
613Bull. Pol. Ac.: Tech. 66(5) 2018

BULLETIN OF THE POLISH ACADEMY OF SCIENCES
TECHNICAL SCIENCES, Vol. 66, No. 5, 2018
DOI: 10.24425/124277

Abstract. The purpose of this study is to create, analyze and reuse an ontology-based approach during implementation of a multi-agent system
(MAS) capable of integrating different elements of a distributed control system (DCS). Ontology is considered as knowledge about a particular
domain. It includes static description of the domain’s structure and properties, by means of which it is possible to define the domain’s dynamic
states, transitions between those states and conditions of those transitions. Because of that, it is possible to analyze such ontology in terms of
modal logic in predicate logic settings.

Key words: distributed control system, multi-agent system, software based integration systems, ontology, Petri nets.

Distributed control systems integration
and management with an ontology-based multi-agent system

D. CHOIŃSKI* and M. SENIK
Silesian University of Technology, ul. Akademicka 16, 44-100 Gliwice, Poland

A well-designed DCS integration system is a future-proof solu-
tion characterized by interconnectivity and interoperability that
directly impacts the system’s openness and scalability. In the
proposed approach, an attempt was made at establishing a rea-
sonable solution to the above-described problems by means
of introducing modal logic analysis in predicate logic settings
of the ontology that is applied in multi-agent DCS integration
engineering. It is worth mentioning that multi-agent solutions
have a great potential to solve problems that are not directly
connected with a given industry, such as formation control [2]
or population-based global optimization meta-heuristics [3].

2.	 Knowledge representation for the distributed
control system

DCSs are usually heterogeneous, which means that they in-
volve a great number of different subsystems. Heterogeneity
is the compositional relationship between numerous intercon-
nected and interoperable third party subsystems that are usually
distributed geographically and constitute a source of different
pieces of information. Heterogeneity of a DCS integration
system is made possible through standard conforming hard-
ware or software elements. This means that each such element
uses well-known, common interface that allows for easy and
efficient communication and cooperation. Because of that, it
is very important to provide such a DCS integration solution
that will enable easy and understandable consolidation of data.
From a software point of view, well-designed DCS integration
systems achieve that by presenting a loosely coupled structure.
Such an approach enforces interface-based implementation.
This maximizes integration system efficiency, reliability and
safety, extending its lifespan as regards the changing environ-
ment [4].

Knowledge management relates to the notion of capturing,
developing, sharing and using domain-specific knowledge. This
knowledge is enclosed inside the DCS and used to assists the

1.	 Introduction

This paper addresses the problem of an efficient approach to
distributed control system (DCS) integration engineering. This
engineering is based on the knowledge gathered from the in-
tegrated system and modeled by means of ontology [1]. The
presented approach to DCS integration engineering provides
an ontology-based multi-agent solution to a problem of how
to develop and maintain complex software-based integration
systems (IS) over their lifetime under dynamic and demanding
conditions of the market in the various different branches of
manufacturing industries. Bringing together configuration and
customization of a wide array of different (new or existing,
usually incompatible) hardware or software along with third
party subsystems which accomplish a single goal of creating
a unified, fully functional system according to the customers’
requirements and needs, is commonly referred to as DCS inte-
gration. One of the major problems that need to be answered
during DCS integration is how to format, pass and process the
obtained data. This is of significance because DCS integration
engineering focuses on the notion of harnessing all available
information, originating at a variety of different points, into one
complete picture. However acquisition of those different pieces
of information cannot be achieved without suitable communi-
cation interface. Moreover, it is often the case that the integra-
tion is harder to achieve the greater the number of integrated
subsystems that are involved.

DCSs are usually involved in some type of production
processes and without a proper approach to an integration the
time between requirements formalization and the final product
release can be unacceptably long. Overcoming those problems
requires scalability and openness of the integration system.

*e-mail: Dariusz.Choinski@polsl.pl

Manuscript submitted 2017-11-25, initially accepted for publication 2018-02-08,
published in October 2018.

614

D. Choiński and M. Senik

Bull. Pol. Ac.: Tech. 66(5) 2018

human operator in the decision making processes. However,
the quality of how this process is performed by different DCSs
varies, thus each company is particularly interested in an auton-
omous, intelligent, intuitive and maintainable integration system
characterized by interoperability and interconnectivity that will
manage the domain knowledge most effectively. Such a system
has to respond to users’ requests or environmental changes and
take initiatives, attending to users’ needs [5, 6]. Similarly to the
integration system, domain knowledge is heterogeneous and
distributed, as it relates to different system parts. To be mean-
ingful, unambiguous and useful, this knowledge needs to use
common terminology. This is achieved by means of ontologies
that can be used during integration system design, runtime and
maintenance [5, 7].

DCSs present a strong, hierarchical and layered design [8].
Interaction between each layer, depending on the careful selec-
tion of communication interfaces and data structures, is a key
factor determining the DCS’s overall quality and efficiency [9].
Because of that, various different IA vendors of control and
instrumentation systems are gradually investing more valuable
resources in versatile technological research, and are taking
advantage of the latest trends and developments in hardware
and software, making their products more intuitive, consistent
and easier to configure [9]. To achieve this, each vendor usually
focuses on and contributes to standardized solutions rather than
designing proprietary, costly and private ones. Having standard-
ized solutions assures simplification and reusability of control
system interfacing while increasing the enterprise’s long term
competitiveness, recognizability and income at the same time
[10, 8, 11]. Open platform communications (OPC) is a great
example of such an approach, and there are multiple studies
concerning practical utilization of OPC, such as [11] and [12],
to name but a few.

OPC is an open automation interface protocol actively
developed by the OPC Foundation [13, 14]. OPC was estab-
lished as a method for fast and efficient data retrieval, inte-
gration, analysis and communication between different, third
party automation devices and heterogeneous subsystems [15,
16]. OPC enables easy and efficient data exchange between
OPC compliant hardware and software components developed
by different automation vendors. Because OPC specifications
can be applied in different fields of automation applications,
they are largely independent from one another, however it is
a straightforward task to combine them together in a single ap-
plication. Today, the vast majority of OPC compliant products
implements the classic OPC Data Access (DA) interface, which
is used for real time data acquisition from remote process con-
trollers [14, 15].

3.	 Ontology-based interfaces
and data structures

Ontology is the study of various different kind-of and part-of
hierarchies, relations and categories of elements that exists or
may exist. To be of any use, ontologies have to provide some
terminology which is commonly referred to as domain vo-

cabulary. Such vocabulary allows referring to different, do-
main specific ontological concepts, helping to describe each
single domain specific element concisely, unambiguously, in-
dependently of any reader and context, and in more detail by
specifying its hierarchies, constraints and composition rules.
It is also very important to stress that ontological vocabulary
is always provided in a machine interpretable and platform in-
dependent format, thus, if required, it is a straightforward task
to translate it between different languages, essentially without
any compatibility problems or the need for additional changes
in the ontology itself. Based on the obtained vocabulary, a
concept hierarchy commonly referred to as a taxonomy can be
specified. Formally, taxonomy reuses the software class notion,
simply because such an approach allows for applying com-
position and inheritance mechanisms efficiently. Class notion
is both human and machine interpretable, and supports easy,
bidirectional conversion into other ontology formats. With on-
tology and on the basis of common and shared domain charac-
teristics, a taxonomy can be expressed with mutually exclusive,
unambiguous clustering and strict generalization of classes. It
is worth mentioning that each ontological class corresponds
to a single ontological concept. Both are more or less accurate
approximations of the same reality. However a concept is only
its abstraction whereas a software class is its formal model.
In the object-oriented (OO) programming context, class hi-
erarchies and composition can be easily reproduced in each
OO programming language such as Java, C# or C++ as well
as in UML, XSD and FOL. This allows different engineers
with different fields of expertise to choose among different
ontological formats to share their knowledge most efficiently
and synchronize it with the existing ontology.

4.	 Petri nets for modal logic ontological MAS
analysis

A Petri net is a discrete event dynamic system and a mathemat-
ical modeling language allowing for the description of complex,
concurrent and distributed systems [17–20]. Its structure C can
be described as a tuple of four elements (1) in which P is a finite
set of places of cardinality of n, T is a finite set of transitions
of cardinality of m, I is an input function and O is an output
function.

	 C = (P, T, I, O)� (1)

A marked Petri net M (2) is referred to as a structure con-
sisting of tuple C and marking µ in Fig. 1. Petri net marking
is a function that relates places P to nonnegative integers N.

	 M = (C, µ)� (2)

Tokens reflect the dynamic nature of a modeled system and
can be assigned to and reside inside Petri net places only. By
doing so, they can control the execution of the transitions. Con-
sequently, their number as well as positions can change during
the Petri net execution.

615

Distributed control systems integration and management with an ontology-based multi-agent system

Bull. Pol. Ac.: Tech. 66(5) 2018

For the purposes of further modal logic analysis, it is im-
portant to note that each Petri net marking µi is considered
a separate world inside which given logical formulas will be
examined, as per Fig. 2.

Classical modal logic extends classical propositional and
predicate logic and includes additional possibility ◊ and ne-
cessity □ operators that express modality.

	 ◊P ↔ ¬□ ¬P� (3)

	 □P ↔ ¬◊ ¬P� (4)

Both operators are unary and can be expressed in terms of
the other with negation so that (3) is equivalent to (4). The
most often used modal logic system is S5 although additional
systems also exist. The S5 system defines the necessity and
possibility modalities. Based on S5, a proposition is necessary
if it is true in all possible worlds. A proposition is possible if
it is true only in some possible worlds. Given the above, it can
be stated that there can be many things that are true in various
possible worlds. However, if something is true in every world,
it is said that it is necessary. On a contrary, if something is
possible in some or at least one world, it is said it is possible.
Based on the S5 system, it is possible to perform a detailed
analysis on a per world basis of any complex system being
engineered.

In the presented approach to an engineered system analysis,
it is required to determine two non-empty sets that will contain
possible worlds W and relations R that exist between the mem-
bers of a possible worlds set. This situation can be described
via the following set of logical equations:

	

∀ µi ∃ W. µi 2 W.

∀ R i ∃ R. R i 2 R.

∀ ri:j ∃ µi, µj. ri:j 2 R i ∧ ri:j = {µi, µj} ∧ µi Riµj.

∀ µi, µj ∃ t i:j. t i:j 2 T ∧ µi Riµj ⇒ δ(µi, t i:j) = µj.

� (5)

Based on (5), it can be said that the state of a world µj is a direct
possibility for world µi i.e.: µi R µj. The last step of the initial
analysis stage is the determination of a set of logical formulas
Γ true for each world µi in (6), that is:

	
∀ Γi ∃ Γ. Γi 2 Γ.

∀ µi ∃ Γi. (µi, Γi) ⇒ µi j= Γi .
� (6)

The ν symbol is called a valuation function, which assigns
objects from a domain of discourse to each term inside each
logical formula of Γi. Together, non-empty set of worlds W,
their relations R and valuation function ν form a model M of
an engineered system (7), such that:

	 M = (W, R, ν).� (7)

Fig. 1. OPC agent and OPC DB agent interaction – Petri net

Fig. 2.OPC agent and OPC DB agent interaction – part of a Petri net
marking graph, based on the accessibility relation set and Fig. 1

Petri net marking µ defines its state. Each time an en-
abled transition fires a change in a Petri net, a change in its
state occurs. This change can be described by a two-argument
δ next-state function. The result of the next state function is
a new marking, i.e. µ’. Consequently, the sequence of resulting
markings (µ0, µ1, µ2, …) and the sequence of fired transitions
(tj0, tj1, tj2, …) are related by means of a δ next-state function.

616

D. Choiński and M. Senik

Bull. Pol. Ac.: Tech. 66(5) 2018

5.	 Modal logic based ontology analysis

Propositional logic satisfiability is decidable but not fully ca-
pable of addressing all the characteristic properties of complex
systems such as MASs. The domain that is to be represented and
reasoned about consists of a number of objects with a variety of
properties and relations among them. Propositional logic rep-
resents only statements about the domain, without reflecting its
internal structure and without modeling its entities explicitly.
Consequently, in the propositional logic context such domain
knowledge is hard to encode. A possible solution is to introduce
variables and allow for quantification in logical statements. In
such a case, first-order logic (FOL) is the right choice.

FOL eliminates deficiencies of propositional logic by rep-
resenting objects, their properties, relations and statements. It
introduces variables that substitute and refer to arbitrary objects.
It also introduces quantifiers which allow for making statements
about groups of objects possible without the need to represent
each of them separately. However the satisfiability and decid-
ability of the FOL formulas, and thus their validity, cannot be
clearly verified.

From an analytical perspective, one useful solution is modal
logic [21–23]. Modal logic is an extension of classical proposi-
tional logic. However it can also be studied in FOL settings [24,
25]. In modal logic, evaluation of formulae occurs within a fixed
set of worlds rather than in a single world. Thus it is possible
that a formula may be true in some worlds and false in others.
Navigation between different worlds is expressed through the
accessibility relation which characterizes the changing nature
of each dynamic system. Consequently, it is possible to model
entire system in terms of sequence of worlds.

Figure 2 and Table 1 depict this in detail. In modal logic
settings, satisfiability and decidability of FOL formulas can be
verified on per world basis, without having the problem of enu-
merating each interpretation [24] because it is possible to find
such a world and such interpretation under which this formula
is true [26]. Such interpretation is then referred to as a formula
model [27]. On this basis, a set of logical formulas under par-
ticular interpretation can be used as a logical specification that
describes a dynamic system in terms of single worlds or, more
precisely, states. Such approach is correct given that evaluation
of FOL formulas is based on modal logic and focuses on a cer-
tain set of worlds. This reflects the finite state characteristics
of complex systems such as MASs.

In modal logic terms, a model of a logical formula is re-
ferred to as an ordered triple (7) that consists of a non-empty
set of possible worlds W, a binary accessibility relation R that
holds (or not) between the possible worlds and a valuation func-
tion ν that, under a given interpretation, binds domain-specific
objects with each term inside each logical formula ensuring
formula satisfiability in each possible world. The accessibility
relation means that the state of affairs of one world is reachable
or possible for another world.

Such an approach allows to formally verify and check cor-
rectness of an abstract mathematical model of a real system in
terms of its algorithms and properties with respect to its spec-
ification. This formal verification usually explores all worlds

(states) and relations (transitions) that exists within the model.
It is worth mentioning that abstract mathematical models are
usually expressed via finite state machines, transition systems,
Petri nets, timed and hybrid automata, process algebra and
formal semantics of programming languages. Model checking
is one of the most successful formal verification techniques.
In this approach, the verified system S can be represented by
a logical modal [27] model M while the verified statement P is
expressed by a logical formula ΓP. Consequently, verification
via model checking [27, 28] is an activity that strives to provide
an answer on whether logical formula ΓP satisfies the logical
modal model M (8).

	 M j= ΓP� (8)

In the modal logic model, checking the decision problem con-
siders whether a logical formula, which forms part of specifi-
cation of a particular system, is satisfiable in the model that
represents each possible evolution of this system [24, 29].

In the presented approach, a practical study of an ontol-
ogy-based DCS MAS integration system in the finite states
setting is introduced. The result is a manual, analytic tool that
allows to formally verify properties, algorithms and structure
of a designed ontology under modal logic settings. During the
initial design stage, ontology is created by means of UML class
diagrams. When ready, UML-based ontology needs to be ver-
ified to check whether it captures all the desired DCS system
features correctly without any serious inconsistencies in UML

Table 1
OPC agent and OPC DB agent interaction – part of possible marking

set µ based on Fig. 1 and Fig. 2

Places

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11

µ1 1 0 0 0 0 0 1 0 0 0 0

µ2 1 1 0 0 0 0 1 0 0 0 0

µ3 1 0 1 0 0 0 1 0 0 0 0

µ4 1 1 1 0 0 0 1 0 0 0 0

µ5 0 1 1 1 0 0 1 0 0 0 0

µ6 0 1 1 1 1 0 1 0 0 0 0

µ7 0 1 1 1 1 1 0 0 0 0 0

µ8 1 1 1 0 0 1 0 0 0 0 0

µ9 0 1 1 1 1 1 0 1 0 0 0

µ10 0 1 1 1 0 1 0 0 0 0 0

µ11 1 0 1 0 0 1 0 0 0 0 0

µ12 1 1 0 0 0 1 0 0 0 0 0

µ13 0 1 1 1 1 1 0 1 1 0 0

µ14 0 1 1 1 1 1 0 1 0 1 0

µ15 1 0 0 0 0 1 0 0 0 0 0

µ16 0 1 1 1 1 0 1 0 1 0 0

617

Distributed control systems integration and management with an ontology-based multi-agent system

Bull. Pol. Ac.: Tech. 66(5) 2018

classes’ properties, composition and hierarchy. This is because
usually UML class diagrams tend to hide many such prob-
lems until they are discovered during implementation or tests.
Consequently, this can seriously impact both functionality and
quality of the solution being delivered. To avoid such situation,
careful analysis is required. In many recent studies first-order
logic (FOL) is recognized as a suitable analytical tool that has
sufficient power to perform successful UML class diagram
verification [30–32]. However, in general, FOL satisfiability
is not decidable, thus an UML-based FOL model cannot be
clearly verified. In modal logic, satisfiability and decidability
of UML-based FOL formulas can be achieved on a model of
modal logic worlds. The model represents all possible evolu-
tions of an underlying system and consists of a set of possible
worlds (states), relations (transitions) between those worlds and
associated logical formulas (specifications). Consequently, the
original problem of ontology verification becomes a problem
of formal verification of a model of UML-based FOL formulas
under modal logic settings.

When ready, ontology will be used during implementation
and eventually during runtime of a MAS-based DCS integra-
tion system. Each MAS-based system is composed of different
types of agents that perform different operations on behalf of
other agents during runtime. By achieving their smaller indi-
vidual goals the agents achieve greater goals of their parent
system together. At the design stage, each agent can be de-
scribed by means of a Petri net with which it is possible to
differentiate each single state in which the agent can reside,
transitions between those states and conditions of those transi-
tions. By doing so, it is possible to indirectly obtain a complete
set of worlds (states) and their relations (transitions) for the
formal verification of an ontology or, more precisely, for the
formal verification of a model of UML-based FOL formulas
under modal logic settings. In each single world it is possible
to use an effective method to find such an interpretation or
interpretations that will evaluate the truth of each FOL-based
formula. Such an approach is correct because each agent and
its ontology evolves together during runtime. Thus an agent
state becomes an ontology state as well [29, 33]. With that, it
is possible to put into motion the idea of formal ontology-based
UML model verification using model checking under modal
logic settings as each required piece of a modal logic model
(i.e. set of worlds, their relations and interpretation function)
can be easily determined. Such an approach to formal ontolo-
gy-based UML model verification allows to capture not only
structural inconsistencies in the UML class diagram proper-
ties, composition or hierarchy but functional inconsistencies
of each agent type that forms the MAS-based DCS integration
system before its implementation. It is worth mentioning that
each agent type has different responsibilities inside its parent
MAS. Each such agent has a different Petri net state graph or
graphs and operates as part of an ontology. Therefore the entire
process of formal ontology-based UML model verification will
be divided between different types of agents. Consequently,
in terms of a single agent type, formal ontology-based UML
model verification will be executed using a smaller domain
of discourse.

6.	 Sample analysis

Based on the example, it can be said that the net C = (P, T, I, O)
consists of a set of places P = {p1, p2, …, p11}, with exactly
#(P) = 11 elements, as listed in Table 2. Places P are connected
with transitions T = {t1, t2, …, t20} that consist of #(T) = 20
elements, as per Table 3. Input function I and output function

Table 2
OPC agent and OPC DB agent interaction – Petri net places

Place Description

P1 OA initial inactive state

P2 OPC server available

P3 OPC server namespace available

P4 OA initialized

P5 DBA initialized

P6 DB reachable

P7 DB unreachable

P8 DB connection established

P9 Received OA OPC server data

P10 DB server data retrieved

P11 DB data synchronized

Table 3
OPC agent and OPC DB agent interaction – Petri net transitions

Transition Description

T1 OA initialization

T2 OPC server available

T3 OPC server namespace available

T4 OA/DBA termination

T5 Initialize DBA

T6 OA/DBA termination

T7 DB unreachable

T8 DB reachable

T9 DB connection established

T10 OA/DBA termination

T11 Receive OA OPC server data

T12 Retrieve DB server data

T13 Data synchronization

T14 Retrieve DB server data

T15 OA/DBA termination

T16 OA/DBA termination

T17 OA/DBA termination

T18 OA/DBA termination

T19 OPC server not available

T20 OPC server namespace not available

618

D. Choiński and M. Senik

Bull. Pol. Ac.: Tech. 66(5) 2018

Table 6
OPC agent and OPC DB agent interaction

– transitions for µ13 and µ14 markings based on Fig. 2

Marking
(µ i)

Logical formulas
(Γi)

Transition
(ti)

Next marking
(µ j)

µ13 Γ13
t2 µ1

t5 µ21

µ14 Γ14
t4 µ9

t19 µ18

Table 5
OPC agent and OPC DB agent interaction

– µ13 and µ14 markings based on Fig. 2

Marking description Marking (µ i)

OPC srv available / OPC srv ns available /
OA initialized / DBA initialized /
DB reachable / DB conn established /
Received OA OPC srv data

µ13

OPC srv Available / OPC srv ns available /
OA initialized / DBA initialized / DB reachable /
DB conn established / DB srv data retrieved

µ14

Table 4
OPC agent and OPC DB agent interaction – R13 and R14

relations sets based on Fig. 2

Markings
(µ i)

Relations
(ri:j)

Relation sets
(Ri)

µ13
r13,1 = {µ13, µ1} R13r13,21 = {µ13, µ21}

µ14

r14,9 = {µ14, µ9}
R14

r14,18 = {µ14, µ18}

O of each transition is presented in Table 7. Because this sample
analysis is based only on a part of the Petri net, there are only
#(µ) = 16 different markings that will be taken into consider-
ation, that is µ = {µ1, µ2, …, µ16}. To simplify this analysis
even more, only µ13 and µ14 markings will be selected.

Details of µ13 and µ14 markings can be observed in
Table 4, Table 5 and Table 6. Each such marking µi is simul-
taneously an element of the set of worlds W. The relations
sets Ri visible in Table 4 are elements of a greater relation set
R = {R1, R2, …, R16}. For each world µi of W there is set of
logical formulas Γi such that Γ = {Γ1, Γ2, …, Γ16}. The last re-

Table 7
Transitions input I and output O functions for the markings presented in Table 1

Places

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11

Input I(t1)/
Output O(t1)

functions

I(t1)/O(t1) I I I O

I(t2)/O(t2) O I I I

I(t3)/O(t3) I / O I

I(t4)/O(t4) I / O I

I(t5)/O(t5) I / O O

I(t6)/O(t6) O I I I

I(t7)/O(t7) I / O O I

I(t8)/O(t8) I I O I

I(t9)/O(t9) I /O I / O O

I(t10)/O(t10) O I I I I I

I(t11)/O(t11) I / O I O I

I(t12)/O(t12) I / O I / O O

I(t13)/O(t13) I / O I / O O I

I(t14)/O(t14) I / O I / O I I O

I(t15)/O(t15) I / O I / O O I

I(t16)/O(t16) O I I I I I

I(t17)/O(t17) O I I I I I

I(t18)/O(t18) O I I I I I

I(t19)/O(t19) I I

I(t20)/O(t20) I I

619

Distributed control systems integration and management with an ontology-based multi-agent system

Bull. Pol. Ac.: Tech. 66(5) 2018

quired step relates to a valuation function ν that assigns objects
from a domain of discourse to each term inside each logical
formula of Γi such that (µi, Γi) ⇒ µi j= Γi. Logical formulas
can be derived based on [30–32, 34] and thus are out of the
scope of this work.

7.	 MAS infrastructure for DCS integration

Based on the presented ontology analysis, it became possible to
implement a MAS-based DCS integration system. At the cur-
rent development stage, the MAXS (Multi agent cross-platform
system) platform consists of seven different types of agents
organized hierarchically in three different logical layers, inte-
grating a given DCS, as presented in Fig. 3. However, it remains
open for further development as it is a flexible and scalable
solution. MAXS agents include: the supervisory agent (SA),
node agent (NA), management agent (MA), OPC agent (OA),
discovery agent (DA), OPC database agent (ODBA) and man-
agement database agent (MDBA). The layered MAXS archi-
tecture is widely discussed in [35].

In short, SA is used to dynamically administer other platform
agents that emerge in the platform during runtime, which means
that it can terminate, suspend or create any platform agent. It
can handle the process of agent relocation as well. DA is respon-
sible for remote host environment discoveries. It acquires data
about available OPC server services and creates an OA pool of
agents. The number of OA agents created reflects the number of
OPC servers discovered. Each OA is linked by DA to a single

OPC server. OA is responsible for processing OPC server data.
It configures an OPC server with OPC groups and OPC items.
It reconnects locally or remotely between various different OPC
servers, however it interacts with only one. As a result, OA prop-
agates asynchronously gathered OPC server specific data to all
available listeners. MA is responsible for user interaction with
different OA agents. It is an agent with a GUI. MA provides OPC
server specific data according to OA configuration and allows for
process supervision and control through hierarchically structured,
automatically synchronized OPC groups and an items tree. The
number of MA agents varies over time because it is strictly related
to the number of users operating the system. MA is designed to
receive notifications from all available OA agents. ODBA and
MDBA are responsible for configuring, establishing and main-
taining a connection with the MAXS database on behalf of an OA
or MA. They are used to store and retrieve OPC specific pieces of
information. Both ODBA and MDBA can be used as redundant
communication channels whenever the direct agent communi-
cation channel will become unavailable for an unknown reason.

NA is responsible for manual remote host registration in the
existing MAXS platform. A complete description of the platform
architecture and each platform agent has been presented in [36]
and [37]. In addition to those agents, there are two further JADE
specific agents. Those agents are DF (directory facilitator) and
AMS (agent management system). The DF agent is an optional
component that starts whenever JADE starts. AMS presence is
required for any JADE platform to work properly. A complete
overview of the DF and AMS agents can be found in [38].

8.	 Conclusions

Ontological MAS (multi-agent system) is a software infrastruc-
ture capable of handling every problem related to the DCS (dis-
tributed control system) integration at the different stages of in-
tegration system manufacturing such as design, implementation
and maintenance. Ontology-based MAS methodology has been
known for quite some time now, and in the current situation it
can already be supported by a wide variety of good quality, free
or commercial development tools. The only problem that needs
to be solved is the toolset content which will support the on-
tology-based MAS methodology during solution design, engi-
neering and runtime. The toolset should be understood in terms
of ready, “out of the box” software and analytical solutions.

In the presented approach, a small step has been made to-
wards an explanation of such a toolset contents, presenting the
meaning and usage of each particular element, and generating
MAXS (multi agent cross-platform system) – a functional on-
tology-based MAS which is capable of integrating a dynamic
DCS composed of various sources of data. In the presented ap-
proach to DCS integration, system engineering, UML (unified
modeling language), XSD (extensible markup language schema
definition) and source code are interchangeable and provide
equal support during creation of an ontology representing do-
main knowledge and structure. Each such format can be re-
used simultaneously by an engineering team without the risk of
synchronization problems because the established development Fig. 3. MAXS – a solution to ontological MAS-based DCS integration

620

D. Choiński and M. Senik

Bull. Pol. Ac.: Tech. 66(5) 2018

environment automatically supports maintenance of varied on-
tology formats. FOL is an analytic tool allowing to analyze not
only ontology structure but ontology-based algorithms as well.
To overcome the problem of FOL (first-order logic) undecid-
ability, the FOL presented herein has been extended by means of
modal logic. Such an approach to ontology analysis allows for
studying it in terms of fixed set of worlds (states). This in turn
allows for creation of a domain-based ontology maintaining the
data integrity level in this direction, i.e. from the bottom up, and
reusing well-known formats of various domain data structures.

Acknowledgements. This work was supported by the Ministry
of Science and Higher Education under the BK-UiUA grant.

References
	 [1]	 V. Kulba, S. Nikolsky, and O. Zaikin, “Ontological approach

to modelling of discrete event dynamic system”, Bull. Pol. Ac.:
Tech. 57 (3), 241‒247 (2009).

	 [2]	 A. Byrski, R. Schaefer, M. Smołka, and C. Cotta, “Asymptotic
guarantee of success for multi-agent memetic systems”, Bull.
Pol. Ac.: Tech. 61 (1), 257‒278 (2013).

	 [3]	 D.W. Qian, S.W. Tong, and C.D. Li, “Observer-based leader-fol-
lowing formation control of uncertain multiple agents by integral
sliding mode”, Bull. Pol. Ac.: Tech. 65 (1), 35‒44 (2017).

	 [4]	 G. Babin and W. Cheung, “A Metadatabase-supported shell for
distributed processing and systems integration”, Knowl.-Based
Syst, vol. 21, no. 7, pp. 672‒680, 2008.

	 [5]	 D. Monticolo, S. Mihaita, H. Darwich, and V. Hilaire, “An agent-
based system to build project memories during engineering proj-
ects”, Knowl.-Based Syst., vol. 68, pp. 88‒102, 2014.

	 [6]	 M. Moradi, A. Aghaie, and M. Hosseini, “Knowledge-collector
agents: Applying intelligent agents in marketing decisions with
knowledge management approach”, Knowl.-Based Syst., no. 52,
pp. 181‒193, 2013.

	 [7]	 J. Ashraf, E. Chang, O. K. Hussain, and F. K. Hussain, “On-
tology usage analysis in the ontology lifecycle: A state-of-the-art
review”, Knowl.-Based Syst., no. 80, pp. 34‒47, 2015.

	 [8]	 G. Kalani, Industrial Process Control: Advances and Applica-
tions, Gulf Professional Publishing, 2002.

	 [9]	 X. Hong and W. Jianhua, “An extendable data engine based
on OPC specification”, Computer Standards & Interfaces,
vol. 26(6), pp. 515‒525, 2004.

	[10]	 S. Cavalieri and F. Chiacchio, “Analysis of OPC UA per-
formances”, Computer Standards & Interfaces, vol. 36(1),
pp. 165‒177, 2013.

	[11]	 X. Hong and W. Jianhua, “Using standard components in au-
tomation industry: A study on OPC Specification”, Computer
Standards & Interfaces, vol. 28(4), pp. 386‒395, 2006.

	[12]	 C. Sahin and E.D. Bolat, “Development of remote control and
monitoring of web-based distributed OPC system”, Computer
Standards & Interfaces, vol. 31(5), pp. 984‒993, 2009.

	[13]	 OPC Foundation: Home Page, OPC Foundation, [Online].
		 Available: https://opcfoundation.org. [Accessed 13 August 2017].
	[14]	 F. Iwanitz and J. Lange, OPC – Fundamentals, Implementation

and Application, Huthig Verlag Heidelberg, 2006.
	[15]	 J.M. Zamarreño, R. Mazaeda, J.A. Caminero, A.J. Rivero, and

J.C. Arroyo, “A new plug-in for the creation of OPC servers
based on EcosimPro© simulation software”, Simulation Model-
ling Practice and Theory, vol. 40, pp. 86‒94, 2014.

	[16]	 V. Kapsalis, Ch. Fidas, and L. Hadellis, “Towards a Domain-Spe-
cific Context Acquisition, Presentation and Rule-Based Control
Platform”, Int. J. Pervasive Computing and Communications,
vol. 9(1), 2013.

	[17]	 J.L. Peterson, Petri Net Theory and the Modelling of Systems,
Prentice-Hall, Inc., 1981.

	[18]	 R. David and H. Alla, Discrete, Continuous, and Hybrid Petri
Nets, Springer-Verlag Berlin Heidelberg, 2010.

	[19]	 M.V. Ioradche and P.J. Antsaklis, Supervisory Control of Con-
current Systems. A Petri Net Structural Approach, Birkhauser
Boston, 2006.

	[20]	 E. Villani, P.E. Miyagi, and R. Valette, Modelling and Analysis
of Hybrid Supervisory Systems. A Petri Net Approach, Spring-
er-Verlag London Ltd., 2007.

	[21]	 B.F. Chellas, Modal Logic: An Introduction, Cambridge Univer-
sity Press, 1980.

	[22]	 M.J. Cresswell and G.E. Hughes, A New Introduction to Modal
Logic, Routledge, 1996.

	[23]	 M. Fisher, An Introduction to Practical Formal Methods Using
Temporal Logic, Wiley, 2011.

	[24]	 F. Belardinelli and A. Lomuscio, “Quantified epistemic logics
for reasoning about knowledge in multi-agent systems”, Artif.
Intell., vol. 173, no. 9‒10, pp. 982‒1013, 2009.

	[25]	 F. Belardinelli and A. Lomuscio, “First-Order Linear-time Epis-
temic Logic with Group Knowledge: An Axiomatisation of the
Monodic Fragment”, Fundam. Inform., vol. 106, no. 2‒4, pp.
175‒190, 2011.

	[26]	 W. Van der Hoek and M. Wooldridge, “Model Checking Knowl-
edge and Time.,” SPIN, pp. 95‒111, 2002.

	[27]	 F. Raimondi and A. Lomuscio, “Automatic verification of multi-
agent systems by model checking via ordered binary decision
diagrams”, J. Applied Logic, vol. 5, no. 2, pp. 235‒251, 2007.

	[28]	 A. Lomuscio and B. Woźna, “A Temporal Epistemic Logic with
a Reset Operation”, in AAMAS, 2007.

	[29]	 B. Woźna, A. Lomuscio, and W. Penczek, “Bounded Model
Checking for Knowledge and Real Time”, in AAMAS, 2005.

	[30]	 D. Berardi, D. Calvanese, and D.G. Giacomo, “Reasoning on
UML class diagrams”, in Artif. Intell. 168(1‒2): pp. 70‒118,
2005.

	[31]	 L. Shan and H. Zhu, “A Formal Descriptive Semantics of UML”,
ICFEM, pp. 375‒396, 2008.

	[32]	 B. Beckert, U. Keller, and P.H. Schmitt, “Translating the Object
Constraint Language into First-order Predicate Logic”, in In Pro-
ceedings, VERIFY, Workshop at Federated Logic Conferences
(FLoC), 2002.

	[33]	 B. Woźna and A. Lomuscio, “A Logic for Knowledge, Correct-
ness, and Real Time”, in CLIMA, 2004.

	[34]	 D. Choiński, M. Senik, and B. Pietrzyk, “Ontology-based Man-
agement of a Network for Distributed Control System”, INFO-
COMP, pp. 97‒102, 2014.

	[35]	 D. Choiński and M. Senik, “Multilayer automated methods for
the system integration”, in Luo, Y. (ed), CDVE 2011, LNCS
vol. 6874, pp 86‒93. Springer-Verlag Berlin Heidelberg, 2011.

	[36]	 D. Choiński and M. Senik, “Multi-Agent oriented integra-
tion in Distributed Control System”, in J. O’Shea et al. (eds.),
KES-AMSTA 2011, LNAI. Vol. 6682, Springer, Heidelberg, pp.
231‒240, 2011.

	[37]	 D. Choiński, M. Senik, “Ontology Based Knowledge Manage-
ment and Learning in Multi-Agent System”, in KES-AMSTA
2012, LNCS Vol 7327, Springer, Heidelberg, pp. 65‒74, 2012.

	[38]	 F. Bellifemine, G. Caire, and D. Greenwood, Developing Multi-
Agent Systems with JADE, John Wiley & Sons Ltd, 2007.

