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ESTIMATION OF SPEED DEPENDENT FAULT PARAMETERS
IN A COUPLED ROTOR-BEARING SYSTEM

In rotating machineries, misalignment is considered as the second most major
cause of failure after unbalance. In this article, model-based multiple fault identifica-
tion technique is presented to estimate speed-dependent coupling misalignment and
bearing dynamic parameters in addition with speed independent residual unbalances.
For brevity in analysis, a simple coupled rotor bearing system is considered and ana-
lytical approach is used to develop the identification algorithm. Equations of motion
in generalized co-ordinates are derived with the help of Lagrange’s equation and least
squares fitting approach is used to estimate the speed-dependent fault parameters.
Present identification algorithm requires independent sets of forced response data
which are generated with the help of different sets of trial unbalances. To avoid/sup-
press the ill-conditioning of regression equation, independent sets of forced response
data are obtained by rotating the rotor in clock-wise and counter clock-wise directions,
alternatively. Robustness of algorithm is checked for different levels of measurement
noise.

1. Introduction

In the present scenario, rotating machineries play a vital role in most of the
industries. Even a small disturbance/fault in rotating machineries may cause huge
economic loss as well as hazardous effects on human life. Hence, a precise and
reliable estimation of dynamic parameters (related with different faults) of ro-
tating machineries are needed. Apart from various faults associated with rotat-
ing machineries, speed-dependent faults (mainly coupling misalignment faults)
have not attracted as many researchers as it actually requires. Although some
researchers have estimated speed independent bearing-coupling parameters and
speed-dependent bearing dynamic parameters, but the literature counts in the esti-
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mation of speed-dependent coupling parameters are nearly negligible (some have
considered time dependency in the coupling parameters [1]). The importance and
necessity of considering speed dependency in estimation of coupling misalignment
parameters are discussed in article [2].

An identification methodology is developed to estimate speed-dependent bear-
ing parameters to represent bearing faults by authors of [3]. They proposed com-
bination of regularization and generalized singular value decomposition technique
to improve the accuracy of developed methodology by improving condition num-
ber of the regression matrix. In Ref. [4], the influence of parallel misalignment
on lateral and torsional response of rotor system is analyzed. The authors used
combination of the Newmark and Newton-Raphson method to analyze the tran-
sient response of the system. Authors of [5] studied the effect of angular mis-
alignment on stability region of coupled rotor system and concluded that angu-
lar misalignment increases the instability region. A methodology to estimate the
bearing parameters and residual unbalance simultaneously is developed in [6].
The authors proposed three novel techniques to improve the condition number
of regression matrix. Authors of [7] proposed a methodology based on impulse
response measurement to estimate residual unbalances and speed-dependent bear-
ing parameters, simultaneously. A review on various fault detection techniques
is performed by authors of [8]. They mainly focused on faults related to rolling
contact bearing and suggested that the wavelets and Hilbert transform might be
useful in fault signature analysis. Residual information of the system is utilized
to identify faults in rotating machineries in [9]. The authors mainly focused on
the modelling of unbalance and misalignment present in rotor system. A dis-
cussion on the developments in model-based condition monitoring techniques is
presented in article [10]. Authors of [11] analyzed the combined effects of par-
allel misalignment and unbalance on the response and concluded that significant
effect of misalignment can be seen in most of the speeds except at high speeds.
A novel approach (Blind Source Separation) to separate the vibrational features
generated due to various faults present in rotor system is proposed by authors
of [12]. They concluded Blind Source Separation is feasible and supportive for
multi-fault diagnosis. An analysis on axial, lateral and torsional vibration is pre-
sented in Ref. [13, 14]. The authors concluded that different modes are coupled
due to misalignment.

Authors of [15] used Lagrange multiplier to model parallel, angular and com-
binedmisalignment condition and performed two-step nonlinear FE analysis. Flexi-
bility disassembly method to identify the structural damages is proposed by authors
of [16]. They estimated the flexibility parameters, exactly. Article [17] discussed
about three differentmethods to identify unbalance and reportedwell agreement be-
tween the numerical and experimental results. Dynamic characteristics of a flexible
diaphragm coupling with parallel misalignment are examined in [18]. The authors
considered time dependent stiffness (direct as well as cross–coupled) parameters
to model the coupling.
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Misalignment is modelled in terms of equivalent stiffness and damping of
coupling to estimate misalignment force and moments by authors of [19, 20]. They
used analytical (Lagrange’s approach) to obtain system equations of motion. Later
authors of [2] extended the work carried out by authors of [19] by using more
practical solution approach, i.e., finite element approach and found out the bearing
and coupling dynamic parameters along with residual unbalances. Work of authors
[2] is supported with experimental results by authors of [21–23]. They also pro-
posed a novel condensation (high frequency condensation) technique to reduce the
degrees of freedom of the system. The effects of radial and angular misalignments
in a hyper–static shaft line mounted on fluid–film journal bearings are studied
in [24]. The authors used Reynolds equations to model fluid film bearings. A re-
view on different faults such as gear fault, rotor fault and bearing fault in rotating
machineries is performed in [25]. The authors concluded Empirical Mode Decom-
position technique can be used as a tool to diagnose these faults. Active magnetic
bearing along with proportional integral derivative controller is used to diagnose
misaligned system in Ref. [26]. Authors of [26] estimated misalignment parame-
ters along with dynamic parameters of active magnetic bearing and proportional
integral derivative controller.

Based on literature survey discussed above, it is evident that the more ap-
propriate modelling of turbo–generator system is lacking. This lacking/gap could
be filled by considering the speed-dependent bearing and coupling dynamic pa-
rameters together in the modelling. In this article, an identification algorithm is
developed to estimate speed-dependent coupling and bearing dynamic parameters
that represents misalignment and bearing fault, respectively, in addition with resid-
ual unbalances. Model description along with assumptions involved to develop
identification algorithm is presented in the next section.

2. Theoretical development

Present section concerns with the assumptions involved to model the coupled
rotor bearing system.

2.1. Assumptions involved and model description

To have more insight into the modelling of speed-dependent fault parame-
ters, a very basic/simple model is considered at present. Two massless rigid shafts
having a rigid disc at its mid-span, connected together with a flexible coupling
and mounted over flexible bearings at ends is considered in this analysis, whereas
the assumption of basic model could be overcome by considering more realistic
flexible shaft model with defined shaft modelling techniques such as Timoshenko
beam theory and Euler-Bernoulli beam theory. An abstract view of the coupled
rotor bearing system considered to develop an identification algorithm is shown
in Fig. 1. Deflected position of rotor system along the (z–x) plane is delineated
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in Fig. 2. Here b1 to b4 represent the bearing positions, d1 and d2 represent
the disc positions, and (u, ϕv) represent the linear and angular displacements of
the rotor in (z–x) plane, respectively. Disc properties considered are mass, md

i ,
the diametral moment of inertia, Idi , and residual unbalance Fres

i (where i = 1,
2; number of discs). Bearings are modelled as having eight linearized stiffness,
kbm

i j , and damping, cbm

i j , coefficients (Each bearing is having dissimilar direct and
cross–coupled terms i.e. i, j = u, v; where m = 1, 2, 3, 4, number of bearings).
Also, flexible coupling is modelled as having eight linearized stiffness (kc

i j ) and
damping (cci j ) along with two rotational stiffness (kc

ϕi
, kc

ϕ j
) coefficient (where i,

j = u, v). Superscripts b, c, and d represent bearing, coupling and disc, respec-
tively.

Fig. 1. A schematic diagram of turbo-generator system

Fig. 2. Turbo-generator system in a deflected position in (z − x) plane

2.2. Equations of motion

Linear displacements
(
ub
i , v

b
i

)
at bearing locations in two orthogonal directions

are considered as generalized co-ordinates to obtain equations of motion. All the
linear and angular displacements at different axial locations in the shaft could be
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obtained in terms of generalized coordinates as

ud
1 = 0.50(ub

1 + ub
2 ); ud

2 = 0.50(ub
3 + ub

4 );

vd1 = 0.50(vb1 + v
b
2 ); vd2 = 0.50(vb3 + v

b
4 );

ϕv1 =
1
l1

(ub
1 − ub

2 ); ϕv2 =
1
l2

(ub
4 − ub

3 );

ϕu1 =
1
l1

(vb1 − vb2 ); ϕu2 =
1
l2

(vb4 − vb3 );

uc
1 = (−0.25ub

1 + 1.25ub
2 ); uc

2 = (1.25ub
3 − 0.25ub

4 );

vc1 = (−0.25vb1 + 1.25vb2 ); vc2 = (1.25vb3 − 0.25vb4 ).

(1)

The total length of each shaft is 1.25l, where 0.25l is the overhang length in each
shaft towards the coupling. With the help of above displacements, kinetic energy
of the system and virtual work done due to different forces (stiffness, damping and
unbalance) could be obtained. Kinetic energy (T ) could be represented as

T =
1
2

md
1 (u̇d

1 )2 +
1
2

md
2 (u̇d

2 )2 +
1
2

I1ϕ̇
2
v1 +

1
2

I2ϕ̇
2
v2 +

1
2

md
1 (v̇d1 )2

+
1
2

md
2 (v̇d2 )2 +

1
2

I1ϕ̇
2
u1 +

1
2

I2ϕ̇
2
u2 . (2)

Virtual work could be represented as

δW = δWstiff + δWdamp + δWunb (3)

with

δWstiff = −kb1
uuub

1 δub
1 − kb1

uvv
b
1 δub

1 − kb1
vuub

1 δv
b
1 − kb1

vvv
b
1 δv

b
1 − kb2

uuub
2 δub

2

− kb2
uvv

b
2 δub

2 − kb2
vuub

2 δv
b
2 − kb2

vvv
b
2 δv

b
2 − kb3

uuub
3 δub

3 − kb3
uvv

b
3 δub

3 − kb3
vuub

3 δv
b
3

− kb3
vvv

b
3 δv

b
3 − kb4

uuub
4 δub

4 − kb4
uvv

b
4 δub

4 − kb4
vuub

4 δv
b
4 − kb4

vvv
b
4 δvb4

− kc
uu (uc

1 − uc
2 )δ(uc

1 − uc
2 ) − kc

uv (vc1 − vc2 )δ(uc
1 − uc

2 )

− kc
vu (uc

1 − uc
2 )δ(vc1 − vc2 ) − kc

vv (vc1 − vc2 )δ(vc1 − vc2 )

− kc
ϕu

(ϕcu1 − ϕ
c
u2 )δ(ϕcu1 − ϕ

c
u2 ) − kc

ϕv
(ϕcv1 − ϕ

c
v2 )δ(ϕcv1 − ϕ

c
v2 ), (4)

δWdamp = −cb1
uuu̇b

1 δub
1 − cb1

uv v̇
b
1 δub

1 − cb1
vuu̇b

1 δv
b
1 − cb1

vv v̇
b
1 δv

b
1 − cb2

uuu̇b
2 δub

2

− cb2
uv v̇

b
2 δub

2 − cb2
vuu̇b

2 δv
b
2 − cb2

vv v̇
b
2 δv

b
2 − cb3

uuu̇b
3 δub

3 − cb3
uv v̇

b
3 δub

3 − cb3
vuu̇b

3 δv
b
3

− cb3
vv v̇

b
3 δv

b
3 − cb4

uuu̇b
4 δub

4 − cb4
uv v̇

b
4 δub

4 − cb4
vuu̇b

4 δv
b
4 − cb4

vv v̇
b
4 δv

b
4

− ccuu (u̇c
1 − u̇c

2 )δ(uc
1 − uc

2 ) − ccuv (v̇c1 − v̇c2 )δ(uc
1 − uc

2 )

− ccvu (u̇c
1 − u̇c

2 )δ(vc1 − vc2 ) − ccvv (v̇c1 − v̇c2 )δ(vc1 − vc2 ) (5)
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and

δWunb = Fx
i (t)δ(uc

1 + 0.75lϕv1 ) + Fx
i (t)δ(uc

2 + 0.75lϕv2 )

+ Fy
i (t)δ(vc1 + 0.75lϕu1 ) + Fy

i (t)δ(vc2 + 0.75lϕu2 ), (6)

where Fx
i and Fy

i denotes the unbalance forces in the (x–z) and (y–z) planes,
respectively. The unbalance force in two planes could be related as Fy

i = ± j Fx
i (+

and − sign indicates counter-clockwise and clockwise rotation of the rotor, respec-
tively). Residual unbalance forces are taken in the form of Fres

i = Ures
i ω2e j (ωt+φi )

with Ures
i = mres

i ei where, mres
i and ei are the mass and eccentricity of residual

unbalance, respectively (i = 1, 2). φi is the phase of residual unbalance against a
point of reference on the shaft and δ is the functional operator. The kinetic energy
and virtual work done could be used in Lagrange’s equation to obtain the equations
of motion and could be written as,

[M] {η̈} + [C] {η̇} + [K] {η} = { f (t)}, (7)

with

{ f (t)} = ω2




0.50Fres
1 e jφ1

0.50Fres
1 e jφ1

0.50Fres
2 e jφ2

0.50Fres
2 e jφ2

− j0.50Fres
1 e jφ1

− j0.50Fres
1 e jφ1

− j0.50Fres
2 e jφ2

− j0.25Fres
2 e jφ2




e jωt ; {η(t)} =




ub
1 (t)

ub
2 (t)

ub
3 (t)

ub
4 (t)

vb1 (t)

vb2 (t)

vb3 (t)

vb4 (t)




.

Detailed information of matrices [M], [K] and [C] is presented in Appendix A. In
Eq. (7), force has the complex form as { f (t)} =

{
f
}

e jωt . Hence, upon assuming
the solution in the form of {η(t)} = {η} e jωt , Eq. (7) could be obtained in frequency
domain as, (

[K] + jω[C] − ω2[M]
)
{η} =

{
f
}
. (8)

To obtain independent sets of force response data, Eq. (8) could be used for known
system information. Further, these generated responses are used in regression equa-
tion to formulate identification algorithm to estimate speed-dependent fault param-
eters. The form of regression equation could be obtained by rearranging Eq. (8), in
such a manner that all the unknown quantities (stiffness and damping parameters of
bearing and coupling and residual unbalances) and the corresponding coefficients
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are stacked in left hand side vector andmatrix, respectively, and all the known quan-
tities (mass and diametral moment of inertia) are stacked in right hand side vector.
Such reframed equation in complex form for one spin speed could be expressed as,

[A1(ω)]8×44{X1}44×1 = {B1(ω)}8×1 . (9)

After separating out the real and imaginary terms for one spin speed Eq. (9), could
be expressed as

[A2(ω)]16×46{X2}46×1 = {B2(ω)}16×1 , (10)

with

{X2}46×1 = {k
b1
uu, kb1

uv, kb1
vu, kb1

vv, kb2
uu, kb2

uv, kb2
vu, kb2

vv, kb3
uu, kb3

uv, kb3
vu, kb3

vv, kb4
uu, kb4

uv,

kb4
vu, kb4

vv, kc
uu, kc

uv, kc
vu, kc

vv, kc
ϕu
, kc
ϕv
, cb1

uu, c
b1
uv, c

b1
vu, c

b1
vv, c

b2
uu, c

b2
uv,

cb2
vu, c

b2
vv, c

b3
uu, c

b3
uv, c

b3
vu, c

b3
vv, c

b4
uu, c

b4
uv, c

b4
vu, c

b4
vv, c

c
uu, c

c
uv, c

c
vu, c

c
vv,

f res1real, f res1imag, f res2real, f res2imag }
T;

[A2(ω)]16×46 =
[
[KR]16×22 [CR]16×20 [FR]16×4

]
16×46

;

[
KR

]
16×22

=



[
KR
real

]
8×22[

KR
img

]
8×22

16×22

;
[
CR

]
16×20

=



[
CR
real

]
8×20[

CR
img

]
8×20

16×20

;

[
FR

]
16×4
=



[
FR
real

]
8×4[

FR
img

]
8×4

16×4

,

where {X } is the vector of unknown quantities, [A] is coefficient matrix having the
response information corresponding to stiffness [KR], damping [CR] and unbalance
[FR]. {B} is the vector of known quantities. Subscripts used in Eq. (10), represent
the size of individual matrix and vector.

As it could be noticed from Eq. (10), the number of unknown quantities, i.e.,
forty-six is greater than the number of equations, i.e. sixteen, this leads to the
underdetermined system of liner simultaneous equations. In order to make the
system of equations determined, minimum three sets of independent response are
required. Since the objective of the present article is to estimate speed-dependent
fault parameters, the conventional techniques used by authors of [19] to make the
system determined by varying speeds are not applicable. Hence, different sets of
trial unbalances at one speed are used in this analysis to obtain independent force-
response data and to make the system at least determined or over-determined [6].
However, the accuracy of estimated parameters highly depends upon the condition
number of the regression matrix to be inverted. In the succeeding section, different
ways to achieve determined system of equations and procedures to improve the
condition of the regression matrix are deliberated.
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3. Conditioning of regression matrix

Different possibilities to obtain independent sets of force–response data to
improve the condition number of the regressionmatrix are discussed in this section:

• Case A: with three sets of measurement, i.e., exactly determined case;
• Case B: with more (eight) sets of measurement, i.e., highly over–determined
case.

To see the effect of forward and backward whirl in the estimated parameters,
the above cases are analyzed under a condition in which rotor rotates in clockwise
and counter-clockwise directions, alternatively. Despite of rotating the rotor only in
one direction, alternate rotor rotation in clockwise and counter clockwise direction
is generally suggested for well-conditioning of the regression matrix [7]. To obtain
better estimates, regression equation Eq. (10), could be expressed as,

[A3(ω)](16×m)×46{X3}46×1 = {B3(ω)}(16×m)×1 , (11)

with

[A3(ω)](16×m)×46 =



[A3a1 (ω)]16×46[
A3a2 (−ω)

]
16×46

...[
A3am−1 (ω)

]
16×46[

A3am (−ω)
]

16×46

 (16×m)×46

;

[B3(ω)](16×m)×1 =



[
B3a1 (ω)

]
16×1[

B3a2 (−ω)
]

16×1
...[

B3am−1 (ω)
]

16×1[
B3am (−ω)

]
16×1

 (16×m)×1

,

where A3 and B3 have the same form as A2 and B2, respectively, as in Eq. (10)
with different possibilities of trial unbalances (m = 3, 8; for Case A and Case B,
respectively) at one speed, alternatively in clockwise and counter-clockwise direc-
tions. Next section, discusses about the development of identification methodology
to estimate speed-dependent fault parameters.

4. Formulation of identification methodology

Eq. (11), is the regression equation with determined system of equations un-
der Case A and Case B at one speed for speed independent bearing and cou-
pling dynamic parameters. The generalized form of regression equation to estimate
speed-dependent dynamic fault parameters could be written as

[A(ω)]((16×m×n)×(42×n+4)) {X (ω)}((42×n+4)×1) = {B(ω)}((16×m×n)×1) , (12)
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with

[A(ω)]((16×m×n)×(42×n+4)) =



W (ω1) [0]16×m×42 [0]16×m×42 . . . R(ω1)
[0]16×m×42 W (ω2) [0]16×m×42 . . . R(ω2)

...
...

. . .
...

...

[0]16×m×42 [0]16×m×42 . . . W (ωn) R(ωn)



;

{X (ω)}((42×n+4)×1) =




x(ω1)
x(ω2)
...

x(ωn)
f




; {B(ω)}((16×m×n)×1) =




b(ω1)
b(ω2)
...

b(ωn)




,

where subscript n represents number of speeds considered for estimation. In
Eq. (12), the regression matrix [A(ω)] has two components [W (ω)] and [R(ω)].
The contributions from stiffness and damping of bearings and coupling and are
stacked in [W (ω)] and contribution from residual unbalances are stacked in [R(ω)],
respectively. The vector {X (ω)} contains all the unknown parameters, i.e., the
speed–dependent stiffness and damping parameters of bearings and coupling, and
the speed independent residual unbalances. The vector {B(ω)}, have contributions
from mass of rotor and the trial unbalances. To estimate unknown parameters,
mathematical rearrangement can be performed on Eq. (12) and the least squares
form could be obtained as

{X (ω)}((42×n+4)×1) =
(
[A(ω)]T

((42×n+4)×(16×m×n))[A(ω)]((16×m×n)×(42×n+4))
)−1

× [A(ω)]T
((42×n+4)×(16×m×n)) {B(ω)}((16×m×n)×1) . (13)

The numerical simulation to estimate speed-dependent dynamic parameters along
with speed independent residual unbalances for the coupled rotor-bearing model
as shown in Fig. 1 is discussed in the subsequent section.

With the help of estimated parameters (i.e., coupling dynamic parameters)
evaluated from Eq. (13) and the corresponding displacements at coupling location,
the misalignment forces in x and y directions and moments in (x–z) and (y–z)
planes could be obtained by using equations derived by authors of [2] as follows,

Fmis
X = kc

uu (uc
1 − uc

2 ) + kc
uv (vc1 − vc2 );

Fmis
Y = kc

vu (uc
1 − uc

2 ) + kc
vv (vc1 − vc2 );

Mmis
XZ = kc

ϕu
(ϕcv1 − ϕ

c
v2 );

Mmis
YZ = kc

ϕv
(ϕcu1 − ϕ

c
u2 )

(14)

where (uc
1, uc

2 ) and (vc1 , v
c
2 ) are the linear displacements, (ϕcu1 , ϕ

c
u2 ) and (ϕcv1 , ϕ

c
v2 )

are the angular displacements at the coupling location in x and y directions at left
and right side the of coupling, respectively, for one spin speed.
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5. Numerical simulation

Numerical simulation is performed on MATLAB environment with system
configuration as HP build CPU with 2GB RAM and Intel core i5 processor. An
inbuilt solver Linsolve is used to solve the linear system of equations. A simple
rotor-bearing-coupling system presented in Fig. 1 is considered for the numerical
simulation. The rotor system consists of two massless rigid shafts each of length
1.25 m, mounted on two flexible bearings at ends and connected with a flexible
coupling. Each shaft is having a thin rigid disc at mid of diametral moment of
inertia and mass of (0.006 kg·m2, 3 kg) and (0.016 kg·m2, 6 kg), respectively. The
magnitude and phase of residual unbalances for disc 1 and disc 2 are taken as
(0.00586 kg·m, 36 deg.) and (0.00747 kg·m, 144 deg.), respectively. To generate
the numerically-simulated response, stiffness and damping parameters of bearings
and coupling at discrete frequencies (279 Hz and 281 Hz) and speed–independent
residual unbalances are assumed. Assumed values of stiffness and damping coef-
ficients of bearings and coupling and residual unbalances are given in Tables 1–7.
The error calculated in Figs. 3–6 and Tables 1–7 is based on the deviation in
values of estimated parameters form assumed values of parameters and are calcu-
lated as,

% error =
Assumed value − Estimated value

Assumed value
× 100.

The estimation of unknown parameters for two different cases, i.e., Case A and
Case B, are presented in the next section.

5.1. Case A: With three sets of measurement,
i.e., exactly determined case

In this case, to make the system of equations exactly determined, minimum
three independent sets of forced responses are required and generated as, for clock-
wise rotation: (i) without any trial unbalance (ii) with trial unbalance 1 ( f t1) and for
counter-clockwise rotation: (i) without any trial unbalance. Magnitudes and phase
of the trial unbalance are taken as (0.01 kg·m and 90 deg.). Fig. 3 and Fig. 4, repre-
sent the percentage deviation in estimated parameters for different spin speeds, i.e.,
279 Hz and 281 Hz, respectively. From Fig. 3 and Fig. 4, it could be observed that
most of the estimated parameters exhibit well agreement with the assumed values
for without noise condition, however, deviation increases with the addition of per-
centage noise. The maximum percentage error could be observed as (276, 331) and
(230, 438) for 1% and 5% noise conditions, for 279 Hz and 281 Hz, respectively.
From Fig. 3 and Fig. 4, it could be seen that maximum deviation occurred for cross
coupled bearing damping parameter (cb2

uv).
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Fig. 3. Error plot of estimated parameters at 279 Hz for Case A

Fig. 4. Error plot of estimated parameters at 281 Hz for Case A

5.2. Case B: With more (eight) sets of measurement,
i.e., highly over–determined case

For aforementioned case, to make the system of equations over–determined
eight independent sets of forced response measurements are required and generated
as, for clockwise rotation: (i) without any trial unbalance, (ii) with trial unbalance 1
( f t1), (iii) with trial unbalance 2 ( f t2), (iv) with trial unbalance 3 ( f t3). Magnitudes
and phases of three trial unbalances are taken as (0.01 kg·mand 90 deg.), (0.02 kg·m
and 60 deg.) and (0.03 kg·m and 90 deg.), respectively. Percentage deviation in
estimated parameters for two different spin speeds, i.e., 279 Hz and 281 Hz are
presented in Fig. 5 and Fig. 6, respectively. From Fig. 5 and Fig. 6, it could
be observed that most of the estimated parameters exhibit well agreement with

Fig. 5. Error plot of estimated parameters at 279 Hz for Case B
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assumed values up to 5% noise condition. The maximum percentage error could be
observed around (2, 11) and (2, 12) for 1% and 5% noise conditions, for 279 Hz and
281 Hz, respectively. Highest deviation could be seen for cross–coupled damping
coefficient of bearing (cb1

vu) for 5% noise condition.

Fig. 6. Error plot of estimated parameters at 281 Hz for Case B

On comparison, from Figs. 3–6, it could be concluded that Case B is the best
case of estimation. However, the accuracy can be further increased by analyzing
equations independently using backward elimination process [27], in future. At
present, for the best estimation case, i.e., Case B, speed–dependent estimated
parameters and residual unbalances for different level of measurement noise (up to

Table 1.
Percentage deviation of speed–dependent bearing stiffness parameters at 279 Hz for Case B

Estimated parameters
Dynamic Assumed

With 0%
Error

With 1%
Error

With 5%
Errorparameters values

noise noise noise
kb1
uu (N/m) 250000 250000.00 0.00 247461.99 1.02 235969.90 5.61

kb1
uv (N/m) 125000 125000.00 0.00 125086.64 0.07 124134.96 0.69

kb1
vu (N/m) 140000 140000.00 0.00 139555.67 0.32 136072.25 2.80

kb1
vv (N/m) 280000 280000.00 0.00 279645.97 0.13 276478.32 1.25

kb2
uu (N/m) 250000 250000.00 0.00 256143.81 2.46 276965.27 10.79

kb2
uv (N/m) 125000 125000.00 0.00 124548.55 0.36 120156.13 3.88

kb2
vu (N/m) 140000 140000.00 0.00 142491.50 1.78 149318.90 6.66

kb2
vv (N/m) 280000 280000.00 0.00 279614.87 0.14 275795.19 1.50

kb3
uu (N/m) 300000 300000.00 0.00 293806.13 2.06 273218.86 8.93

kb3
uv (N/m) 175000 175000.00 0.00 175070.74 0.04 177244.05 1.28

kb3
vu (N/m) 190000 190000.00 0.00 186403.81 1.89 174450.56 8.18

kb3
vv (N/m) 320000 320000.00 0.00 320197.72 0.06 322591.59 0.81

kb4
uu (N/m) 300000 300000.00 0.00 302452.65 0.82 313976.80 4.66

kb4
uv (N/m) 175000 175000.00 0.00 174712.47 0.16 174412.24 0.34

kb4
vu (N/m) 190000 190000.00 0.00 190374.78 0.20 192432.18 1.28

kb4
vv (N/m) 320000 320000.00 0.00 320062.22 0.02 321253.39 0.39
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5%) are presented in Tables 1–7. From Fig. 5, Fig. 6 and Tables 1–7, it could be seen
that the maximum percentage error for 5% noise condition is around (cb1

vu = 11%)
and (cb1

vu = 12%) for 279 Hz and 281 Hz, respectively.

Table 2.
Percentage deviation of speed–dependent bearing damping parameters at 279 Hz for Case B

Estimated parameters
Dynamic Assumed

With 0%
Error

With 1%
Error

With 5%
Errorparameters values

noise noise noise
cb1
uu(Ns/m) 305 305 0.00 303.46 0.50 287.30 5.80

cb1
uv(Ns/m) 112 112 0.00 110.94 0.95 99.30 11.34

cb1
vu(Ns/m) 114 114 0.00 113.17 0.73 104.35 8.46

cb1
vv(Ns/m) 310 310 0.00 309.06 0.30 296.80 4.26

cb2
uu(Ns/m) 305 305 0.00 310.75 1.89 321.47 5.40

cb2
uv(Ns/m) 112 112 0.00 113.02 0.91 108.56 3.07

cb2
vu(Ns/m) 114 114 0.00 116.10 1.84 117.80 3.34

cb2
vv(Ns/m) 310 310 0.00 309.77 0.08 299.76 3.30

cb3
uu(Ns/m) 290 290 0.00 284.53 1.89 267.35 7.81

cb3
uv(Ns/m) 120 120 0.00 121.29 1.07 127.69 6.41

cb3
vu(Ns/m) 125 125 0.00 122.69 1.85 114.12 8.70

cb3
vv(Ns/m) 295 295 0.00 295.79 0.27 300.27 1.79

cb4
uu(Ns/m) 290 290 0.00 289.30 0.24 287.59 0.83

cb4
uv(Ns/m) 120 120 0.00 118.89 0.93 113.94 5.04

cb4
vu(Ns/m) 125 125 0.00 125.06 0.05 123.81 0.95

cb4
vv(Ns/m) 295 295 0.00 294.80 0.07 293.84 0.39

Table 3.
Percentage deviation of speed–dependent coupling parameters at 279 Hz for Case B

Estimated parameters
Dynamic Assumed

With 0%
Error

With 1%
Error

With 5%
Errorparameters values

noise noise noise
kcuu(N/m) 275000 277217.74 0.81 275160.96 0.06 257372.28 6.41
kcuv(N/m) 150000 151209.68 0.81 151790.97 1.19 148114.14 1.26
kcvu(N/m) 160000 161290.32 0.81 159542.30 0.29 150373.70 6.02
kcvv(N/m) 300000 302419.35 0.81 302094.59 0.70 296323.73 1.23
kcϕu

(N/m) 275000 275000.00 0.00 279582.52 1.67 284445.65 3.43
kcϕv

(N/m) 300000 300000.00 0.00 299096.88 0.30 290791.64 3.07
ccuu(Ns/m) 305 307.46 0.81 305.63 0.21 290.35 4.80
ccuv(Ns/m) 119 119.96 0.81 120.11 0.93 117.42 1.32
ccvu(Ns/m) 121 121.98 0.81 120.59 0.34 113.63 6.09
ccvv(Ns/m) 315 317.54 0.81 317.33 0.74 312.06 0.93
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Table 4.
Percentage deviation of speed–dependent bearing stiffness parameters at 281 Hz for Case B

Estimated parameters
Dynamic Assumed

With 0%
Error

With 1%
Error

With 5%
Errorparameters values

noise noise noise
kb1
uu (N/m) 280000 280000.00 0.00 277093.97 1.04 263641.85 5.84

kb1
uv (N/m) 140000 140000.00 0.00 139720.23 0.20 136674.73 2.38

kb1
vu (N/m) 125000 125000.00 0.00 124554.95 0.36 121269.44 2.98

kb1
vv (N/m) 250000 250000.00 0.00 249664.13 0.13 247065.87 1.17

kb2
uu (N/m) 280000 280000.00 0.00 286810.50 2.43 309474.35 10.53

kb2
uv (N/m) 140000 140000.00 0.00 139893.64 0.08 136628.21 2.41

kb2
vu (N/m) 125000 125000.00 0.00 127386.83 1.91 134079.40 7.26

kb2
vv (N/m) 250000 250000.00 0.00 249821.57 0.07 247365.98 1.05

kb3
uu (N/m) 320000 320000.00 0.00 313246.51 2.11 290965.49 9.07

kb3
uv (N/m) 190000 190000.00 0.00 190432.73 0.23 194010.01 2.11

kb3
vu (N/m) 175000 175000.00 0.00 171650.91 1.91 160498.86 8.29

kb3
vv (N/m) 300000 300000.00 0.00 300300.09 0.10 302853.12 0.95

kb4
uu (N/m) 320000 320000.00 0.00 322684.52 0.84 335313.54 4.79

kb4
uv (N/m) 190000 190000.00 0.00 189614.11 0.20 189113.64 0.47

kb4
vu (N/m) 175000 175000.00 0.00 175352.52 0.20 177320.06 1.33

kb4
vv (N/m) 300000 300000.00 0.00 300035.24 0.01 301086.47 0.36

Table 5.
Percentage deviation of speed–dependent bearing damping parameters at 281 Hz for Case B

Estimated parameters
Dynamic Assumed

With 0%
Error

With 1%
Error

With 5%
Errorparameters values

noise noise noise
cb1
uu (Ns/m) 300 300.00 0.00 298.59 0.47 282.11 5.96

cb1
uv (Ns/m) 115 115.00 0.00 113.99 0.88 101.79 11.49

cb1
vu (Ns/m) 110 110.00 0.00 109.26 0.67 101.36 7.85

cb1
vv (Ns/m) 313 313.00 0.00 312.15 0.27 300.75 3.91

cb2
uu (Ns/m) 300 300.00 0.00 304.96 1.65 312.11 4.04

cb2
uv (Ns/m) 115 115.00 0.00 115.71 0.62 110.20 4.17

cb2
vu (Ns/m) 110 110.00 0.00 111.86 1.69 113.30 3.00

cb2
vv (Ns/m) 313 313.00 0.00 312.65 0.11 302.80 3.26

cb3
uu (Ns/m) 390 390.00 0.00 383.49 1.67 362.20 7.13

cb3
uv (Ns/m) 125 125.00 0.00 126.80 1.44 134.70 7.76

cb3
vu (Ns/m) 129 129.00 0.00 126.54 1.91 117.53 8.89

cb3
vv (Ns/m) 395 395.00 0.00 395.96 0.24 401.31 1.60

cb4
uu (Ns/m) 390 390.00 0.00 389.68 0.08 389.27 0.19

cb4
uv (Ns/m) 125 125.00 0.00 123.83 0.93 118.65 5.08

cb4
vu (Ns/m) 129 129.00 0.00 129.11 0.09 128.33 0.52

cb4
vv (Ns/m) 395 395.00 0.00 394.77 0.06 394.28 0.18
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Table 6.
Percentage deviation of speed–dependent coupling parameters at 281 Hz for Case B

Estimated parameters
Dynamic Assumed

With 0%
Error

With 1%
Error

With 5%
Errorparameters values

noise noise noise
kcuu (N/m) 300000 302419.35 0.81 299788.19 0.07 278864.91 7.05
kcuv (N/m) 160000 161290.32 0.81 161337.98 0.84 155456.12 2.84
kcvu (N/m) 150000 151209.68 0.81 149540.55 0.31 140876.39 6.08
kcvv (N/m) 275000 277217.74 0.81 276788.80 0.65 271025.41 1.45
kcϕu

(N/m) 300000 300000.00 0.00 304523.32 1.51 307153.90 2.38
kcϕv

(N/m) 275000 275000.00 0.00 274195.09 0.29 266431.67 3.12
ccuu (Ns/m) 307 309.48 0.81 306.60 0.13 287.72 6.28
ccuv (Ns/m) 117 117.94 0.81 116.95 0.04 110.49 5.56
ccvu (Ns/m) 125 126.01 0.81 124.31 0.55 116.17 7.06
ccvv (Ns/m) 318 320.56 0.81 319.97 0.62 313.52 1.41

Table 7.
Percentage deviation of unbalance parameters for Case B

Estimated parameters
Parameters

Assumed
With 0%

Error
With 1%

Error
With 5%

Errorvalues
noise noise noise

Fres
1 (kg·m) 5.86·10−3 5.859·10−3 0.00 5.861·10−3 0.03 5.750·10−3 1.86

Fres
2 (kg·m) 7.47·10−3 7.469·10−3 0.00 7.468·10−3 0.01 7.427·10−3 0.56

6. Conclusion

An insight discussion related to the development of an identification algorithm
for simultaneous estimation of speed–dependent bearing and coupling dynamic
parameters and residual unbalances is presented in this article. To estimate the
parameters, two different cases (Case A and B) are analyzed and found that under
Case A, regression matrix is highly ill–conditioned that leads to bad estimation,
whereas Case B is the best case of estimation among the two, even with high level
of percentage noise (up to 5%). Least squares technique is used to estimate the
speed–dependent dynamic parameters and inherent unbalances. Different levels
of measurement noise have been added to the developed algorithm and effects
are discussed in the form of error plots. Estimates are found to be acceptable
even with the addition of noise, although the least squares estimator is developed
under the assumption of no noise condition. In the present developed algorithm,
noise is deliberately added into the simulated response to mimic the actual test
response. As the estimates are biased due to measurement noise in the registered
signals, to increase accuracy of the estimates, the Output Error Method along
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with least squares technique could be used to estimate the parameters [28]. Apart
from least squares technique, some other identification technique such as Kalman
Filter could be used as an identification algorithm to estimate the parameters, in
future.

Appendix A: Matrices of equation of motion

A.1. Elements of mass matrix

M11 = M22 = M55 = M66 =

(
0.25md

1 +
I1

l2

)
,

M12 = M21 = M56 = M65 =

(
0.25md

1 −
I1

l2

)
,

M33 = M44 = M77 = M88 =

(
0.25md

2 +
I2

l2

)
,

M34 = M43 = M78 = M87 =

(
0.25md

2 −
I2

l2

)
.
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A.2. Damping matrix

[C] =



cb1
uu + 0.062ccuu −0.312ccuu 0.312ccuu −0.062ccuu cb1

vu + 0.062ccvu −0.312ccuv 0.312ccuv −0.062ccuv
−0.312ccuu cb2

uu + 1.562ccuu −1.562ccuu 0.312ccuu −0.312ccvu cb2
uv + 1.562ccuv −1.562ccuv 0.312ccuv

0.312ccuu −1.562ccuu cb3
uu + 1.562ccuu −0.312ccuu 0.312ccvu −1.562ccuv cb3

uv + 1.562ccuv −0.312ccuv
−0.062ccuu 0.312ccuu −0.312ccuu cb4

uu + 0.062ccuu −0.062ccvu 0.312ccuv −0.312ccuv cb4
vu + 0.062ccuv

cb1
vv + 0.062ccvu −0.312ccvu 0.312ccvu −0.062ccvu cb1

vv + 0.062ccvv −0.312ccvv 0.312ccvv −0.062ccvv
−0.312ccvu cb2

vv + 1.562ccvu −1.562ccvu 0.312ccvu −0.312ccvv cb2
vv + 1.562ccvv −1.562ccvv 0.312ccvv

0.312ccvu −1.562ccvu cb3
vv + 1.562ccvu −0.312ccvu 0.312ccvv −1.562ccvv cb3

vv + 1.562ccvv −0.312ccvv
−0.062ccvu 0.312ccvu −0.312ccvu cb4

vv + 0.062ccvu −0.062ccvv 0.312ccvv −0.312ccvv cb4
vv + 0.062ccvv



.

A.3. Stiffness matrix

[K] =



kb1
uu+akcuu+dkcϕv

−bkcuu−dkcϕv
bkcuu+dkcϕv

−akcuu−dkcϕv
kb1
uv+akcuv −bkcuv bkcuv akcuv

−bkcuu−dkcϕv
kb2
uu+ckcuu+dkcϕv

−ckcuu−ekcϕv
bkcuu+ekcϕv

−bkcuv kb2
uv+ckcuv −ckcuv bkcuv

bkcuu+ekcϕv
−ckcuu−ekcϕv

kb3
uu+ckcuu+ f kcϕv

−bkcuu− f kcϕv
bkcuv −ckcuv kb3

uv+ckcuv −bkcuv
−akcuu−ekcϕv

bkcuu+ekcϕv
−bkcuu− f kcϕv

kb4
uu+akcuu+ f kcϕv

−akcuv bkcuv −bkcuv kb4
uv+akcuv

kb1
vu+akcvu −bkcvu bkcvu akcvu kb1

vv+akcvv+dkcϕu
−bkcvv−dkcϕu

bkcvv+dkcϕu
−akcvv−dkcϕu

−bkcvu kb2
vu+ckcvu −ckcvu bkcvu −bkcvv−dkcϕu

kb2
vv+ckcvv+dkcϕu

−ckcvv−ekcϕu
bkcvv+ekcϕu

bkcvu −ckcvu kb3
vu+ckcvu −bkcvu bkcvv+ekcϕu

−ckcvv−ekcϕu
kb3
vv+ckcvv+ f kcϕu

−bkcvv− f kcϕu

−akcvu bkcvu −bkcvu kb4
vu+akcvu −akcvv−ekcϕu

bkcyy+ekcϕu
−bkcvv− f kcϕu

kb4
vv+akcvv+ f kcϕu



a =
1
16

, b =
5
16

, c =
25
16

, d =
1
l21
, e =

1
l1l2

, f =
1
l22
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Appendix B: Matrices of regression equation in complex form

B.1. Elements of regression matrix corresponding to stiffness

KR
11 = ub

1 , KR
12 = vb1 , KR

1,18 = KR
5,19 = 0.062(ub

1 − 5ub
2 + 5ub

3 − ub
4 ),

KR
1,18 = KR

5,20 = 0.062(vb1 − 5vb2 + 5vb3 − vb4 ), KR
25 = ub

2 ,

KR
26 = vb2 , KR

2,17 = KR
6,19 = 0.062(−5ub

1 + 25ub
2 − 25ub

3 + 5ub
4 ),

KR
2,18 = KR

6,20 = 0.062(−5vb1 + 25vb2 − 25vb3 + 5vb4 ), KR
39 = ub

3 ,

KR
3,10 = vb3 , KR

3,17 = KR
7,19 = 0.062(5ub

1 − 25ub
2 + 25ub

3 − 5ub
4 ),

KR
3,18 = KR

7,20 = 0.062(5vb1 − 25vb2 + 25vb3 − 5vb4 ), KR
4,13 = ub

4 ,

KR
4,14 = vb4 , KR

4,17 = KR
8,19 = 0.062(−ub

1 + 5ub
2 − 5ub

3 + ub
4 ),

KR
4,18 = KR

8,20 = 0.062(−vb1 + 5vb2 − 5vb3 + v
b
4 ), KR

53 = ub
1 ,

KR
54 = vb2 , KR

67 = ub
2 , KR

68 = vb2 , KR
7,11 = ub

3 ,

KR
7,12 = vb3 , KR

8,15 = ub
4 , KR

8,16 = vb4 ,

KR
1,21 =

*
,

ub
1 − ub

2 + ub
3 − ub

4
l2

+
-
, KR

2,21 =
*
,

ub
2 − ub

1 + ub
4 − ub

3
l2

+
-
,

KR
3,21 =

*
,

ub
1 − ub

2 + ub
3 − ub

4
l2

+
-
, KR

4,21 =
*
,

ub
2 − ub

1 + ub
4 − ub

3
l2

+
-
,

KR
5,22 =

*
,

vb1 − vb2 + v
b
3 − vb4

l2
+
-
, KR

6,22 =
*
,

vb2 − vb1 + v
b
4 − vb3

l2
+
-
,

KR
7,22 =

*
,

vb1 − vb2 + v
b
3 − vb4

l2
+
-
, KR

8,22 =
*
,

vb2 − vb1 + v
b
4 − vb3

l2
+
-
.

B.2. Elements of regression matrix corresponding to damping

CR
11 = − jωub

1 , CR
12 = − jωvb1 , CR

25 = − jωub
2 , CR

26 = − jωvb2 ,

CR
39 = − jωub

3 , CR
3,10 = − jωvb3 , CR

4,13 = − jωub
4 , CR

4,14 = − jωvb4 ,

CR
53 = − jωub

1 , CR
54 = − jωvb1 , CR

67 = − jωub
2 , CR

68 = − jωvb2 ,

CR
7,11 = − jωub

3 , CR
7,12 = − jωvb3 , CR

8,15 = − jωub
4 , CR

8,16 = − jωvb4 ,

CR
1,17 = CR

5,19 = −0.062 jω(ub
1 − 5ub

2 + 5ub
3 − ub

4 ),

CR
1,18 = CR

5,20 = −0.062 jω(vb1 − 5vb2 + 5vb3 − vb4 ),

CR
2,17 = CR

6,19 = −0.062 jω(−5ub
1 + 25ub

2 − 25ub
3 + 5ub

4 ),
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CR
2,18 = CR

6,20 = −0.062 jω(−5vb1 + 25vb2 − 25vb3 + 5vb4 ),

CR
3,17 = CR

7,19 = −0.062 jω(5ub
1 − 25ub

2 + 25ub
3 − 5ub

4 ),

CR
3,18 = CR

7,20 = −0.062 jω(5vb1 − 25vb2 + 25vb3 − 5vb4 ),

CR
4,17 = CR

8,19 = −0.062 jω(−ub
1 + 5ub

2 − 5ub
3 + ub

4 ),

CR
4,18 = CR

8,20 = −0.062 jω(−vb1 + 5vb2 − 5vb3 + v
b
4 ),

B.3. Elements of regression matrix corresponding to residual unbalance

FR
11 = 0.50ω2Fres

1 e jφ1, FR
21 = 0.50ω2Fres

1 e jφ1,

FR
32 = 0.50ω2Fres

2 e jφ2, FR
42 = 0.50ω2Fres

2 e jφ2,

FR
41 = −0.50 jω2Fres

1 e jφ1, FR
51 = −0.50 jω2Fres

1 e jφ1,

FR
62 = −0.50 jω2Fres

2 e jφ2, FR
72 = −0.50 jω2Fres

2 e jφ2 .

B.4. Regression matrix corresponding to disc mass and trial unbalances

{B} =




0.25md
1 ub

1 +

(
I1

l2

)
ub

1 + 0.25md
1 ub

2 −

(
I1

l2

)
ub

2 + 0.50 f t1e jθ

0.25md
1 ub

1 −

(
I1

l2

)
ub

1 + 0.25md
1 ub

2 +

(
I1

l2

)
ub

2 + 0.50 f t1e jθ

0.25md
2 ub

3 +

(
I2

l2

)
ub

3 + 0.25md
2 ub

4 −

(
I2

l2

)
ub

4

0.25md
2 ub

3 −

(
I2

l2

)
ub

3 + 0.25md
2 ub

4 +

(
I2

l2

)
ub

4

0.25md
1 v

b
1 +

(
I1

l2

)
vb1 + 0.25md

1 v
b
2 −

(
I1

l2

)
vb2 − 0.50 j f t1e jθ

0.25md
1 v

b
1 −

(
I1

l2

)
vb1 + 0.25md

1 v
b
2 +

(
I1

l2

)
vb2 − 0.50 j f t1e jθ

0.25md
2 v

b
3 +

(
I2

l2

)
vb3 + 0.25md

2 v
b
4 −

(
I2

l2

)
vb4

0.25md
2 v

b
3 −

(
I2

l2

)
vb3 + 0.25md

2 v
b
4 +

(
I2

l2

)
vb4




Manuscript received by Editorial Board, February 16, 2018;
final version, July 02, 2018.



346 MOHIT LAL, MONALISHA SATAPATHY

References

[1] A.T. Tadeo, K.L. Cavalca, and M.J. Brennan. Dynamic characterization of a mechanical cou-
pling for a rotating shaft.Proceedings of the Institution ofMechanical Engineers Part C: Journal
ofMechanical Engineering Science, 225(3):604–616, 2011. doi: 10.1243/09544062JMES2214.

[2] M. Lal and R. Tiwari. Quantification of multiple fault parameters in flexible turbo–generator
systems with incomplete rundown vibration data. Mechanical Systems and Signal Processing,
41(1-2):546–563, 2013. doi: 10.1016/j.ymssp.2013.06.025.

[3] R. Tiwari, A.W. Lees, and M.I. Friswell. Identification of speed–dependent bearing parameters.
Journal of Sound and Vibration, 254(5):967–986, 2002. doi: 10.1006/jsvi.2001.4140.

[4] K.M. Al-Hussain and I. Redmond. Dynamic response of two rotors connected by rigid mechan-
ical coupling with parallel misalignment. Journal of Sound and Vibration, 249(3):483–498,
2002. doi: 10.1006/jsvi.2001.3866.

[5] K.M. Al-Hussain. Dynamic stability of two rigid rotors connected by a flexible coupling
with angular misalignment. Journal of Sound and Vibration, 266(2):217–234, 2003. doi:
10.1016/S0022-460X(02)01627-9.

[6] R. Tiwari. Conditioning of regressionmatrices for simultaneous estimation of the residual unbal-
ance and bearing dynamic parameters.Mechanical Systems and Signal Processing, 19(5):1082–
1095, 2005. doi: 10.1016/j.ymssp.2004.09.005.

[7] R. Tiwari and V. Chakravarthy. Simultaneous identification of residual unbalances and bearing
dynamic parameters from impulse responses of rotor–bearing systems.Mechanical Systems and
Signal Processing, 20(7):1590–1614, 2006. doi: 10.1016/j.ymssp.2006.01.005.

[8] P. Jayaswal, A.K. Wadhwani, and K.B. Mulchandani. Machine fault signature analysis. Inter-
national Journal of Rotating Machinery, 1–10, 2008. doi: 10.1155/2008/583982.

[9] A.K. Jalan and A.R. Mohanty. Model based fault diagnosis of a rotor–bearing system for
misalignment and unbalance under steady–state condition. Journal of Sound and Vibration,
327(3-5): 604–622, 2009. doi: 10.1016/j.jsv.2009.07.014.

[10] A.W. Lees, J.K. Sinha, and M.I. Friswell. Model–based identification of rotating
machines. Mechanical Systems and Signal Processing, 23(6):1884–1893, 2009. doi:
10.1016/j.ymssp.2008.08.008.

[11] C.Y. Tsai and S.C. Huang. Transfer matrix for rotor coupler with parallel misalignment. Journal
of Mechanical Science and Technology, 23(5):1383–1395, 2009. doi: 10.1007/s12206-008-
1216-9.

[12] J. Jing and G. Meng. A novel method for multi-fault diagnosis of rotor system.Mechanism and
Machine Theory, 44(4):697–709, 2009. doi: 10.1016/j.mechmachtheory.2008.05.002.

[13] T.H. Patel and A.K. Darpe. Vibration response of misaligned rotors. Journal of Sound and
Vibration, 325(3):609–628, 2009. doi: 10.1016/j.jsv.2009.03.024.

[14] T.H. Patel and A.K. Darpe. Experimental investigations on vibration response of mis-
aligned rotors. Mechanical Systems and Signal Processing, 23(7):2236–2252, 2009. doi:
10.1016/j.ymssp.2009.04.004.

[15] S. Sarkar, A. Nandi, S. Neogy, J.K. Dutt, and T.K. Kundra. Finite element analysis of misaligned
rotors on oil-film bearings. Sadhana, 35(1):45–61, 2010. doi: 10.1007/s12046-010-0005-1.

[16] Q.W. Yang. A new damage identification method based on structural flexibility disassembly.
Journal of Vibration and Control, 17(7):1000–1008, 2011. doi: 10.1177/1077546309360052.

[17] G.N.D.S. Sudhakar and A.S. Sekhar. Identification of unbalance in a rotor bearing system.
Journal of Sound and Vibration, 330(10):2299–2313, 2011. doi: 10.1016/j.jsv.2010.11.028.

[18] S. Ganesan and C. Padmanabhan. Modelling of parametric excitation of a flexible coupling–
rotor system due to misalignment. Proceedings of the Institution of Mechanical Engi-
neers, Part C: Journal of Mechanical Engineering Science, 225(12):2907–2918, 2011. doi:
10.1177/0954406211411549.

https://doi.org/10.1243/09544062JMES2214
https://doi.org/10.1016/j.ymssp.2013.06.025
https://doi.org/10.1006/jsvi.2001.4140
https://doi.org/10.1006/jsvi.2001.3866
https://doi.org/10.1016/S0022-460X(02)01627-9
https://doi.org/10.1016/j.ymssp.2004.09.005
https://doi.org/10.1016/j.ymssp.2006.01.005
http://dx.doi.org/10.1155/2008/583982
https://doi.org/10.1016/j.jsv.2009.07.014
https://doi.org/10.1016/j.ymssp.2008.08.008
https://doi.org/10.1007/s12206-008-1216-9
https://doi.org/10.1007/s12206-008-1216-9
https://doi.org/10.1016/j.mechmachtheory.2008.05.002
https://doi.org/10.1016/j.jsv.2009.03.024
https://doi.org/10.1016/j.ymssp.2009.04.004
https://doi.org/10.1007/s12046-010-0005-1
https://doi.org/10.1177/1077546309360052
https://doi.org/10.1016/j.jsv.2010.11.028
https://doi.org/10.1177/0954406211411549


ESTIMATION OF SPEED DEPENDENT FAULT PARAMETERS. . . 347

[19] M. Lal and R. Tiwari. Multi–fault identification in simple rotor–bearing–coupling systems
based on forced response measurements. Mechanism and Machine Theory, 51:87–109, 2012.
doi: 10.1016/j.mechmachtheory.2012.01.001.

[20] M. Lal and R. Tiwari. Identification of multiple faults with Incomplete response measurements
in rotor-bearing-coupling systems. In ASME 2012 Gas Turbine India Conference, pages 613–
620, Mumbai, India, 1 December 2012. doi: 10.1115/GTINDIA2012-9542.

[21] M. Lal and R. Tiwari. Identification of multiple fault parameters in a rigid-rotor and flexible-
bearing-coupling system: An experimental investigation. In ASME 2013 Gas Turbine India
Conference, Bangalore, India, 5–6, December 2013. doi: 10.1115/GTINDIA2013-3774.

[22] M. Lal and R. Tiwari. Experimental estimation of misalignment effects in rotor-bearing-
coupling systems. In Proceedings of the 9th IFToMM International Conference on Rotor
Dynamics, pages 779–789, Springer, 2015. doi: 10.1007/978-3-319-06590-8_64.

[23] M. Lal and R. Tiwari. Experimental identification of shaft misalignment in a turbo-generator
system. Sadhana, 43:80, 2018. doi: 10.1007/s12046-018-0859-1.

[24] P. Pennacchi, A. Vania, and S. Chatterton. Nonlinear effects caused by couplingmisalignment in
rotors equipped with journal bearings.Mechanical Systems and Signal Processing, 30:306–322,
2012. doi: 10.1016/j.ymssp.2011.11.020.

[25] Y. Lei, J. Lin, Z. He, andM.J. Zuo. A review on empirical mode decomposition in fault diagnosis
of rotating machinery.Mechanical Systems and Signal Processing, 35(1-2):108–126, 2013. doi:
doi.org/10.1016/j.ymssp.2012.09.015.

[26] S.K. Kuppa and M. Lal. Characteristic parameter estimation of AMB supported coupled rotor
system. In ASME 2017 Gas Turbine India Conference, Bangalore, India, 7–8 December, 2017.
doi: 10.1115/GTINDIA2017-4641.

[27] R.V. Jategaonkar. Flight Vehicle System Identification: A Time-Domain Methodology. 2nd
edition, AIAA, Reston, Virginia, 2015. doi: 10.2514/4.102790.

[28] P. Lichota, J. Szulczyk, D.A. Norena, and F.A. Vallejo Monsalve. Power spectrum optimization
in the design of multisine manoeuvre for identification purposes, Journal of Theoretical and
Applied Mechanics, 55(4):1193–1203, 2017. doi: 10.15632/jtam-pl.55.4.1193.

https://doi.org/10.1016/j.mechmachtheory.2012.01.001
https://doi.org/10.1115/GTINDIA2012-9542
http://proceedings.asmedigitalcollection.asme.org/proceeding.aspx?articleid=1838642
https://doi.org/10.1007/978-3-319-06590-8_64
https://doi.org/10.1007/s12046-018-0859-1
https://doi.org/10.1016/j.ymssp.2011.11.020
https://doi.org/10.1016/j.ymssp.2012.09.015
https://doi.org/10.1115/GTINDIA2017-4641
https://doi.org/10.2514/4.102790
https://doi.org/10.15632/jtam-pl.55.4.1193

	Introduction
	Theoretical development
	Assumptions involved and model description
	Equations of motion

	Conditioning of regression matrix
	Formulation of identification methodology
	Numerical simulation
	Case A: With three sets of measurement, i.e., exactly determined case
	Case B: With more (eight) sets of measurement, i.e., highly over–determined case

	Conclusion

