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Abstract 

This paper considers the problem of reconstructing a class of generalized sampled signals of which a special 
case occurs in, e.g., a generalized sampling system due to non-ideal analysis basis functions. To this end, we 
propose an improved reconstruction system and a reconstruction algorithm based on generalized inverse, which 
can be viewed as a reconstruction method that reduces reconstruction error as well. The key idea is to add an 
additional channel into a generalized sampling system and apply the generalized inverse theory to the 
reconstruction algorithm. Finally, the approach is applied, respectively, to an oscilloscope, which shows the 
proposed method yields better performance as compared to the existing technique. 
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1. Introduction 
 

The generalized sampling problem is to reconstruct an unknown continuously defined 
input function ( )x t W∈  from the samples of the responses of L linear shift-invariant systems 
sampled at 1/L-th the reconstruction rate. Papoulis provided an elegant solution for the 
particular case where the space W is a class of band-limited functions [1]. Recently, we have 
extended the scope of Papoulis’ theory by introducing a formal distinction between the input 
space and the reconstruction space. Then, the generalized sampling can then be represented as 
the inner products of the input signal with a set of sampling vectors, which span the sampling 
space S [2−11]. Examples include multi-resolution [10] spline decompositions [4]. And, 
reconstruction is obtained by forming linear combinations of a set of reconstruction vectors 
that span a space W. The reconstruction was obtained by first processing the samples by a 
digital correction filter [12], then forming linear combinations of a set of reconstruction 
vectors that span a space W. The traditional reconstruction method schemes based on the 
analysis basis functions are ideal. 

In this paper, we design reconstruction strategies for the generalized sampling scheme, 
where we treat the problem of reconstructing a class of generalized sampled signals of which 
a special case occur in, e.g., generalized sampling system dues to non-ideal analysis basis 
functions. To ensure that the reconstruction ˆ( )x t  is close to x(t), we may try to add an 
additional channel into the generalized sampling system and use a generalized inverse theory. 

The paper is organized as follows. The general sampling we treat in the paper is introduced 
in Section 2. Section 3 shows that the reconstruction method is obtained by generalized 
inverse theory. In Section 4 we analyze the reconstruction error resulting from the proposed 
approach, and compare it with the error from the traditional method. Experiment results are 
presented in Section 5. 
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2. Generalized sampling 
 

In this section, we briefly review the generalized sampling theory that was developed in 
[1]. The corresponding system is schematically represented in Fig. 1. The continuous-time 
signal is convolved with a bank of analysis filters hi(t) = si(−t)  i  = 1,2,⋅⋅⋅, L,  the responses of  
which  are sampled at  1/L-th the reconstruction rate to  yield the  measurement  vector d(n) = 
(d1(n) d2(n) ⋅⋅⋅ dL(n))T. Our main reason for introducing the time-reversed analysis functions is 
that we can describe the measurement process in terms of inner products. 

 

                                        [ ] S ( ), ( )      1,2, ,k kd n x x t s t nT k L= = − = ⋯ .                           (1) 
 

Here, we will define signal models by considering the representation space: 
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where {ϕi(t)} i=1,2,⋅⋅⋅,L is a given generating function sequence. Our only restriction on the 
choice of the generating function sequence {ϕi(t)} i=1,2,⋅⋅⋅,L is that W is a closed subspace of l2 
with as its orthonormal Riesz basis. In other words, there must exist two constants A and B 
( 0 A B< ≤ < ∞ ), such that: 
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At the same time, the choice of the collection { } 1,2, , ,
( )i k L n Z

s t nT
= ∈

−
⋯

 forms a frame for W, 

In other words, there must exist two constants A and B ( 0 A B< ≤ < ∞ ) for every 
( ) ,x t W∈ such that: 
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A frame that ceases to be a frame when any one of its element is removed is said to be an 
exact frame. An exact frame is a Riesz basis. We define the sampling space: 
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In the Hilbert space, knowing 1,2, , ,
( ), ( )i i L n Z

x t s t nT
= ∈

−
⋯

  is equivalent to knowing the 

projection of Sx onto the subspace S.  We want to reconstruct  x(t) from the measurement d(n) 

= (d1(n) d2(n) ⋅⋅⋅ dL(n))T using a given set of reconstruction vectors { } 1,2, , ;
( )i i L n Z
t nTϕ

= ∈
−

⋯
 that 

span a subspace W, let us illustrate the generalized sampling process in Fig. 2. For designing 
the reconstruction operator T, we start with the following natural requirements:  

 

                                      
1

1

( ) ( 2 ) ( 2 ) ( 2 )

        ( ) ( 2 ) ( 2 )      1,2, , ,

L

i k k i
n k

L

k k i
k n

D C n nS n

C n S n i L

ω ω π ψ ω π ω π

ω ψ ω π ω π

+∞

=−∞ =

+∞

= =−∞

= + + +

= + + =

∑∑

∑ ∑ ⋯

                                     (7) 



 
Metrol. Meas. Syst., Vol. XVII (2010), No. 2, pp. 163−172 

where Ck(ω) and Di(ω) are the discrete-time Fourier transform of ck(n) and di(n). ( )kψ ω  and  
Si(ω) are the Fourier transform of ϕk(t) and si(−t), respectively. 

This leads to a compact relation between the sampling data:  
 

( )1 2( ) ( )     ( )        ( )
T

Ld n d n d n d n= ⋯  

and coefficients: 

( )1 2( ) ( )     ( )        ( )
T

Lc n c n c n c n= ⋯  
 

via a matrix-vector multiplication in the Fourier domain: 
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Eq. (8) denotes the model of generalized sampling. The traditional method of 
reconstruction is to solve equation (8). 

Unfortunately, the analysis basis functions { } 1,2, , ;
( )i i L n Z

s t
= ∈

−
⋯

 are non-ideal. Defining the 

non-ideal basis functions { } 1,2, , ,
ˆ ( )i i L n Z
s t

= ∈
−

⋯
 by: 

 

ˆ ( ) ( ) ( )      1,2, ,i i iS S i Lω ω ξ ω= = ⋯ .                                     (9) 
 

From (8), we may obtain̂( )C ω  from the traditional method. 
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Analyzing (10), the traditional algorithm will introduce an error ξ(ω). In order to reduce 
the error ξ(ω), we propose a reconstruction algorithm from least squares criterion.  
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                              Fig. 1. Generalized sampling.                 Fig. 2. Geometry illustration of generalized sampling. 
 
3. Reconstruction method 
 

In order to obtain C(ω), we add one channel into the generalized sampling system. The 
corresponding system is schematically represented in Fig. 3.  

However, the single channel sampling cannot get an exact C(ω), but it may confirm a 

distributing range ̂l  of C(ω). In order to calibrate ̂( )C ω , let us project ̂ ( )C ω  onto l̂ . The 

reconstruction process is shown in Fig.4. We first reconstruct ̂ ( )x t  from the measurement 

d(n) = (d1(n) d2(n)  ⋅⋅⋅  dL(n))T making use of an oblique projection onto a given reconstruction 

space, then, confirm a distributing range l̂  of ( )C ω  from { }0( )
n Z

d n
∈ . Finally, the calibrating 

algorithm is achieved by projecting ˆ ( )C ω  onto l̂ . 

As illustrated in Fig. 4, the reconstruction method involves the factors ̂l  and 
l̂

P , which are 

abstract operators from the function space to the vector space W, respectively, and which are 
not suitable for computer calculations. 

 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3. The improved generalized sampling system.      Fig. 4. Geometry illustration of reconstruction method. 

 
In order to specify the algorithm numerically we now provide its matrix expression. For 

obtaining the distributing range l̂  of C(ω), we start with the following natural requirements: 
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where 0 ( )D ω  is the discrete-time Fourier transform of 0( ).d n  
Then we have: 

                                                         0( ) ( ) ( ),C Dω ω ωΦ =                                                        (13) 
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Solving the Eq. (13), the distributing rangel̂ of ( )C ω  is derived by: 
 

                                          0
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As shown in Fig. 4, the exact ( )C ω  is not perfectly reproduced in system, but we can find 
the solution to minimize the quantity: 
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The generalized-inverse is a general way to find the solution to minimize the quantity: 
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 As generalized-inverse’s properties, the solution is derived by: 
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where ( )F ω  is full Col rank, ( )G ω  is full Row rank, and ( ) ( ) ( ) ( )F G Iω ω ω ω−= − Φ Φ . 
 
4. Error analysis 
 

We discussed the reconstruction method in previous sections. In this section, we briefly 
analyze the reconstruction error. The reconstruction error is derived by: 
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where: 

                                         0 0 0( ) ( ) ( ) ( ( ) ( )) ( ).C D I Zω ω ω ω ω ω− −= Φ + − Φ Φ   
 

The third term of 
2ˆ( ) ( )C Cω ω−  is expressed by: 
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where: 

  ( ) ( ) ( )A Iω ω ω−= − Φ Φ , 0( ) ( ) ( ).B Dω ω ω−= Φ  
Then we have: 
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Further, (21) implies that the reconstruction error is less the proposed algorithm than the 
traditional reconstruction algorithm. From Fig. 4, 2

0( ) ( )C Cω ω− is also expressed by:         
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5. Experiment and analysis 
 

We now apply the proposed approach to reconstruction from samples of Oscilloscope. The 
Oscilloscope is schematically represented in Fig. 3. In the Oscilloscope, generalized sampling 
is selected. So we utilize the proposed approach to recover generalized samples and compare 
with the existing technique. 
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Fig. 4. The structure of the digitizer. 
 

In this section, we consider the case L = 2. The corresponding analysis filters in the block 
diagram in Fig. 1 are 1( ) ( / 4)s t t Tδ− = − and 2 ( ) ( / 3)s t t Tδ− = − . The generating functions 

1( )tϕ  and 2( )tϕ  of reconstruction space W are given by: 
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2
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where T is the sampling period. 
In order to prove the proposed method, we assume ( )ξ ω  that: 
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To investigate the validity of the proposed method, we computed the cos( )α  number (23) 
as a function of the parameter δ . The graph in Fig. 5 shows that cos( )α  has the least value 
round 0.005δ =  for 0.001 0.009δ≤ ≤ . To compare the proposed method and the traditional 
algorithm, we have included the graph for the SNR of two methods in Fig. 6, the SNR of the 
proposed method and traditional algorithm are marked by ‘∗ ’ and ’• ’. The proposed method 
has the most favorable behavior around 0.005δ = for 0.001 0.009δ≤ ≤ from Fig. 6. 

 
 

 
 
 
 
 
 
 
 

 
 

 
 

Fig. 5. cos( )α  as a function of the parameter δ . 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 6. SNR as a function of the parameter .δ  
 
To further prove the validity of the proposed method, we now present an application of the 

proposed method to a signal reconstruction problem. Assuming the input signal: 
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and sampling period T =1/108. Fig. 7a and Fig. 7b show the reconstruction error by the 
proposed method and the traditional algorithm. In order to facilitate the comparison, the 
original spectrum is indicated by Fig. 8a. Fig. 8b and Fig. 8c show the spectrum from 
reconstruction continuous signal by the proposed method and the traditional algorithm, 
respectively. We can see blocking artifacts in Fig. 8b, while there is no such effect in Fig. 9c. 
 
                             a)                                                                      b) 
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Fig. 7. Reconstruction error. a) The traditional algorithm. b) The proposed method. 
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Fig. 8. Spectrum. a) Original. b) The traditional algorithm. c) The proposed method. 
 
6. Conclusion 
 

We proposed the reconstruction method of generalized sampling that yields a well-defined 
function even in the case where the analysis basis functions are non-ideal. The method is to 
add one channel into the generalized sampling system. And the reconstruction algorithm 
makes use of the generalized inverse and has a simple geometric interpretation. 

Finally, we compared the proposed method with the traditional algorithm, and 
demonstrated both analytically and through simulation that the proposed method can often 
outperform the generalized sampling reconstruction strategy.  
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