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Abstract 

When a frequency domain sensor is under the effect of an input stimulus, there is a frequency shift at its output. 

One of the most important advantages of such sensors is their converting a physical input parameter into time 

variations. In consequence, changes of an input stimulus can be quantified very precisely, provided that a proper 

frequency counter/meter is used. Unfortunately, it is well known in the time-frequency metrology that if a higher 
accuracy in measurements is needed, a longer time for measuring is required. The principle of rational 

approximations is a method to measure a signal frequency. One of its main properties is that the time required for 

measuring decreases when the order of an unknown frequency increases. In particular, this work shows a new 

measurement technique, which is devoted  to measuring the frequency shifts that occur in frequency domain 

sensors. The presented research result is a modification of the principle of rational approximations. In this work 

a mathematical analysis is presented, and the theory of this new measurement method is analysed in detail. As a 
result, a new formalism for frequency measurement is proposed, which improves resolution and reduces 

the measurement time. 
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1. Introduction 
 

Frequency Domain Sensors (FDS) are input transducers, which change their frequency 
output when they are under stimulation of a physical variable. This change is known as 

a frequency shift. FDS are also known as frequency output sensors. In the last years, 
the technology standards require performing highly accurate measurements in a short time. 

Specifically, FDS applied to detection of chemicals and measurement of concentration are 

being actively researched [1−6]. It is well-known that a gas-sensing device for toxic gases 
requires a high sensor sensitivity and a quick response [7]. After a careful review of the 

literature, where we focused on applications of the frequency measurement devices, we have 
learned that sensors employed in detection of chemicals are very sensitive (1 Hz corresponds 
to 4.3 ng/cm2 [8]), but they require a long time for measuring. Typically, hundreds of seconds.  

The principle of rational approximations is a method of  frequency measurement, where 
the time required for measurement depends on the  standard and the measurand. In other words, 

the higher the unknown frequency value, the shorter the time required for measurement. One 

of the main advantages of this method (compared with other well-known techniques [9−11]) 
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is a high speed of measurement without diminishing its accuracy. Also, it is insensitive to most 

common sources of uncertainty in time-frequency measurement systems [12]. 
In the preliminary works, our research group has explored the application of the principle 

of rational approximations for measurement of frequency shifts [13, 14]. So far our proposal 
requires knowing a priori the value of a sensor’s output before occurring a frequency shift. For 

this reason and due to defects of fabrication, there is required measurement of a sensor’s output 
before the frequency shift occurrence. In consequence, to measure a frequency shift at the 
sensor output, at least two measurements – in two different and separated time intervals – are 

required.  
In this work, we show a modification of the rational approximations principle, and its 

measurement theory is expanded. As a result, after applying the principle of rational 
approximations, a frequency shift can be measured at the moment of  its occurrence.  
 

2. Fast frequency measurements using the principle of rational approximations 

 

The principle of rational approximations is a method of frequency measurement. It is based 
on the number theory, in particular – on a property of rational numbers: the mediant fractions 

[15]. The principle of rational approximations has many outstanding properties, including: its 
invariance to jitter, the accuracy limited only by the stability of a reference signal, and the 
measurement time decrease with the increase of the measurand value increases. 

 The frequency measurement using the principle of rational approximations is performed by 

comparing two signals: a reference one (��) whose frequency value is known (��) and a signal 

to measure (��) with an unknown frequency (��). Both signals have corresponding periods ��, 

��. After a process of signal conditioning [13] the pulses in both signals must have the same 

pulse width (�), which must be � � ��/2  [16, 17]. 

When the signals are compared, a pulse train of coincident pulses (�� 	&	��) is generated. The 
frequency measurement process starts at the moment of the first coincidence of pulses. Also,  

simultaneously starts counting the pulses in ��, �� . The value of � defines the duration 

of coincidences; this effect is analysed and reported in [16]. The numbers of pulses in  ��, ��  

are denoted by 
�/��, where � is the number of coincidence (Fig. 1).  
 

 

 
 

Fig. 1. Comparison of signals during the frequency measurement process,  

where �� � 7.4 MHz, �� �	8 MHz, and � � 40 ns. 

 

In each coincidence, a fraction is formed (
�/��), and an approximation to the measurand 
is obtained. The unknown frequency value is given by: 
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or by the sum of all numerators and denominators that form the mediant fraction �: 
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The concept of mediant fraction is a well-known property in the number theory, and its 

application to frequency measurement is shown in (1) of [15]. The measurement time (��) is 
given by: 
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For the frequency measurement process illustrated in Fig. 1, the best approximation to the 
measurand is obtained in the 23rd fraction, where the second perfect coincidence exists. As the 

concept of mediant states, all fractions between perfect coincidences are approximations to the 

measurand. For a continuous pulse counting process, the relative error (�) in the frequency 
measurement process is defined as: 
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From the statements exposed in this section, we have reviewed the basics of the principle 
of rational approximations. In short, only by counting the pulses after the first coincidence, and 

in each posterior coincidence, from (2), the value of �� is calculated. In the next section, 

the measurement process parameters will be examined and a modification of the principle 
of rational approximations will be proposed. 

 

3. Simultaneous measurement of two frequencies using the principle of rational  

    approximations 

 
Determining an FDS frequency requires at least two measurements. In order to know how 

the sensor’s output changes after a stimulus, measurement of the initial frequency is needed. 
This process requires two measurements, where the sensor output is measured twice – before 
and after the stimulus – in different time intervals. In this section, we introduce an original 

approach, not previously published, to measuring frequency shifts occurring in a given FDS 
under a stimulus.  

When the FDS output has changed, there is a frequency shift of its frequency value. The last 
can be expressed as: 

 ,

s p
f f f∆ = −  (5) 

where �� denotes the  initial frequency of the sensor; and �� is the posterior frequency value. 

These signals have the corresponding periods �� and ��. 

Two sensors of the same kind can be measured simultaneously, and the difference among 
them can be used to calculate the corresponding frequency shift. If the measured values 

of sensors are ��� and ���, they can be calculated from measurements using the principle 

of rational approximations: 
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The signal coincidence process of  ��� & �� and  ��� & �� is illustrated in Fig. 2. In this case 

��� = 4.7  MHz , ��� = 4.6 MHz and �� = 8 MHz. These values are chosen because ��� = 4.7  

MHz is a common value in quartz crystal microbalances (QCMs) [18, 19]. According to the 

Sauerbrey equation [20], when the frequency is shifted, the frequency value in the QCM output 

decreases; this is the reason of choosing ��� = 4.6 MHz (��� < ���). Also, until now, 

the principle of rational approximations states that if the reference frequency is closer to the 

measurand, the best approximations are obtained in a shorter time [16]. This is why the 

reference frequency is chosen to be �� = 8 MHz – that is also a common value in quartz crystals 
used as the time reference.  

An important remark about the graphs of Figs. 2, 3 is required. Simultaneous observing all 
required parameters of six signals is complicated, because the oscilloscopes (even in 
simulations) have maximum four channels. In our analysis it is important to evaluate the 

behaviour of signals from the beginning of measurement process. This enables to evaluate how 
factors, like the phase or amplitude, affect the frequency measurement process. For the analysed 

cases, the input signals are digitalized, and the amplitude has just discrete values, but for very 
narrow pulses the rising and falling times of the pulses could affect the pulse shape. Even when 
an alternative is to use a logic state analyser (LSA), for our purposes we need to observe 

specific time stamps, where the rising and falling times of pulses are known, without the 
sampling time, more like in an analogue analysis. This enables to evaluate the coincidence time 

of pulses (���). For these reasons, in this work we use the analogue analysis available in SPICE 
simulations. 

For the measurement time observed in Fig. 2, in both cases the number of counted pulses 

and the number of obtained fractions  are the same. But the measurand value is different; this 

characteristic changes the rate of occurrence of coincidences. In other words, even when the � 

and � values increase at the same rate – because ���  and ��� have a difference of 4.6 ns, that is 

greater than the pulse width [16] – the corresponding fractions (��/��) have different values. 
According to the classic theory of time-frequency metrology [11], a better approximation to the 

measurand will be obtained if the measurement time is increased. 

The measurement of ��� and ��� is done using the same frequency standard (��). 

In consequence, the corresponding measurement time is given by: 
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respectively with sub-indexes s and p for the starting and posterior frequency values.  
The fundamental  assumption of the principle of rational approximations is the existence 

of coincidences. If two regular pulse trains are continuously compared, a coincidence pulse 

train is generated. In the literature there is reported that such a comparison requires 
the use multiplication of functions modelling each signal (in Fig. 1, the functions modelling 

��, ��) [16]. The main novelty of this work is focused on simultaneous comparison of three 

signals: the original signal without a frequency shift (���), the reference signal (��), and the 

signal after an unknown frequency shift (���), where ��, ��, ��� are their respective frequency 

values. 
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Fig. 2. Comparison of signals during the frequency measurement process, where fxs = 4.7 MHz, 

fxp = 4.6 MHz, f0 = 8 MHz, and τ ≈ 40 ns. 
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Any signal comparison process has its  measurement time associated with specific values 

of (��, ��, �). From (8), (9): 

 ,
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Q
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QM =  (10) 

if ��� = ���, then ��� = ���. The last relationships have sense, if we understand that 

the signal coincidence process �� is constant in ���  & �� and ��� & ��. In consequence, during 

measurement in simultaneous comparison of three signals, the �-values (���, ���) are the only 

“truly” independents in continuous pulse counting (Fig. 3).  

In the principle of rational approximations, after the first coincidence (when �� = 0) 
of pulses from input signals, all the future coincidences are approximations to the measurand. 
When there is a comparison of three input signals, the measurement process starts when there 

is a coincidence of pulses from three input signals (��� & �� & ���). It is worth remembering 

that for proper functioning of the principle of rational approximations, in order to have the same 
pulse width, all input signals must be conditioned. Following functioning of the principle of the 

rational approximations, after the n − coincidence, the next, (� + 1) − coincidence is 

an approximation to the measurand. But in this case, rather than measuring the frequency value 

of a signal, the difference between frequencies of two signals (���, ���) is measured. Basing 

on the previous analysis, the measured frequency difference between two signals (���, ���) is 

defined as the frequency shift. (5) becomes: 

 xs xp
f f f∆ = − . (11) 

Since this proposal aims to measure the frequency shift occurring in a sensor's output, two 

sensors are required. Ideally, if two sensors of the same kind and operation range were 
identically fabricated – an example is measurement of the frequency shift from a QCM while it 

is loaded [18, 19] – they would have the same frequency value before a stimulus. The frequency 

of one sensor without a stimulus is the starting frequency (���). On the other hand, the sensor 

frequency after stimulation is its posterior frequency (���). Based on the last statements, 

an approximation to measurement of the frequency shift can be performed by using two sensors. 

One of them will be not stimulated, whereas the other one will be under a stimulus, which leads 
to a meaningful frequency shift. This approach is similar to the idea of differential measurement 

[21]. 
If the frequency values of starting and posterior frequencies are measured, after the first 

coincidence of pulses from the three input signals, they can be used for calculating the 

frequency shift: 
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for any � > 0. According to the principle of rational approximations, after the first coincidence 
the pulses of input signals are continuously counted. Any coincidence of the pulses of three 

input signals (���, ���, ��), is an approximation to ∆�. 
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Fig. 3. Simultaneous comparison of three signals. 

 

Since the reference frequency is the same when measuring both ���, ���: 
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there is a value in the measurement time, where ��� = ���. At this moment, measurement 

of ��� and ��� can be done for calculating the corresponding frequency shift (∆�). (10) and (14) 

show a property of the physical phenomenon of signal comparison. For the ratios ���/��, ���/�� 

there is a measurement time where ��� = ���. Knowing ��, when ��� = ��� counts of the 

reference pulses in both comparison processes give ��� = ���. This property explains why 

simultaneous comparison of three input signals enables to measure the signal frequency 
immediately after the shift. Such a behaviour is illustrated in Fig. 3. The generality of this 

formalism is illustrated by (14). For any given value of ���, ��� there is a measurement time, 

during which the frequency shift is calculated.  
The nature of signal comparison enables to understand the effect of comparing three signals. 

It is mainly reflected in the measurement time needed for achieving measurement results.  
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As stated before, measurement of  ∆� requires measuring separately ��� and ���. These 

operations require at least a total measurement time of: 

,tsp tp ts tM M M O= + +                                               (15) 

where the operation time (��) defines the time required for switching from measurement of  �� 

to ��.  �� includes the time used by the operator of the frequency measurement instrument, or − 

in the case of automatic switching − the time required by the microcontroller. With the herein 
proposed approach the time required for measuring a frequency shift is given by: 

0
.tfs ns npM Q Q T=                                                      (16) 

The last equation shows the principal strength of the presented formalism. For the case 

of ����, both signals (���, ���) need to have enough time for being approximated, which 

depends directly on ���, ���. In the traditional approach to the principle of rational 

approximations, ��� ≠ ���. On the other hand, since ���� uses simultaneous comparison 

of three signals, the � − values increment at the same rate; in other words: ��� = ��� = ����, 

where ��� is the number of coincidence of three pulses of ���, ���, ��, and ���� is the count 

value of the pulses in �� for coincidences ��� & �� & ���. One implication of these statements 

is that ���� < ����. The last property shows how simultaneous comparison of three signals 

enables to obtain a better approximation than that of two signals at a different time. As a result, 

the frequency shift is calculated from (13), for any coincidence ��� > 0, by: 
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,                                                  (17) 

and the measurement time is defined as: 

                                                                 0
.t tfs nspM M Q T= =                                                    (18) 

As it has been shown in previous works [12−16], the time required for measuring depends 
on overlapping of existing pulses at the same time. The likelihood of two overlapped pulses 
(generated independently) is greater than overlapping of three pulses, which are also generated 

independently. This leads to a longer time required for measuring than that for three signals. 
In this Section, it was proposed a modification of the principle of rational approximations 

for application to measurement of frequency shifts. The next section is devoted to evaluating 
this theory.  

 

4. Evaluation of measurement of frequency shifts  

 

Measurement of frequency shifts uses simultaneous measurement of three signals, and − 

when the pulses of three signals are coincident - an approximation to the measurand is obtained 

(in this case ∆�). In this section, using Matlab, we evaluate the formalism proposed in Section 3. 

According to (13), the measurement of ∆� requires application of the principle of rational 

approximations for approximating the values of  ��� and ���. In Fig. 4, after using the (1) − (4), 

a relationship between the relative error and the measurement time is shown for ��� = 4.7 MHz  

– the data of Fig. 1. The duration of coincidences (	��) – when  ��� = 4.7 MHz – is illustrated 

in Fig. 2a. This shows different 	�� − values, which affect changing 
, and − since counting 

of the pulses in ��� is continuous − 
 decreases. According to (1), the best approximation occurs 

for ���/��� = 47/80 (Fig. 3) or ��� = 1 × 10�	 s (Fig. 4). 
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Fig. 4. The relative error in the frequency measurement process for  �
��

= 4.7 MHz. 

 

 

On the other hand, Figs. 5a and 5c show the relative error when measuring ��� = 4.6 MHz 

and ��� = 4.699 MHz. For the cases presented in Fig. 2 and Fig. 3, after ∆� = 100 kHz, there 

are less pulses in ��� & �� than in ��� & ���. This effect can be observed only after a long 

measurement time; this fact is illustrated by comparing Fig. 2 and Fig. 3. The reason of this 
decrement – in the number of coincidences – is that the time difference in periods of signals 

(��� − �� or ��� − ��) becomes greater. The relative error in the measurement process is related 

to the duration of coincidence; if ��� = �, there is the perfect coincidence and the best 
approximation to the measurand [16].  In a continuous signal comparison process, there are 

both partial (��� < �) and perfect coincidences, the difference is in the way these coincidences 

appear (Figs. 1−3). This phenomenon affects the way of decreasing �, and it is illustrated in the 
zoomed boxes in Fig. 4 and Fig. 5a. If the frequency shift is smaller, there are less coincidences. 

An example is when ∆� changes from 100 kHz to 10 kHz or ��� changes from 4.6 MHz (Fig. 5a) 

to 4.699 MHz (Fig. 5c). After evaluating both ∆� − values, the perfect coincidences exist in 

���/��� = 23/40 for ��� = 4.6 MHz, and in ���/��� = 4699/8000 for ��� = 4.699 MHz. 

As we know, for obtaining the accurate approximation to the measurand during measurement, 

�� and �� must be stable within the measurement period – for the principle of rational 
approximations, this enables to obtain results comparable to those for the Allan variance [22]. 

The two fractions corresponding to the best approximations after the frequency shift require 

a measurement time of 5 × 10�� s for ���/��� = 23/40 and 1 × 10�� s for ���/��� =

4699/8000, and such calculations are true only for the stationary values of ���. 

The approach proposed in this work enables to measure the frequency shift “when it occurs”; 

the last was analysed in the previous section, and it is obtained only by simultaneous 

comparison of three signals ��� & �� & ���. In this comparison, differences in periods of input 

signals (���, ��� and ��) – after their pulses coincide in time – generate different �, � − values, 

which can be used for calculating ∆� using (17). This is the main reason we could call this 

technique the principle of rational approximations for differential frequency measurements. 
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Fig. 5. The relative error in the frequency measurement process for fxp = 4.6 MHz (a);  

 fxp = 4.699 MHz (c). Measurement of the frequency shift ∆f =100 kHz (b); ∆f =10 kHz (d). 
 

In each coincidence (���	&	��	&	���), the frequency shift value is calculated using (13). 

For the examined cases, the value of ∆f is obtained in less than 1 ms. But another interesting 
property of our formalism is its clarity. The density of approximations is quite different 

for measuring ∆f and for any “single” measurement of ��� and ���. This phenomenon can be 

explained using Fig. 3. By comparing the number of pulses in ���	&	��, ���	&	��  with that in 

���&��&���, the variations in the number of coincident pulses is observed. Particularly, 

the lowest number of coincident pulses is observed in ���&��&���. This can be explained by 

the fact that comparison of three signals leads to a lower number of coincidences. 

In consequence, less approximations are observed when measuring ∆�. 
After the analysis shown in this section, it is clear that the principle of rational 

approximations for differential frequency measurements is a novel technique for application to 
frequency sources with dynamic values (in particular FDS), where the measurement time 

required for obtaining an approximation to the measurand is shorter than that in the traditional 
principle of rational approximations. 

 

5. Conclusions 

 

Measurement of frequency shifts is required for sensors with high sensitivity. Well known 
frequency measurement techniques require more time for measuring if  a greater accuracy 

is needed. 
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In this work, the theory of rational approximations is expanded by introduction of a new 

formalism for measuring frequency shifts. As a result, the principle of rational approximations 

is applied to differential frequency measurements, where ∆f can be measured in a very short 
time, without diminishing its accuracy. The proposal of this work is to measure frequency shifts 

by comparing three signals simultaneously. (10) − (12) showed that such a comparison is 
possible. Also, a further analysis – presented in Section 4 – illustrated how the coincidence 
of pulses occurs when comparing three signals, in a similar way like in the “traditional” 

principle of rational approximations, where only two signals are compared. 

Our analysis shows that − due to the phenomenon of coincidence of signals − the 
measurements could be improved by choosing an optimal frequency standard, as well as a pulse 

width value. This analysis can be easily implemented using the algorithms of [16] and (10) − 
(12) and (17), (18). 
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