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Abstract 

When calculating uniform flows in open conduits and channels, Chezy’s resistance coefficient is not a prob-
lem data and its value is arbitrarily chosen. Such major disadvantage is met in all the geometric profiles of con-
duits and channels. Knowing the value of this coefficient is essential to both the design of the channel and nor-
mal depth calculation. The main objective of our research work is to focus upon the identification of the re-
sistance coefficient relationship. On the basis of the rough model method (RMM) for the calculation of conduits 
and channels, a general explicit relation of the resistance coefficient in turbulent flow is established with differ-
ent geometric profiles, particularly the egg-shaped conduit. Chezy’s resistance coefficient depends strongly on 
the filling rate, the discharge, the longitudinal slope, the absolute roughness of the internal walls of the conduit 
and the kinematic viscosity of the liquid. Moreover, in this work, a simplified method is presented to determine 
Chezy’s resistance coefficient with a limited number of data, namely the discharge, the slope of the conduit, the 
absolute roughness and the kinematic viscosity. Last but not least, after studying the variation of Chezy’s re-
sistance coefficient as a function of the filling rate, an equally explicit expression is given for the easy calcula-
tion of this coefficient when its maximum value is reached. Examples of calculation are suggested in order to 
show how the Chezy’s coefficient can be calculated in the egg-shaped conduit. 

Key words: Chezy’s resistance coefficient, egg-shaped conduit, maximum resistance coefficient, rough model 
method, simplified method, uniform flow 

INTRODUCTION 

Determining Chezy’s resistance coefficient C 
formula since its first appearance in 1775 in its classi-
cal form [CARLIER 1972; CHOW 1973; FRENCH 1986] 
has become the concern of many authors and re-
searchers who have constantly developed appropriate 
expressions for this parameter characterizing the open 
channel uniform flow in artificial channels and con-
duits of sewage or in the river channels and canals of 
irrigation system [KADBHANE, MANEKAR 2017; RE-
MINI 2016; REMINI et al. 2012]. 

Among the first reflections which have resulted in 
the expression of the Chezy’s coefficient, Prony's 
suggestion can be highlighted, which suggests the 
following formula [CARLIER 1972]: 

 
ଵ

஼మ ൌ
଴.଴଴଴଴ସସ

௏
൅ 0.000309 (1) 

Where: V = flow velocity.  

Tadini simplified Chezy’s coefficient by assigning 
a constant value equal to 50 [CARLIER 1972]. How-
ever, BAZIN [1897] proposed an expression for the 
coefficient C as a function of the hydraulic radius and 
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the conduct roughness coefficient whose values are 
tabulated [CARLIER 1972]. 

In 1869–1870, GANGUILLET and KUTTER [1869] 
gave another formula using more parameters such as 
the hydraulic radius, the roughness coefficient and the 
longitudinal slope. This formula is expressed through 
an international unit system where the values of the 
roughness coefficient are tabulated. The experience 
has shown that the application of this formula detects 
a reserve with respect to low slopes (practically less 
than 0.0001) [CARLIER 1972]. 

In a simpler form Kutter pointed out another for-
mula very much used in sanitation tunnels [CARLIER 

1972] and easier to be applied contrary to that given 
by Ganguillet. From these expressions one can see 
that none of them took account of the kinematic vis-
cosity of the flowing liquid. 

MANNING [1895] proposed another formula of C as 
a function of the hydraulic radius Rh and the roughness 
coefficient n, the latter parameter being the same as 
that encountered in the Ganguillet–Kutter formula, or: 

 𝐶 ൌ  
ଵ

௡
𝑅௛

ଵ
଺ൗ   (2)  

Taking into account the Reynolds number Re de-
fining the flow regime in the conduct, in addition to 
the absolute roughness ε and the hydraulic radius Rh, 
Thijsse in 1949 implicitly expressed Chezy’s coeffi-
cient in the following formula [CARLIER 1972]: 

 𝐶 ൌ – 18 log ቂ
ఌ

ଵଶோ೓
൅

஼

ଷୖୣ
ቃ  (3)  

In this relation, the implicit coefficient C depends 
upon several hydraulic parameters, namely, the abso-
lute roughness, a practically measurable parameter of 
the Reynolds number. This latter depends on the kine-
matic viscosity and obviously on the hydraulic radius. 

In 1950, POWELL [1950] expressed the Chezy’s 
coefficient as a way where the hydraulic radius is giv-
en in units of feet (Ft) drawing upon the works of 
KEULEGAN [1938], with an implicit formula resem-
bling that of Thijsse.  

The determination of the coefficient C by Thijsse 
relation and that of Powell necessitates an iterative 
calculation method. 

SWAMEE and RATHIE [2004] proposed a new gen-
eral formula (4) for Chezy’s coefficient C which re-
sembles to the Colebrook formula for tapping pipe-
lines with the aim of having an expression that takes 
into account all the parameters of the flow:  

 𝐶 ൌ  െ2.457ඥ𝑔 ln ൤
ఌ

ଵଶோ೓
൅

଴.ଶଶଵఔ

 ோ೓ඥ௚௜ோ೓
൨ (4) 

Where: ν = the kinematic viscosity; g = the accelera-
tion due to gravity. 

This formula applies to all conduit shapes and in 
all turbulent flow conditions whether smooth, rough 
or of transition. However, it may have the disad-
vantage of being implicit in the case where the linear 
dimension of the conduit is not given. 

Subsequently, several works were carried out in 
order to determine Chezy’s resistance coefficient. We 
can cite the expressions of STREETER [1936], PERRY et 
al. [1969], MARONE [1970], PYLE, NOVAK [1981], NA-
OT et al. [1996], EAD et al. [2000], GIUSTOLISI [2004]. 

The results of these studies were not really con-
vincing, especially for artificial channels. To that end, 
in order to enrich the bibliography, the present work 
aims at formulating an easy-to-use expression for the 
calculation of Chezy’s coefficient C. Based on the 
rough model method (RMM) [ACHOUR 2014; 2015a, 
b, c; ACHOUR, BEDJAOUI 2006; 2012; ACHOUR, 
SEHTAL 2014] used for calculating conduits and chan-
nels, a general relation of resistance coefficient in its 
explicit form can be established, taking into account 
the required hydraulic parameters, namely the filling 
rate, the discharge, the longitudinal slope, the absolute 
roughness of the internal walls of the conduit and the 
kinematic viscosity of the liquid. This relation is valid 
for all states of the turbulent flow in the egg-shaped 
conduit (Fig. 1).  

GEOMETRICAL CHARACTERISTICS  
OF EGG-SHAPED CONDUIT 

The uniformly flowing new egg-shaped conduit 
profile (Fig. 1) is often used much like other artificial 
profiles for the drainage of sewage and storm water 
collectors of sanitation networks [GÓRSKI et al. 2016]. 
It is geometrically defined by the following elements 
[ACHOUR 2007]:  
– semicircle (C1), of center O1 and diameter D; 
– (AB), an arc of the circle (C2) of center O2 and di-

ameter 0.25D; 
– (AE), an arc of the circle of center O’ and diameter 

8D/3; 
– (BF), an arc of the circle of center O and diameter 

8D/3; 
– G1G2 = 0.25D, y = 0.034482759D, ym = 1.5D. 

 

Fig. 1. Egg-shaped conduit profile; source: own elaboration 

HYDRAULIC CHARACTERISTICS 

In the conduit (Fig. 1), three cases of studies can 
be presented according to the position of the normal 
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depth yn. The hydraulic characteristics of the three 
flow zones, namely: the wetted perimeter P, the  
wetted cross-sectional area A and the hydraulic radius 
Rh, are expressed as a function of the filling rate 
𝜂 ൌ 𝑦௡ 1.5𝐷⁄ . 

The flow occupies three distinct spaces defined 
by the value of η:  𝜂 ൑  0.023; 0.023 ൑ 𝜂 ൑ 2/3; 
2/3 ൑ 𝜂 ൑ 1 [ACHOUR 2007]. 
Case 01: 𝜂 ൑  0.023 

 𝑃 ൌ
ଵ

ସ
 𝐷 . 𝜎ሺ𝜂ሻ [FRENCH 1986]  (5) 

 𝐴 ൌ  
஽మ

଺ସ
 𝜎ሺ𝜂ሻ 𝜑ሺ𝜂ሻ [FRENCH 1986]  (6) 

  𝑅௛ ൌ  
஽

ଵ଺
 𝜑ሺ𝜂ሻ [FRENCH 1986]  (7) 

Where: 

 𝜎ሺ𝜂ሻ cosିଵሺ1 െ 12𝜂ሻ  (8) 

 𝜑ሺ𝜂ሻ ൌ  1 െ 
ሺଵିଵଶ ఎሻඥଶସఎሺଵି଺ఎሻ

ୡ୭ୱషభሺଵିଵଶఎሻ
  (9) 

Case 02: 0.023 ൑ 𝜂 ൑ 2/3  

 𝑃 ൌ  𝜌ሺ𝜂ሻ𝐷   [FRENCH 1986]  (10) 

 𝐴 ൌ  
଼

ଽ
𝐷ଶ𝜒 ሺ𝜂ሻ   [FRENCH 1986]  (11) 

 𝑅௛  ൌ  
଼

ଽ
𝐷 

ఞ ሺఎሻ

ఘሺఎሻ
   [FRENCH 1986]  (12) 

Where:  

 𝜌ሺ𝜂ሻ ൌ ቂെ
଼

ଷ
sinିଵ ଷ

ସ
ቀ1 െ

ଷ

ଶ
 𝜂ቁ ൅ 2.350ቃ  (13) 

𝜒 ሺ𝜂ሻ ൌ 0.813 െ 2sinିଵଷ
ସ

ቀ1 െ ଷ
ଶ
𝜂ቁ ൅ 

 െ
ଷ

ଶ
ሺ1 െ

ଷ 

ଶ
𝜂ሻ ቈට1 െ

ଽ

ଵ଺
ቀ1 െ

ଷ 

ଶ
𝜂ቁ

ଶ
െ

ହ

ସ
቉ (14) 

Case 03: 2/3 ൑ 𝜂 ൑ 1 

 𝑃 ൌ 4𝐷 𝜏ሺ𝜂ሻ𝜔ሺ𝜂ሻ   [FRENCH 1986]  (15) 

 𝐴 ൌ  
ଵ

ସ
𝐷ଶ𝜏ሺ𝜂ሻ 𝜆ሺ𝜂ሻ   [FRENCH 1986]  (16) 

 𝑅௛  ൌ  
ଵ

ଵ଺
 

ఒሺఎሻ

ఠሺఎሻ
𝐷   [FRENCH 1986]  (17) 

Where: 

 𝜔ሺ𝜂ሻ ൌ ቂ
଴.ହ଼଻

sinషభሺଷఎିଶሻ
൅

ଵ

ସ
ቃ  (18) 

 𝜏ሺ𝜂ሻ ൌ sinିଵሺ3𝜂 െ 2ሻ  (19) 

 𝜆ሺ𝜂ሻ ൌ  ൤1 ൅
ሺଷఎିଶሻඥଵିሺଷఎିଶሻమାଶ.଼ଽ଴

ୱ୧୬షభሺଷఎିଶሻ
൨  (20) 

GENERAL EXPRESSION OF CHEZY’S 
RESISTANCE COEFFICIENT 

The uniform open channel flow is often governed 
by the usual formulas such as Chezy's expressing the 
discharge 𝑄 as suggested below: 

 𝑄 ൌ  𝐶𝐴ඥ𝑅௛𝑖  (21)  

The design of the open channel flow draws upon 
the discharge Q, the longitudinal slope i, the filling 
rate η, the absolute roughness ε of the internal wall of 
the conduit, and the kinematic viscosity ν of the liq-
uid. However, the resistance coefficient to flow C in 
the formula (21) varies as a function of the filling rate 
η. This means that this coefficient is not a known data 
of the problem. It becomes, therefore, the objective of 
our study. 

The relationship of the discharge of ACHOUR and 
BEDJAOUI [2006] valid in all geometric profiles and 
established in all turbulent flow regimes (smooth tur-
bulent, transitional and turbulent rough) can show that 
Chezy’s coefficient C is variable according to all flow 
parameters. 

The discharge Q, according to ACHOUR and BE-
DJAOUI [2006], is given by: 

 𝑄 ൌ  െ4ඥ2𝑔 𝐴 ඥ𝑅௛ 𝑖  log ቂ
ఌ

ଵସ.଼ோ೓
൅

ଵ଴.଴ସ

ୖୣ
ቃ  (22) 

where: ε = the absolute roughness characterizing the 
state of the internal wall of the conduit; Re = Rey-
nolds number expressed by the Equation: 

 Re ൌ 32√2  
ට௚ ௜ோ೓ 

య 

ఔ
  (23) 

By comparing the two Equations (21) and (22), 
the Chezy’s coefficient C can be written as: 

 𝐶 ൌ  െ4 ඥ2𝑔 log ቂ
ఌ

ଵସ.଼ோ೓
൅

ଵ଴.଴ସ

ୖୣ
ቃ  (24) 

The Equation (24) reveals that Chezy’s resistance 
coefficient C depends on the absolute roughness, the 
hydraulic radius Rh and the Reynolds number Re. This 
last parameter, according to the Equation (23), is 
a function of the slope i, the kinematic viscosity ν of 
the liquid and the hydraulic radius Rh. The Equations 
(7), (12) and (17) are taken into account where the 
hydraulic radius Rh depends on the filling rate η and 
the diameter D of the conduit. 

In dimensional terms, the Equation (24) becomes: 

 
஼

√௚
 ൌ  െ 4√2 log ቂ

ఌ

ଵସ.଼ோ೓
൅

ଵ଴.଴ସ

ୖୣ
ቃ  (25) 

Case 01: 𝜂 ൑  0.023  
According to (23) and (7), we have: 

 Re ൌ √ଶ 

ଶ
 
ඥ௚௜஽య 

ఔ
 𝜑ሺ𝜂ሻଷ/ଶ  (26) 

In the full state of the conduit where η = 1, and from 
the Equations (23) and (17), we can write: 

 Re௙ ൌ 6.865 
ඥ௚௜஽య 

ఔ
  (27)  

The index f denotes the full state of the conduit. 
So we can also write from Equations (26) and (27): 

 Re ൌ Re௙ ቀ
ఝሺఎሻ

ସ.ହହଵ
ቁ

ଷ/ଶ
  (28) 

From the both Equations (7) and (28), the Equation 
(25) can be rewritten as follows:  
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஼

√௚
ൌ െ4√2 log ൤

ఌ
஽ൗ

଴.ଽଶହఝሺఎሻ
൅

ଽ଻.ସ଺ଷ

ୖୣ೑ ఝሺఎሻయ/మ൨ (29) 

Case 02: 0.023 ൑ 𝜂 ൑ 2/3  
From Equations (23) and (12), we have: 

 Re ൌ
ଵ଴ଶସ

ଶ଻
 
ඥ௚௜஽య 

ఔ
ቂ

ఞሺఎሻ

ఘሺఎሻ
ቃ

ଷ/ଶ
  (30)  

Thus, we can write from both expressions (30) and 
(27): 

 Re ൌ 5.525Re௙ ቂ
ఞሺఎሻ

ఘሺఎሻ
ቃ

ଷ/ଶ
  (31) 

From (12) and (31), (25) can be rewritten as follows:  

 
஼

√௚
ൌ െ4√2 log ቎

ఌ
஽ൗ

ଵଷ.ଵ଺
ഖሺആሻ
ഐሺആሻ

൅
ଵ.଼ଵ଻

ୖୣ೑ቂ
ഖሺആሻ
ഐሺആሻቃ

య/మ቏ (32)  

Case 03: 2/3 ൑ 𝜂 ൑ 1  
According to (23) and (17), we have: 

 Re ൌ √ଶ 

ଶ

ඥ௚ ௜ ஽య 

ఔ
ቂ

ఒሺఎሻ

ఠሺఎሻ
ቃ

ଷ/ଶ
  (33) 

So we can also write from Equations (33) and (27): 

 Re ൌ Re௙ ቈ
ഊሺആሻ
ഘሺആሻ

ସ.ହହଵ
቉

ଷ/ଶ

 (34) 

From (17) and (34), the Equation (25) can be rewrit-
ten as follows: 

 
஼

√௚
ൌ െ4√2 log ቎

ఌ
஽ൗ

଴.ଽଶହ 
ഊሺആሻ
ഘሺആሻ

൅
ଽ଻.ସ଺ଷ

ୖୣ೑ቂ
ഊሺആሻ
ഘሺആሻ

ቃ
య/మ቏ (35)  

According to Equations (29), (32) and (35), the 
relative roughness ε/D, the filling rate η of the conduit 
and the Reynolds number corresponding to the full 
state of the conduit Ref are necessary for Chezy’s re-
sistance coefficient C. When these parameters are 
known, the Equations (29), (32) and (35) allow the 
explicit determination of the same coefficient. 

CALCULATION OF CHEZY’S 
RESISTANCE COEFFICIENT USING  
THE ROUGH MODEL METHOD (RMM) 

The diameter D can be excluded from the known 
parameters of the problem in order to compute 
Chezy’s resistance coefficient. These parameters are 
the discharge, the conduit filling rate, the longitudinal 
slope i, the absolute roughness ε and the kinematic 
viscosity ν of the flowing liquid. The Equations (29), 
(32) and (35) will no longer be used for the explicit 
calculation of Chezy’s coefficient C. So, in this situa-
tion, the rough model method (RMM) can be useful to 
determine this coefficient. 

The rough model is particularly characterized by 
𝜀̅ 𝐷ഥ௛⁄ = 0.037 [ACHOUR 2007] as the arbitrarily as-
signed relative roughness value, where Dഥh is the hy-
draulic diameter. The chosen relative roughness value 

is so large that the prevailed flow regime is fully 
rough. Thus, the friction factor is f ̅= 1 16⁄  according 
to Colebrook–White relationship for Re = Reതതതത tending 
to infinitely large value. For Re tending to infinity, 
Colebrook–White's relationship leads to the Niku-
radse formula as follows [ACHOUR 2007]: 

 𝑓̅ ൌ ቂെ2 log ቀ
ఌത ஽ഥ೓⁄

ଷ.଻ 
ቁቃ

ିଶ
  (36)  

By inserting the value 𝜀̅ 𝐷ഥ௛⁄ = 0.037, one can 
write:  

 𝑓̅ ൌ ቂെ2 log ቀ
଴.଴ଷ଻

ଷ.଻ 
ቁቃ

ିଶ
ൌ 4ିଶ ൌ 1 16⁄   (37) 

In the reference rough model [ACHOUR 2007] the 
Chezy’s coefficient Cഥ and the coefficient of friction 
f ത= 1 16⁄  are linked by the Equation:  

 𝐶̅ ൌ ඥ8𝑔/𝑓̅ ൌ 8ඥ2𝑔  = constant (38) 

The rough model is defined by a diameter Dഥ, 
flowing through a discharge liquid Qഥ of kinematic 
viscosity νത corresponding to a filling rate 𝜂̅, under 
a longitudinal slope i.̅ For determining Chezy’s re-
sistance coefficient characterizing the flow in the 
conduit, one can assume the following conditions: 
 D തതതത≠ D; Q ഥ = Q; i ̅= i; ηത = η; ν ഥ= ν. 
Case 01: η ൑ 0.023  

From Equations (6) and (7), the Equation (21) be-
comes 

 𝑄 ൌ
ଵ

ଶହ଺
 𝜎ሺ𝜂ሻ𝜑ሺ𝜂ሻଷ/ଶ √𝐶ଶ𝐷ହ𝑖 (39)  

We put:  

 𝑄∗ ൌ
ଵ

ଶହ଺
𝜎ሺ𝜂ሻ𝜑ሺ𝜂ሻଷ/ଶ  (40)  

Then: 

 𝑄∗ ൌ
ொ

ඥ஼మ஽ఱ௜
  (41) 

According to Equation (41), the relative conduc-
tivity of the referential rough model will be: 

 𝑄∗ ൌ
ொ

ඥ஼̅మ஽ഥఱ௜
  (42) 

Or, according to Equation (38), the Equation (42) be-
comes: 

 𝑄ത∗ ൌ
ொ

ඥଵଶ଼௚஽ഥఱ௜
  (43) 

The Equation (40) is written for referential rough 
model: 

 
ொ

ඥଵଶ଼௚஽ഥఱ௜
ൌ

ଵ

ଶହ଺
𝜎ሺ𝜂ሻሾ𝜑ሺ𝜂ሻሿଷ/ଶ  (44) 

So: 

 𝐷ഥ ൌ 4ൣ√2 𝜎ሺ𝜂ሻ൧
ି଴.ସ

ሾ𝜑ሺ𝜂ሻሿି଴.଺ ൤
ொ

ඥ௚ ௜
൨

଴.ସ

  (45)  

The Equation (45) allows the explicit calculation 
of the diameter Dഥ of the referential rough model, 
knowing that the parameters Q, i and η are known. 
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The Reynolds number Reതതതത characterizing the flow 
in the referential rough model is, by virtue of Equa-
tion (26): 

 Reതതതത ൌ √ଶ 

ଶ

ඥ௚௜஽ഥయ 

ఔ
ሾ𝜑ሺ𝜂ሻሿଷ/ଶ  (46)  

Or:  

 Reതതതത ൌ  Reതതതത௙ሺ
ఝሺఎሻ

ସ.ହହଵ
ሻଷ/ଶ  (47)  

Where 

 Reതതതത௙  ൌ  6.865 
ඥ௚௜஽ഥయ 

ఔ
  (48) 

According to the RMM, Chezy’s coefficient C is 
given as follows [ACHOUR, BEDJAOUI 2006]. 

 𝐶 ൌ
஼̅

టఱ/మ  (49)  

Where ψ is a dimensionless parameter determined by 
the following Equation (ACHOUR, BEDJAOUI [2006; 
2012]; ACHOUR, SEHTAL [2014]). 

 𝜓 ൌ 1.35 ቈെ log ቆ
ఌ

ோത೓
ൗ

ଵଽ
൅

଼.ହ

ୖୣതതതതቇ቉
ି

మ
ఱ

 (50)  

From Equations (7) and (47), the Equation (50) be-
comes 

 𝜓 ൌ 1.35 ൤െ log ൬
ఌ

஽ഥൗ

ଵ.ଵ଼଻ହ ఝሺఎሻ
൅

଼ଶ.ହଵସ

ୖୣതതതത೑ ሾఝሺఎሻሿయ/మ൰൨
ି 

మ
ఱ
(51)  

From (38) and (49): 

 𝐶 ൌ
 ஼ഥ

టఱ/మ ൌ
଼ඥଶ௚

టఱ/మ   (52)  

According to the Equation (51), the Equation (52) 
becomes 

𝐶 ൌ െ5.343ඥ𝑔 ൤log ൬
ఌ

஽ഥൗ

ଵ.ଵ଼଻ହ ఝሺఎሻ
൅

଼ଶ.ହଵସ

ୖୣതതതത೑ ሾఝሺఎሻሿయ/మ൰൨  (53)  

The Equation (53) can be written in dimensionless 
terms as below: 

஼

√௚ 
ൌ െ5.343 ൤log ൬

ఌ
஽ഥൗ

ଵ.ଵ଼଻ହ ఝሺఎሻ
൅

଼ଶ.ହଵସ

ୖୣതതതത೑ ሾఝሺఎሻሿయ/మ൰൨  (54)  

Case 02: 0.023 ൑ 𝜂 ൑ 2/3  

According to the Equations (11) and (12), the 
Equation (21) becomes 

 𝑄 ൌ
ଵ଺√ଶ

ଶ଻
ሾ𝜒ሺ𝜂ሻሿଷ/ଶ ሾ𝜌ሺ𝜂ሻሿ 

షభ
మ √𝐶ଶ𝐷ହ𝑖  (55)  

 
We put: 

 𝑄∗ ൌ
ଵ଺√ଶ

ଶ଻
ሾ𝜒ሺ𝜂ሻሿଷ/ଶ ሾ𝜌ሺ𝜂ሻሿ 

షభ
మ   (56) 

Then: 

 𝑄∗ ൌ
ொ

ඥ஼మ஽ఱ௜
  (57) 

According to Equation (57), the relative conductivity 
of the referential rough model will be:  

 𝑄∗ ൌ
ொ

ඥ஼̅మ஽ഥఱ௜
  (58) 

Or, according to Equation (38), the Equation (58) be-
comes: 

 𝑄ത∗ ൌ
ொ

ඥଵଶ଼௚஽ഥఱ௜
  (59)  

For referential rough model, the Equation (56) is 
written: 

 
ொ

ඥଵଶ଼ ௚ ஽ഥ ఱ௜
 ൌ  

ଵ଺√ଶ

ଶ଻
 ሾ𝜒ሺ𝜂ሻሿଷ/ଶ ሾ𝜌ሺ𝜂ሻሿ 

షభ
మ   (60)  

So:  

 𝐷ഥ  ൌ  0.407ሾ𝜌ሺ𝜂ሻሿ଴.ଶ ሾ𝜒ሺ𝜂ሻሿି଴.଺ ൤
ொ

ඥ௚௜
൨

଴.ସ

  (61)  

The Equation (61) allows the explicit calculation 
of the diameter Dഥ of the referential rough model, 
knowing that the parameters Q, i and η are known. 
The Reynolds number Reതതതത characterizing the flow in 
the referential rough model is, by virtue of Equation 
(30): 

 Reതതതത ൌ
ଵ଴ଶସ

ଶ଻

ඥ௚௜஽ഥయ 

ఔ
ቂ

ఞሺఎሻ

ఘሺఎሻ
ቃ

ଷ/ଶ
  (62) 

Let: 

 Reതതതത ൌ 5.525Reതതതത௙ ቂ
ఞሺఎሻ

ఘሺఎሻ
ቃ

ଷ/ଶ
  (63) 

Where: 

Reതതതത௙ ൌ 6.865
ඥ𝑔𝑖𝐷ഥଷ 

𝜈
 

According to Equations (12) and (63), the Equation 
(50) becomes: 

 𝜓 ൌ 1.35 ቎െ log ቌ
ఌ

஽ഥൗ

ଵ଺.଼ଽ 
ഖሺആሻ
ഐሺആሻ

൅
ଵ.ହଷ଼

ୖୣതതതത೑ ቂ
ഖሺആሻ
ഐሺആሻ

ቃ
య/మቍ቏

ି 
మ
ఱ

 (64) 

According to (64), the Equation (52) becomes: 

𝐶 ൌ െ5.343ඥ𝑔 ቎log ቌ
ఌ

஽ഥൗ

ଵ଺.଼ଽ 
ഖሺആሻ
ഐሺആሻ

൅
ଵ.ହଷ଼

ୖୣതതതത೑ ቂ
ഖሺആሻ
ഐሺആሻ

ቃ
య/మቍ቏  (65)  

Otherwise, in dimensionless terms: 

஼

√௚ 
ൌ  െ5.343 ቎log ቌ

ఌ
஽ഥൗ

ଵ଺.଼ଽ 
ഖሺആሻ
ഐሺആሻ

൅
ଵ.ହଷ଼

ୖୣതതതത೑ ቂ
ഖሺആሻ
ഐሺആሻ

ቃ
య/మቍ቏  (66) 

Case 03: 2/3 ൑ 𝜂 ൑ 1  
According to the Equations (16) and (17), the 

Equation (21) becomes: 

 𝑄 ൌ
ଵ

ଵ଺
 ሾ𝜏ሺ𝜂ሻሿሾ𝜔ሺ𝜂ሻሿ 

షభ
మ ሾ𝜆ሺ𝜂ሻሿଷ/ଶ √𝐶ଶ𝐷ହ𝑖  (67)  

We put: 

 𝑄∗ ൌ
ଵ

ଵ଺
ሾ𝜏ሺ𝜂ሻሿሾ𝜔ሺ𝜂ሻሿ 

షభ
మ ሾ𝜆ሺ𝜂ሻሿଷ/ଶ  (68) 
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Hence: 

 𝑄∗ ൌ
ொ

ඥ஼మ஽ఱ௜
  (69) 

According to Equation (69), the relative conductivity 
of the referential rough model will be: 

 𝑄∗ ൌ
ொ

ඥ஼̅మ஽ഥఱ௜
  (70)  

Or, according to Equation (38), the Equation (70) be-
comes: 

 𝑄ത∗ ൌ
ொ

ඥଵଶ଼௚஽ഥఱ௜
  (71) 

For referential rough model, the Equation (68) is 
written: 

 
ொ

ඥଵଶ଼௚஽ഥఱ௜
ൌ

ଵ

ଵ଺
ሾ𝜏ሺ𝜂ሻሿሾ𝜔ሺ𝜂ሻሿ 

షభ
మ ሾ𝜆ሺ𝜂ሻሿଷ/ଶ  (72)  

So: 

 𝐷ഥ ൌ ቂ√ଶ

ଶ
𝜏ሺ𝜂ሻቃ

ି ଴.ସ
ሾ𝜔ሺ𝜂ሻሿ଴.ଶሾ𝜆ሺ𝜂ሻሿି଴.଺ ൤

ொ

ඥ௚௜
൨

଴.ସ

 (73) 

The Equation (73) allows the explicit calculation 
of the diameter Dഥ of the referential rough model, if 
parameters Q, i and η are known. The Reynolds num-
ber Reതതതത characterizing the flow in the referential rough 
model is, by virtue of Equation (33): 

 Reതതതത ൌ √ଶ 

ଶ
 
ඥ௚௜஽ഥయ 

ఔ
ቂ

ఒሺఎሻ

ఠሺఎሻ
ቃ

ଷ/ଶ
  (74)  

Or: 

 Reതതതത ൌ Reതതതത௙ ቈ
ഊሺആሻ
ഘሺആሻ

ସ.ହହଵ
቉

ଷ/ଶ

  (75) 

Where: Reതതതത௙ ൌ  6.865
ඥ௚௜஽ഥయ 

ఔ
 

According to Equations (17) and (75), the Equa-
tion (50) becomes: 

𝜓 ൌ 1.35 ቎െ log ቌ
ఌ

஽ഥൗ

ଵ.ଵ଼଻ହ ቂ
ഊሺആሻ
ഘሺആሻ

ቃ
൅

଼ଶ.ହଵସ

ୖୣതതതത೑ ቂ
ഊሺആሻ
ഘሺആሻ

ቃ
య/మቍ቏

ି 
మ
ఱ

  (76)  

According to (76), the Equation (52) becomes: 

𝐶 ൌ െ5.343ඥ𝑔 ൥log ൭
ఌ

஽ഥൗ

ଵ.ଵ଼଻ହቂഊሺആሻ
ഘሺആሻ

ቃ
൅

଼ଶ.ହଵସ

ୖୣതതതത೑ ቂ
ഊሺആሻ
ഘሺആሻ

ቃ
య/మ൱൩ (77) 

Otherwise, in dimensionless terms, the Equation (77) 
can be written as follows: 

஼

√௚  
ൌ െ5.343 ቎log ቌ

ఌ
஽ഥൗ

ଵ.ଵ଼଻ହቂ
ഊሺആሻ
ഘሺആሻ

ቃ
൅

଼ଶ.ହଵସ

ୖୣതതതത೑ ቂ
ഊሺആሻ
ഘሺആሻ

ቃ
య/మቍ቏ (78)  

Example 1 

For the following data, calculate Chezy’s re-
sistance coefficient C using the rough model method: 
The discharge Q = 0.8 m3∙s–1, the slope i = 2.10–4, the 

absolute roughness ε = 10–4 m, the filling rate η = 0.7 
and the kinematic viscosity ν = 10–6 m2∙s–1. 

Solution. For η = 0.7, the calculation will be done by 
Equations (18), (19), and (20). Thus, with the known 
parameters Q, η and i, the Equation (73) allows the 
explicit calculation of the diameter Dഥ of the referential 
rough model. 

η = 0.7:  

𝜔ሺ𝜂ሻ ൌ ቂ
଴.ହ଼଻

sinషభሺଷఎିଶሻ
൅

ଵ

ସ
ቃ ൌ ቂ

଴.ହ଼଻

sinషభሺଷ∙଴.଻ିଶሻ
൅

ଵ

ସ
ቃ = 

ൌ 6.114  

 𝜏ሺ𝜂ሻ ൌ sinିଵሺ3𝜂 െ 2ሻ ൌ sinିଵሺ3 ∙ 0.7 െ 2ሻ ൌ 0.1  

 𝜆ሺ𝜂ሻ ൌ ൤1 ൅
ሺଷఎିଶሻඥଵିሺଷఎିଶሻమାଶ.଼ଽ଴

ୱ୧୬షభሺଷఎିଶሻ
൨ ൌ 

 = ൤1 ൅
ሺଷ∙଴.଻ିଶሻඥଵିሺଷ∙଴.଻ିଶሻమାଶ.଼ଽ଴

ୱ୧୬షభሺଷ∙଴.଻ିଶሻ
൨ ൌ 30.839 

η = 0.7. The Equation (73) gives the diameter Dഥ:  

 𝐷ഥ ൌ ቂ√ଶ

ଶ
𝜏ሺ𝜂ሻቃ

ି଴.ସ
ሾ𝜔ሺ𝜂ሻሿ଴.ଶ ሾ𝜆ሺ𝜂ሻሿି଴.଺ ൤

ொ

ඥ௚௜
൨

଴.ସ

 

 ൌ ቂ√ଶ

ଶ
0.1ቃ

ି଴.ସ
6.114଴.ଶ ∙ 30.839ି଴.଺ ቂ

଴.଼

√ଽ.଼ଵ∙଴.଴଴଴ଶ
ቃ

଴.ସ
 

 ൌ 1.684 m 

With the Equation (48), we can calculate the Rey-
nolds number Reതതതത

f at full state: 

 Reതതതത௙ ൌ 6.865 
ඥ௚௜஽ഥయ 

ఔ
 ൌ  6.865

ඥଽ.଼ଵ∙ଶ ∙ ଵ଴షబ.ర ∙ ଵ.଺଼ସయ 

ଵ଴షల   

 ൌ  6.65 ∙ 10ହ 

The direct calculation of the Chezy’s coefficient 
of resistance to flow C can be determined without the 
diameter D of the tunnel being a data of the problem. 
This can be done by applying the Equation (77): 

 𝐶 ൌ െ5.343ඥ𝑔 ቎log ቌ
ఌ

஽ഥൗ

ଵ.ଵ଼଻ହቂ
ഊሺആሻ
ഘሺആሻቃ

൅
଼ଶ.ହଵସ

ୖୣതതതത೑ቂ
ഊሺആሻ
ഘሺആሻቃ

య/మቍ቏  

 ൌ െ5.343√9.81 ൥log ቆ
ଵ଴షర

ଵ.଺଼ସൗ

ଵ.ଵ଼଻ହ
యబ.ఴయవ
ల.భభర

൅
଼ଶ.ହଵସ

଺.଺ହ∙ଵ଴ఱ∙ቂ
యబ.ఴయవ
ల.భభర

ቃ
య/మቇ൩ 

 ൌ 78.327 m0.5∙sିଵ 

SIMPLIFIED METHOD 

In this part, a simplified method based on the the-
ory of the rough model, is presented to allow the easy 
determining coefficient C through a number of limited 
data with regard to the method already exposed in 
paragraph 5. For that purpose, the necessary given 
parameters are only, the discharge, the slope of the 
conduit, the absolute roughness and the kinematic 
viscosity of the liquid. So, the calculation of Chezy’s 
coefficient made by this method and that made by the 
rough model method presented in the paragraph 5, 
watch, an average relative error lower than 2%. It 
tried several examples of calculation by making vary 
the values of the given parameters. If it is assumed 
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that η ≠ ηഥ  and when the Equation (73) is applied for 
rough model, we get: 

 𝑄∗ ൌ
ଵ

ଵ଺
ሾ𝜏ሺ𝜂̅ሻሿሾ𝜔ሺ𝜂̅ሻሿ 

షభ
మ ሾ𝜆ሺ𝜂̅ሻሿଷ/ଶ  (79) 

Where Q* is the relative conductivity expressed as 
follows, according to Equation (71): 

 𝑄ത∗ ൌ
ொ

ඥଵଶ଼ ௚஽ഥఱ௜
  (80) 

Let us consider the referential rough model with 
a diameter Dഥ equal to that of the full state of the con-
duit corresponding to η ഥ= 1: 

At ηത = 1, the Equations (18), (19) and (20) be-

come: ωሺηതሻ = 
1.174

π
+

1

4
, τሺηതሻ = 

π

2
, λ(ηത) = 1+

5.78

π
. Conse-

quently, the Equation (79) leads to Q*= 0.1894π. For 
this relative conductivity value, the Equation (79) in-
dicates a second value of the filling rate 
η ഥ≈ 0.8887 different from η ഥ= 1. 

The hydraulic radius Rഥh is given according to 
Equation (17) for the full state of the tunnel: 

 𝑅ത௛ ൌ 0.3342𝐷ഥ  (81)  

For the relative conductivity Q*= 0.1894 π , the 
diameter Dഥ of the full rough model is obtained by the 
following expression: 

 𝐷ഥ ൌ ሺ0.1894𝜋ሻି଴.ସ ൬
ொ

ඥଵଶ଼௚௜
൰

଴.ସ

  (82)  

The calculation of the Chezy’s coefficient C is 
made easily by following steps: 
– calculate the diameter Dഥ corresponding to the full 

state of the conduit using Equation (82); 
– thus, the hydraulic radius Rഥh is calculated using 

Equation (81); 
– next, the Equation (23) directly calculates the 

Reynolds number of the rough model; 
– therefore, the dimensionless correction factor ψ is 

explicitly determined using Equation (50); 
– finally, the Chezy’s coefficient C is easily obtained 

by the Equation (52). 

Example 2 

According to the data of example 1 calculate 
Chezy’s coefficient C using the simplified method:  
Q = 0.8 m3∙s–1, i = 2∙10–4, ε = 10–4 m, ν = 10–6 m2∙s–1.  

Solution 
1. By applying the Equation (82), the diameter Dഥ of 

the full rough model is: 
 

 𝐷ഥ ൌ ሺ0.1894𝜋ሻି଴.ସ ൬
ொ

ඥଵଶ଼௚௜
൰

଴.ସ

ൌ 

 = ሺ0.1894𝜋ሻି଴.ସ ൬
଴.଼

ඥଵଶ଼∙ଽ.଼ଵ∙ଶ∙ଵ଴షర
൰

଴.ସ

ൌ 1.484 m  

2. The hydraulic radius Rഥh is calculated using the 
Equation (81). 

 𝑅ത௛ ൌ 0.3342𝐷ഥ ൌ 0.3342 ∙ 1.484 ൌ 0.496 m 

3. The Reynolds number Reതതതത of the rough model is 
calculated from Equation (23): 

 Reതതതത ൌ 32√2  
ට௚௜ோത೓

య 

ఔ
ൌ 32√2 

ඥଽ.଼ଵ∙ଶ∙ଵ଴షర∙଴.ସଽ଺య 

ଵ଴షల ൌ 

 = 7 ∙ 10ହ 

4. Using Equation (50), the calculation of the non-
dimensional correction factor is as follows: 

 𝜓 ൌ 1.35 ቈെ log ቆ
ఌ

ோത೓
ൗ

ଵଽ
൅

଼.ହ

ୖୣതതതതቇ቉
ି 

మ
ఱ

 

 𝜓 ൌ 1.35 ቈെ log ቆ
ଵ଴షర

଴.ସଽ଺ൗ

ଵଽ
൅

଼.ହ

଻∙ଵ଴ఱቇ቉
ି 

మ
ఱ

ൌ 0.730  

5. The Chezy’s coefficient C is easily computed by 
Equation (52): 

 𝐶 ൌ
଼ඥଶ௚

ట
ఱ

మൗ
ൌ

଼√ଶ∙ଽ.଼ଵ

ሺ଴.଻ଷ଴ሻ
ఱ

మൗ
ൌ 77.83 m0.5∙s–1 

The value of the Chezy’s coefficient calculated by 
the simplified method (Csimplified method = 77.83) is less 
than that calculated in Example 1 by the rough model 
method (CMMR = 78.327). The relative error rate be-
tween these both values is approximately 0.6%. 

MAXIMUM OF CHEZY’S RESISTANCE 
COEFFICIENT 

The Equations (29), (32) and (35) express 
Chezy’s coefficient C as a function of the dimension-
less variables: the filling rate η, the Reynolds number 
corresponding to the full state of the conduit Ref and 
the relative roughness ε/D. According to these rela-
tionships, the study of the variation of Chezy’s coeffi-
cient as a function of the filling rate requires the draw-
ing of the indicative curves for different values of re-
lative roughness and several values of the Reynolds 
number. Two figures have been made, exposing this 
variation for both states of turbulent flow in the con-
duit, one for the smooth state ε/D and the second for 
the rough state ε/D = 0.05. 

In Figure 2 we can notice curves indicating the 
variation of C ඥg⁄  on the abscissa as a function of η 
on the ordinate, for fixed Reynolds number values 
(104, 105, 106 and 107). In these curves, C ඥg⁄  under-
goes an increase along with the filling rate η of the 
conduit. In a first step, this increase is remarkably rapid 
whose filling rate varies at the interval 0 < η < 0.3. In 
a second step, where η > 0.3, the increment becomes 
very slow until the C ඥg⁄  takes a maximum value for 
the same filling rate η in all curves equal to 0.858. 
Then, due to the decrease in C ඥg⁄ , a change in the 
direction of the curves is shown with the always in-
creasing filling rate up to the full state of the conduit 
where η = 1. The distinctive feature in Figure 2 is that 
the curves merge beyond the 105 value of the Rey-
nolds number, which explains the reason why the vari- 
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ation of C ඥg⁄  depends only upon the filling rate η in 
rough turbulent regime. 

For the egg-shaped conduit, Chezy’s resistance 
coefficient reaches a maximum in both figures at the 
same value of the filling rate η ≅ 0.858. This amounts 
to saying that it does not depend upon the state of the 
conduit inner wall (rough or smooth), or the value of 
the Reynolds number. 

For this purpose, η ≅ 0.858  

  
஼

√௚ 
ൌ

஼ౣ౗౮

√௚ 
 

and: 

 𝜔ሺ0.858ሻ ൌ ቂ
଴.ହ଼଻

ୱ୧୬షభሺଷ∙଴.଼ହ଼ିଶሻ
൅

ଵ

ସ
ቃ ൌ 1.2101 

 𝜆ሺ0.858ሻ ൌ ൤1 ൅
ሺଷ∙଴.଼ହ଼ିଶሻඥଵିሺଷ∙଴.଼ହ଼ିଶሻమାଶ.଼ଽ଴

ୱ୧୬షభሺଷ∙଴.଼ହ଼ିଶሻ
൨ ൌ

 6.4958 

Both values of ω(η) and λ(η) lead to the Equation 
(35) in the following way: 

 
஼ౣ౗౮

√௚
ൌ െ4√2 log ൤

ఌ
஽ൗ

ସ.ଽ଺ହ 
൅

଻.଼ଷ଺ହ

ୖୣ೑
൨  (83)  

or:  

 𝐶୫ୟ୶ ൌ െ4ඥ2𝑔 log ൤
ఌ

஽ൗ

ସ.ଽ଺ହ 
൅

଻.଼ଷ଺ହ

ோ௘೑
൨  (84)  

The latter allows the determining of the maxi-
mum of Chezy’s resistance coefficient, provided that 
the two parameters of the relative roughness ε/D and 
the Reynolds number Ref are known. 

In a contrary case, where the diameter D of the 
conduit is not a problem data, the maximum of 
Chezy’s resistance coefficient Cmax can be determined 
by the Equation (78), assigning to the filling rate η the 
value 0.858. 
where: ω(η) = 1.2101, λ(η) = 6.4958. 

Hence, the Equation (78) becomes, 

 
஼ౣ౗౮

√௚ 
ൌ െ5.343 log ൬

ఌ
஽ഥൗ

଺.ଷ଻ସ
൅

଺.଺ଷସହ

ୖୣതതതത೑
൰  (85) 

Let: 

 𝐶୫ୟ୶ ൌ െ5.343ඥ𝑔 log ൬
ఌ

஽ഥൗ

଺.ଷ଻ସ
൅

଺.଺ଷସହ

ୖୣതതതത೑
൰  (86) 

The above expression permits the maximum of 
Chezy’s resistance without taking into consideration 
the diameter D of the conduit. 

An example of application is suggested to illus-
trate the last case treated, describing the steps in detail 
for the calculation of this coefficient. 

Example 3 

For the following data, calculate the maximum 
value of Chezy’s resistance coefficient C: Q = 0.75 
m3∙s–1 

 i = 2∙10–4,   ε = 10–4 m,   η = 0.6,   ν = 10–6 m2∙s–1 

Solution. The calculation for η = 0.6, will be done in 
equations to the 2nd case of flow. Thus, with the 
known parameters Q, η and i, the Equation (61)  
allows the explicit calculation of referential rough 
model diameter Dഥ. 

Fig. 2. Variation of C ඥg⁄  as a function of
the filling rate η according to the equa-
tions (29), (32), (35) for fixed values of
the relative roughness: a) ε/D = 0, b) ε/D
= 0.05 and the Reynolds number Ref;
source: own elaboration 

a) 

b) 
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For η = 0.6:  

 𝜌ሺ0.6ሻ ൌ ቂെ
଼

ଷ
sinିଵ ଷ

ସ
ቀ1 െ

ଷ

ଶ
0.6ቁ ൅ 2.350ቃ ൌ 

 2.1498 

 𝜒 ሺ𝜂ሻ ൌ 0.813 െ 2 sinିଵ ଷ

ସ
ቀ1 െ

ଷ 

ଶ
0.6ቁ ൅ 

 െ
ଷ

ଶ
ቀ1 െ

ଷ 

ଶ
0.6ቁ ቈට1 െ

ଽ

ଵ଺
ቀ1 െ

ଷ 

ଶ
0.6ቁ

ଶ
െ

ହ

ସ
቉ 

 ൌ 0.7008  

The diameter Dഥ is given with the Equation (61):  

 𝐷ഥ ൌ 0.407ሾ𝜌ሺ𝜂ሻሿ଴.ଶሾ𝜒ሺ𝜂ሻሿି଴.଺ ൤
ொ

ඥ௚௜
൨

଴.ସ

ൌ 

 ൌ 0.407 ∙ 2.1498଴.ଶ ∙ 0.7008ି଴.଺ ቀ
଴.଻ହ

√ଽ.଼ଵ∙଴.଴଴଴ଶ
ቁ

଴.ସ
 = 

 ൌ 1.821 m  

With Equation (48), we can calculate the full state 
Reynolds number Reതതതത

f: 

 Reതതത௙ ൌ 6.865 
ඥ௚௜஽ഥయ 

ఔ
ൌ 6.865

ඥଽ.଼ଵ∙ଶ∙ଵ଴షర∙ଵ.଼ଶଵయ 

ଵ଴షల  ൌ 

 ൌ 7.47 ∙ 10ହ 

The direct calculation of the maximum of 
Chezy’s resistance coefficient to the flow Cmax is de-
termined without the diameter D of the conduit being 
a problem data with the Equation (86): 

 𝐶୫ୟ୶ ൌ  െ5.343ඥ𝑔 log ൬
ఌ

஽ഥൗ

଺.ଷ଻ସ
൅

଺.଺ଷସହ

Reതതതf
൰ ൌ 

 ൌ െ5.343√9.81 log ൬
଴.଴଴଴ଵ

ଵ.଼ଶଵ ൗ

଺.ଷ଻ସ
൅

଺.଺ଷସହ

଻.ସ଻∙ଵ଴ఱ൰ ൌ  

 ൌ 79.608 m0.5∙s–1 

CONCLUSIONS 

In this study, Chezy’s resistance coefficient in the 
egg-shaped conduit was expressed by several formu-
las. Taking into account the shape of the studied con-
duit, determining its geometrical characteristics reveal 
three cases to be treated, depending on the position of 
the normal depth of the flowing liquid. General ex-
pressions (29), (32) and (35) are obtained from the 
explicit determination of Chezy’s resistance coeffi-
cient C depending on the relative roughness ε/D, the 
filling rate η and the Reynolds number at the full state 
of the conduct Ref. However, in the case where the 
diameter of the conduit is not a problem data, the 
Equations (53), (65) and (77) are obtained by using 
the rough model method (RMM) to directly calculate 
Chezy’s resistance coefficient C as a function of the 
parameters, ε, Dഥ, η and Reതതതത

f. 
A simplified method is proposed for the explicit 

calculation of Chezy’s coefficient C. It is based on 
(RMM) and has the advantage of being able to use 
a limited number of data, namely, the discharge Q, the 
slope i of the conduit, the absolute roughness ε and 
the kinematic viscosity ν. Finally, a study of Chezy’s 
coefficient variation as a function of the conduit fill-
ing rate is carried out by establishing the required 
curves, assigning fixed values to the relative rough-

ness as well as the Reynolds number in the full state 
of the conduit. The curves show that Chezy’s re-
sistance coefficient reaches a maximum at the filling 
rate  η ≅ 0.858. Hence, it is possible to get expres-
sions (84) and (86) for determining the maximum of 
Chezy’s resistance coefficient Cmax, in the conduit 
diameter, whether it is problem given or not. 

The expressions governing the rough model 
method are derived from the universal relations of 
Darcy–Weisbach, Colebrook–White and Reynolds, 
whose validity has been demonstrated in the past. 
Through these relations, the expression (22) has been 
established. It gives the exact value of the discharge 
and is valid throughout the turbulent flow and for all 
known geometric profiles. The Equation (24), express-
ing the Chezy’s coefficient C, is derived from the 
Equation (22). It is therefore valid throughout the tur-
bulent flow and is applicable to all geometric profiles. 

The rough model method also relies on the cor-
rection coefficient of the linear dimensions ψ,  
expressed by the Equation (50). This expression is  
an excellent approximated relation which gives 
a maximum error of only 0.4% for a Reynolds num-
ber Re ≥ 2300. 
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Współczynnik oporu Chezy’ego w rurach o kształcie jajowatym 

STRESZCZENIE 

Kiedy oblicza się jednorodne przepływy w otwartych rowach i kanałach, współczynnik oporu Chezy’ego nie 
stanowi problemu, a jego wartość dobiera się arbitralnie. Tę niedogodność spotyka się w przypadku wszystkich 
profili geometrycznych rur i kanałów. Znajomość współczynnika jest istotna zarówno podczas projektowania 
kanału, jak i obliczania głębokości. Główny cel pracy skupia się na identyfikacji zależności między 
współczynnikiem oporu a kształtem rur. Wykorzystując metodę rough model (RMM) ustalono ogólną zależność 
między współczynnikiem oporu w warunkach turbulencyjnego przepływu a różnymi profilami geometrycznymi, 
w szczególności jajowatym przekrojem rur. Współczynnik oporu Chezy’ego silnie zależy od tempa napełniania, 
odpływu, nachylenia wzdłużnego, bezwzględnej szorstkości ścian i lepkości kinematycznej płynu. Ponadto 
przedstawiono w pracy uproszczoną metodę obliczania współczynnika oporu w warunkach ograniczonej liczby 
danych, na przykład odpływu, nachylenia rury, bezwzględnej szorstkości czy lepkości kinematycznej. Na końcu, 
po zbadaniu zmienności współczynnika oporu Chezy’ego w funkcji tempa napełniania, podano wyrażenie 
służące do łatwego obliczenia tego współczynnika, kiedy osiąga on maksymalną wartość. Sugeruje się przykłady 
obliczeń, aby pokazać, jak można obliczyć współczynnik Chezy’ego w przekrojach jajowatych. 
 
Słowa kluczowe: maksymalny współczynnik oporu, metoda rough model, metoda uproszczona, przepływ 
jednorodny, rura o jajowatym przekroju, współczynnik oporu Chezy’ego  


