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Abstract

The prediction of machined surface parameters isnportant factor in machiningentre development. There
a great need to elaborate a method for on-linesarfoughness estimation-[]. Among various measurem
techniques, optical methods are considered suifabl&-process measurement of machined surface roug
These techniques are non-contact, fast, flexibtetere-dimensional in nature.

The optical method suggested in this paper is basethe vision system created to acquire an imdghe
machined surface during the cutting process. Thlieed image is analydeto correlate its parameters v
surface parameters. In the application of machigethce image analysis, the wavelet methods wénedincec
A digital image of a machined surface was descrilmdg the on@imensional Digital Wavelet Transform w
the basic wavelet as Coiflet. The statistical dption of wavelet components made it possible teett#p the
quality measure and correlate it with surface rowgs [811].

For an estimation of surface roughness a neuralanktestimator was applied [£26]. The estimator was bt
to work in a recurrent way. The current value af fRa estimation and the measured change in surfaogg
features were used for forecasting the surfacelmoegs Ra parameter. The results of the analysfgroed the
usability of the application of the proposed methodystems for surface roughness monitoring.

Keywords: machining, surface roughness, waveleiaisa neural networks.
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1. Introduction

Surface roughness is one of the indexes of progluality. Surface roughness is, however,
difficult to measure on-line and usually evaluagdtér the process is finished. The problem
with surface roughness on-line measurement andagpiedlies in the nature of its formation.
So far, surface roughness models have very rarefjt dvith reconciling the connection
between the physical nature of the process andtlgtmathematical approximating of the
relationships between inputs and outputs of thecgs®. This paper develops the idea of
linking the process knowledge with mathematicahalg@nalysis.

Strictly theoretical models are very limited in acacy because the machining process is
still not fully understood [1]. We cannot establslguantitative relationship between surface
finish and the phenomena influencing it. In turnthg tool, geometry and kinematics are at
the origin of feed marks determining the whole scef texture. The other phenomenon is
surface plastic deformation in the form of sideMld he material is turned out on the ridge of
the unevenness left by the subsequent passingdbth. The increase in surface parameters
Is significant with the increase of cutting tempera, but still difficult to predict. The third
cause of the deterioration of surface finish ismamted with the dynamics of the cutting
process. Self-excited and machine tool vibrationgnge the process conditions during the
cutting operation, limiting the part dimensionata@acy and surface finish.
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The limitations of existing theoretical models leaws no choice but to develop empirical
models. Empirical modeling methods use experimed#ta to tune the parameters of the
model. In this way they compensate for the inabiid completely and adequately describe
the process mechanisms.

Connecting theoretical knowledge with experimemigasurements can establish a good
basis for adequate surface modeling [2]. In thigepaa theoretical model is tuned with the
signals gathered during the cutting process. Thehimad surface image is used as the main
source of on-line measurements. Although it has s®wn that the surface roughness is
strongly correlated with the surface image, measargs of surface roughness based on
computer vision technology are complex. The maobjam is how to accurately describe the
surface images so that the surface roughness pnanaee reliable.

To predict surface roughness during cutting, déiférapproaches were applied for machine
vision elaboration [35]. Nonetheless, the basic structure of such a&systas defined in a
similar way. The computer vision system for surfanage acquisition was elaborated upon
to comprise a digital camera connected to a PCaandppropriate light source. The images
obtained constitute the basic source of information[4] the images were analyzed to
calculate the arithmetical average of shades of.drbe cutting parameters and the single
image feature were given, for four inputs, to thetem and the roughness value was assessed.
In [5, 6] the machined surface image was descniigld the use of more refined methods —
image texture description methods and wavelet featuThe features were analyzed and
successfully applied in the monitoring of well-knopwrocesses. However, each change in the
process conditions necessitated restarting theenprelparatory process.

The idea of vision system application in surfacegtmess estimation was developed in
this paper. The novelties concern the general kothe process as a whole. An important
feature of the method is that the application afraenetworks is continual — once prepared it
works automatically Training the neural network daa performed whenever it is needed.
The neural estimator is initially prepared for ewttion of surface roughness parameters.
Then, the inflow of data from the vision system ldaa the initial estimation of surface
roughness parameters. When the estimation is ieeaggnt with the measurement, then in
this case the estimator is ready to work. In otl&@umstances it must be tuned. The accuracy
of estimation is checked periodically and, agdican be tuned whenever needed.

2. Experimental procedure

An experiment was proposed in order to explore eraluate the usability of the idea of
utilizing machined surface imaging in estimating teurface roughness parameter Ra.
Turning tests were performed using CNC NEF 400. dtempts of continuous cutting were
realized for feed = 0.15 mm/rev, cutting speed 8rdlnin, depth of cut = 0.5 mm. Steel C45
(PN-EN 10250-2:2001) of 137 HB hardness was cuhd@& Coromant coated sintered
carbide TNMG 160408 PF 4015 tool insert was applied

During the experiment the changes in tool geometrse observed both on tool flank and
rake faces. For the tool wear description the @atdefined in the 1ISO 3685 standard were
applied. The applied tool life criterion was flawkar. A tool is considered to have reached its
life if the maximum width of the flank wear landa$ a certain value. In finishing operations
where the depth of cut is small, the flank weadlavidth in the nose area represented by
VBC (in zone C) is a more meaningful parameterdssessing tool life, particularly when
surface finish quality is the main criterion. Flankar in zone C is visible from the top of the
nose area of the cutting tool. The nose radius Wearappears as tool nose radius wear and
is caused by material lost from the nose area.



www.czasopisma.pan.pl N www.journals.pan.pl
S

Metrol. Meas. SystVol. XVII (2010), No. 3, pp. 493504

The wear of the tool was observed with the usenabgical technique. Sequences of tool
flank images were obtained and joined togetherctoese one combined photograph of the
tool flank (Fig. 1). The wear traces are equalkgetshed along the cutting edge, and their
width is rather small. On both minor and major Kathe development of wear width for all
the wedges considered during the experiment wasredd to be small and all of the wear
indexes were below the tool life criterion for Bhiturning.

a) Flank wear g, vg,
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Fig. 1. Flank wear of the tool a) definition of pareters: VBr — width of minor flank wear, VBc — whdf nose
wear; b) combined photograph of minor and majarifla

As a result of the cutting process, the obtainedmmed surface is of certain quality. For a
sharp tool, in the initial stage of cutting, theahimed surface is created by a rounded cutting
edge. The wedge is sharp and the machined sugagkegood quality. The most important
factor in this case is the tool geometry itselfvedl as the cutting parameters.

With cutting time, the cutting edge radius increasend the wedge becomes blunter.
It influences the whole cutting process. Despite thanges observed on the surface, the
roughness parameters remain almost on the samelteway be inferred that changes in surface
finish are of a local character and global pararaetee not appropriate to describe their nature.
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Fig. 2. Machined surface image in 3D projection asgbrofile for a cutting time of
a) 5min; b) 8min; ¢) 11min; d) 14min; e) 17min.

Exemplary machined surface images and their peofitere compared considering their
variable origin back to the cutting process. Afterstable turning process, the machined
surface is expected to possess repeatable and koo features, like steady and identical
ridges. However, the machined surface with timeobexs more diversified and alternated.
The texture of the surface image is still unifobut the ridges are more exposed and ragged

(Fig. 2).
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Along the cut the values of surface roughness petiemiRa were measured with a Talysurf
CCI 6000 profilometer. The mean roughness was l@twe5 to 2.5 um. The relative
difference between the given value and its pregedime was indicated as quite small. It was
smaller than 10%.

3. Measurement system

The vision system was developed for the purposebtdining an image of the machined
surface. The system was composed of several elesmEmn¢ most important of these are a
computer with a frame-grabber card, digital camkmases, and a stand for the camera with
movable worktable and lighting system (Fig. 3) [7].

Fig. 3. a) Vision system for machined surface imagguisition; b) lighting system configuration.

The two-sided lighting system, based on a halogeiteWight, was applied in illuminating
the machined surface. The halogen illuminationesyistvas located to reveal the main shape
of irregularities. The surface lay and the extdrmaadomness in the main shape of the surface
profile were thus exposed. The digital image of m&chined surface presented next to the
measured surface confirms the surface complexity. @&). It reflects the whole character of
surface texture. Periodic mappings of the cuttow mmodulated by tool feed disturbances are
even more underlined in the image. Each strip gitaliimage at a perpendicular angle to the
lay direction in the image is similar in characterthe profile obtained from the machined
surface.

Nonetheless, the additional lighting was positiotedlluminate the machined surface
along the traces. This part of the illuminationteys exposed the complexity of the machined
surface texture. In this way the image was littengtth weak, small, pale dots as footprints of
the material side flow.

Surface image data, like surface data, are chaizateby different stochastic measures.
Appropriate selection of image data for analysisciigcial for its description. Improper
selection of the measurement point can, in turdeumine the statistical parameters. Equally,
randomly selecting the measurement point and sizthed analyzed data can reduce the
usability of the image. Nonetheless, an image |grafiust be chosen; the problem is how to
do it, how to overcome the difficulties of the sidymonstationarity.

When the turned surface is considered, its paramei® often described by taking into
analysis only one profile of the surface at a pedm=ular angle to the lay direction. For a
filtered profile, the sampling length is equal teetcut-off length. On a raw profile, the
sampling length is equal to the assessment leRgitameters are calculated on each sampling
length and expressed then as the average of atlatigling lengths used. It is recommended
to use 5 sampling lengths.

When the surface image is considered, its paramsteuld be described similarly to the
surface in a range of measurement point selectiohs&ze of the analyzed data — take one
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cross-section from a machined surface image ofs#repling length. The sampling length
selected in this case was 0.8 mm.

machined surface
image data

machined
surface data

Fig. 4. The machined surface measured with TalyS@if6000 and acquired with a vision system A —~\&&w
of surface data, B, C — cross-section of surfata ishetwo orthogonal directions, D — 3D view of lsthimage
data, E, F — cross-section of scaled image datadrorthogonal directions.

4. Parameter s of surface image

Mathematically, a grey scale image is defined bg oratrix describing the variability of
identified shades of grey. Image data are of higiretation and describe the surface in a
strongly redundant way. There is a high probabitligt if one pixel is of certain luminosity,
its neighbor would be of the same or similar onethis way, the image matrix is not the best
representation for the analysis. Image data, inr tbeiginal form, can be used for
visualization but they should be processed befpptyang them in a monitoring system.

Taking into account the character of the machingthse image and its basic pattern, the
representation which is more suitable for the gba&inage analysis is wavelet decomposition.

4.1. Wavelet decomposition of surface image

Wavelet analysis breaks the signal up into shified scaled versions of the original
wavelet. In this way, it enables the examinationtted data both in space and frequency.
Selection of a basic wavelet from a rich familywedvelets also makes it possible to match it
more accurately to the data. Additionally, deconmpms can be performed on a different
level of detail, characterized by the decompositiee and level.

To choose the main wavelet, the surface profileewlecomposed with the use of various
wavelet functions. The first level of decompositibroke up data into approximation and
detail coefficient vectors. Then the approximatias applied as a model of a raw signal. The
residuals of the model — details were determinebetovhite noise. The better the wavelet is
matched, the better the approximation can be usétkentify the signal, and the residuals as
white noise. The best results for turned surfaceletiog were achieved for Coiflets — the
main family of wavelets [8, 9].

To choose the best decomposition tree, the supeafde data were decomposed with the
use of wavelet packets. In 69% of cases, the pegEfedlecomposition tree was the tree of
digital wavelet transform. In the digital wavelearisform, the algorithm divides the signal
into two parts. After the division, approximationdadetail vectors are obtained. Both vectors
are in a rough scale. The information lost betwdensignal and approximation vectors is
collected in the detail vector. The next stagenes division of the approximation vector into
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approximation and detail vectors. After this, thetad vector is not divided any further. The
approximation vector is further divided, howeveardan this way a digital wavelet transform
decomposition tree is obtained [10]

To choose the best decomposition level, the urivamsage quality index was used to
discern how much information was contained in atipaar level of decomposition. A
universal image quality index, defined in [11], retsdthe loss of correlation, luminance and
contrast distortions between two images. In thipepathe index was used to measure
objective image quality loss when the data wereerld to obtain approximations for a
particular level. The amount of information lost @ach level of decomposition was
examined. It was discovered that:

— The details of the first and second levels of dgmosition contain mainly noise.

— The details of the third, fourth and fifth levelé decomposition constitute the valuable
signal.

— The sixth level is the highest level of decompositibecause it still indicates some
similarity to the original signal, but not highewvkls.
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Fig. 5. Six-level wavelet decomposition of machisedface image profile.

The digital wavelet transform was performed foefiross-sections of the image, 0.8 mm
in length. Coiflet filters were used to decompdse original cross-section of the image into
seven components — one that was treated as anxapptmn (A6) of the signal and six detail
components (D1-D6) (Fig. 5). The image profile datre cut into different frequency
components, and then each component was studi@dasolution matched to its scale. Low
frequencies correspond to global information ofirmage profile, whereas high frequencies
correspond to detailed information of image hidgattern.

4.2. \Wavel et features

For each of the six levels of wavelet decompositbrimage profile, eighteen statistical
parameters were computed. The computation was tezpéar five cut-off lengths and then
averaged. The number of coefficients is 126 fohesingle image. However, the evaluated
image coefficients are of varying value for thegmse of surface roughness estimation. Some
of them are useless, others are redundant. Sopth&lations between each image feature and
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several surface roughness parameters were exanhingidy. 6 the averaged absolute value of
the correlation coefficient is presented. It wassidered as the strength of correlation.
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Fig. 6. Distribution of correlation coefficient deibing the relationship between
surface and image parameters.

Detailed analysis of correlations was performedchEaorrelation coefficient was
computed for almost 200 images and 10 surface peas From the range of 126 features
only forty four were chosen for further analysiheV displayed a high correlation with the
surface roughness parameters. The largest numideatires was chosen by approximation
(A6), as well as from D2, D3 and D5 details. Thefgrened reduction of features limited
their number, but still, definition and distributicof features might be redundant. Further
reduction of the feature set was performed withue of pruning of the neural network.

4.3. Selection of features using neural network pruning

The neural network is often used when the equat&stribing the relation is difficult to
formulate. The main source in establishing theeation is a set of examples. For the neural
network, finding the relation means identifying tietwork parameters, or weights. The idea in
using the neural network in feature selection iartalyze the usability of particular features in
establishing the relation.

For the purpose of feature selection, the neurabar& was elaborated to be a multilayer
perceptron. The number of neurons in an input layas equal to the number of image
features. A single hidden layer with biases anaatput layer were applied. The neurons in
the hidden layer have a hyperbolic tangent actwafiuinction; the single neuron in the output
layer has a linear activation function. The dataeadivided into training and testing sets.

The neural network was analyzed using the Laveridagquard method. In the
algorithm, the parameter settlement is based omresr minimization between reference
surface roughness parameters and the output vatlueasthe neural estimator. The optimal
feature subset was determined by means of prunipgrienent. Firstly, a vector with thirty
features was created, and then reduced to thosedsavhich produced substantial changes
of the output error. The Optimal Brain Surgeon Metlwas applied in optimizing the input
features. The problem of feature selection in #weeaf applying the neural network became
reduced to the problem of optimization of the infayteri.e. selection of such inputs which
changed and produced the biggest output error gehahthe cost function) during training
and elimination of that input, which further progdcsmall changes in the output error [12,
13].

The Optimal Brain Surgeon optimization procedurediats estimation based on variation
of the cost function after changing the value divoek weight to zero (the branch with this
weight is cut off) and then the variation of thewark error is estimated. The neural network
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weights, which produce small variations in the dosiction, are less important for the final
cost function value (output error) and thereforeytltould be prunede. their values are
changed to zero.

During the optimization procedure, the neural nekwsas trained several times and then
the input layer was pruned. Each time the pruneight® were counted again. At the end of
the optimization procedure the rank of each inpuran was determined. Neurons from the
input layer, whose weights were frequently prunedye rejected. At the beginning, the
network was composed of forty four neurons in goutnayer, four neurons in the hidden
layer and one neuron in the output layer (44-4-ifjy pruning experiments were carried out.
During each experiment the network was trainedthad the weights were pruned.

A set of six features was selected with the usemifmal Brain Surgeon Method, namely:

— standard deviation of A6 — SD(A6);

— maximal difference of A6 — MD(A6);

— Minkowski norm of D5 — LP3(D5);

— normalized absolute error of D3 — NAE(D3);
— Minkowski norm of D3 — LP3(D3);

— normalized absolute error of D2 — NAE(D2).

ol

. Surface roughness estimator

The estimation of surface roughness for turningaten was performed with the use of a
neural network. The estimation is based on applihegime variable statistical parameters of
one-dimensional wavelet transform of the machingthse image.

Because of the difficulties arising from the chamgedescription of the machined surface
parameters during cutting, the process was asstorsgla “black box”. The relation between
variables was developed with the use of mathematadel identification methods. The
machined surface image features were combinedhegetith surface roughness parameters
to obtain a model of their relation. The estimatadace roughness Ra parameter (Ra_e) was
described with the use of a non-linear function:

Ra_en+1)= f(Ra_e(n),Fin)-Fi(n-1),F2(n)- F2(n-1),F3(n)- F3(n-1)....
F4(n)- F4(n-1),F5(n)- F5(n-1), F6(n)- F6(n-1))+ w(n)
where:
- Ra_gn+1) - estimated value of surface roughnBssparameter im + 1 step;
- Ra_ e(n) - estimated value of surface roughnBsgparameter im step;
- Fl(n)— Fl(n —1) . F6(n)— F6(n —1) — difference ofF1.F6 for then andn + 1 steps;
- w(n) - noise.

The neural network was used for approximatiorRafe (n + 1) function. It was decided
that seven neurons should be applied in the ingyer] three neurons in the hidden layer
(with the activation function in form of hyperboliangent) and one neuron in the output layer
(with the linear activation function). The Extendediman Filter was applied as an algorithm
for training the neural network [+46]. This algorithm allows the optimal estimatioinstate
variables when white noise is present. The advantdghis algorithm is that it works in a
recurrent way.

The random vector of weights was generated, thedifrad according to reference values
with use of the recurrent algorithm. After seveyadsentations of the following values of the
training set, the vector was adjusted so thatélalts of both estimated and reference values
overlapped. The process of training was then inpged. The network for the earlier fixed
weights started to estimate the value of surfacghness paramet&a for the determined



www.czasopisma.pan.pl P@ N www journals.pan.pl
=
<

Metrol. Meas. SystVol. XVII (2010), No. 3, pp. 493504

points of turning. It was in a testing/estimatingde. The predicteRavalue was computed
on the basis of a current Ra value and the diffexem surface image features.

a) b)
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Fig. 7. a) Example of surface roughn&ssparameter estimation by means of recurrent neatalork.
b) Effect of training time on the estimationRd& parameter.

The example of surface roughness estimation wetutie of neural network is presented in
Fig. 7. When enough examples for training were iagpithe estimated and reference values
got very close. Such a result can be seen in Rigln7/Fig. 7b, the influence of training time
on the accuracy of surface roughness estimatidensonstrated. For all the training times the
neural network made an estimation of the surfacghnessRa parameter in the range of
linear changes in referen&a value possible. The network also allowed for idemattion of
the point of accelerated deterioration of the stgfeoughness (when parameRaincreased
drastically). More detailed analysis of the tragitesting process of neural network made the
formulation of some general conclusions possitdenely:

— In the range of short time of neural network trnagn(up to 12 minutes) the accuracy of
estimation remained on the same level. The neustlark, when trained on several
examples, behaved almost the same as when tranedidnger time. All of the analyzed
examples were allowed for assessment of the surtagghnes®fka parameter for a stable
process, for a normal work of a tool. The occureen€ a more significant increase in
surface roughness (both in surface roughness ptesmand in surface image features)
caused an immediate increase in the prediB@dalue. In further steps this predictBa
value kept growing in spite of the decrease ofregfeeRa value and of values of image
wavelet features.

— In the range of a longer training time (from 12 otes up), the increment of estimation
accuracy depends on the time taken. In case ofih@tes the neural network only notes
changes, but cannot be tuned to reference vallesintrease in the training time made it
possible for the predicted value to follow the refeee value. The estimated value
unfortunately could not follow a significant decseain the reference value. The internal
structure of the neural network started to folldwe entire conduct of surface roughness
more precisely for a training time larger than lifutes.

6. Conclusions
An estimation of the surface roughness paranfRtavas performed with use of a neural

network. The increment of machined surface imagarpaters was applied as input for the
neural network estimator. Five cross-sections @f ithage were loaded, from which six
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statistical parameters of the six levels of waveletomposition were computed. These six
parameters were chosen via the Optimal Brain Surgéethod. Applying the increments of
these parameters and of the estimated value imem gime made it possible to establish the
Raestimator for the points in time when the surfemeghness parameters were unknown.

The performance of the estimator of surface roughrmarameteRa indicated a great
usability of the presented method for monitoring tfuality of surface roughness in turning.
The error for the testing set was definitely snratfean 20%. and slightly above 5%. The
recurrent neural network allowed for accurate eatiom of the given value dkaon a basis
composed only of data from the machined surfacgéna
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