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Summary. A mathematical model of the process of 

thermoelastic deformation and dissipative heating of 

elastomeric structural elements are assumed . The 

methods of prediction the longevity of structures based on 

the use of entropy fracture criteria are proposed. For 

solving of the link thermoelasticity problem of method of 

successive approximations is used. 
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INTRODUCTION 

 

Elastomeric structural elements are widely used as 

power elements, dampers, linings, etc. One of the biggest 

challenges in the design of such devices is to determine 

their stress-strain state under operating loads and predict 

their longevity. To analysis the longevity of the rubber 

elements of designs using different fracture criteria [12, 4, 

10, 22, 11, 21]. 

With a relatively small deformations occur most 

elastomers essentially nonlinear effects [19, 16]. The 

rubbers such effects are manifested primarily in the fact 

that the dependence of the force-deformation is nonlinear. 

This may be caused by design features rubber parts and 

the conditions of their installation in the car (so-called 

effect ends), the asymmetry of the external force, large 

deformation, structural changes of the material under the 

action of an external force. In the calculation of structural 

elements operating under limited strains, as well as the 

calculation of thin-layer structural elements should be 

considered weak compressibility of the elastomer. [1]. 

Highly elastic materials constructions are generally 

operated under cyclic deformation. This is the effect of 

the deformation energy dissipation. The rubbers energy 

dissipation is large enough; in filled rubbers scattered 

about 4/5 of supplied energy, in unfilled - about 1/2 [6]. 

Thermomechanical effects lead to degradation of the 

material, cracks, and ultimately to the failure and fracture 

design. Moreover, one should consider the dependence of 

the physical and mechanical characteristics of the material 

from the time of loading conditions and aggressive 

environmental effect [5].  

In solving the problem of determining the stress-

strain state of elastomeric structures must be considered a 

significant dissipation of deformation energy. 

 

RESEARCH OBJECT 

 

The practice of designing the structure of the 

elastomeric components required to develop effective 

methods to predict longevity based on sound 

thermodynamic fracture criterion. It should take into 

account the coupling of stress fields and temperature. 

RESULTS OF RESEARCH 

Elastomers should be presented as a heterogeneous 

system at the surface and in the volume; anisotropy on the 

surface caused by surface effects with increased damage 

of a thin layer of micro and concentration; in the amount 

of anisotropy due to the heterogeneity of the structure and 

the presence of a certain level of micro. 

Cyclic loading of rubber leads to the formation of 

submicrocracks, which subsequently turned into micro-

cracks; their value is determined by the structure of the 

material. 

Microcracks due to stress relaxation near these 

dissipate energy, which leads to a sharp increase in 

temperature (420 K) and the formation of so-called 

thermomechanical fracture zones; these areas are able to 

for some time to slow crack growth and to reduce the rate 

of change in the structure of rubber. 

The process of destruction of the rubber is different 

locality. The rubber structure heterogeneity exists, and 

hence heterogeneity of the stress fields and temperatures. 

Therefore, the emergence of sub- micro-cracks and 

evolutionary transition to micro-cracks, the concentration 

of the latter and the emergence of macro-cracks is 

probabilistic in nature. Rapture of metal-rubber system 

begins in local areas, both in the bulk and on the surface 

(foci destruction), i.e. in places where the stress and the 

maximum temperature. In this case, even when main 

cracks are appeared and develop the metal-rubber system 

for some time preserves the integrity, stiffness and 

dissipative characteristics and can match its functionality. 

The process of destruction is discrete. In principle, 

this means that the development of micro- and macro-

cracks take place in the form of elementary events 

occurring abruptly. At the mouth of the moving cracks on 

the laws of probability are merged sub- and micro-defects 

and structure of the material changes significantly in a 

local volume; structure change causes an increase in 

energy dissipation, which in turn causes even greater 

structural changes in the material; dissipative heating 

temperature in the local volume increases until the 

thermal destruction (melting) rubber; crack temporarily 

stops the growth and further deformation, ie, with an 

increase in the rate of accumulation of elastic energy is 

growing by leaps and bounds. On the surface of the 

rubber destruction it causes certain fractographic features: 

grooves, ridges, the next stop of the front cracks, etc.
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The main type of the destruction of most of the 

known rubber vibration isolators in long-term cyclic 

loading is a fatigue fracture. Laws of this destruction 

suggest the presence of three main stages. In the first 

phase longevity t* in local volumes in the material 

emerging form submicrocracks damage due to external 

stress field grow to a certain critical value, and then 

combined into microcracks. The development of such 

cracks, their merger leads to disruption of the continuity 

of the local (typical) the amount of change in the structure 

and the emergence of macro-cracks. For critical power 

isolators appearance of macro-cracks can serve as a 

failure; other elements of the signal that a vibration 

isolator worked most of the time and its residual life of 

less than 10%. The duration of the first phase of (90-96)% 

of the time to complete failure. It is said that the longevity 

of rubber durability under diffuse local destruction or 

durability, denoted t* is determined by known methods. 

As criteria for the destruction of the elastomeric 

structures may be using different failure criteria: energy 

criteria [4, 10], the entropy criteria [6], criteria of 

developing damage [16], and others. 

The thermodynamic approach to analysis equilibrium 

deformation  leads to the conclusion that because of the 

different longevity criteria  of elastomeric elements are 

the most reasonable entropy criterion.  

Of all the thermodynamic parameters the entropy 

criteria of the most complete quantifies the accumulation 

of irreversible changes. In [2, 9], the proposed entropy 

durability test in which it is assumed that the local volume 

of deformable solids is destroyed when the increment of 

entropy density certain critical S*, which is 

characteristic of the material: 

 

t

SdttS

0

*)(  ,                         (1) 

where: S(t) – the rate of change of the entropy density 

equal to the sum of the external and internal flow Sе  Si.  

source entropy increase. Entropy independence criteria 

proposed in [8]: 
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where: ij
 – stress tensor components; ij – tensor 

components irreversible deformation; S
*
 – limiting 

density of entropy; S(T0) – entropy density at the 

beginning of the creep deformation. 

This criterion has the following advantages: 

a) allows the calculation for any nature destruction; 

b) it is possible to take into account both mechanical 

and non-mechanical effects; 

c) meets the requirement of invariance. 

For the thermodynamic description of the destruction 

of an important task is to choose of complete system of 

thermodynamic parameters of state. Set these parameters 

and their number can be different for different models of a 

continuous medium. Status perfectly elastic medium is 

completely characterized by the following set of 

parameters {, T}  or {, T}. To describe the process 

more complicated than the elastic deformation, these 

parameters are no longer enough. As a complete set of 

thermodynamic parameters that describe the irreversible 

changes in the system, select the following: {, T, } or 

{, T, }, where  – a parameter that describes the 

changes in the system related to the irreversibility; T – 

temperature;  – stress tensor;  – reversible part of the 

strain tensor. 

We write the first law of thermodynamics in the 

following form: 

 

divqU ij
ij   ,                            (3) 

where: U – internal energy density, q – vector of heat flux 

speed. 

The free energy is defined by: 

 

,TSUF                                  (4) 

where: F – the free energy density, S - entropy density. 

The entropy density according to [10] can be 

represented as follows: 
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The rate of change of entropy can be represented as 

the sum of the external flow of entropy Se and speed of 

generation of entropy within the system Si. Taking into 

account the experimental research of longevity of 

elastomeric elements and their products, we consider the 

criterion of local failure of the equality: 
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Then (Eq. 5) with (Eq. 6) takes the form: 
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The equation (Eq. 7) is a criterion equation. 

We consider the three-element model of a 

viscoelastic medium (Fig. 1). 

 

 
Fig. 1. Three-element model of a viscoelastic continuum 

 

Complicating the structure of the model, you can get 

a good temporal relationship between stress and strain. In 

this case, the limit can be considered a model with an 

infinite number of elastic and viscous elements, which 

increases the order of the differential operator and 

complicates its application in solving practical problems. . 

Stresses-strain relations can be installed by means of 

integral equations of state. Proportionality between the 
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increment of strain and stress in the integral equations is 

set with the function that is called the kernel of the 

equation. The most widely used in the calculation of the 

elastomeric construcnions obtained relaxation core 

Rabotnova [20]. 

Considering the aging behavior of the material on the 

basis of the above scheme, for its third element have 

)()()( 3 ttt p  , from whence: 
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The function 3(t) can be represented as 

3(t)=3(0)=30, where   – aging function of the 

curve corresponds to the changes in time E = E (t) – the 

modulus of elasticity. To calculate the durability you need 

an analytic representation of the function. A common 

approximation of the experimental data for elastomers is 

exponential dependence [9]: 
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where: k1, k2 – coefficients of the approximation, W(t) – 

function proportional accumulated over time t strain 

energy. 

To determine the longevity of elastomeric 

constructions the following calculation procedure is used: 

1. Calculation of the stress-strain and temperature 

conditions of the elastomeric structure. 

2. Determination of the danger point. 

3. The decision of criterion equation (Eq. 7) in a 

dangerous point. 

Construction of the elastomers employed in dynamic 

loading conditions, are subject to intense heating of 

dissipative. Sources of heat in this case are the stress and 

strain rate in the viscoelastic body. 

To study the thermal stress state of such structures is 

supposed to joint problem solving thermoelasticity, and 

thermal conductivity of the method of finite elements onto 

[3, 15]. 

Based on the law of conservation of energy, the 

variational equation of thermoelasticity Bio as a 

generalization of the Lagrange variational principle has 

the form: 
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The variation of free energy is calculated by the 

formula: 
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where: ij
ijW    – a variation of the elastic 

deformation energy. 

State law weakly compressible elastomeric accept a 

generalized Hooke's law: 
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where:   – shear modulus; 
ij

G  – components of the 

metric tensor of the deformed volume; B  – modulus of 

dilatation; 3I  – third invariant of the strain measures *G . 

In the case of combined action of temperature and 

load, the deformation occurring represented as the sum of 

the elastic 
)у(

ij  and thermal corresponding 
)у(

ij : 
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where: 
т)(
ij  – tensor linear  thermal expansion; T  – solid 

point temperature; 0T  – initial temperature 

The contravariant stress tensor components are 

represented as: 
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where: 
ij
)y(

  – stress tensor components caused by 

movements of the body; 
ij
)т(

  – thermal stresses. 

The heat equation can be represented in the form of 

variations of Lagrange equation when considering the 

stationary heat conduction problems: 
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where:  – density; с – heat capacity; ij
 – thermal 

conductivity tensor; of w0  – power internal heat sources; 

of q – the intensity of the heat flow; h  – coefficient of 

heart transfer; 0  – ambient temperature. 

Temperature field of self-heating of the elastomeric 

structure is determined by the following algorithm: 

1. The problem of thermoelasticity for a given 

amplitude of oscillation. 

To solve highly nonlinear problem using the method 

of successive approximations [11]. 
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At each iteration, the load increment is made and 

solved the linearized equation at a given temperature: 

 

       ii
j

ij QPuK  ,                       (16) 

where: [K
ij
] – the global stiffness matrix of the structure; 

{uj} – generalized displacement vector; {P
i
} – load vector 

by the forced displacement of the body surface; {Q
 i
} – 

thermal load vector. 

Then check the condition of equilibrium. If 

equilibrium conditions are not met, then the residuals are 

added to the right side of the system. If a satisfactory 

solution to the iterative process is repeated. 

After reaching the start-up parameters (applied force) 

limit the procedure ends. 

2. Calculate the power of internal sources of heat as 

the averaged fluctuation according to the formula for the 

cycle: 

  
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\ 

where:  – rate fluctuations. 

3. The temperature of self-heating to determine the 

onset of thermal equilibrium between the structure and the 

environment by solving stationary problem of heat 

conduction: 

 

},{}]{[ RTH                                 (18) 

 

where: [H] – global matrix structure of thermal 

conductivity; {T} – generalized vector of nodal 

temperatures; {R} – equivalent vector heat load. 

4. To account for the stress fields and temperature 

connectivity solutions the process is repeated from step 1. 

A satisfactory solution is obtained since the first 

approximation. 

As a result of the implementation of the algorithm we 

obtain the nodal temperature field, the field intensity of 

the internal sources and thermal stress in the centers of 

finite elements, which are the source of data for 

determining the durability.  

A mechanical stresses and temperature have greatest 

influence on the longevity of elastomers. If there are n 

points with different values of the specific strain energy 

U1, U2, U3,... Un and different temperatures Т1, T2, T3,... 

Tn, calculation is made for the longevity of all the n 

points. In most cases there is no need to calculate for each 

point of the durability of the structure. The calculation is 

carried out with respect to a dangerous point, ie, one in 

which degradation starts first. 

Practically dangerous point is determined as follows: 

two selected points О1(U1, T1) and О2(U2, T2), where at 

one point U1=max, а в другой , and the other T2=max and 

the calculation is made for these points. 

Criteria equation of state under cyclic loading is of 

the form: 
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where: U – the specific strain energy, T – absolute 

temperature, 0 – the initial value of the viscosity 

coefficient, t – time,  – loading rate, ST – critical 

increment of entropy density. 

We introduce the notation: 
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where: the unknown is the upper limit of integration – the 

required durability. 

To solve the equation (Eq. 7) perform numerical 

integration using the trapezoid rule: 
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where: the unknown is the upper limit of integration – the 

required durability. 

I represent as a function of time: 
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and transforming the (Eq. 7) with (Eq. 22) we obtain the 

following equation: 

 

0)(  TStf T .                         (23) 

 

Solving nonlinear equation (Eq 23), using the 

bisection method define longevity – t*. 

The critical level of entropy can be found by the 

empirical formula: 

 

)](exp[ 0TTbaS HT  ,                (24) 

 

where: a and b – constant coefficients, Tн = 293K, T0 – 

design temperature. 

For the true time to failure is necessary to multiply 

the resulting longevity – t* by a factor of time-

temperature shift – аT determined by the following 

formula: 

 

TTc

TTc
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02
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where: с1 = 12, c2 = 101,6 K. 

The parameters с1, c2 are determined from a creep 

experiment at different temperatures for rubber [14]. 
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On the basis of the considered method calculated the 

cylindrical shock absorbers. Elements with a complex 

shape of the free surface VR is a constructive 

development of hollow cylinders. In order to improve the 

stability of the last developed a series of parametric 

vibration isolators [6, 19]. 

Consider the problem of cyclic deformation at a 

predetermined frequency and amplitude shock VR -201 

and VR-103 (Table 1). 

Table 1. Rubber isolators type VR 

Type isolator 

Nominal dimensions 

outside diameter, 

Dн, mm 
height h, mm 

VR -201 100 80 

VR -103 120 148 

 

Shock absorbers are made of rubber stamps 1562. 

The elastic constants and parameters of relaxation: 

 =0.51 МPа, =0.4999, =68s
-1

, =0,15 Wт/(mК),  

= – 0.6, =0.914, =0,35. On the surfaces of the shock 

absorber heat exchange occurs with metal fittings and air, 

respectively, with the coefficients Н1=Н2=40m
-1

 and 

Н3=5240m
-1

 

To determine the stress-strain state and stiffness 

parameters of elements with complex free form surfaces 

accurate analytical methods are not applicable because of 

the insurmountable difficulties at present in the solution 

of nonlinear systems of differential equations in partial 

derivatives for solving boundary value problems 

thermoviscoelasticity. Numerical methods are used, the 

main of which is the finite element method (FEM) [17, 

23]. The specific formulation Thermoviscoelasticity 

problems with its use are given in [7, 13]. The results of 

calculation of stress-strain state can determine the 

stiffness in compression elements VR type (Fig. 2). 

 

 

 
 
Fig. 2. Force versus displacement for the rubber elements: 

a – VR103: 1 – experimental data [6]; 2 – numerical 

solution, b – VR201: 3 – experimental data [6]; 4 – numerical 

solution 

 

The algorithm of numerical solution of heat 

conduction problem for elements with complex shapes 

such as the free surface of BP based on the decision [3], 

using as the main method - the finite element method in 

combination with the method of stepwise integration. 

Experimental distribution of temperature fields [3, 7] 

and the results of calculations performed by the field of 

temperatures for the elements VR are shown in Fig. 3. 

Field distribution study dissipative heating 

temperature in the shock absorbers shows that the 

maximum values are set in the central regions 

Assessment of the longevity of the local rubber 

vibration isolators such as VR is manufactured in 

accordance with the general calculation algorithm, using 

the criterion of entropy dissipative type [6]. According to 

[16], the time to failure of any local volume rubber array 

t* is determined by expression (Eq. 20). 

The longevity of the rubber components such as VR 

can be determined in points with a maximum temperature  

of dissipative heating, pre-calculated in the same points 

value of the dissipation function. 

In Table 2 the values of the durability of vibration 

isolators such as BP, taking into account the maximum 

values set the temperature *
maxT  at load operation: 

a0 = 0,003 m;  = 94 s
-1

 [6] are presented. 

 

 

 
 

Fig. 3. Distribution of temperature fields in the elements at 

the frequency of oscillation 13.3Gts: 
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a – the amplitude A = 10mm: 1 - experimental data [16]; 2 

- numerical solution, b – amplituda A = 10mm: 3 - experimental 

data [6]; 4 - numerical solution. 

 

Table 2. The values of t* vibration isolators such as VR, 

taking into account temperature 

Type VR *
maxT ,С t*, h 

VR-201 [6]  29,035 19722 

VR -201 33.651 19102 

VR -103 [6] 68.211 17415 

VR -103 71.322 16987 

 

Analysis of the results shows that the proposed 

method allows the solution, satisfactory agreement with 

the experimental data obtained by other authors. 

CONCLUSIONS 

1. A method for solving the problem of thermoelastic 

cyclic deformation geometrically and physically nonlinear 

elastomers, based on the method of successive 

approximations. 

2. Significant dissipation of deformation energy 

causes a significant self-heating elastomeric designs. 

3. On the basis of the entropy criterion analyzed 

durability elastomeric structures. 
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РАСЧЕТ ДОЛГОВЕЧНОСТИ ЭЛАСТОМЕРНЫХ 
ЭЛЕЕНТОВ КОНСТРУКЦИЙ 

Ю. Козуб, Г. Козуб 

 

Аннотация. Представлена математическая модель 

процесса термоупругого деформирования и диссипативного 

разогрева эластомерных элементов конструкций. 

Предложена методика прогнозирования долговечности 

конструкций, основанная нп применения энтропийного 

критерия разрушения. Для решения связанной задачи 

термоупругости используется метод последовательных 

приближений.  

Ключевые слова: эластомер, термоупругость,  

долговечность, критерий разрушения. 

 

 


