

Central European Journal of Economic Modelling and Econometrics

Volatility Persistence and Predictability of Squared Returns in GARCH(1,1) Models

Umberto Triacca*

Submitted: 1.07.2009, Accepted: 6.01.2010

Abstract

Volatility persistence is a stylized statistical property of financial time-series data such as exchange rates and stock returns. The purpose of this letter is to investigate the relationship between volatility persistence and predictability of squared returns.

Keywords: GARCH Models, returns, time series, volatility persistence

JEL Classification: C13, C22, G11, G12.

^{*}University of L'Aquila, Rome, email: umberto.triacca@gmail.com

Umberto Triacca

1 Introduction

The one-period return on a stock with price P_t at time t is defined as

$$y_t = \log(P_t) - \log(P_{t-1}).$$

Let $\{\mathcal{F}_t\}$ be a filtration (an increasing sequence of sigma algebras) modeling the information set available at time t. We assume

$$y_t = \sigma_t z_t \tag{1}$$

where $z_t \sim i.i.d.(0,1)$ and adapted to $\{\mathcal{F}_t\}$ and σ_t is a stochastic process adapted to $\{\mathcal{F}_{t-1}\}$. The process $\{x_t\}$ is said to be adapted to the filtration $\{\mathcal{F}_t\}$ if for each $t \geq t_0$, x_t is \mathcal{F}_t -measurable.

We have $E(y_t|\mathcal{F}_{t-1}) = 0$ and $E(y_t^2|\mathcal{F}_{t-1}) = \sigma_t^2$. The process $\{y_t\}$ has conditional mean zero and it is conditionally heteroskedastic with conditional variance σ_t^2 . Thus σ_t represents the volatility of the price change between times t-1 and t.

Volatility persistence is a stylized statistical property of financial time-series data such as exchange rates and stock returns. The purpose of this note is to investigate the relationship between volatility persistence and predictability of squared returns, y_t^2 .

2 The result

In order to explicitly take into account volatility persistence in the returns series, we assume that y_t follows a GARCH(1,1) model. It provides a measure of volatility expressed as follows:

$$\sigma_t^2 = \omega + \alpha_1 y_{t-1}^2 + \beta_1 \sigma_{t-1}^2 \tag{2}$$

where ω , α_1 , and β_1 are parameters such that $\omega > 0$, α_1 , $\beta_1 \ge 0$.

We shall make the following two assumptions: (A.1) $\alpha_1 + \beta_1 < 1$ (A.2) $(\alpha_1 + \beta_1)^2 + \alpha_1^2(\kappa_z - 1) < 1$, where κ_z is the kurtosis of z_t .

The coefficients α_1 and β_1 reflect the dependence of the current volatility upon its past levels and the sum $\alpha_1 + \beta_1$ indicates the degree of volatility persistence. To see this we rewrite equation (2) as

$$\sigma_t^2 = \omega + (\alpha_1 + \beta_1)\sigma_{t-1}^2 + \alpha_1\nu_{t-1}$$

where $\nu_{t-1} = y_{t-1}^2 - \sigma_{t-1}^2$. It follows that

$$\sigma_t^2 = \frac{\omega}{1 - \alpha_1 - \beta_1} + \alpha_1 \left[\nu_{t-1} + (\alpha_1 + \beta_1) \nu_{t-2} + (\alpha_1 + \beta_1)^2 \nu_{t-3} + \dots \right]$$
(3)

Equation (3) shows that $\alpha_1 + \beta_1$ determines how long a random shock to volatility persists. Thus the sum $\phi = \alpha_1 + \beta_1$ is often referred to as the persistence parameter.

Volatility Persistence and Predictability of Squared Returns...

Now, we consider a measure of predictability of the squared returns, y_t^2 , relative to h-steps forecast defined by

$$R^{2}(h) = 1 - \frac{\operatorname{var}(e_{t}(h))}{\operatorname{var}(y_{t}^{2})}$$

where $e_t(h) = y_{t+h}^2 - E(y_{t+h}^2 | \mathcal{F}_t)$. This predictability index has been utilized also by Hong and Billings (1999), Otranto and Triacca (2007) and Pena and Sanchez (2007). We observe that in the ARCH(1) case (i.e. $\beta_1 = 0$) we have

$$R^2(h) = \alpha_1^{2h}, \quad h = 1, \dots$$

Thus it is trivial to conclude that:

1.
$$\alpha_1 = \sqrt{\frac{R^2(h+1)}{R^2(h)}}$$

$$2. \lim_{h\to\infty} \sqrt[2h]{R^2(h)} = \alpha_1$$

In this note we will show that this results hold also for a GARCH(1,1) model. We first show that

$$R^{2}(h) = \frac{\alpha_{1}^{2}(\alpha_{1} + \beta_{1})^{-2}(\alpha_{1} + \beta_{1})^{2h}}{1 - 2\alpha_{1}\beta_{1} - \beta_{1}^{2}}$$

In order to do this, we rewrite the equation for σ_t^2 in (2) with $\nu_t = y_t^2 - \sigma_t^2$, obtaining the following well-known ARMA(1,1) representation for that y_t^2 :

$$y_t^2 = \omega + \phi y_{t-1}^2 + \nu_t - \beta_1 \nu_{t-1} \tag{4}$$

The equation (4) can be written in the more compact form

$$\phi(B)y_t^2 = \omega + \beta_1(B)\nu_t \tag{5}$$

where B is the backward shift operator, $\phi(B) = 1 - \phi B$ and $\beta_1(B) = 1 - \beta_1 B$. Under assumption (A.1), the ARMA representation (5) is causal and invertible (although $\sigma_{\nu}^2 = E(\nu_t^2)$ is not necessarily finite). The assumptions (A.1) and (A.2) ensure that $\sigma_{\nu}^2 < \infty$.

By section 3.1 of Brockwell and Davis (1991), causality implies that there exists a sequence of constants $\{\psi_i\}$ such that

$$\sum_{j=0}^{\infty} |\psi_j| < \infty$$

and

$$y_t^2 = \sum_{j=0}^{\infty} \psi_j \nu_{t-j} + \mu \quad t = 0, \pm 1, \dots$$

Umberto Triacca

The ψ_j 's are obtained from the relation

$$\psi(z)\phi(z) = \beta_1(z)$$

with $\psi(z) = \sum_{j=0}^{\infty} \psi_j z^j$ |z| < 1.

In particular, we have $\psi_0 = 1$ and $\psi_j = \alpha_1(\alpha_1 + \beta_1)^{j-1}$ for $j \ge 1$. Thus

$$\sum_{j=0}^{\infty} \psi_j^2 = 1 + \alpha_1^2 + \alpha_1^2 (\alpha_1 + \beta_1)^2 + \alpha_1^2 (\alpha_1 + \beta_1)^4 \dots$$

$$= 1 + [1 + (\alpha_1 + \beta_1)^2 + (\alpha_1 + \beta_1)^4 + \dots] \alpha_1^2$$

$$= 1 + \left[\frac{1}{1 - (\alpha_1 + \beta_1)^2} \right] \alpha_1^2$$

$$= \frac{1 - 2\alpha_1 \beta_1 - \beta_1^2}{1 - (\alpha_1 + \beta_1)^2}$$

and

$$\begin{split} \sum_{j=0}^{h-1} \psi_j^2 &= \sum_{j=0}^{\infty} \psi_j^2 - \sum_{j=h}^{\infty} \psi_j^2 \\ &= \frac{1 - 2\alpha_1 \beta_1 - \beta_1^2}{1 - (\alpha_1 + \beta_1)^2} - [\alpha_1^2 (\alpha_1 + \beta_1)^{2(h-1)} + \alpha_1^2 (\alpha_1 + \beta_1)^{2h} \dots] \\ &= \frac{1 - 2\alpha_1 \beta_1 - \beta_1^2}{1 - (\alpha_1 + \beta_1)^2} - [1 + \alpha_1^2 (\alpha_1 + \beta_1)^2 + \dots] \alpha_1^2 (\alpha_1 + \beta_1)^{2(h-1)} \\ &= \frac{1 - 2\alpha_1 \beta_1 - \beta_1^2}{1 - (\alpha_1 + \beta_1)^2} - \frac{\alpha_1^2 (\alpha_1 + \beta_1)^{2(h-1)}}{1 - (\alpha_1 + \beta_1)^2} \end{split}$$

and hence we have

$$var(y_t^2) = (1 + \psi_1^2 + ...)\sigma_{\nu}^2$$
$$= \left[\frac{1 - 2\alpha_1\beta_1 - \beta_1^2}{1 - (\alpha_1 + \beta_1)^2}\right]\sigma_{\nu}^2$$

and

$$\operatorname{var}(e_{t}(h)) = (1 + \psi_{1}^{2} + \dots + \psi_{h-1}^{2})\sigma_{\nu}^{2}$$

$$= \left[\frac{1 - 2\alpha_{1}\beta_{1} - \beta_{1}^{2}}{1 - (\alpha_{1} + \beta_{1})^{2}} - \frac{\alpha_{1}^{2}(\alpha_{1} + \beta_{1})^{2(h-1)}}{1 - (\alpha_{1} + \beta_{1})^{2}}\right]\sigma_{\nu}^{2}$$

Umberto Triacca

288

CEJEME 1: 285-291 (2009)

Volatility Persistence and Predictability of Squared Returns...

It follows that

$$R^{2}(h) = 1 - \frac{1 - 2\alpha_{1}\beta_{1} - \beta_{1}^{2} - \alpha_{1}^{2}(\alpha_{1} + \beta_{1})^{2(h-1)}}{1 - 2\alpha_{1}\beta_{1} - \beta_{1}^{2}}$$

$$= \frac{\alpha_{1}^{2}(\alpha_{1} + \beta_{1})^{2(h-1)}}{1 - 2\alpha_{1}\beta_{1} - \beta_{1}^{2}}$$

$$= \frac{\alpha_{1}^{2}(\alpha_{1} + \beta_{1})^{-2}(\alpha_{1} + \beta_{1})^{2h}}{1 - 2\alpha_{1}\beta_{1} - \beta_{1}^{2}}$$

Now, we can show that the persistence parameter $\phi = \alpha_1 + \beta_1$ can be expressed in terms of the predictability's measure of squared returns. We have

$$R^{2}(h+1) = \frac{\alpha_{1}^{2}(\alpha_{1}+\beta_{1})^{2(h+1-1)}}{1-2\alpha_{1}\beta_{1}-\beta_{1}^{2}}$$

$$= \frac{\alpha_{1}^{2}(\alpha_{1}+\beta_{1})^{2(h-1)}(\alpha_{1}+\beta_{1})^{2}}{1-2\alpha_{1}\beta_{1}-\beta_{1}^{2}}$$

$$= R^{2}(h)(\alpha_{1}+\beta_{1})^{2}$$

Thus

$$\alpha_1 + \beta_1 = \sqrt{\frac{R^2(h+1)}{R^2(h)}}$$

We conclude this section obtaining the persistence parameter $\phi = \alpha_1 + \beta_1$ as limit of the sequence $\left\{ \sqrt[2h]{R^2(h)} \right\}$.

We have

$$\lim_{h \to \infty} \sqrt[2h]{R^2(h)} = \lim_{h \to \infty} \sqrt[2h]{\frac{\alpha_1^2(\alpha_1 + \beta_1)^{-2}(\alpha_1 + \beta_1)^{2h}}{1 - 2\alpha_1\beta_1 - \beta_1^2}}$$

$$= (\alpha_1 + \beta_1) \lim_{h \to \infty} \sqrt[2h]{\frac{\alpha_1^2(\alpha_1 + \beta_1)^{-2}}{1 - 2\alpha_1\beta_1 - \beta_1^2}}$$

$$= \alpha_1 + \beta_1$$

$$= \phi$$

3 A simulation study

In this paper we have investigated the relationship between the GARCH(1,1) persistence parameter ϕ and the R^2 of h-step forecasts of squared returns. In particular we have shown that the persistence parameter ϕ can be obtained as limit of the sequence $\left\{ \sqrt[2h]{R^2(h)} \right\}$. As an illustration of how this analytic relationship can be used in the

Umberto Triacca

practice, we note that if the maximum likelihood estimation (MLE) of ϕ , $\hat{\phi} = \hat{\alpha}_1 + \hat{\beta}_1$, is downward biased and if

$$\frac{\hat{\alpha}_1^2(\hat{\alpha}_1 + \hat{\beta}_1)^{-2}}{1 - 2\hat{\alpha}_1\hat{\beta}_1 - \hat{\beta}_1^2} > 1$$

then there exists a $\delta \in \mathbb{N}$ such that the estimator

$$\sqrt[2h]{\hat{R}^2(h)} = \left(\hat{\alpha}_1 + \hat{\beta}_1\right) \sqrt[2h]{\frac{\hat{\alpha}_1^2(\hat{\alpha}_1 + \hat{\beta}_1)^{-2}}{1 - 2\hat{\alpha}_1\hat{\beta}_1 - \hat{\beta}_1^2}}$$

for $h \geq \delta$ produces parameter estimates which compare favorably with that of the MLE.

This fact is relevant since it is well known that the MLE of ϕ is often severely downward biased in small samples; see Bollerslev, Engle, Nelson (1994) and Hwang and Valls Pereira (2006).

In order to show how the estimator $\sqrt[2^h]{\hat{R}^2(h)}$ works a small Monte Carlo experiment is conducted. The simulation results are obtained with 1000 replications for the following GARCH(1,1) model:

$$y_t = \sigma_t z_t$$

$$\sigma_t^2 = \omega + \alpha_1 y_{t-1}^2 + \beta_1 \sigma_{t-1}^2$$

with $\omega=0.01$, $\alpha_1=0.2$, $\beta_1=0.6$ (DGP I) and with $\omega=0.01$, $\alpha_1=0.1$, $\beta_1=0.6$ (DGP II). These values are utilized also in the simulation experiment presented in Hwang and Valls Pereira (2006). When the DGP I is used and the sample size is 100, in the 78.9% of cases the estimator $\sqrt[14]{\hat{R}^2(7)}$ (we have posed h=7) performs better than MLE $\hat{\phi}$. When the DGP II is used and the sample size is 100, this percentage rises to the 88.8%.

The results from our Monte Carlo study suggest that when

$$\frac{\hat{\alpha}_1^2(\hat{\alpha}_1 + \hat{\beta}_1)^{-2}}{1 - 2\hat{\alpha}_1\hat{\beta}_1 - \hat{\beta}_1^2} > 1$$

there exists a $\delta \in \mathbb{N}$ such that the quantity

$$\sqrt[2h]{\frac{\hat{\alpha}_1^2(\hat{\alpha}_1 + \hat{\beta}_1)^{-2}}{1 - 2\hat{\alpha}_1\hat{\beta}_1 - \hat{\beta}_1^2}}$$

for $h \geq \delta$, works as a multiplicative bias correcting factor for the MLE $\hat{\phi}$.

Acknowledgements

Many thanks to an anonymous referee for his very useful comments on earlier draft of the manuscript.

Volatility Persistence and Predictability of Squared Returns...

References

- [1] Bollerslev, T., Engle, R.F. and Nelson, D.B., (1994), ARCH Models, Ch. 49 [:in] *Handbook of Econometrics*, Elsevier Science, Amsterdam.
- [2] Brockwell, P.J., Davis, R.A., (1987), Time Series: Theory and Methods, Springer-Verlag, New York.
- [3] Hong, X. Billings, S. A, (1999), Time Series Multistep-Ahead Predictability Estimation and Ranking, *Journal of Forecasting* 18, 139–149.
- [4] Hwang, S., Valls Pereira, P.L., (2006), Small Sample Properties of GARCH estimates and Persistence, *The European Journal of Finance* 12, 473—494.
- [5] Pena, D. Sanchez, I., (2007), Measuring the Advantages of Multivariate versus Univariate Forecasts, *Journal of Time Series Analysis* 6, 886–909.
- [6] Otranto, E., Triacca, U., (2007). Testing for Equal Predictability of Stationary ARMA Processes, *Journal of Applied Statistics* 34, 1091-1108.