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Abstract

This paper considers the problem of reconstruciingass of generalized sampled signals of whicpexia
case occurs ire.g, a generalized sampling system due to @& analysis basis functions. To this end
propose an improved reconstruction system andansswction algorithm basesh generalized inverse, wh
can be viewed as a reconstruction method ribditices reconstruction error as well. The key idea add a
additional channel into a generalized sampling esystand apply the generalized inverse theoryth®
reconstruction algorithm. Finally, the approachapplied, respectively, to an oscilloscopenhich shows tr
proposed method yields better performance as cadparthe existing technique.
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1. Introduction

The generalized sampling problem is to reconstauctunknown continuously defined
input function X(t) JW from the samples of the responsed. dihear shift-invariant systems
sampled at 1/-th the reconstruction rate. Papoulis provided &gamt solution for the
particular case where the spatds a class of band-limited functions [1]. Recentiye have
extended the scope of Papoulis’ theory by introdgi@ formal distinction between the input
space and the reconstruction space. Then, theajeeer sampling can then be represented as
the inner products of the input signal with a desampling vectors, which span the sampling
spaceS [2-11]. Examples include multi-resolution [10] splimecompositions [4]. And,
reconstruction is obtained by forming linear conabions of a set of reconstruction vectors
that span a spad#. The reconstruction was obtained by first processhe samples by a
digital correction filter [12], then forming lineavombinations of a set of reconstruction
vectors that span a spaté The traditional reconstruction method schemesdam the
analysis basis functions are ideal.

In this paper, we design reconstruction stratefpesthe generalized sampling scheme,
where we treat the problem of reconstructing asctdgyeneralized sampled signals of which
a special case occur im,g, generalized sampling system dues to non-idedlsisabasis
functions. To ensure that the reconstructi{t) is close tox(t), we may try to add an
additional channel into the generalized samplirgjeay and use a generalized inverse theory.

The paper is organized as follows. The general 8agwwe treat in the paper is introduced
in Section 2. Section 3 shows that the reconstinctnethod is obtained by generalized
inverse theory. In Section 4 we analyze the recoaosbn error resulting from the proposed
approach, and compare it with the error from tlaglitronal method. Experiment results are
presented in Section 5.
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2. Generalized sampling

In this section, we briefly review the generalizainmpling theory that was developed in
[1]. The corresponding system is schematically espnted in Fig. 1. The continuous-time
signal is convolved with a bank of analysis filtei($) = s(-t) i = 1,2[JIL, the responses of
which are sampled at Ltth the reconstruction rate to yield the measem@mvectord(n) =
(dw(n) dy(n) [ (n))". Our main reason for introducing the time-reverardlysis functions is
that we can describe the measurement processns tdrinner products.

dnl =Sx=(xX9, g(t nT) k12, L 1)

Here, we will define signal models by considerihg tepresentation space:

L

W={ZZ G[dg(t-nT: ¢ hO ?}. 2)
i=1 nO0Z

where {#i(t)}i=12m IS @ given generating function sequence. Our aastriction on the

choice of the generating function sequengét}i-1»m is thatW is a closed subspace I6f

with as its orthonormal Riesz basis. In other wpttlere must exist two constamisand B

(0< A< B< ), such that:

AY Yol <

i=1n0Z

L

> d dé( t- nT

i=1 n0Z

< B Y| e 3)

i=1 nJzZ

i=jk=n
else

1
(8,t=KT), ¢, (t-nT)) = {0 (4)
At the same time, the choice of the collect{sr(t- n-l-)}k:1,2,~-~,L,rDZ forms a frame folV,

In other words, there must exist two constaAtsand B (0< A< B<w ) for every
X(t) W, such that:

Ao < XS0, st ) < 8 K. 5)

i=1 n0Z

A frame that ceases to be a frame when any onts efament is removed is said to be an
exact frame. An exact frame is a Riesz basis. Vilealthe sampling space:

L
S={ZZ A & nJ: €D ZI}. (6)
i=1 n0zZ
In the Hilbert space, knowingx(1),s(t-nT))_, , ., is equivalent to knowing the
projection ofSxonto the subspac® We want to reconstruct(t) from the measuremed(n)
= (di(n) do(n) TId.(n))" using a given set of reconstruction vect{)¢s(t—nT)}i:1'21_, Loz that

span a subspadd, let us illustrate the generalized sampling predas-ig. 2. For designing
the reconstruction operatdr we start with the following natural requirements:

D@=3"3G (@ 2my @ 2mySer 2m)

n=-oo k=l

. (7)
=DC @D Y mBr2m) F 12|
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whereCy(«) andDi(«) are the discrete-time Fourier transformegh) anddi(n). ¢, (w) and
S(a) are the Fourier transform gf(t) ands(-t), respectively.
This leads to a compact relation between the saigppliata:

dm=(d(n d( - d @)

and coefficients:

cn=(g(n o - ¢(@)

via a matrix-vector multiplication in the Fourieomain:

H ()C(w) = D(w), (8)
where:
hl,l(a)) hl,z (w) h11_ 6()
M@= M@ @) h, @&
hL,l(w) hL,2 @) h,L ‘() )

h(w) = i S(w+ 2y, (w+ 2T n);

n=-oco0

D(@)=(D,(@) D,w) - D, @) ;

C)=(G@ GCw - G &)

Eq. (8) denotes the model of generalized samplifbe traditional method of
reconstruction is to solve equation (8).

Unfortunately, the analysis basis functid®(-")}_,, , ., are non-ideal. Defining the

non-ideal basis functionss (-0}, , .., by:

S() = S(Wé (W) =12 L. 9)
From (8), we may obtaitXw) from the traditional method.
C(a) = H(@) &) H(@)C(w), (10)
where:
&w)y 0 0
fw)=| 52: w) o 0
0 0 - & d

Analyzing (10), the traditional algorithm will idduce an erroé(«). In order to reduce
the erroré(a), we propose a reconstruction algorithm from legsiares criterion.

e:%TJ'OZ"‘ C(w) - f:(a))2 o, (11)
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Fig. 1. Generalizednpling. Fig. 2. Geometry illusioat of generalized sampling.

3. Reconstruction method

In order to obtainC(«), we add one channel into the generalized sam@ysgem. The
corresponding system is schematically represent&pi 3.
However, the single channel sampling cannot geexactC(«), but it may confirm a

distributing rangeIA of C(«). In order to calibrate(w), let us projeciC(w) onto | . The
reconstruction process is shown in Fig.4. We fiestonstructX(t) from the measurement
d(n) = (dx(n) dx(n) MMDd, (n))" making use of an oblique projection onto a giveronstruction
space, then, confirm a distributing rangef C(«) from {d, ()} Finally, the calibrating

noiz *
algorithm is achieved by projecting(w) onto .
As illustrated in Fig. 4, the reconstruction metfiodolves the factor$ and P, which are

abstract operators from the function space to tedor spacéV, respectively, and which are
not suitable for computer calculations.

x(t)

K(t)

Fig. 3. The improved generalized sampling systemkig. 4. Geometry illustration of reconstructioethod.

In order to specifythe algorithm numerically we now provide its matexpression. For
obtaining the distributing rande of C(«), we start with the following natural requirements

Dy(@) = > 3G (w+2mmy, (w+ 2m)
e (12)
=2.C @) ¢ @+ 2m),
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where D, (w) is the discrete-time Fourier transform @gf(n).
Then we have:
P (w)C(w) = Dy(w), (13)

where: () :(Z” w(w+2m), Y ¢, @+ 2m)e .Y g, @+ mn)j .
Solving the Eq. (13), the distributing range c(«) is derived by:

[(¢) = @ ()Dy (@) + (I = D (W)P()Z (),
(14)

where, Z(«) is the discrete-time Fourier transform (@[, z[ & - 4 h)T , and
(zl[r'], zZ[ - 4 h)T is any real numeral.
O™ () = " (W)(P" (W) P()™ (15)

As shown in Fig. 4, the exat(w) is not perfectly reproduced in system, but we faaah
the solution to minimize the quantity:

1 rorm ~ 2
oI, le@-C@) do. 16]
The generalized-inverse is a general way to fimdstblution to minimize the quantity:
~ 2
|€(@) - o™ (@) Dy(@) - (1 - > (@) P(@) Z () - (17)
As generalized-inverse’s properties, the solutsotkerived by:
Zy(e) = G" ()(F" (&)(1 = ™ () D()) G" (@) " F™ ()(C(@) - D™ () Dy () (18)
where F(w) is full Col rank, G(@) is full Row rank, andF (w)G(w) = | —®™ (w)D(w) .
4. Error analysis

We discussed the reconstruction method in prewseasions. In this section, we briefly
analyze the reconstruction error. The reconstractiwor is derived by:

lo@ -G =|aw- G@+ G@- T
=t -G +] G- Qe +( A~ G@)" | G- @)+ g0- @) ( @- o).

where:

(19)

Co(w) =@ (@) Dy (@) + (1 = P () P(w)) Z, ().

The third term ol”c:(a))—é(a))“2 is expressed by:
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(C@) - G(@)" (Gl - Aw)
= (A(Z(@) - Z(@))" ( G(@) - Q)
= (A (Z(@) - Z ()" ( Bw)+ Aw) G'(Q( F () Re) Ga) G ()™ F () @)~ Bw) - A(h))) (20)
= (2(@) - Z,(@)" 6" (@) F* (&) ( F(e) Q) G' (&)( F' (@) Rw) Q) G (@)™ F () - ) Qo)
~(Z(@) - Zy(@))" G" (@) F* () ( F(@) G(@) G ()( F* (&) He) Qo) G' (@)™ F' (@)~ |) B
Wh:re:
Alw) =1 -0 (w)P(w), B(w) =P (w) D,y (w).
Then we have:
[c@ - =lc@ - G@If +|G@ - o) 2] aw)- G@f.  (21)
Further, (21) implies that the reconstruction eiisoless the proposed algorithm than the

traditional reconstruction algorithm. From Fig.|d(«) - C,()|’is also expressed by:

2

X(t) = x(1), P(X 1) - 5

<AX() 0. RO X°)>2||‘><t>—xo||
EORECRIZCCRES ] 22)
= cBsa(Xt Ox t(), PxtOxtf)

[HECERO

where: )
a(X(t) - x(v),1) = gg)imr}a(?(t)- X(1), y(1). (23)

5. Experiment and analysis

We now apply the proposed approach to reconstruétaom samples of Oscilloscope. The
Oscilloscope is schematically represented in Fign 3he Oscilloscope, generalized sampling
is selected. So we utilize the proposed approackdover generalized samples and compare
with the existing technique.

LL» generalized——— Reconstrucﬂﬂ>

samping -tion

_— e e e e e e e, e ——— — —

Fig. 4. The structure of the digitizer.

In this section, we consider the cdse 2. The corresponding analysis filters in the kloc
diagram in Fig. 1 are(-t)=9d(t—-T/4)ands,(-t) =d(t—-T/3). The generating functions
#,(t) and @,(t) of reconstruction spad# are given by:

0 :sincér)exp(j m%t ),



www.czasopisma.pan.pl P N www.journals.pan.pl
P
‘\.,4

Metrol. Meas. SystVol. XVII (2010), No. 2, pp. 163172

4,(t) =sinc(lr)expej 216—5Tt ),

whereT is the sampling period.
In order to prove the proposed method, we asséaethat:

0 el

— j0.005 0
&) =(e )
To investigate the validity of the proposed methad, computed theos@ ) number (23)
as a function of the parameté&r The graph in Fig. 5 shows thais¢ ) has the least value

round J =0.005 for 0.001<J < 0.00¢ To compare the proposed method and the traditiona
algorithm, we have included the graph for the SNRv® methods in Fig. 6, the SNR of the
proposed method and traditional algorithm are nthike‘'C and '« ’. The proposed method
has the most favorable behavior arouhd 0.005for 0.001< 6 < 0.00%rom Fig. 6.

0.25

0.2+
0.15¢
cos(a)

0.1t

0.05¢

0 I I I I
0 0.002 0.004 0.006 0.008 0.01
o

Fig. 5. cosf ) as a function of the parametér.
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Fig. 6. SNR as a function of the parameder

To further prove the validity of the proposed methae now present an application of the
proposed method to a signal reconstruction problksauming the input signal:

x(t) = 2COS§7TX 16t )sir%ﬂx 1%



www.czasopisma.pan.pl P N www journals.pan.pl
-
‘\.4

7. Zhaoxuan et al.: A RECONSTRUCTION METHOD OF GENBEZED SAMPLING BASED ON GENERALIZED INVERSE

and sampling period =1/1F. Fig. 7a and Fig. 7b show the reconstruction ehyrthe

proposed method and the traditional algorithm. tdeo to facilitate the comparison, the
original spectrum is indicated by Fig. 8a. Fig. &d Fig. 8c show the spectrum from
reconstruction continuous signal by the proposedhate and the traditional algorithm,
respectively. We can see blocking artifacts in Blg. while there is no such effect in Fig. 9c.

a) ) b
0.3 0.3
0.2 1 0.2
ero0-1 | er0-1
“ o A AVAVAVAVAVAVAVAVAYAY
-0.1 -0.1
-0.2 -0.2

1.3 1:3 1‘.4 1:4 1.5 1.3 1:3 1‘.4 1:4 15

time(us) time(us)

Fig. 7. Reconstruction error. a) The traditionglogithm. b) The proposed method.
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0 0 0
-2 -2 -2
0 100 200 300 0 100 200 300 0 100 200 300
frequency(MHz) frequency(MHz) frequency(MHz)

Fig. 8. Spectrum. a) Original. b) The traditionlgaaithm. ¢) The proposed method.

6. Conclusion

We proposed the reconstruction method of genedhBaenpling that yields a well-defined
function even in the case where the analysis Haaidtions are non-ideal. The method is to
add one channel into the generalized sampling sysfend the reconstruction algorithm
makes use of the generalized inverse and has desgapmetric interpretation.

Finally, we compared the proposed method with thaditional algorithm, and
demonstrated both analytically and through simaotatihat the proposed method can often
outperform the generalized sampling reconstrucioategy.
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