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FRACTIONAL SYSTEMS

Stability conditions for fractional-order linear equations with delays
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Abstract. The problem of stability of the Grünwald-Letnikov-type linear fractional-order discrete-time systems with delays is discussed.

For the stability analysis of the considered systems the Z -transform is used. The sufficient conditions for the asymptotic stability of the

considered systems are presented. Using conditions related to eigenvalues of the matrices defining the linear difference systems, one can

determine the regions of location of eigenvalues of matrices associated to the systems in order to guarantee the asymptotic stability of the

considered systems. Some of these regions are illustrated with relevant examples.
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1. Introduction

Fractional integrals, derivatives and differences of any order

are the basic concepts in fractional calculus. The essentials of

the corresponding mathematical theory were discovered over

300 years ago. Recently, fractional calculus in both continu-

ous and discrete cases has played an important role in many

scientific and engineering fields. For a comprehensive review

of theory and applications of fractional calculus, we refer the

reader to [1–5,7–10,16]. The importance of discrete case can

be examined in applications, see [11–13].

One of the most important issues that should be solved

for fractional order systems is stability analysis. It is diffi-

cult to find a valid tool to analyze the stability of fractional

equations. In the case of linear fractional order difference sys-

tems, the Z -transform can be used as an effective method for

stability analysis, see for instance [5, 14, 15, 17–19]. In the

literature one can find a couple of approaches to the notion

of stability of difference fractional systems or equations. For

example in [20] authors discuss qualitative properties of the

two-term linear fractional difference equation; in [21] stabil-

ity regions for linear fractional differential systems and their

discretizations are presented.

In our paper we deal with the problem of working out

a direct stability conditions for linear discrete-time fractional

order systems with the delay. Observe that in [22] one can

find the conditions for practical stability and for asymptotic

stability of fractional discrete-time linear scalar systems with

one constant delay, which is standard and positive. We consid-

er matrix systems with a finite sequence of delays. However,

the final condition is stated for systems with one delay and it

is connected with eigenvalues of matrices of considered sys-

tems. Our results are illustrated by examples, where plots of

stability regions are presented according to delays and orders.
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We also stress that systems with step h > 0, order α ∈ (0, 1]
and delays k0 > 0 are studied. Note that taking step h tend-

ing to zero resembles the kind of approximations typical of

continuous-time systems. However, a comparison with pa-

per [23] that investigates stability and asymptotic properties of

autonomous fractional differential systems with a time delay

is not made.

The paper is organized as follows. In Sec. 2 we gather

some results needed in the sequel. The equivalent descrip-

tions of the considered linear fractional-order discrete-time

systems with delays and their solutions are discussed in Sec. 3.

Next, Sec. 4 contains the stability analysis of linear difference

systems with positive fractional orders. Additionally, similar-

ly as in [18, 19, 24] we prove the conditions connected with

eigenvalues of the matrices that define the considered linear

difference systems. Finally, we also include a simple example

in order to illustrate the presented conditions and calculate

trajectories for linear system with two variables.

2. Preliminaries

We begin the preliminaries by defining special coefficients,

which is common in fractional discrete calculus. They play

an important role in definition of the Grünwald-Letnikov-type

fractional-order difference. The following sequence of coeffi-

cients is defined by:

a(α)(k) :=







1 for k = 0

(−1)k α(α − 1)...(α − k + 1)

k!
for k ∈ N,

where α ∈ R. Since
α(α−1)...(α−k+1)

k! =
(

α
k

)

, the sequence
(

a(α)(k)
)

k∈N0

can be rewritten using the generalized bino-

mial
(

α
k

)

as follows a(α)(k) = (−1)k
(

α
k

)

. It is much better to

calculate the sequence using recurrence definition:

a(α)(0) := 1,

a(α)(k + 1) :=
(

1 − α+1
k+1

)

a(α)(k), k ∈ N ∪ {0} =: N0.
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It is easy to see that for 0 < α ≤ 1 we have that a(−α)(k) > 0,

k ∈ N0. While a(α)(0) = 1 and a(α)(k) < 0 for k > 0. For

more properties of function a(α) : N0 → R, see [6, 8].

Consider a discrete-variable bounded real-valued function

x(·). Information and application of the Grünwald-Letnikov

fractional-order backward difference with constant order can

be found, for example, in [3, 8, 9].

Definition 1. The Grünwald-Letnikov fractional-order back-

ward difference (GL-FOBD) with an order α ∈ R and step

h > 0 is defined as a sum

(∆α
hx) (kh) =

k
∑

i=0

a(α)(i)x((k − i)h)h−α =

=
[

1 a(α)(1) · · · a(α)(k)
]













x(kh)
x((k − 1)h)

· · ·
x(h)
x(0)













h−α.
(1)

The GL-FOBD may be expressed as a discrete convo-

lution: (∆α
hx) (kh) = h−α (a ∗ x) (k) = h−α (x ∗ a) (k) ,

where a(k) := a(α)(k), x(k) = x(kh). In the particular

case of constant order function and h = 1, we have the

following formulas:
(

∆0x
)

(k) = x(k) and (∆qx) (k) =
k
∑

i=0

(−1)i
(

q
i

)

x(k − i) for k > q − 1 and q ∈ N.

Let us recall that one-sided Z -transform of a sequence

(x(k))k∈N0
is a complex function given by

X(z) := Z [x](z) =

∞
∑

k=0

x(k)

zk
, (2)

where z ∈ C denotes a complex number for which the series

(2) converges absolutely. It is a useful tool for solving dif-

ference equations with initial conditions. We assume that all

discrete functions are zero for negative arguments. Note that

since a(α)(k) = (−1)k
(

α
k

)

, then for |z| > 1 and α ∈ R we

have

Z

[

a(α)
]

(z) =

∞
∑

k=0

(−1)k

(

α

k

)

z−k =
(

1 − z−1
)α

. (3)

As the GL-FOBD for constant orders is discrete one-sided

convolution, we obtain the following result.

Proposition 2. Let α ∈ R. Then

Z [∆α
hx] (z) = h−α

(

1 − z−1
)α

X(z),

where X(z) = Z [x](z) and x(k) = x(kh).

Proof. We need only to use formula (3) and Z -transform of

one-sided convolution. �

Proposition 3. Let α ∈ R, k0 ∈ N1, and

y(k) := (∆α
hx) ((k + k0)h).

Then
Z [y] (z)

= zk0

(

h−α
(

1−z−1
)α

X(z)−

k0−1
∑

p=0

z−p (∆α
hx) (ph)

)

,
(4)

where X(z) = Z [x](z) and x(k) = x(kh).

Proof. It is the consequence of Proposition 2 and the proper-

ties of Z -transform. �

For simple example let us observe that for k0 = 1 we

have that if y(k) := (∆α
hx) ((k + 1)h), then Z [y] (z) =

zh−α
((

1 − z−1
)α

X(z)− x(0)
)

, as (∆α
hx) (0) = x(0)h−α.

3. Linear fractional-order system descriptions

In this section we present the system’s description that is used

in the stability analysis. Let us consider the following system

(∆α
hx) (kh) =

k0
∑

i=0

Aix((k − i)h), k ≥ k0 (5)

with initial values x(0), x(1), . . . , x(k0 − 1). Moreover, k0 is

number of delays: k0 ∈ N1, h > 0, α ∈ (0, 1]∩Q, x(k) ∈ Rn,

Ai ∈ Rn×n. For k ≥ 0 we can rewrite system (5) in the fol-

lowing way:

(∆α
hx) ((k+k0)h) =

k0
∑

i=0

Aix((k+k0−i)h), k ≥ 0 (6)

with initial values x(0), x(1), . . . , x(k0 − 1). Observe that if

k0 = 1 and A0 = 0 in (5) (or equivalently (6)), then we get

a system in the classical Grünwald-Letnikov forward differ-

ence form.

Taking into account the definition of the fractional-order

operator and assuming that I − hαA0 is invertible, the solu-

tion of (5) can be written in the following recurrence way, for

k ≥ k0

x(kh) = (I − hαA0)
−1

(

hα

k0
∑

i=1

Aix((k − i)h)

−

k
∑

i=1

a(α)(i)x((k − i)h)

)

.

(7)

The case: k0 = 1 and A0 = 0 was considered in [5] and

many other, and then the recurrence solution is as follows:

x(kh) = hαA1x((k − 1)h) −
k
∑

i=1

a(α)(i)x((k − i)h). (8)

If k0 = 1 and A0 6= 0, then we have

x(kh) = (I − hαA0)
−1

(

hαA1x((k − 1)h)

−

k
∑

i=1

a(α)(i)x((k − i)h)

)

.

(9)

Proposition 4. Let l ∈ N1, h > 0, α ∈ (0, 1] ∩ Q,

x(k) ∈ Rn, Ai ∈ Rn×n. Then, system (5) with initial val-

ues x(0), x(1), . . . , x(l − 1) has unique solution given by the

following formula
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x(kh) =

k0−1
∑

p=0

Φ(k − p) (∆α
hx) (ph)

−

k0
∑

i=0

k0−i−1
∑

l=0

Φ(k − l − i)Aix(lh),

(10)

where

Φ(k) = Z
−1
[

hα
(

1 − z−1
)−α

M−1
]

(k)

with

M = I −

(

h

1 − z−1

)α k0
∑

i=0

Aiz
−i.

Proof. Taking Z -transform of system (6) we get the following

zk0h−α(1 − z−1)αX(z) − zk0

k0−1
∑

p=0

z−p (∆α
hx) (ph)

=

k0
∑

i=0

Ai

(

zk0−i

[

X(z) −

k0−i−1
∑

l=0

z−lx(lh)

])

,

where X(z) = Z [x](z). Then,

X(z) = hα(1 − z−1)−αM−1F (z), (11)

where

M = I −

(

h

1 − z−1

)α k0
∑

i=0

Aiz
−i

and

F (z) =

k0−1
∑

p=0

z−p (∆α
hx) (ph) −

k0
∑

i=0

Ai

k0−i−1
∑

l=0

z−l−ix(lh).

Now to get the thesis we need to take inverse Z -transform

of (11). �

Formula (10) agrees with those proposed in [5] for the

situation with A1 6= 0 and Ai = 0 for i 6= 1. Then,

M = I −

(

h

1 − z−1

)α
1

z
A1,

and

Φ(k) = Z
−1
[

hα(1 − z−1)−αM−1
]

(k),

so x(kh) = Φ(k)x(0)h−α, with simple form of F (z) =
x(0)h−α.

4. Stability conditions and examples

We say that the constant vector xeq = (xeq
1 , . . . , xeq

n ) is an

equilibrium point of fractional difference system (6) (or eqi-

valently (5)) if and only if

(∆α
hx

eq
i ) ((k + k0)h) =

k0
∑

i=0

Aix
eq
j ,

where i = 1, . . . , n and k ∈ N0. Note that the trivial solution

x ≡ 0 is an equilibrium point of system (6) (or eqivalent-

ly (5)).

Let x(s) := (x1(kh), x2(kh), . . . , xn(kh))
T
∈ Rn.

Definition 5. The equilibrium point xeq = 0 of (6) (or eqiva-

lently (5)) is said to be

(a) stable if, for each ǫ > 0, there exists δ = δ (ǫ) > 0 such

that ‖x(0)‖ < δ implies ‖x(k)‖ < ǫ, for all k ∈ N0.

(b) asymptotically stable if it is stable and limk→+∞ x(k)=0.

The fractional difference system (6) (or eqivalently (5)) is

called stable (asymptotically stable), if its equilibrium point

xeq = 0 is stable (asymptotically stable).

Proposition 6. Let det (I − hαA0) 6= 0 and R be the set of

all roots of the equation

det

(

I −

(

h

1 − z−1

)α k0
∑

i=0

Aiz
−i

)

= 0 . (12)

Then the following items are satisfied:

(a) If all elements from R are strictly inside the unit circle,

then system (6) (or equivalently (5)) is asymptotically sta-

ble.

(b) If there is z ∈ R such that |z| > 1, then system (6) (or

equivalently (5)) is not stable.

Proof. The proof is similar to those presented in [5]. Here

we need to base the proof on the formula of Z -transform of

function Φ(·) from Proposition 4. �

Now, let us present the example that illustrates the be-

haviour of trajectories of the considered systems in the scalar

case, i.e. Ai ∈ R, i = 0, 1, . . . , k0. For better visualization

the points obtained as the values of systems’s solutions are

connected.

Example 7. Let us consider system (5) in the scalar case for

α = 0.5, k0 = 2 and A0 = 0, A1 = a1, A2 = a2:
(

∆0.5x
)

(k) = a1x(k − 1) + a2x(k − 2), k ≥ 2 (13)

with initial conditions x(0) = x(1) = 1. We change the com-

mon situation:

(a) a1 = −1.4142, a2 = 0,

(b) a1 = 0, a2 = −1.1175,

(c) a1 = −1.414, a2 = −1.1175.

Cases (a) and (b) are the limit of stability values, where

we have only one delay, and in case (c) we analyze two pa-

rameters. We found the limit values by calculations in Maple

package and we compare them with calculations of solution of

region R given by (12). In the next Propositions we state the

interval and region for eigenvalues of the matrices when we

have only one delay. The lines for solutions with parameters

from cases (a) and (b) are presented in Fig. 1.

Fig. 1. Stable solutions (limit cases) of system (5) with A0 = 0,

A1 = a1, A2 = a2, a1, a2 ∈ R, T = 200, h = 1, blue:

(a) a1 = 1.4142, a2 = 0; red: (b) a1 = 0, a2 = −1.1175
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In case (c):
(

∆0.5x
)

(k)=−1.4142x(k−1)−1.1175x(k−2)
we get unstable solution, see Fig. 2. For given a1, a2 the set

R from condition (12) has elements from outside of the unit

circle with |z| = 1.020251430.

Fig. 2. Unstable solution of system (5):
�
∆0.5x

�
(k) = −1.4142x

(k − 1) − 1.1175x(k − 2), T = 200, h = 1

However, for the case

(d) a0 = 0, a1 = −2.4142, a2 = −1

we have R = 0.9997756270 at the limit of stability again, see

Fig. 3.

Fig. 3. Unstable solution of system (5):
�
∆0.5x

�
(k) = −2.4142x

(k − 1) − x(k − 2), T = 200, h = 1

In the next proposition we state the condition for stabili-

ty/instability only for the situation with one delay k0 ∈ N1.

Let us consider the system (5) with one delay k0 ∈ N1. There-

fore, we take Ai = 0 for i 6= k0 and Ak0
= A 6= 0. Then,

system (5) has the following form

(∆α
hx) (kh) = Ax((k − k0)h), k ≥ k0 (14)

with initial values x(0), x(1), . . . , x(k0 − 1), A ∈ Rn×n,

where x(kh) ∈ Rn.

Now, we formulate the conditions for the stabili-

ty/instability of (14) taking into account the eigenvalues of

matrix A.

Proposition 8.

(a) If the following conditions are satisfied

(1) for all i = 1, . . . , n

arg λi ∈
[

α
π

2
, 2π − α

π

2

]

, (15)

(2) for all i = 1, . . . , n

|λi| < |wi|, i = 1, . . . , n, (16)

where argλi and |λi| are respectively the main argument

and modulus of λi ∈ Spec(A) and

|wi|=

(

2
h

∣

∣

∣
sin 2 arg λi−απ

2(2k0−α)

∣

∣

∣

)α

, arg λi ∈ [0, π],

(

2
h

∣

∣

∣
sin 2 arg λi−απ+4(k0−1)π

2(2k0−α)

∣

∣

∣

)α

, arg λi ∈ (π, 2π),

(17)

then system (14) with α ∈ (0, 1] is asymptotically stable.

(b) If there exists λi ∈ Spec(A) such that |λi| > |wi|, then

system (14) with α ∈ (0, 1] is not stable.

Proof. Let z ∈ C with ϕ = arg z ∈ [0, 2π] and α ∈ (0, 1].
Then

log zα = α ln |z| + αiϕ + i2kπ ,

where k ∈ N0. We will show that conditions (15) and (16)

are equivalent to the fact that all roots of the equation (12)

are inside the unit circle. Let

w =
zk0

hα

(

1 − z−1
)α

with |z| = 1. Then, z = eiϕ,

ξ = arg
(

1 − z−1
)

= arctan
sin ϕ

1 − cosϕ

= arctan
(

tan
(π

2
−

ϕ

2

))

=
π − ϕ

2

and
∣

∣1 − z−1
∣

∣ = 2 sin ϕ
2 . Hence,

log w = ln

(

2 sin ϕ
2

h

)α

+ i

(

k0ϕ + α
π − ϕ

2
+ 2lπ

)

, (18)

where l ∈ Z.

Then we need to find the formula for the main argument

of w, as corresponding eigenvalue λ satisfies arg λ = argw,

where ϕ = arg z ∈ [0, 2π].
From (18) we get there exists l ∈ Z such that argw =

k0ϕ + απ−ϕ
2 + 2lπ. Hence one gets

argw = k0ϕ + α
π − ϕ

2
+ 2lπ =

(

k0 −
α

2

)

ϕ + α
π

2
+ 2lπ,

(19)

for some l ∈ Z.

Observe that the conditions 0 ≤ ϕ ≤ 2π are equivalent to

α
π

2
≤
(

k0 −
α

2

)

ϕ + α
π

2
≤ 2k0π − α

π

2
. (20)

Then

α
π

2
≤ arg w ≤ 2π − α

π

2
.

Therefore, condition (15) is satisfied if only z belongs to the

unit circle. Now, we need to calculate from (19) the main

argument ϕ and state that eigenvalues for which all roots

of the equation (12) are inside the unit circle should have

smaller modulus than corresponding points on the border, i.e.

|λi| < |wi|. However, from (18) |wi| =
∣

∣

2
h

sin ϕ
2

∣

∣

α
. From (19)

if arg w ∈ [0, π] one gets

ϕ

2
=

2 argw − απ

2(2k0 − α)
.

Observe that for argw ∈ (π, 2π) by (19) there exists l ∈ Z

such that
ϕ

2
=

2 argw − απ − 4lπ

2(2k0 − α)
.
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Since ϕ ≤ 2π, one gets argw ≤ 2(k0 + l − 1)π + (1 − α)π
2 .

Therefore in order to guarantee arg w < 2π one has to take

l = 1− k0. Hence (16) holds. Since conditions (15) and (16)

are equivalent to the fact that all roots of the equation (12)

are inside the unit circle, by Proposition 6 we get that system

(14) is asymptotically stable and (a) holds. Observe that the

existence of λi ∈ Spec(A) such that |λi| > |wi| is equivalent

to the fact that there is a root of (12) that is outside the unit

circle. Then by Proposition 6 we get that system (14) is not

stable and (b) holds. �

Corollary 9. For the scalar system (14), i.e. with A = λ < 0
and α ∈ (0, 1] we have that:

(a) If |λ| <

(

2

h
sin

2 − α

2k0 − α

π

2

)α

(particularly for k0 = 1:

|λ| <

(

2

h

)α

), then system (14) is asymptotically stable.

(b) If |λ| >

(

2

h
sin

2 − α

2k0 − α

π

2

)α

(particularly for k0 = 1:

|λ| >

(

2

h

)α

), then system (14) is not stable.

Proof. For the case k0 = 1. Since λ < 0, arg λ = π. Then

|w| =

(

2

h

∣

∣

∣

∣

sin
π − απ

2

2 − α

∣

∣

∣

∣

)α

=

(

2

h

∣

∣

∣
sin

π

2

∣

∣

∣

)α

=

(

2

h

)α

.

�

From simple calculations for scalar case of (14) we have

also the following result:

Corollary 10. For the scalar system (14), i.e. with A = λ <

0, k0 ≥ 2 and α = 2
k0

we have that:

(a) If |λ| <
(

2
h

sin π
k0+1

)α

, then system (14) is asymptoti-

cally stable.

(b) If |λ| >
(

2
h

sin π
k0+1

)α

, then system (14) is not stable.

Example 11. Conditions presented in Proposition 8 can be

illustrated by areas of the location of eigenvalues of matrix

Ak0
= A for which the considered systems are stable, see

Figs. 4–7.

a) α ∈ {0.5, 0.7, 0.9}, k0 = 2 b) α ∈ {0.5, 0.7, 0.9}, k0 = 100

Fig. 4. Borders of areas of eigenvalues of matrix A for stability of

system (14) with different orders α ∈ {0.5, 0.7, 0.9} and in: a) delay

k0 = 2, b) delay k0 = 100

a) α ∈ {0.5, 0.4, 0.2}, k0 = 2 b) α ∈ {0.5, 0.4, 0.2}, k0 = 100

Fig. 5. Borders of areas of eigenvalues of matrix A for stability of

system (14) with different orders α ∈ {0.5, 0.4, 0.2} and in: a) delay

k0 = 2, b) delay k0 = 100

a) α ∈ {0, 0.05, 0.1}, k0 = 2 b) α ∈ {0, 0.05, 0.1}, k0 = 10

Fig. 6. Borders of areas of eigenvalues of matrix A for stability of

system (14) with different orders α ∈ {0, 0.05, 0.1} and in: a) delay

k0 = 2, b) delay k0 = 10

a) α = 0.5, k0 ∈ {1, 2, 100} b) α = 0.9, k0 ∈ {1, 2, 10}

Fig. 7. Borders of areas of eigenvalues of matrix A for stability of

system (14) with different delays and orders in: a) α = 0.5, k0 ∈
{1, 2, 100}, b) α = 0.9, k0 ∈ {1, 2, 10}

Example 12. Let us consider the system of the form (14)

with α ∈ (0, 1], and A =

[

−1 0.5

−0.1 −1

]

with eigenvalues

λ = −1 ± 0.316227766016838 · i, |λ| = 1.04880884817015.

For k0 = 2 we have stability for α ≤ 0.5, plots of values

x1, x2 are presented in Fig. 8a and in plane x1x2 in Fig. 8b.

If we change k0 to k0 = 3 then we need to have lower values

of order to preserve stability.

5. Conclusions

The problem of stability of the Grünwald-Letnikov-type linear

fractional-order discrete-time systems with delays was stud-

ied by using Z -transform method. We presented the sufficient
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a) x1, x2 trajectories

b) x1x2-plane

Fig. 8. Stable solutions of system (14), x1x2-plane, α = 0.5, h = 1,

k0 = 2

conditions for the asymptotic stability of the fractional-order

discrete systems with delays. Using these conditions we de-

termined the regions of location of eigenvalues of matrices

associated to the systems in order to guarantee the asymptot-

ic stability of the considered systems.
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