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FRACTIONAL SYSTEMS

A local truncation error estimation for a SubIval solver

M. SOWA∗

Silesian University of Technology, 2a Akademicka St., 44-100 Gliwice, Poland

Abstract. The paper concerns an analysis for SubIval (the subinterval-based method for fractional derivative computations in initial value

problems). A time step size adaptive solver is discussed, for which the formula of a local truncation error is derived. A general form for

a system of linear equations is given for the considered class of problems (for which the analysis is performed in the paper). Two circuit

examples are introduced to display the usefulness of the SubIval solver. For the examples that have been chosen it is possible to obtain

referential solutions through completely different methods. The results obtained through the numerical solver are compared with evaluations

of the referential solutions. The error estimation results obtained for the time steps of the SubIval solver are compared with the actual errors,

being the differences between the numerical solutions and the referential solutions. The paper also contains a comparison of the accuracy

of results obtained through the SubIval solver with the accuracies of other solvers.
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1. Introduction

The first major developments in the field of fractional calculus

date back to the 19th century [1, 2]. Since then, many math-

ematical considerations have been carried out. Apart from it

being a challenging mathematical topic, it has also become

popular of late because of its many applications, e.g. in heat

conduction analyses [3–5], the design and implementation of

fractional order filters [6,7], in the design and analysis of frac-

tional order controllers [8, 9] (including coupled analyses of

control of synchronous machines [10, 11]), electric and mag-

netic field analyses (when materials of complex properties

are considered [12–14]), inverse kinematics [15], continuum

mechanics [16], viscoelasticity [17, 18].

Fractional calculus is also applied in circuit analyses (com-

putational examples of this field have been applied in later

parts of this paper). In circuit analyses, fractional capacitors

are applied in modeling supercapacitors [19–22] and fraction-

al coils have shown to accurately resemble the responses of

some coils with ferromagnetic cores [23, 24].

Elements of fractional calculus include definitions of frac-

tional derivatives and integrals (or generally differintegrals)

with respect to both time (more commonly studied) and space

[25]. The study presented in this paper concerns the Caputo

time derivative of order α ∈ [0, 1] [26]:

ta
Dα

tb
x(t) =

1

Γ(1 − α)

tb∫

ta

x(1)(τ)

(t − τ)α
dτ. (1)

The Caputo definition is equivalent to the oldest definition

(which is that of Riemann and Liouville [27]) if zero initial

conditions are imposed [28].
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The increasing interest in fractional calculus can also be

attributed to the fact that many studies are performed concern-

ing the methods allowing to solve problems with fractional

derivatives and integrals.

The possibility of solving a problem with fractional deriv-

atives by means of a selected method depends on the form of

the problem. For linear problems that can be expressed in the

form of a system of fractional state equations, for some known

source time functions one can apply analytical solutions based

on the Mittag-Leffler function [29,30]. For other problems one

can apply semi-analytical methods (the general form of the so-

lution is assumed as a series of terms whose coefficients are

computed), which are especially well described and tested for

problems which do not require many equations (although they

may contain nonlinear dependencies). These are e.g. the Ado-

mian decomposition method [31,32] and the differential trans-

form method [33]. For a more general approach, which can

deal with the widest variety of problems, one can apply time

stepping solvers, using numerical methods. Some of the most

common are fractional linear multistep methods (backward

difference methods, explained in general in [34]), product in-

tegration (PI) rule methods [35], collocation methods [36,37]

and methods using the Grünwald-Letnikov definition of the

fractional derivative [38].

The study in this paper concerns the application of

a method called SubIval (the subinterval-based numerical

method for fractional derivative computations in initial val-

ue problems, first discussed in [39]). It is a numerical method

that can be applied in time stepping solvers.

2. Application of SubIval

A special notation relating to intervals is used for the differ-

integration:

dα
Ξx(t) = ta

Dα
tb

x(t), (2)

where Ξ ∈ [ta, tb]. SubIval relies on a partition of the differ-

integration interval Ξtot = [t0, tnow] into subintervals (with
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t0 being the initial time instance and tnow being the computed

time instance):

dα
Ξtot

x(t) =

M∑

s=1

dα
Ξs

x(t). (3)

For each subinterval Ξs = [ts start, ts end] if s > 1 then

ts start = ts−1 end. In the first subinterval t1 start = t0, while

in the last one tM end = tnow.

In each of these subintervals the solution is approximated

by means of a polynomial:

dα
Ξtot

x(t) ≈
M∑

s=1

dα
Ξs

x̃s(t). (4)

Each approximation x̃s(t) is built upon nodes denoted by

ts,1, ts,2, . . . ts,ns
(the order of each polynomial x̃s(t) can,

therefore, be given by qs = ns − 1). These are covered by

subintervals denoted by Θs = [ts,1, ts,ns
], where for each

subinterval pair Θs ⊇ Ξs. The subintervals are formed and

modified according to a subinterval dynamics algorithm de-

scribed with great detail (with examples) in [40].

Each approximation can be given by:

x̃s(t) =

ns∑

j=1

xs,jLs,j(t) (5)

where Ls,j denote Lagrange basis polynomials:

Ls,j(ts,k) =

{
0, if k 6= j,

1, if k = j,
(6)

while xs,j are the values of the considered variable computed

at their respective ts,j nodes.

SubIval can be used in a typical time stepping solver, in

which for each subsequently computed time instance t = tnow

the only values treated as unknowns are the variables selected

at this time instance. Values of previous time instances are not

modified anymore and treated as known values.

Through the subinterval dynamics and local polynomial

differintegrations (applying analytical formulae for monomials

[42, 43]) SubIval leads to a convenient implicit formula:

dα
Ξtot

x(t) ≈ axM,nM
+ b, (7)

where a and b are computed for each variable separately every

time when a new time instance tnow is selected. a results from

the differintegrations of the Lagrange basis polynomial being

the multiplier of the still unknown value xM,nM
:

a = dα
ΞM

LM,nM
(t). (8)

One can distinguish two terms in b:

b = bM + bprev, (9)

where bM depends on the differintegrals in the ΞM subinter-

val:

bM = dα
ΞM

nM−1∑

j=1

xM,jLM,j(t), (10)

while bprev depends on the differintegrals in the remaining

subintervals with indices s = 1, 2, . . .M − 1:

bprev =

M−1∑

s=1

dα
Ξs

ns∑

j=1

xs,jLs,j(t). (11)

3. Approximation of the local truncation error

One of the properties of SubIval and its subinterval dynam-

ics is that they make only the M -th subinterval (being the

rightmost subinterval on the time axis) cover the node with

unknown variables. Also, in the typical time stepping solver

it is designed for, one only controls the time step size be-

tween tnow and the previous node (this step size is further on

denoted by ∆tnow).

Assuming the solution x(t) is infinitely differentiable in

ΘM then it can be expressed by means of a power series:

x(tloc) = c0 +
∞∑

k=1

cktkloc, (12)

where tloc = t − tM,1.

The error of the fractional derivative approximation re-

sulting from SubIval, in the subinterval ΞM , is given by the

formula:

eTrue M = dα
ΞM

x(tloc) − dα
ΞM

x̃M (tloc). (13)

One of the purposes of estimating the local truncation

error is to be able to control the error of the numerical com-

putations. If one can only control the error by changing ∆tnow

then eTrue M must be given in terms of this variable.

Because the considerations concern only the subinterval

ΞM and nodes covered by ΘM – a simpler notation: tj = tM,j

will be used in this section along with the number of nodes

n = nM .

The step sizes of ΘM are denoted by:

∆tj = tj − tj−1, (14)

with their indices starting from j = 2. Hence, the time in-

stances can be given by:

tj =





0, if j = 1,
j∑

k=2

∆tk, if j = 2, . . . n.
(15)

Each subsequent step size will be modified by multiplying the

previous one by a computed coefficient (denoted by ηj):

∆tj = ηj∆tj−1, (16)

with the indices of ηj starting from j = 3. By introducing

µj = η−1
j the step sizes can be given by:

∆tj =





(
n∏

r=j+1

µr

)
∆tnow, if j = 2, . . . n − 1,

∆tnow, if j = n.

(17)
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Finally, the time instances are given by:

tj =





0, if j = 0,

∆tnow

j∑
k=2

n∏
r=k+1

µr, if j = 2, . . . n − 1,

∆tnow

(
1 +

j∑
k=2

n∏
r=k+1

µr

)
, if j = n.

(18)

The following steps are involved in obtaining a formula

for eTrue M :

• as it is done in a typical local truncation error estima-

tion [41] the errors of the computed variable at the selected

time instances are omitted and each xj is substituted by the

respective x(tj),
• Lagrange basis polynomials are given in terms of depen-

dencies on ∆tnow and the µ coefficients,

• x(tloc) is truncated into a sum of finite terms, where the

remaining polynomial is at least one order higher than that

of the approximation x̃M (tloc),
• the fractional derivative of x̃(tloc) and that of the finite

sum representation of x(tloc) are computed (for the inter-

val ΞM ) and the difference between them is obtained.

In the last step – the differintegration of both the exact solu-

tion and the approximating polynomial can be done by means

of the already mentioned analytical formulae for monomials

(which SubIval uses). For a monomial ctkloc (with c ∈ R and

k ∈ Z+) the differintegration in the interval Ξ = [tloc a, tloc b]
results in [42, 43]:

dα
Ξctkloc =

kc

Γ(1 − α)
tk−α
loc

(
B tloc b

tloc

(k, 1 − α) − B tloc a
tloc

(k, 1 − α)

)
,

(19)

where

Bρ(k, 1 − α) =

Γ(k)Γ(1−α)

Γ(k+1−α)


1−(1−ρ)1−α

k−1∑

j=0

ρj
j−1∏
i=0

(1 − α + i)

j!


.

(20)

In order to avoid human error – the tiresome derivations of the

truncated form of eTrue M can be done by means of a selected

computer algebra system allowing for symbolic computation.

The SymPy Python library [44] has been used for this pur-

pose. Initially the symbolic form of the truncated eTrue M has

been studied for the polynomial orders q from 1 to 5 with

ΞM = ΘM . The obtained formulae have the general form:

eTrue M =
νq

Γ(q+2−α)
cq+1∆tq+1−α

now + O(∆tq+2−α
now ). (21)

The νq coefficients obtained for q = 1, 2 and 3 are given in

Table 1 (for higher polynomial orders the expressions are very

long and therefore have not been presented in the paper). The

obtained form suggests that the reduction of the step sizes

leads to smaller errors as is the case when using BDF (back-

ward differentiation formulae) for the derivative order α = 1.

Moreover, the above formula represents the BDF error for

α = 1.

In order to obtain an error estimation in a single time step

one must compare at least two approximations. A two stage

approach is proposed in the study where the first one (called

stage A) applies a polynomial of order q−1 to obtain x̃M (t),
while the second stage (called stage B) applies a polynomial

of order q. Obviously, the theoretically more accurate results

of the stage B will be selected in the final solution, however

the error estimation:

estages = dα
ΞM A

x̃M B(tloc) − dα
ΞM A

x̃M A(tloc) (22)

will take into account a term lacking in stage A (the inter-

val ΞM A is ΞM from stage A). In order to obtain a general

formula for this term (and the remainder appearing as a con-

sequence of terms not included in both stage approximations),

like before, the SymPy library has been applied. The obtained

general form is:

estages =
νq−1

Γ(q + 1 − α)
cq∆tq−α

now + O(∆tq+1−α
now ). (23)

where a resemblance to eTrue M for the polynomial order q−1
is evident.

Table 1

νq coefficients of eTrue M for q = 1, 2 and 3

q νq

1 α

2 α(µ3 + 1)2−α(αµ3 − µ3 + 2)

3

α(µ3µ4 + µ4 + 1)2−α(α2µ2

3
µ2

4
+ α2µ3µ2

4

−3αµ2

3
µ2

4
− αµ3µ2

4
+ 4αµ3µ4 + 2αµ2

4

+2αµ4 + 2µ2

3
µ2

4
− 4µ3µ4 − 2µ2

4
+ 4µ4 + 6)

4. Step size adaptivity

For the considerations in this section an error approximation

is assumed by considering only the first term of estages:

e =
νq−1

Γ(q + 1 − α)
cq∆tq−α

now . (24)

Assuming ectrl represents an acceptable error then the step

size for which e takes this value is given by:

∆tnew = q−α

√
ectrl

c
, (25)

where for simplicity the c coefficient has been introduced:

c =
νq−1cq

Γ(q + 1 − α)
. (26)

The denominator of (25) can be obtained from the relation

between the computed error estimation e and the step size

∆tnow applied at that moment:

q−α
√

c =
q−α
√

e

∆tnow
, (27)

which leads to the relation:

η =
∆tnew

∆tnow
= q−α

√
ectrl

e
, (28)
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meaning that an applied step size ∆tnow should be multiplied

by η in order for the error to tend to ectrl.

A few remarks can be made at this stage of the analysis:

• the obtained error estimation e appears in the denominator,

hence if the obtained value is 0 then η can be set to 1, thus

not modifying the step size,

• in some cases when a user sets ectrl too low the SubIval

solver could take a great amount of time to obtain the so-

lution, hence, for extreme cases a minimum step size value

∆tmin can be set,

• for very small error values, a rational approach could be

not to greatly increase the step size (even for very small

errors, as that might change), hence, a maximum step size

∆tmax can also be set,

• not knowing the scale of a variable it is better to compute

the errors as relative values (also, ectrl would be given in

percentages),

• for several variables under fractional derivatives (state vari-

ables) the smallest η can be selected, following a pes-

simistic approach,

• the error estimation is performed after an approximation

of the derivative (and the solution) had been obtained, the

time step size modification is, hence, performed for the next

step size; however, if the obtained error value is too large

(exceeding a previously set parameter emax) then the time

step should be repeated with a new ∆tnow which leads to

a new time instance tnow.

When a new time instance tnow is selected then a new set of

parameters a, b and bM can be obtained for each variable in

both stages. In stage A one can apply a and bM to obtain:

dA = dα
ΞM A

x̃M A(tloc) (29)

appearing in (22). However, in stage B the coefficients a and

bM are obtained from a differintegration in a new interval

ΞM 6= ΞM A, hence an additional differintegration must be

performed to obtain the term:

dB = dα
ΞM A

x̃M B(tloc). (30)

In practice, the approximations of the derivative and the

error estimation that follows can be performed using various

strategies, which have been explained in Sec. 6.

5. Considered class of problems

The problems for which the local truncation error estimation

is considered can be described by the following system of

equations:




MIy(t) + MIIx(t) = Tv(t),

d
α

Ξx(t) + MIIIy(t) + MIVx(t) = 0nx
,

(31)

where

• x(t) is the vector of state variables (its length is denoted

by nx),

• y(t) is a vector of the remaining variables introduced to

the solution (the length of the vector is denoted by ny),

• v(t) contains the source time functions (the vector length

is given by nv),

• d
α

Ξx(t) is a vector of fractional derivatives of the state

variables:

d
α

Ξx(t) = [ dα1

Ξ x1(t) dα2

Ξ x2(t) . . . d
αnx

Ξ xnx
(t) ]T (32)

with α representing a vector of the derivative orders

α1, α2, . . . αnx
; with the interval Ξ = [t0, t],

• 0nx
is a vector of nx zeros,

• MI is an ny × ny matrix,

• MII is an ny × nx matrix,

• MIII is an nx × ny matrix,

• MIV is an nx × nx matrix,

• T is an ny × nv matrix,

Also, for further consideration, the vector:

w(t) = [ y(t) x(t) ]T (33)

is defined, containing all the variables placed in the solution.

For each stage of the time stepping solver one can obtain

the a and b coefficient pair. All of the a coefficients can be

placed in a vector with indices corresponding to those of the

state variables:

a = [ a1 a2 . . . anx
]T. (34)

The same can be done for the b coefficients:

b = [ b1 b2 . . . bnx
]T. (35)

By applying the SubIval approximation (7) at the time in-

stance t = tnow one obtains the system of equations:



MI MII

MIII MIV + diag(a)


w =




Tv(tnow)

−b


, (36)

with w being the numerical solution for w(tnow).

6. Error computation strategies

The most obvious approach to the error estimation is to take

the following steps:

(a) compute a and b for both stages, along with bM for sta-

ge A, while for stage B compute the additional coeffi-

cients:

aM A = dα
ΞM A

LM,nM
(t) (37)

and

bM A = dα
ΞM A

nM−1∑

j=1

xM,jLM,j(t), (38)

(b) compute the solution of (36) at both stages (for a select-

ed state variable x the solution is further on denoted by

xnow A for stage A and xnow B for stage B),

(c) obtain dA mentioned in (29) through:

dA = axnow A + bM , (39)

and dB mentioned in (30) through:

dB = aM Axnow B + bM A, (40)
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(d) finally, a relative difference between dA and dB is tak-

en into account to evaluate the error estimation e (this is

done for each variable).

The above is further on referred to as the d approach.

A slightly modified approach would be to compute step (a)

but only obtain the solution for stage B. dA would be then

computed through (39) using xnow B instead of xnow A. dB is

still computed using (40). This simplified approach is further

on called the ds approach.

Another approach is tested in the study (being an extension

to the d-based approach), where in addition to the differences

between the variable approximations – selected variables from

the solution vector w are compared for both stages. This is

further on called the w approach.

Finally, an approach is tested, which also adds error com-

putations of w, but for the derivative error computations – the

component dA is obtained from the solution of stage B (like

in the ds approach). This is further on called the ws approach.

7. Computational examples

Two circuit examples have been selected, which can be de-

scribed by the system of equations given by (31). For the

selected examples one can provide referential solutions that

can be obtained through completely different methods (not

involving the approximation of fractional derivatives).

7.1. Circuit in periodic steady-state. The first considered

example is presented in Fig. 1. The problem has a relatively

easily obtainable referential steady-state solution using a com-

plex number approach. As it is a linear problem then for the

source frequencies f = 50, 150 Hz the solutions can be ob-

tained separately and then added using the superposition prin-

ciple.

Fig. 1. Circuit with periodic excitation and fractional coils and ca-

pacitors (each fractional element is marked by parentheses and the

order of the element)

For a single frequency a complex number approach can

be applied where one solves the system:

[
MI MII

MIII MIV + diag(s)

]
w =

[
Tv

0nx

]
, (41)

with

• w being a vector of the complex number representations

of the variables in w(t) (for the considered frequency),

• v is the complex number representation of the source vec-

tor for the considered frequency,

• s results from the periodic steady-state differintegration

and is given by:

s = [ j
α1

ωα1 j
α2

ωα2 . . . j
αnx

ωαnx ]T, (42)

where for the indices i = 1, 2, . . . nx:

j
αi

= exp
(
jαi

π

2

)
. (43)

The options for the numerical solver are given in Table 2.

Table 2

Parameters for the numerical computations of the SubIval solver. pmov is

the maximum value of q (being the polynomial order of exM in stage B)

parameter name pmov emax ectrl ∆tmin ∆tmax

value 4 0.1% 10−2 % T/20 T/103

The SubIval solver allows to obtain a transient solution.

For each period t ∈ [(k − 1)T, kT ] the value has been evalu-

ated:

esteady = max
i=1,2,...nw

100

T

∣∣∣∣∣
kT∫

t=(k−1)T

wi(t) dt

∣∣∣∣∣
wi abs max

% (44)

representing a measure determining whether the circuit is in

a steady-state (wi(t) is the i-th variable in the w(t) vector

and wi abs max is the maximum of absolute values of wi(t)
in the considered period). The transient solution has been ob-

tained for nT = 20 periods, which was enough for esteady to

become lower than 10−3%.

A comparison between the results (for the first and last

periods) obtained through the SubIval solver and the refer-

ential (periodic steady-state) solution is given in Fig. 2. The

variables selected for the comparison are the state variables:

x(t) = [ iα iγ uβ uκ ]T. (45)

So far one can observe that the numerical solver is per-

forming properly as the results are very close in the steady-

state. An analysis of both the estimated and actual error of the

derivative approximation (for the discussed example) is pre-

sented in Sec. 8. The results depicted in the figure have been

obtained with an application of the ds approach. However, the

other approaches yielded results that are not visibly different.
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Fig. 2. Comparison of time functions obtained by the SubIval solver

and those of the referential (periodic steady-state) solution

7.2. Transient example. The second example that has been

studied is one concerning the transient response of the parallel

RLC circuit presented in Fig. 3.

Fig. 3. Circuit with unit step excitation (each fractional element is

marked by parentheses and the order of the element)

For this simple example it is possible to obtain a referen-

tial analytical solution. It can be obtained similarly as in [45],

where a fractional series RLC circuit was studied. According

to this solution – the capacitor voltage uC is:

uC(t) = J0
λ1Eα,α+1(λ1t

α) − λ2Eα,α+1(λ2t
α)

C(λ1 − λ2)
tα, (46)

while the current through the coil iL is given by:

iL(t) = J0
Eα,α+1(λ1t

α) − Eα,α+1(λ2t
α)

2LC
√

∆
tα, (47)

where

∆ =
1

4R2L2
− 1

LC
, (48)

while

λ1 = − 1

2RL
+
√

∆ (49)

and

λ2 = − 1

2RL
−
√

∆. (50)

In (46) and (47) the notation:

Eα,β(z) =
∞∑

k=0

zk

Γ(αk + β)
(51)

is used for the two parameter Mittag-Leffler function. The so-

lution has been obtained for the interval t ∈ [0, Tmax], where

Tmax = 0.14 s was selected. A comparison of the results ob-

tained through the SubIval solver and through evaluations of

the analytical solution is presented in Fig. 4.

Fig. 4. Comparison of time functions obtained by the SubIval solver

and those of the referential solution

For this example one can also notice that the results ob-

tained through both methods are very close. Again the ds ap-

proach has been applied to obtain the depicted results. How-

ever, as it was the case with the previous example, the results

obtained when the other error computation approaches have

been applied are not visibly different than those presented.

8. Error analysis

In the SubIval solver the error estimation is computed for each

fractional derivative, which for simplicity can denoted by:

di(t) = dα
Ξxi(t). (52)
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A measure of the actual accuracy of the SubIval solver is then

computed by means of the following formula for each di:

ei = 100 · |di(tj) − di num j |
max

j=1,2,...nt

|di(tj)|
%, (53)

where t1, t2, . . . tnt
are the nodes on the time axis that have

been selected by the SubIval solver, di(tj) is the value ob-

tained for tj by means of the referential solution and di num j

is the value of di(tj) obtained by the SubIval solver.

A comparison of the maximum of errors (for each selected

time instance) computed through the above formula with the

maximum of estimated error values is depicted in Fig. 5 for

the steady-state periodic example discussed in Subsec. 7.1.

The figure presents results for each of the considered error

computation approaches given in Sec. 6.

Fig. 5. Comparison of the maximum of actual and estimated error

values for the periodic steady-state example

There are differences between the maximum values of the

estimated and actual error. The pattern is, however, similar

and both errors tend to a value near that of the selected ectrl

(where, for both examples, the value 10−2 % was selected for

this parameter). This can be observed in Table 3, where the

average values of the actual and estimated errors are given for

each error estimation approach.

Table 3

Comparison of the average of actual and estimated error values (i.e.

maximums for all variables) for both considered examples (values are

rounded to 3 significant digits, all values are in percentages)

approach
periodic example transient example

actual estimated actual estimated

d 1.59 · 10−2 1.14 · 10−2 4.11 · 10−2 1.02 · 10−2

ds 1.24 · 10−2 1.02 · 10−2 7.09 · 10−3 1.14 · 10−2

w 1.34 · 10−2 1.14 · 10−2 4.05 · 10−2 1.01 · 10−2

ws 1.13 · 10−2 1.08 · 10−2 7.09 · 10−3 1.14 · 10−2

The ds approach seems to yield the best results as the er-

ror is kept closest to ectrl throughout the solving process. The

ws approach works similarly, with no surprise as it also takes

into account the same error values (though adding its own –

basing on other variables, as explained previously in Sec. 6.

Figure 6 displays the maximum values of the actual and

estimated error for the transient example of Subsec. 7.2.

Fig. 6. Comparison of the maximum of actual and estimated error

values for the transient circuit example

This time one can clearly see an advantage of the ds and

ws approaches. It can also be observed in the average values

of the error in Table 3.

9. Remarks on computation tools

The computations of SubIval and the adaptive step size solver

have been performed with own C# programs applying a DLL

available at [46]. The library uses a part of the code given

in [47] for the computation of the gamma function.

The SubIval step size adaptive solver required a system

of equations to be solved for each iteration. In these compu-

tations classes from the MathNet Numerics library [48] have

been applied for matrix and vector operations.

10. SubIval in comparison to other methods

SubIval is a method that can be applied in time stepping

solvers for the approximation of the fractional derivative in

the Caputo definition of order α ∈ (0, 1]. A comparison has

been performed with methods also belonging to this catego-

ry. The methods can also be those that can be applied for the

Riemann-Liouville fractional derivative as for the examples

used in this paper zero initial conditions are applied.

There are not many methods whose implementations are

available so that one can build a FDAE (fractional differential

algebraic equations) solver upon them.
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Some rare cases of solvers applicable in Matlab [49] (or

GNU Octave [50]) are described in [51, 52], which can be

found at [53]. They are based on PI (product integration) rule

methods and FLMM (fractional linear multistep methods).

The FLMM solvers have been implemented only for the case

of a common fractional derivative order, hence these solvers

cannot be applied for the periodic example. The available

solvers are based on the following methods (the abbreviations

in parentheses are for further reference):

• explicit product integration of rectangular type (PI1 Ex

solver),

• implicit product integration of rectangular type (PI1 Im

solver),

• implicit product integration of trapezoidal type (PI2 Im

solver),

• product integration with predictor-corrector (PI12 PC

solver),

• FLMM applying trapezoidal rule integration (FLMM T

solver),

• FLMM applying the Newton-Gregory formula for integra-

tion (FLMM NG solver),

• FLMM applying the second order backward differentiation

formula (FLMM BDF2 solver).

Another possibility is the implementation of a method

basing on the Grünwald-Letnikov approximation [54]. The

Grünwald-Letnikov definition is equivalent with the Riemann-

Liouville definition [55]. For the Caputo derivative it can be

described by:

t0
Dα

t x(t) ≈ 1

∆tα

j=N∑

j=0

(−1)j Γ(α + 1)

j!Γ(α−j+1)
x(t − j∆t)

−x(t0)(t − t0)
−α

Γ(1 − α)
,

(54)

with N being the index of the current time step. The solver

basing on this method has been implemented as an implicit

solver in GNU Octave. It is further on called the GL solver.

Both of the computational examples of Section 7 have

been solved with the PI solvers, the FLMM solvers and the

GL solver. As their implementations are performed in a Com-

puter Algebra System (as opposed to the SubIval solver, which

has been written in C#) it will take much longer for them to

complete the computations, hence the computation times are

not compared. What can be reliably compared is the accuracy

of the results. The referential solutions have been implement-

ed in GNU Octave – an auxiliary function [56, 57] has been

used for the computations of the Mittag-Leffler function in

(46) and (47).

In order to verify the result, error computations have been

performed just like for the SubIval solver, i.e. applying (53).

For all state variables, the average of errors for all time in-

stances have been computed. The maximum of those values,

for all solvers and both examples, is given in Table 4.

The mentioned solvers are only implemented for constant

step sizes, hence in all cases the minimum step size applied

for the SubIval solver ∆tmin has been applied initially and

further tests have been performed to observe if an increase

of this value resulted in an increase in accuracy. Ultimately,

the lowest error has been recorded. In the case of SubIval –

the results are presented for the time step size adaptive solver

with the ds approach.

Table 4

Solver comparison: average error values (maximums for all variables) for

both considered examples (*the solvers suffered from stability issues)

solver periodic example transient example

SubIval solver 1.24 · 10−2 7.09 · 10−3

PI1 Ex solver failed* 1.29

PI1 Im solver 8.02 · 10−1 1.34 · 10−1

PI2 Im solver 4.66 · 10−2 1.10 · 10−1

PI12 PC solver failed* 1.10 · 10−1

FLMM T solver – 1.11 · 10−1

FLMM NG solver – 1.11 · 10−1

FLMM BDF2 solver – 1.08 · 10−1

GL solver 7.23 · 10−1 1.24 · 10−1

The following observations can be made:

• the most accurate results have been obtained through SubI-

val solver,

• as for the other solvers – in general the best performance

has been observed for the PI2 Im solver,

• the explicit solvers failed to properly solve the periodic

example (stability issues have been observed).

11. Summary and concluding remarks

The local truncation error estimation for a solver based on

SubIval has been studied.

The details on the core computations of SubIval have been

first presented (Sec. 2) and an approximate formula for a local

truncation error has been derived (Sec. 3).

Then the step size adaptivity in the SubIval solver has

been discussed (Sec. 4).

A class of linear problems has been defined (Sec. 5) for

which the research of this paper has been conducted.

For the error formula – various approaches have been pro-

posed (Sec. 6) for the computation of the estimated error.

Two circuit problems with known referential solutions

have been introduced (Subsec. 7.1 and 7.2 respectively) to

check the correctness of the error estimation. The error es-

timation results (in comparison to the actual differences be-

tween the numerical and referential solutions) have been pre-

sented in Sec. 8.

A few additional remarks can be added as to the error

estimation results. All strategies for the error estimation per-

formed similarly – keeping the error within range of the ectrl

value for the periodic steady-state example, while the ds and

ws approaches performed significantly better for the transient

example. This could be caused by the fact that the local trun-

cation error formula is actually derived from the beginning

with an assumption of errors omitted for the values computed

at each of the time instances. The ds and ws approaches do

take the same solutions for the computations of the fractional
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derivatives in both stages (called stage A and stage B), which

could be the reason for the more accurate resemblance of the

actual error when using these approaches.

One source of inaccuracies in the error estimation that

is worth mentioning is the fact that the step size is always

adapted using results from preceding time steps (unless the

time step is repeated, although such an occurrence was not

necessary as the computed error values were all below emax).

Another source of inaccuracies is that the estimation is

done by computing the differintegrals for ΞM and the actual

error has been obtained for the entire interval.

Judging by the results presented in the paper – the ds ap-

proach should be used for the considered class of problems

as it yields the best results and requires only one solution to

be computed at each time step Additionally, no advantages

have been observed when adding errors of selected variables

in w(t) (which resulted in the ws approach).

The ws approach could provide a safeguard in nonlinear

problems if the derivative error causes much greater errors for

other variables. This, however, is a topic reserved for future

studies.
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