

¶
,
 (9)



739

The analysis of non-linear free vibration of FGM nano-beams based on the conformable fractional non-local model

Bull.  Pol.  Ac.:  Tech.  66(5)  2018

where the parameters A1, B1, C1 are:

 

{A1, B1, C1} = 
+h/2

–h/2
∫ E(z) = {1, z, z2}dz ,

D1 = 
+h/2

–h/2
∫ ρ(z)dz .

 (10)

Below we present a fractional non-local elasticity model. This 
model can be understood as a possible generalization of Eringen 
non-local elastic model, with a non-integer order stress gradient 
in the stress–strain equation. This model contains two additional 
material parameters compared to the classical local formulation: 
the characteristic length scale and the stress gradient order.

The fractional non-local model that is a generalization of 
the Eringen model is defined as below [11]:

	 σxx ¡ μ
d ασxx

dxα
 = Eεxx , (11)

where σ and ε are, respectively, the uniaxial stress and strain, E 
is the Young modulus and μ = (e0a)α, e0 is a material constant 
to be determined experimentally, a is the internal characteristic 
length (e.g. lattice parameter, granular size, distance between 
C-C bonds) and α is an order of stress gradient. The classical 
form of Eringen non-local model is obtained when α = 2 and 
a local form of strain-stress is achieved when μ = 0.

For the Euler-Bernoulli beam the constitutive relations are 
given by:

 N ¡ μ
d αN
dxα

 = bA1εb  + bB1kb , (12)

 M ¡ μ
d αM
dxα

 = bB1εb  + bC1kb . (13)

Using the CFD definition for 1 < α ∙ 2, Eqs (12‒13) gives:

 N ¡ μx2–α d 2N
dx2  = bA1εb  + bB1kb , (14)

 M ¡ μx2–α d 2M
dx2  = bB1εb  + bC1kb . (15)

If the axial inertia is neglected, Eq. (6) gives N = N0 = cte, so 
Eq. (12) can be simplified to

 N = bA1εb  + bB1kb . (16)

For a nano-beam with an immovable ends (i.e. u0 and w0 = 0, 
at x = 0 and L) and by assuming N = N0 = cte, integration of 
Eq. (16) with respect to x leads to [34, 35]

 N = N0 =  bA1

2L

L

0
∫
µ
∂w0

∂x

¶2

dx ¡ bB1

L

L

0
∫
∂2w0

∂x2 dx . (17)

In order to express the bending moment in terms of deflection, 
Eq. (8) can be rewritten as follows

 bB1

µ
∂u0

∂x
 + 

1
2

µ
∂w0

∂x

¶2
¶

 = 
B1

A1

µ
N + bB1

µ
∂2w0

∂x2

¶¶
. (18)

Taking the second derivative of Eq. (10b) and substituting 
Eq. (13), Eq. (17) and Eq. (18) into it, we obtain the fractional 
non-linear equation of the Euler-Bernoulli functionally graded 
nano-beam

 

µ
bC1 ¡ b

B1
2

A1

 ¡ μN0x2–α
¶
∂4w0

∂x4  + 

+ 
³
2μ
¡
1 ¡ α

¢
N0x1–α

´ ∂3w0

∂x3  + 

+ 
³¡

2 ¡ α
¢¡

1 ¡ α
¢
x–α ¡ 1

´
N0

∂2w0

∂x2  ¡ 

¡ 
¡
μx2–αD1

¢ ∂4w0

∂x2∂t 2  ¡ 

¡ 
³
μ
³
2
¡
2 ¡ α

¢
x1–αD1

´́ ∂3w0

∂x∂t 2  +

+ 
³

D1 ¡ D1μ
¡
2 ¡ α

¢¡
1 ¡ α

¢
x–α

´ ∂2w0

∂t 2   = 0 .

 (19)

It should be noticed, as mentioned, that the Eringen non-local 
model is recovered when α = 2 and a classical local form is 
achieved when μ = 0. For convenience, the following non-di-
mensional variables are used:

wb  = 
w
L

, xb = 
w
L

, tb = 
t
T

, T =
D1L

4

bC1

, zb = 
z

h
, Nb0 = 

bA1h
2

2L2

1

0
∫
µ
∂wb 0

∂x

¶2

dxb ¡ 
bB1h

L2

1

0
∫
∂2wb 0

∂xb 2 dxb = Nb01 + Nb02 ,

µ
bC1 ¡ b

B1
2

A1

 + μαNb0

³
Lxb

2́–α
¶µ

h
L4

¶
∂4wb 0

∂xb 4  + 
³
2μα¡2 ¡ α

¢
Nb0
¡
Lxb
¢1–α

´µ h
L3

¶
∂3wb 0

∂xb 3  + 

+ 
³
μα¡2 ¡ α

¢¡
1 ¡ α

¢¡
Lxb
¢–α ¡ 1

´
Nb0

µ
h
L2

¶
∂2wb 0

∂xb 2  ¡ 
³
μα¡Lxb

¢2–α Db 1

´
Nb0

µ
h

L2T 2

¶
∂4wb 0

∂xb 2∂tb2  ¡ 

¡ 
³
μα

³
2
¡
2 ¡ α

¢¡
Lxb
¢1–αDb 1

´́ µ h
LT 2

¶
∂3wb 0

∂xb ∂tb2  + 
³
Db 1 ¡ Db 1μ

α¡2 ¡ α
¢¡

1 ¡ α
¢¡

Lxb
¢–α´

µ
h
T 2

¶
∂2wb 0

∂tb2 .

 (20)
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3. Non-linear vibration analysis  
of FGM nano-beams

For non-linear free vibration analysis, the Galerkin method is 
used to convert Eq. (20) into an ordinary differential equation. 
The solution for the n-th mode is approximated as

 w(xb, tb) = ϕ(xb). q(tb), (21)

where ϕ(x) is a suitable mode shape (cf. [32]) and q (t) is a time 
dependent function to be determined.

Next, substituting Eq. (21) into Eq. (20), multiplying it by the 
mode shape and integrating the outcome from 0 to 1, we obtain

 b1q ̈ (tb) + b2q(tb) + b3q2(tb) + b4q3(tb) = 0, (22)

where:

b1 = D1

1

0
∫

∙
–μα¡Lxb

¢2 –α
µ

h1

L2T 2

¶
ϕ′′ϕ

¸
 ¡

∙
2μα

¡
2 ¡ α

¢¡
Lxb
¢1–α

µ
h

LT 2

¶
ϕ′ϕ

¸
 +

∙
{1 ¡ μα

¡
2 ¡ α

¢¡
1 ¡ α

¢¡
Lxb
¢–α}

µ
h

T 2

¶
dxb ,

b2 = 
∙

bCb1 ¡ b
Bb1

2

Ab1

µ̧
h
L4

¶1

0
∫ϕ(x)ϕ(x)′′′′ dxb ,

b3 = 
1

0
∫ Nb02

∙
μα¡Lxb

¢2 –α
µ

h
L4

¶
ϕ′′′′ϕ

¸
 +

∙
2μα

¡
2 ¡ α

¢¡
Lxb
¢1–α

µ
h
L3

¶
ϕ′′′ϕ

¸
 +

∙
{μα

¡
2 ¡ α

¢¡
1 ¡ α

¢¡
Lxb
¢–α ¡ 1}

µ
h
L2

¶
ϕ′′ϕ

dxb ,

b4 = 
1

0
∫ Nb01

∙
μα¡Lxb

¢2 –α
µ

h
L4

¶
ϕ′′′′ϕ

¸
 +

∙
2μα

¡
2 ¡ α

¢¡
Lxb
¢1–α

µ
h
L3

¶
ϕ′′′ϕ

¸
 +

∙
{μα

¡
2 ¡ α

¢¡
1 ¡ α

¢¡
Lxb
¢–α ¡ 1}

µ
h
L2

¶
ϕ′′ϕ

dxb .

Finally, Eq. (22) can be rewritten as below:

 
q ̈ (tb) + β11q(tb) + β12q2(tb) + β13q3(tb) = 0,

β11 =  b2

b1
, β12 =  b3

b1
, β13 =  b4

b1
.

 (23)

3.1. Numerical solution. To derive the solution of Eq. (23), 
a set of the first-order approximations is applied

 q(t) = 
i =1

3

∑εiqi(T0, T1, T2) + … , (24)

where T0 =  t is the fast time scale characterizing the motions 
corresponding to the unperturbed linear system, and T1 = εt is 
the slow time scale characterizing the modulation of the am-
plitudes and phases due to non-linearity. The derivatives with 
respect to t become expansions in terms of partial derivatives 
with respect to Tn according to:

 d
dt

 = dT0

dt
∂
∂T0

 + dT1

dt
∂
∂T1

 + … = D0 + εD1 + … , (25)

 d2

dt 2  = D0
2 + 2εD0 D1 + … . (26)

Substituting Eqs (24) and (25, 26) into Eq. (23) and equating 
the coefficients of ε1, ε2, ε3 … to zero, we obtain:

ε1 : D0
2q1 + q1 = 0 , (27)

ε2 : D0
2q2 + q2 + 2D0 D1q1 + β1q1

2  = 0 , (28)

ε3 : D0
2q3 + β2q3 + (D1

2 + 2D0 D1)q1 +
ε3 : + 2D0 D1q1 + 2β1q1q2 = 0 ,

 (29)

where β1 = 
β12qmax

β11
, β2 = 

β13q2
max

β11
, q(0) = qmax, q ̇ (0) = 0.

The general solution of Eq. (27) is

 q1 = A2(T1, T2)exp( jT0) + A– 2 exp(– jT0), (30)

where A2 is an unknown complex function and A–2 is a complex 
conjugate of A2. Substituting Eq. (30) into Eq. (28) gives:

 
D0

2q2 + q2 = –2jD1A2(T1, T2)exp( jT0) ¡

D0
2q2 + q2 ¡ β1

³
A
–

2
2exp(2jT0)

´
 + A2A

–
2 + cc ,

 (31)

where cc denotes the complex conjugate of the preceding term. 
In order to avoid secular behavior in q2:

D1A2 = 0,

therefore A2 must be independent of T1 or equivalently A2 =  
= A2(T2).

With D1A2 = 0, the solution of Eq. (31) is:

 q2 = β2A
2

3
exp(2jT0) ¡ β2A2A

–
2 + cc , (32)

where the solution of the homogeneous equation is not needed.
Substituting Eq. (32) and Eq. (30) into Eq. (29) leads to:

D0
2q3 + q3 = 

³
–2jD2A2 + (10β2A2

2 A
–

2/3) ¡ 

D0
2q3 + q3 ¡ 3β2A2

2 A
–

2)
´

exp( jT0) ¡ 

D0
2q3 + q3 ¡ 

³
(2β1

2A2
3/3) + β1A2

3
´

exp(3jT0) + cc.

 (33)
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To eliminate the secular term from q3 we must have:

 –2 jD2A2 + (10β2A2
2 A

–
2/3) ¡ 3β2A2

2 A
–

2 = 0 . (34)

Obtaining A2 from Eq. (34) and stating it in a polar form leads to:

 A2 = 1
2
ςexp( jλ), (35)

where η and λ are real functions of T2. Next, by substituting 
Eq. (35) into Eq. (33) and separating the result into imaginary 
and real parts, we obtain:

 
dς

dT 2 = 0 → here it is assumed ς =  1
ε

 (36)

 
–ς

dλ
dT2

 ¡ 
3
8
ς3β2 + ς3

µ
5β1

2

12

¶
 = 0 →

→ λ = 
3
8
ς2β2 ¡ ς2

µ
5β1

2

12

¶
T2 + c0 ,

 (37)

where c0 is constant. Substituting ς and λ from Eq. (28) into 
Eq. (35) and T2 = ε2t leads to:

 A2 = 
1
2
ς exp

Ã

j
µ

3
8
ς2β2 ¡ 

5β1
2

12
ς2

¶
ε2t + c0

¶!
. (38)

Finally, by substituting q1 and q2 from Eqs (30) and (32) into 
Eq. (24) and using Eq. (38), we get:

 

q = εq1 + ε2q2 = εηcos(ωt + c0) + 

q + ε2
³
(β1ς

2/6)cos(ωt + c0) ¡ (β1ς
2/2)

´
 +

q + bcos(t + ϖ), q(0) = qmax, q ̇ (0) = 0,

 (39)

where the fractional non-local non-linear natural frequency 
based on Eq. (36) can be obtained as follows:

 
ωFnl

nl  = 
³

β11

´Ã
1 + 

3
8

µ
9β13β11 ¡ 10β2

12

9β2
11

¶
q2

max

!

 +

ω  + O
³
ε3
´
.

 (40)

3.2. Results. In this section the natural frequency of FGM na-
no-beams is studied based on the FNM. The FGM beams are com-
posed of aluminum and silicon. Their properties are varying along 
the thickness, based on the power law. Their bottom and upper 
surfaces are pure silicon and pure aluminum, respectively. The 
material properties of silicon and aluminum are shown in Table 1.

Table 1 
Material properties of FGM nano-beams

material E ρ

Silicon 210 GPa 2370 kg/m3

Aluminum 70 GPa 2700 kg/m3

To validate our results we compared the non-linear frequency 
ratio (NFR) which we obtained with our formulation with the 
Nezamnezhad results [32]. The NFR is defined as the ratio of 
non-dimensional non-linear non-local frequency to the non-di-
mensional non-linear classic frequency. Since the model pre-
sented in this paper is new, the results are validated with those 
in [32] for α = 2 only – other results are an original extension 
of this work and show an unusual flexibility.

Table 2 
A comparison of non-linear frequency ratio 

³
r =  (I/A)

´

L = 10 nm qmax/r μ2 (nm2) k

Nazemnezhad 
[32] (Eringen 

non-local 
theory)

Present 
(fractional 
non-local 
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To study the effect of different orders (integer or non-in-
teger) of the stress gradient in the constitutive equation on non-
linear frequency, the NFR has been given for the S-S and the 
C-F nano-beams in Table 3 and Table 4, respectively, where 
L = 10 nm, h = b = 1 nm and μ =  2 nm. The fractional pa-
rameter (α) that controls the order of the stress gradient as 
mentioned above is between 1 and 2 (when α is equal to 2, 
the FNM reduces to ENT). As it can be seen from Table 3 and 
Fig. 1a, the decrease of the stress gradient order from 2 to 1.2 
decreases the NFR where the gradient index is constant. Also 
for the C-F beam, it can be seen from Table 4 and Fig. 1b that 
decreasing the order of the stress gradient causes an increase 
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in the NFR. It is visible that the effect of changing order of the 
stress gradient is more pronounced for the S-S beam than for 
the C-F beam.

The influence of the order of the stress gradient on the NFR 
for S-S and C-F nano-beams is shown in Fig. 1 for different 
values of the gradient index (k = 0, 1, 2, 3) where L = 10 nm 
and qmax/r = 1. As it is visible for the S-S beam, the influence 
of α on the NFR becomes more pronounced for a larger gradient 
index. In other words, the effect of the gradient index on the 

NFR becomes more intensive when α decreases. In Fig. 1b for 
the C-F beam the diagrams for different values of the gradient 
index are almost the same and for different values of α the 
increase of the gradient index decreases the NFR.

Figure 2a and Fig. 2b show the effect of a large range of 
the gradient index on the NFR for different values of the frac-
tional parameter (α = 2, 1.76, 1.6, 1.36, 1.2). For both kinds 
of beams, for increasing gradient index the diagrams tend to 
be linear for different values of α. In Fig. 2a, as α decreases, 

Fig. 1a. The NFR versus the order of the stress gradient for dif-
ferent values of the gradient index in an S-S nano-beam (L = 10 nm, 

μ =  2  nm, qmax/r = 1)
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and qmax/r =1. As it is visible for the S-S beam, the influence 
of  α on the NFR becomes more pronounced for a larger 
gradient index. In other words, the effect of the gradient 
index on the NFR becomes more intensive when α 
decreases. In Fig. 1b for the C-F beam the diagrams for 
different values of the gradient index are almost the same 

and for different values of α the increase of the gradient 
index decreases the NFR.  
Fig. 2a and Fig. 2b show the effect of a large range of the 
gradient index on the NFR for different values of the 
fractional parameter (α=2, 1.76, 1.6, 1.36, 1.2). For both 
kinds of beams, for increasing gradient index the diagrams 
tend to be linear for different values of α. In Fig. 2a, as α 
decreases, the diagram is linear for the bigger value of the 
gradient index and the effect of gradient index values 
between 0-10 increases change of the NFR. But, Fig. 2b 
shows that the shape of the diagrams  is the same for 
different values of α .  
The NRT versus the length of the nano-beam is shown in 
Fig. 3a and Fig. 3b for both S-S and C-F beams, 
respectively, for different values of the order of the stress 
gradient (α=2, 1.76, 1.6, 1.36, 1.2). For both beams, when 
the length increases, the diagram of the FNM becomes 
linear and when the  length of the nano-beam decreases,  
the effect of the order of the stress gradient on the NRT 
increases. Note that the effects of length and the gradient 
index on the NFR based on ENT (α=2) for the S-S nano-
beam are the same as the results of Nezamnezhad et al. 
[31]. 
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Fig.1b The NFR versus the order of the stress gradient for different values 
of the gradient index in a C-F nano-beam (L=10 nm, μ=√2 nm, qmax/r=1) 
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4. Conclusions 

A non-local model which is the generalization of ENT by 
application of the CFD definition has been presented in the 
paper. The model has a simple numerical solution in 
contrast to former fractional derivatives models due to the 
absence of integral in the constitutive relation. In addition 
to a non-local parameter, the model has one extra free 
parameter that controls the order of the stress gradient in 
the constitutive non-local differential equation. This 
parameter makes the modeling more flexible and powerful 
since both integer and non-integer order of the stress 
gradient can be used in the modeling of physical 
phenomena. This new parameter is known as fractional 
parameter. In this paper its value is between 1 and 2 
(1<α≤2) and when it is equal to 2, the FNM reduces to 
ENT.   
Finally, the non-linear free vibration of the S-S and C-F 
FGM nano-beams based on conformable FNM has been 
presented (the non-linearity is due to von-Kármán non-
linearity and fractional derivatives). The non-linear 
governing equation was solved by the parameter expansion 
method and the following results were obtained: 
• For the S-S nano-beam the influence of the gradient 

index on the NFR becomes more pronounced when the 
stress gradient order decreases,  while for the C-F beam 
this effect is less visible.   

• For both kinds of beams increasing of the gradient 
index results in a linear diagram for different values of 
the stress gradient order. 

• For the S-S nano-beam, as the stress gradient order 
decreases the diagram tends to be linear for  larger 
values of the gradient index. The effect of the gradient 
index on the NFR increases for gradient values between 
0-10. 
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Fig.1b The NFR versus the order of the stress gradient for different values 
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the diagram is linear for the bigger value of the gradient index 
and the effect of gradient index values between 0‒10 increases 
change of the NFR. But, Fig. 2b shows that the shape of the 
diagrams is the same for different values of α.

The NRT versus the length of the nano-beam is shown 
in Fig. 3a and Fig. 3b for both S-S and C-F beams, respec-
tively, for different values of the order of the stress gradient 
(α = 2, 1.76, 1.6, 1.36, 1.2). For both beams, when the length 
increases, the diagram of the FNM becomes linear and when 
the length of the nano-beam decreases, the effect of the order of 
the stress gradient on the NRT increases. Note that the effects 

of length and the gradient index on the NFR based on ENT 
(α = 2) for the S-S nano-beam are the same as the results of 
Nezamnezhad et al. [31].

4. Conclusions

A non-local model which is the generalization of ENT by ap-
plication of the CFD definition has been presented in the paper. 
The model has a simple numerical solution in contrast to former 
fractional derivatives models due to the absence of integral in 
the constitutive relation. In addition to a non-local parameter, 
the model has one extra free parameter that controls the order 
of the stress gradient in the constitutive non-local differential 
equation. This parameter makes the modeling more flexible and 
powerful since both integer and non-integer order of the stress 
gradient can be used in the modeling of physical phenomena. 
This new parameter is known as fractional parameter. In this 
paper its value is between 1 and 2 (1 < α ∙ 2) and when it is 
equal to 2, the FNM reduces to ENT.

Finally, the non-linear free vibration of the S-S and C-F 
FGM nano-beams based on conformable FNM has been pre-
sented (the non-linearity is due to von-Kármán non-linearity 
and fractional derivatives). The non-linear governing equation 
was solved by the parameter expansion method and the fol-
lowing results were obtained:
● For the S-S nano-beam the influence of the gradient index 

on the NFR becomes more pronounced when the stress gra-
dient order decreases, while for the C-F beam this effect is 
less visible.

● For both kinds of beams, increasing gradient index results 
in a linear diagram for different values of the stress gradient 
order.

● For the S-S nano-beam, as the stress gradient order de-
creases the diagram tends to be linear for larger values of 
the gradient index. The effect of the gradient index on the 
NFR increases for gradient values between 0‒10.

● For the C-F nano-beam, the effect of the gradient index 
is smaller than for the S-S case for different values of the 
stress gradient order.

● In both kinds of beams, for different values of the stress 
gradient order by increasing the length of the nano-beam 
the diagram of the FNM becomes linear. The length of the 
nano-beam reduces the effect of the stress gradient order 
on the NRT due to the fact that beam dimensions become 
significantly higher than the length scale.
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parameter makes the modeling more flexible and powerful 
since both integer and non-integer order of the stress 
gradient can be used in the modeling of physical 
phenomena. This new parameter is known as fractional 
parameter. In this paper its value is between 1 and 2 
(1<α≤2) and when it is equal to 2, the FNM reduces to 
ENT.   
Finally, the non-linear free vibration of the S-S and C-F 
FGM nano-beams based on conformable FNM has been 
presented (the non-linearity is due to von-Kármán non-
linearity and fractional derivatives). The non-linear 
governing equation was solved by the parameter expansion 
method and the following results were obtained: 
• For the S-S nano-beam the influence of the gradient 

index on the NFR becomes more pronounced when the 
stress gradient order decreases,  while for the C-F beam 
this effect is less visible.   

• For both kinds of beams increasing of the gradient 
index results in a linear diagram for different values of 
the stress gradient order. 

• For the S-S nano-beam, as the stress gradient order 
decreases the diagram tends to be linear for  larger 
values of the gradient index. The effect of the gradient 
index on the NFR increases for gradient values between 
0-10. 
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Fig.1b The NFR versus the order of the stress gradient for different values 
of the gradient index in a C-F nano-beam (L=10 nm, μ=√2 nm, qmax/r=1) 
 

 
Fig.2a The NFR versus the gradient index based on the FNM in an S-S 
nano-beam, where α=2 the FNM reduced to ENT (L=10 nm, μ=√2 nm, 
qmax/r=1, k=1) 
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Fig.3a The NFR versus the length of an S-S nano-beam based on the FNM, 
where α=2 the FNM reduced to ENT (L=10 nm, μ=√2 nm, qmax/r=1,k=1) 
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Fig. 3b. The NFR versus the length of a C-F nano-beam based on the 
FNM, where α = 2 the FNM reduced to ENT (L = 10 nm, μ =  2  nm, 

qmax/r = 1, k = 1)
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Appendix A

Let us consider the CFD for a multi-variables function.
Assuming the function f(x, y), we have:

fx(x, y) = 
df (x, y)

dx
 = limh→0

f (x + h, y) ¡ f (x, y)
h

,

fy(x, y) = 
df (x, y)

dy
 = limh→0

f (x, y + h) ¡ f (x, y)
h

.

Next, based on the CFDD, we have [11]:

f α
x(x, y) = 

dαf
³
x, y

´

dxα
 = limε→0

f
³
x + εx α–α, y

´
 ¡ f

³
x, y

´

ε
,

f α
y(x, y) = 

dαf
³
x, y

´

dyα
 = limε→0

f
³
x, y + εy α–α

´
 ¡ f

³
x, y

´

ε
.

If 0 < α ∙ 1 one has h = εxα–1, h = εyα–1 and then from the above relations:

f α
x(x, y) = 

dαf
³
x, y

´

dxα
 = limε→0

f
³
x + εx1–α, y

´
 ¡ f

³
x, y

´

ε
 = x1–αlimh→0

f (x + h, y) ¡ f (x, y)
h

 = x1–α df (x, y)
dx

,

f α
y(x, y) = 

dαf
³
x, y

´

dyα
 = limε→0

f
³
x, y + εy1–α

´
 ¡ f

³
x, y

´

ε
 = y1–αlimh→0

f (x, y) ¡ f (x, y + h)
h

 = y1–α df (x, y)
dy

,

A smooth transition to the integer derivative is obtained for α = 1, namely:

fx(x, y) = 
df (x, y)

dx
,

fy(x, y) = 
df (x, y)

dy
.


