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Abstract. The paper deals with the plane problem of an elastic layer resting on a Winkler foundation with an emptiness. The stresses in the layer 
are caused by a given normal loading on its upper boundary plane. The mathematical formulation of the problem leads to a mixed boundary 
value problem and it is solved using Fourier transform methods and Fredholm integral equation of the second kind. The detailed analysis is 
derived analytically and numerically for an elliptic distribution of boundary loadings. The results for the normal displacement and the stresses 
on the lower boundary of the layer are presented in figures.
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tion is investigated in [6]. The edge crack normal to the lower 
boundary plane is taken into account. The stress intensity factor 
is obtained on the basis of the solution of the Fredholm integral 
equation and some numerical results are presents.

The problems of elastic plates resting on a Winkler founda-
tions are investigated in [7‒10]. The estimation of values of pa-
rameter k being the Winkler constant is presented in [11]. Some 
comments on the modeling of foundations are given in [12].

Various problems connected with the analysis of soil-foun-
dation integration were discussed in monograph [13]. The 
author presents elastic models of soil behaviour, solutions 
of problems of beams and plates resting on foundations. The 
monograph [14] is devoted to simple methods for analysis of 
various structures supported by an elastic foundation (beams, 
plates, frames, walls) using the Winkler foundation, elastic 
half-space, elastic layer. The contact problem for a functionally 
graded layer resting on the Winkler foundation is considered 
in [15]. The layer is loaded by a rigid cylindrical punch. The 
Poisson ratio is taken as constant and the modulus of elasticity 
is assumed to vary exponentially through the thickness of the 
layer.

The paper deals with the analysis of stresses in an elastic 
layer resting on a Winkler foundation with an emptiness. The 
surface of substrate is assumed to be a plane with an infinitely 
long strip emptiness. The emptiness is sufficiently deep what 
precludes a contact of the layer with the foundation. The 
stresses in the layer are caused by a given normal loading of 
its upper surface.

2.	 Formulation of problem

Consider the plane static problem of an elastic layer resting on 
a Winkler foundation with an emptiness. Let the problem be 
related to a Cartesian coordinate system (x, y, z) such that the 

1.	 Introduction

The problems of stress distributions in an elastic layer resting 
on a rigid or deformable foundation are of significant interest 
in geology, in geophysics and in engineering constructions. The 
knowledge of mechanical interactions of elastic bodies with 
substrates is of practical importance in the design of building 
foundations, analysis of railroad tracks, highway engineering. 
Few mathematical models of substrates are used there. One of 
them is the Winkler model being a one-parameter model which 
based on the modulus of subgrade reaction. The Winkler foun-
dations are adopted in many papers and monographs. In paper 
[1] the plane contact problem of two infinite elastic layers lying 
on a Winkler foundation is considered. Paper [2] deals with the 
contact problems of an elastic wedge supported by the Winkler 
foundation. The wedge is in the plane frictionless contact with 
a rigid flat plate. In paper [3] the axisymmetric contact problem 
of a rigid conical, paraboloidal or ellipsoidal indenter on an 
elastic layer supported by the Winkler foundation is investi-
gated. The solution is based on the fundamental solutions and an 
integral equation, which is solved numerically. Paper [4] pres-
ents the plane contact problem of an elastic homogeneous and 
isotropic layer supported by a Winkler foundation. The upper 
surface of the layer is in plane contact with a rigid punch. The 
axisymmetric contact problem for an elastic layer resting on the 
rigid half-space with a near-boundary cylindrical excavitation 
filled with a deformable material is considered in [5]. The ma-
terial is modelled by a Winkler medium and the layer is pressed 
by a rigid sphere or by a rigid flat cylinder. The stress analysis 
near a crack tip in an elastic layer resting on a Winkler founda-
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lower boundary of layer is located along the plane y = 0, Fig. 1. 
Let h denote the thickness of layer. The upper boundary y = h 
is assumed to be loaded by normal forces symmetrically with 
respect to the axis Oy and it is independent of z. The elastic 
layer rests on the Winkler foundation characterized by the 
stiffness denoted by k. Moreover, the Winkler substrate is 
assumed to be a half-space y < 0 with an infinitely long in 
the axis Oz direction strip emptiness in the region –a < x < a. 
The emptiness is sufficiently deep such that a contact of the 
elastic layer with the foundation in the region is impossible. Let 
λ, µ be Lamé constants and ν  be Poisson ratio of the layer. Let  
ur(x, y) = 

£
ux(x, y), uy1(x, y), 0

¤
 denote the displacement vector and  

σxx, σxy, σyy be the non-zero components of the stress tensor.

	

ux(x, y) =  1
2µ

2
π

1

0
∫{ A + Bαy + 

ux(x, y) + 2(1 ¡ ν)D sinh(αy) +  C + Dαy +

ux(x, y) + 2(1 ¡ ν)B cosh(αy)}sin(αx)dα ,

� (3a)

	

uy(x, y) =  –1
2µ

2
π

1

0
∫{ A + Bαy ¡ 

uy(x, y) ¡ (1 ¡ 2ν)D cosh(αy) +  C + Dαy ¡

uy(x, y) ¡ (1 ¡ 2ν)B sinh(αy)}cos(αx)dα ,

� (3b)

and

σxx(x, y) =  2
π

1

0
∫α{ A + Bαy + 2D sinh(αy) +

σxx(x, y) +  C + Dαy + 2B cosh(αy)}cos(αx)dα ,
� (4a)

σxy(x, y) =  2
π

1

0
∫α{ A + Bαy + D cosh(αy) +

σxy(x, y) +  C + Dαy + B sinh(αy)}sin(αx)dα ,
� (4b)

σyy(x, y) = – 2
π

1

0
∫α{(A + Bαy)sinh(αy) +

σxy(x, y) + (C + Dαy)cosh(αy)}cos(αx)dα ,
� (4c)

where A, B, C, D are unknown functions of the variable α which 
should be determined by using boundary conditions (1, 2).

3.	 Reduction of the problem to Fredholm 
integral equation

The considered mixed boundary value problem can be reduced 
to a integral equation. For this aim the following auxiliary 
problem determined by the boundary conditions

σyy(x, h) = – p(x),	 x 2 R ,� (5a)

σxy(x, h) = 0,	 x 2 R ;� (5b)

σxy(x, 0) = 0,	 x 2 R ;� (5c)

σyy(x, 0) ¡ kuy(x, 0) = f (x),	 x 2 R ,� (5d)

where f (¢) is unknown integrable function, will be solved.
From boundary conditions (5) and equations (3) and (4) 

the following algebraic equations for unknowns A, B, C, D are 
obtained:

(A + Bαh)sinh(αh) +
+ (C + Dαh)cosh(αh) = α –1 p̃(α),

� (6a)

Fig. 1. Scheme of considered problem
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and the following boundary conditions: 

a) on the upper boundary y = h 

    , ,       , yy x h p x x    ˇ  (1a) 

  , 0, ;xy x h x   ˇ  (1b) 

b) on the interface y = 0 

  ,0 0,       , xy x x   ˇ  (2a) 

  ,0 0,  , yy x x a     (2b) 

    ,0 ,0 ,    .yy yx ku x x a     (2c) 

where  p   is a given even function defining the intensity 

of loadings. 

The solution of equations for the static state of plane 
strain within the framework of linear elasticity can be 
written in the following form [6, 18]: 

     

     
0

1 2, 2 1 sinh
2

2 1 cosh sin ,

xu x y A B y D y

C D y B y x d

  
 

    



     

     



  (3a) 

     

     
0

1 2, 1 2  cosh
2

1 2   sinh cos

yu x y A B y D y

C D y B y x d

  
 

    



      

     



  (3b) 

and 

 
     

     
0

2, 2 sinh

2 cosh cos , 

xx x y A B y D y

C D y B y x d

   


   



  

  



  (4a) 

           
     

     
0

2, cosh  

sinh sin , 

xy x y A B y D y

C D y B y x d

   


   



  

  

 (4b) 

 
     

     
0

2, sinh  

cosh cos ,

yy x y A B y y

C D y y x d

   


   



  

 

 (4c) 

where A, B, C, D are unknown functions of the variable 
  which should be determined by using boundary 
conditions (1), (2). 

3. Reduction of the problem to Fredholm integral 
equation 

The considered mixed boundary value problem can be 
reduced to a integral equation. For this aim the following 
auxiliary problem determined by the boundary conditions  

    , ,         yy x h p x x    ˇ , (5a) 

  , 0,                   xy x h x   ˇ , (5b) 

  ,0 0,                   xy x x   ˇ , (5c) 

b b

The considered problem is described by equations of the plane 
theory of elasticity

µ
∂2ux

∂x2  + 
∂2ux

∂y2  + (λ + µ)
∂

∂x
∂ux

∂x
 + 

∂uy

∂y
 = 0,

µ
∂2uy

∂x2  + 
∂2uy

∂y2  + (λ + µ)
∂

∂y
∂ux

∂x
 + 

∂uy

∂y
 = 0,

and the following boundary conditions:
a)	 on the upper boundary y = h

	 σyy(x, h) = – p(x),  x 2 R ,� (1a)

	 σxy(x, h) = 0,  x 2 R ;� (1b)

b)	 on the interface y = 0

	 σxy(x, 0) = 0,  x 2 R ;� (2a)

	 σyy(x, 0) = 0,  jxj < a ,� (2b)

	 σyy(x, 0) = kuy(x, 0),  jxj ¸ a .� (2c)

where p(¢) is a given even function defining the intensity of 
loadings.

The solution of equations for the static state of plane strain 
within the framework of linear elasticity can be written in the 
following form [6, 18]:
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(A + Bαh + D)cosh(αh) +
+ (C + Dαh + B)sinh(αh) = 0,

� (6b)

A + D = 0,� (6c)

–αC +  k
2µ

(A ¡ (1 ¡ 2ν)D) =  f̃ (α),� (6d)

where

	 p̃(α) =  2
π

1

0
∫ p(x)cos(αx)dx,� (7a)

	 f̃ (α) =  2
π

1

0
∫ f (x)cos(αx)dx.� (7b)

The solution of equations (6) takes the form:

A = – D,� (8a)

C = –
f̃ (α)

α
 ¡ 

k¤

αh
D,� (8b)

B = –
(C + Dαh)sinh(αh)

αhcosh(αh) + sinh(αh)
,� (8c)

D = 
p̃(α)

αW(αh)
 + 

f̃ (α)

α
Wf (αh),� (8d)

where

	 k¤ = 
k(1 ¡ ν)h

µ
,� (9a)

W(αh) = 

= 
(αh)2 ¡ sinh2(αh) ¡ k¤(αh)–1£sinh(αh)cosh(αh) + αh

¤

αhcosh(αh) + sinh(αh)
,
�(9b)

Wf (αh) = 

= 
sinh(αh)cosh(αh) + αh

(αh)2 ¡ sinh2(αh) ¡ k¤(αh)–1£sinh(αh)cosh(αh) + αh
¤ .

� (9c)

The parameter k¤ given by (9a) is dimensionless. The vertical 
displacement uy(x, 0) can be calculated using equations (3b) 
and (8a):

	 uy(x, 0) = 
1 ¡ ν
µ

2
π

1

0
∫ D(α)cos(αx)dα ,� (10)

and from (8d) it follows that

uy(x, 0) = 

= 
1 ¡ ν
µ

2
π

1

0
∫

p̃(α)

αW(αh)
 + 

f̃ (α)

α
Wf (αh) cos(αx)dα .

� (11)

Taking into equations (5d) and (7b) as well as boundary condi-
tions (2b) and (2c) the following relation is obtained:

	

f̃ (α) =  2
π

1

0
∫ σyy(t, 0) ¡ kuy(t, 0) cos(α t)dt =

f̃ (α) = – k 2
π

a

0
∫ uy(t, 0)cos(α t)dt.

� (12)

Substituting equation (12) into (11) the following integral equa-
tion is obtained

uy(x, 0) + 

+  k¤

h
2
π

1

0
∫α –1Wf (αh)cos(αx)dα

a

0
∫uy(t, 0)cos(α t)dt =

= 
1 ¡ ν
µ

2
π

1

0
∫

cos(αx)
αW(αh)

dα
1

0
∫ p(t)cos(α t)dt,  x 2 R .

� (13)

The relations (13) is the Fredholm integral equation of the 
second kind for jxj < a, for unknown vertical displacement 
uy(x, 0). On the other hand, knowing uy(x, 0) for jxj < a, the 
relation (13) permits to determine the vertical displacement 
uy(x, 0) for jxj ¸ a. The Fredholm integral equation (13) for 
unknown uy(x, 0), jxj < a will be solved numerically.

4.	 Numerical solution and analysis  
of the considered problem

For the further analysis the following special case of loadings 
on the upper boundary plane is assumed:

	 p(x) = p0 1 ¡ (x/b)2 H(b ¡ jxj),� (14)

where b is given constant, b > 0 and H(¢) is Heaviside’a step 
function. The considered problem is symmetric with respect of 
axis 0y. Fourier transform of function p(x) can be written in 
the form [19]

	 p̃(α)

p0
 =  2

π

b

0
∫ 1 ¡ (x/b)2 cos(αx)dx =  π

2
J1(bα)

α
,� (15)

where J1(bα) is the Bessel function of first kind. Introducing 
the dimensionless parameters and functions

	
ξ = 

x
a

, τ = 
t
a

, α = a–1s, h = aH, b = ab¤,

k¤ = Hk1
¤, uy(x, 0) = 

(1 ¡ ν)p0a
µ

uy
¤ 
(aξ, 0),

� (16)

and using (15) from Fredholm integral equation (13) it follows 
that
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uy
¤
(ξ, 0) + k1

¤ 2
π

1

0
∫ s–1Wf (sH)cos(sξ)ds£

£
1

0
∫ uy
¤
(τ, 0)cos(sτ)dτ = 

1

0
∫

cos(sξ)J1(b
¤s)

s2W(sH )
ds, ξ 2 R.

� (17)

Denoting by

	 K(ξ, τ) =  2
π

1

0
∫ s–1Wf (sH)cos(sξ)cos(sτ)ds ,� (18a)

	 F(ξ ) = 
1

0
∫

cos(sξ)J1(b
¤s)

s2W(sH )
ds ,� (18b)

the Fredholm integral equation (17) for unknown uy
¤
(ξ, 0) can 

be rewritten in the form:

	uy
¤
(ξ, 0) + k1

¤
1

0
∫ uy
¤
(τ, 0)K(ξ, τ)dτ = F(ξ), ξ 2 [0, 1].� (19)

Taking into account the asymptotic properties of function Wf (sH ) 
given by equation (9c):

	 lim
s→1

Wf (sH ) = –1,� (20)

it follows that kernel K(ξ, τ) of integral equation (19) is singular 
and has the singularity analogical to function lnjξ ¡ τ j. Because

	 lim
s→0

Wf (sH )

s
 = –

1

k1
¤ ,� (21)

function s–1Wf (sH ) can be written in the form:

	
Wf (sH )

s
 = –

1

s + k1
¤  + Wf

¤
(sH ).� (22)

The above expression causes that kernel K(ξ , τ) can be pre-
sented in the form:

	 K(ξ, τ) = – K0(ξ, τ) + K1(ξ, τ),� (23)

where

	 K0(ξ, τ) = 
2
π

1

0
∫

cos(sξ)cos(sτ)

s + k1
¤ ds,� (24a)

	 K1(ξ, τ) =  2
π

1

0
∫ Wf

¤
(sH )cos(sξ)cos(sτ)ds .� (24b)

The function K0(ξ, τ) is singular part and K1(ξ, τ) is regular part 
of the kernel K(ξ, τ).

The integral equation (19) will be solved numerically using 
the method of collocation. The collocation points ξ i, i = 1, …, n 
are positive roots of equation

	 P2n(ξ ) = 0,� (25)

where P2n(x) is Legendre polynomial of degree 2n [20].

Denoting by

	 uy
¤
(ξ, 0) = uyi , ξ 2 (ai –1, ai), i = 1, …, n,� (26)

where

	 a0 = 0, an = 1, ai = 
ξ i + ξ i +1

2
, i = 1, …, n ¡ 1.� (27)

From equation (19) it follows that uyi satisfy the system of linear 
algebraic equations:

	
n

j=1
∑(δij ¡ k1

¤Mij
(0) + k1

¤Mij
(1))uyj = F(ξi), i = 1, …, n,� (28)

where δij is Kronecker symbol, Mij
(0) and Mij

(1) are the matrixes 
obtained by application of numerical procedures for integrals 
which included singular and regular parts of the kernel:

1

0
∫ uy
¤
(τ, 0)K0(ξi, τ)dτ = 

=  2
π

1

0
∫ uy
¤
(τ, 0)dτ

1

0
∫

cos(sξ i)cos(sτ)
s + k1

¤ ds = 

=  2
π

n

j=1
∑ uyj

aj

aj –1

∫ dτ
1

0
∫

cos(sξ i)cos(sτ)
s + k1

¤ ds = 

=  2
π

n

j=1
∑ uyj

1

0
∫

cos(sξ i)

s + k1
¤ ds

aj

aj –1

∫ cos(sτ)dτ = 

=  2
π

n

j=1
∑ uyj

1

0
∫

cos(sξ i)(sin(saj) ¡ sin(saj –1))

s(s + k1
¤)

ds =

= 
n

j=1
∑Mij

(0)uyj ;

� (29a)

1

0
∫ uy
¤
(τ, 0)K1(ξi, τ)dτ = 

=  2
π

1

0
∫uy
¤
(τ, 0)dτ

1

0
∫Wf

¤
(s, H )cos(sξi)cos(sτ)ds  =

=  2
π

n

j=1
∑ uyj wj

1

0
∫Wf

¤
(s, H )cos(sξi)cos(sτj)ds  = 

= 
n

j=1
∑Mij

(1)uyj ,

� (29b)

where wj, j = 1, …, n are weights of Gauss quadrature [20]. 
The improper integrals in equations (18b) and (29) have been 
calculated numerically by using Gauss quadrature.
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Knowing a solution of equations (28) and parameters uyi the 
vertical displacement uy(ξ, 0), ξ > 1 is calculated in the ana-
logical procedure.

The stress components σxy(ξ , 0) and σyy(ξ , 0) are well-
known from boundary conditions (2a‒2c). The stress compo-
nent σxx(ξ, 0) can be calculated on the basis (4b) with (4c):

	

σxx(x, 0) = 2 2
π

1

0
∫ α(C(α) + B(α))cos(αx)dα +

σxx(x, 0) + σyy(x, 0) ,

σyy(x, 0) = – 2
π

1

0
∫ αCcos(αx)dα ,

� (30)

Substituting equations (8) into (30) it leads

	
σxx(x, 0) = –2 2

π

1

0
∫ ( f̃ (α)Wσ f (αh) + 

σxx(x, 0) + p̃(α)Wσ p(αh))cos(αx)dα  + σyy(x, 0).
� (31)

where

	
Wσ f (αh) = 

αhcosh(αh)
αhcosh(αh) + sinh(αh)

 + 

Wσ f (αh) + 
k¤cosh(αh) + αhsinh(αh)

αhcosh(αh) + sinh(αh)
 ¢ Wf (αh),

� (32a)

Wσ p(αh) = 

= 
k¤cosh(αh) + αhsinh(αh)

(αh)2 ¡ sinh2(αh) ¡ k¤(αh)–1£sinh(αh)cosh(αh) + αh
¤ .
� (32b)

Substituting equation (12) into (31) and applying dimensionless 
parameters and functions (16) it follows that:

	

σ¤xx(ξ, 0) = 

=  4k1
¤

π

1

0
∫ uy
¤
(τ, 0)dτ

1

0
∫ Wσ f (sH )cos(sξ)cos(sτ)ds ¡

¡ 2
1

0
∫ s–1Wσ p(sH )J1(b

¤s)cos(sξ)ds + σ¤yy(ξ, 0).

� (33)

where

	
σxx(x, 0) = p0σ

¤
xx(aξ, 0),

σyy(x, 0) = p0σ
¤
yy(aξ, 0).

� (34)

An analysis of functions Wσ f  and Wσ p shown their relatively 
fast convergence to zero for s → 1, the integrals in equation 
(33) are calculated by using Gauss quadrature.

The numerical analysis of dimensionless displacement 
uy
¤
(ξ, 0) and dimensionless stress σ¤xx(ξ, 0) σ¤yy(ξ, 0) are depen-
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An analysis of functions Wf and Wp shown their 
relatively fast convergence to zero for s→∞, the integrals 
in equation (33) are calculated by using Gauss quadrature. 

The numerical analysis of dimensional displacement 
 * ,0yu   and dimensional stress  * 0 ,,xx    * ,0yy   are 

dependent on three dimensionless parameters: *
1k  (or *k ), 

H and *b . The following values of the parameters are 
taken into account: *

1k =1, 2, 4, H = 0.5; 1, *b =2. 
Moreover, the parameter of numerical method n is 
assumed as n=10, 20.  

Figures 2a and 2b present the dimensionless normal 
displacement  * ,0yu   as functions of /x a  , (where a 
is the half of emptiness dimension).  
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boundary are greater for thinner stratum. However, the 
segment in which the deflection of the lower boundary 
from the axis ξ =x/a for ξ>1, is longer for thicker stratum. 
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lines were calculated for n=10, the rhomboids are for 
n=20, so for the calculations the number of collocations 
points n=10 is to be enough.  

Figures 3a and 3b show the dimensionless normal stress 
component  * ,0yy   on the lower boundary of stratum. 

According with boundary condition (2b)  * 0,0yy    for 
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and for k1

*=4 in the both figures. The curves represented 
values of  * ,0yy   intersect in the point which is 
dependent on the thickness of the elastic layer. 
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An analysis of functions Wf and Wp shown their 
relatively fast convergence to zero for s→∞, the integrals 
in equation (33) are calculated by using Gauss quadrature. 

The numerical analysis of dimensional displacement 
 * ,0yu   and dimensional stress  * 0 ,,xx    * ,0yy   are 

dependent on three dimensionless parameters: *
1k  (or *k ), 

H and *b . The following values of the parameters are 
taken into account: *

1k =1, 2, 4, H = 0.5; 1, *b =2. 
Moreover, the parameter of numerical method n is 
assumed as n=10, 20.  

Figures 2a and 2b present the dimensionless normal 
displacement  * ,0yu   as functions of /x a  , (where a 
is the half of emptiness dimension).  

 
Fig. 2. The distribution of displacement on the boundary surface y = 0 

where countinous line n = 10; rhomboids: n = 20. 

Figure 2a shows the deflection of lower boundary plane of 
elastic stratum represented by displacement  * ,0yu   for 
the case of elastic layer with thickness h=0.5a and 
parameter *

1k  (connected with Winkler parameter k, 
Poisson ratio , shear modulus μ and half of emptiness 

width a, * *
1 (/ 1 ,)/)k k H k a     *

1k =1; 2; 4, as well 
as parameter b*=2, (b*=b/a is dimensionless half of the 
width of loading region on the upper boundary plane). 
Figure 2b presents dimensionless displacement  * ,0yu   

for *
1k =1; 2; 4, b*=2 and twice time thick elastic stratum 

then in Fig. 2a, namely for H=1. It can be observed 
according with an intuition that the deflections of lower 
boundary are greater for thinner stratum. However, the 
segment in which the deflection of the lower boundary 
from the axis ξ =x/a for ξ>1, is longer for thicker stratum. 
In Figures 2a and 2b the curves represented by continuous 
lines were calculated for n=10, the rhomboids are for 
n=20, so for the calculations the number of collocations 
points n=10 is to be enough.  

Figures 3a and 3b show the dimensionless normal stress 
component  * ,0yy   on the lower boundary of stratum. 

According with boundary condition (2b)  * 0,0yy    for 
0 / 1x a   , and 1   is the point of discontinuity. 
The smallest values of  * ,0yy   are achieved for 1   
and for k1

*=4 in the both figures. The curves represented 
values of  * ,0yy   intersect in the point which is 
dependent on the thickness of the elastic layer. 

 
Fig. 3. The distribution of stress tensor component yy on the boundary 

surface y = 0 

b)

dent on three dimensionless parameters: k1
¤ (or k¤), H and b¤. 

The following values of the parameters are taken into account: 
k1
¤ = 1, 2, 4; H = 0.5, 1; b¤ = 2. Moreover, the parameter of 

numerical method n is assumed as n = 10, 20.
Figures 2a and 2b present the dimensionless normal dis-

placement uy
¤
(ξ, 0) as functions of ξ = x/a, (where a is the half 

of emptiness dimension).
Figure 2a shows the deflection of lower boundary plane of 

elastic stratum represented by displacement uy
¤
(ξ, 0) for the case 

of elastic layer with thickness h = 0.5a and parameter k1
¤ (con-

nected with Winkler parameter k, Poisson ratio v, shear mod-
ulus μ and half of emptiness width a, k1

¤ = k¤ /H = k(1 ¡ ν)a/µ) 
k1
¤ = 1; 2; 4, as well as parameter b*=2, (b* = b/a is dimension-

less half of the width of loading region on the upper boundary 
plane). Figure 2b presents dimensionless displacement uy

¤
(ξ, 0) 

for k1
¤ = 1; 2; 4, b* = 2 and twice time thick elastic stratum then 

in Fig. 2a, namely for H = 1. It can be observed according with 
an intuition that the deflections of lower boundary are greater 
for thinner stratum. However, the segment in which the deflec-
tion of the lower boundary from the axis ξ = x/a for ξ > 1, 
is longer for thicker stratum. In Figures 2a and 2b the curves 
represented by continuous lines were calculated for n = 10, the 



726

S.J. Matysiak, R. Kulchytsky-Zhygailo, and D.M. Perkowski

Bull.  Pol.  Ac.:  Tech.  66(5)  2018

Fig. 3. The distribution of stress tensor component σyy on the boundary 
surface y = 0
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An analysis of functions Wf and Wp shown their 
relatively fast convergence to zero for s→∞, the integrals 
in equation (33) are calculated by using Gauss quadrature. 
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An analysis of functions Wf and Wp shown their 
relatively fast convergence to zero for s→∞, the integrals 
in equation (33) are calculated by using Gauss quadrature. 
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rhomboids are for n = 20, so for the calculations the number of 
collocations points n = 10 is enough.

Figures 3a and 3b show the dimensionless normal stress com-
ponent σ¤yy(ξ, 0) on the lower boundary of stratum. According 
with boundary condition (2b) σ¤yy(ξ, 0) = 0 for 0 ∙ ξ = x/a < 1, 
and ξ = 1 is the point of discontinuity. The smallest values of 
σ¤yy(ξ, 0) are achieved for ξ → 1+ and for k1

¤ = 4 in the both fig-
ures. The curves represented values of σ¤yy(ξ, 0) intersect in the 
point which is dependent on the thickness of the elastic layer.

In Figures 4a and 4b the dimensionless stress component 
σ¤xx(ξ, 0) as functions of ξ are presented. For 0 ∙ ξ < 1 the com-
ponent takes positive values, ξ = 1 is the point of discontinuity. 
The smallest values of σ¤xx(ξ, 0) are achieved for ξ → 1+. Ana-
logically to σ¤yy(ξ, 0) the curves represented of σ¤xx(ξ, 0) intersect 
for ξ ¼ 1.2 and tend to zero for ξ → 1.

5.	 Final remarks

The problem of stress distributions in the elastic layer resting 
on the Winkler foundation with emptiness was considered. 
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5. Final remarks 

The problem of stress distributions in the elastic layer 
resting on the Winkler foundation with emptiness was 
considered. The mixed boundary conditions on the lower 
boundary of the layer caused necessity of solution of 
Fredholm integral equation of the second kind (13), which 
was derived for any cases of normal symmetric with 
respect of axis 0y, loadings on the upper boundary plane 
of the layer. The equation (13) was solved numerically 
under assumption that the intensity of the boundary 
loading is elliptic. It seems that the distributions of normal 
displacements and stresses on the lower boundary are 
important, the numerical analysis has been concentrated 
on these aims. The obtained results are presented in the 
form of figures, which shown among other things the 
deflection of the elastic layer caused by the emptiness. 
The knowledge of normal displacement above the 
emptiness or normal stress component on the lower 
boundary without the emptiness permits to reduce the 
problem of finding the displacements and stress in the 
inside of layer. 

 The obtained stress components xx  and yy  are 
non-singular (but discontinuous) at the edge of the 
emptiness. It is caused by the form of the assumed 
Winkler type of boundary conditions (the component yy  

is proportional to the yu  for x a , 0y  ). 
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The mixed boundary conditions on the lower boundary of the 
layer caused necessity of solution of Fredholm integral equa-
tion of the second kind (13), which was derived for any cases 
of normal symmetric with respect of axis 0y, loadings on the 
upper boundary plane of the layer. The equation (13) was solved 
numerically under assumption that the intensity of the boundary 
loading is elliptic. It seems that the distributions of normal dis-
placements and stresses on the lower boundary are important, 
the numerical analysis has been concentrated on these aims. 
The obtained results are presented in the form of figures, which 
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problem of finding the displacements and stress in the inside 
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jxj ¸ a, y = 0).



727

Stress distribution in an elastic layer resting on a Winkler foundation with an emptiness

Bull.  Pol.  Ac.:  Tech.  66(5)  2018

Acknowledgements. This work was carried out within the 
project S/WM/4/2017 realized by Roman Kulchytsky-Zhygailo 
and Dariusz M. Perkowski at Bialystok University of Tech-
nology. The research realized by Stanisław J. Matysiak was 
realized within project BST at University of Warsaw.

References
	 [1]	 A. Birinci and R. Erdol, “A frictionless contact problem for two 

elastic layers supported by a Winkler foundation”, Structural 
Engineering and Mechanics, 15, 331‒344 (2003).

	 [2]	 J. Marzęda, V. Pauk, and M. Woźniak, “Contact of a rigid flat punch 
with a wedge supported by the Winkler foundation”, Journal of 
Theoretical and Applied Mechanics 39, 563‒575 (2001).

	 [3]	 J.P. Dempsey, Z.G. Zhao, and H. Li, “Axisymmetric indentation 
of an elastic layer supported by a Winkler foundation”, Interna-
tional Journal of Solids and Structures, 27, 73‒87 (1991).

	 [4]	 J.P. Dempsey, Z.G. Zhao, L. Minnetyan, and H.Li, “Plane contact 
of an elastic layer supported by a Winkler foundation”, Journal 
of Applied Mechanics, 57, 974‒980 (1991).

	 [5]	 M. Woźniak, A. Hummel, and V.J. Pauk, “Axisymmetric con-
tact problems for an elastic layer resting on a rigid base with 
a Winkler type excavitation”, International Journal of Solids and 
Structures, 39, 4117‒4131 (2002).

	 [6]	 S.J. Matysiak and V.J. Pauk, “Edge crack in an elastic layer 
resting on Winkler foundation”, Engineering Fracture Me-
chanics 70, 2353‒2361 (2003).

	 [7]	 F.L. Liu, “Rectangular thick plates on Winkler foundation: dif-
ferential quadrature element solution”, International Journal of 
Solids and Structures, 37, 1743‒1763 (2000).

	 [8]	 A. Karasin and G. Alitas, “An approximate solution for plates 
resting on Winkler foundation”, International Journal of Civil 
Engineering and Technology 5, 114‒124 (2014).

	 [9]	 H. Kobayashi and K. Sonoda, “Rectangular Midlin plates on 
elastic foundations”, International Journal of Mechanical Sci-
ences, 31, 679‒692 (1989).

	[10]	 Y. Kumar and R. Lai, “Vibrations of nonhomogenous orthotropic 
rectangular plates with bilinear thickness variation resting on 
Winkler foundation”, Meccanica, 47, 893‒915 (2012).

	[11]	 A. Daloglu and C. Vallabhan, “Values of k for slab on Winkler 
foundation”, Journal of Geotechnical and Geoenvironmental 
Engineering, 126, 463‒471 (2000).

	[12]	 S.Ch. Datta and R. Roy, “A critical review on idealization 
and modelling for interaction among soil-foundation structure 
system”, Computers and Structures, 80, 1579‒1594 (2002).

	[13]	 A.P.S. Selvadurai, “Elastic Analysis of Soil-Foundation Inter-
action”, Developments in Geotechnical Engineering, Vol. 17, 
Elsevier, Amsterdam (1979).

	[14]	 E. Tsudik, Analysis of Structures on Elastic Foundation, J. Ross 
Publ., Plantation, FL. (2013).

	[15]	 I. Cömez, “Contact problem of a functionally graded layer resting on 
a Winkler foundation”, Acta Mechanica, 224, 2833‒2843 (2013).

	[16]	 S.J. Matysiak and V.J. Pauk, “Some problems of stress distribu-
tion in a periodic stratified elastic stratum”, Journal of Theoret-
ical and Applied Mechanics, 21, 795‒811 (1993).

	[17]	 S.J. Matysiak and C. Woźniak, “Micromorphic effects in a mod-
elling of periodic multilayered elastic composites”, International 
Journal of Engineering Science, 25, 549‒559 (1987).

	[18]	 S.J. Matysiak and V.J. Pauk, “On crack problem in an elastic ponder-
able layer”, International Journal of Fracture, 96, 371‒380 (1999).

	[19]	 I.S. Gradshteyn and I.M. Ryzhik, Tables of Integrals, Series, and 
Products, Academic Press, New York, 1980.

	[20]	 M. Abramowitz and I.A. Stegun, Handbook of Mathematical 
Functions, Dover Publications, New York, 1965.

	[21]	 R. Kulczycki-Żygajło and S.J. Matysiak, “On temperature dis-
tributions in a semi–infinite periodically stratified layer”, Bull. 
Pol. Ac.: Tech., 54(1),45‒49 (2006).


