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Abstract

Volatility persistence is a stylized statistical property of financial time-series
data such as exchange rates and stock returns. The purpose of this letter is to
investigate the relationship between volatility persistence and predictability of
squared returns.
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1 Introduction

The one-period return on a stock with price P; at time ¢ is defined as
yr = log(P;) — log(Pi—1).

Let {F;} be a filtration (an increasing sequence of sigma algebras) modeling the
information set available at time ¢t. We assume

Yt = Otz (1)

where z; ~ i.1.d.(0,1) and adapted to {F;} and o; is a stochastic process adapted
to {Fi—1}. The process {z:} is said to be adapted to the filtration {F;} if for each
t > tg, ¢ is Fi-measurable.

We have E(y:|F:—1) = 0 and E(y?|F;—1) = o7. The process {y:} has conditional
mean zero and it is conditionally heteroskedastic with conditional variance o?. Thus
o represents the volatility of the price change between times ¢ — 1 and ¢.

Volatility persistence is a stylized statistical property of financial time-series data such
as exchange rates and stock returns. The purpose of this note is to investigate the
relationship between volatility persistence and predictability of squared returns, y?.

2 The result

In order to explicitly take into account volatility persistence in the returns series,
we assume that y; follows a GARCH(1,1) model. It provides a measure of volatility
expressed as follows:

of =w+oy;_y + pio7_, (2)

where w, ay, and (; are parameters such that w > 0, a1, 81 > 0.

We shall make the following two assumptions: (A.1) a; + 31 < 1 (A.2) (a1 + (1) +
af(k, — 1) < 1, where &, is the kurtosis of 2.

The coefficients a; and 3 reflect the dependence of the current volatility upon its
past levels and the sum a; + 3 indicates the degree of volatility persistence. To see
this we rewrite equation (2) as

af =w+ (g + ﬁ1)0t2,1 + o
where v;_1 = y? | — 02 ;. It follows that

w

2
0- =
P l—a1 - By

+aq [Vt—l + (a1 + 1) vio + (a1 + 1) vz + ... (3)

Equation (3) shows that oy + 81 determines how long a random shock to volatility
persists. Thus the sum ¢ = a; + (31 is often referred to as the persistence parameter.
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Now, we consider a measure of predictability of the squared returns, y2, relative to
h-steps forecast defined by

yro o var(e(h)
B0 =1 —ard)

where e (h) = y7,, — E(y},,|F¢). This predictability index has been utilized also by
Hong and Billings (1999), Otranto and Triacca (2007) and Pena and Sanchez (2007).
We observe that in the ARCH(1) case (i.e. £ = 0) we have

R*(h)y=a?", h=1,..

Thus it is trivial to conclude that:
[R2(h+1
1. a1 = %
2. limp 00 R/ R2(R) = oy

In this note we will show that this results hold also for a GARCH(1,1) model.
We first show that
af (a1 + B1)"*(on + B1)*"

1 =206 — 07

In order to do this, we rewrite the equation for o7 in (2) with v, = y? — 02, obtaining
the following well-known ARMA(1,1) representation for that y?:

R*(h) =

Yi =w+ oyi 1 + v — B (4)

The equation (4) can be written in the more compact form

¢(B)y; =w + P1(B)r (5)

where B is the backward shift operator, ¢(B) = 1—¢B and $1(B) =1— 1 B. Under
assumption (A.1), the ARMA representation (5) is causal and invertible (although

02 = E(v}?) is not necessarily finite). The assumptions (A.1) and (A.2) ensure that

14
012, < o0.
By section 3.1 of Brockwell and Davis (1991), causality implies that there exists a
sequence of constants {t;} such that

o0
D ] < o0
5=0

and

yt2 = Z%Ut_j +p t=0,%1,...
§=0
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The v;’s are obtained from the relation
$(2)6(2) = b(2)

with 1(2) = 3020427 [2| < 1.
In particular, we have 19 = 1 and ©; = a1(aq + $1)7 ! for j > 1. Thus

1+af+af(ar +B1)* +af(ar + B)t..

> v
j=0

= 1+[1+4 (a1 +5)>+ (a1 +58)" + .. ]ai

= S S Y
= 1+ L_ (o +61)2] o)
_ 1-2b-p
1- (041 + 51)2
and
h—1 - .
Doui o= U=
=0 = =
1-2 _ 32
- % N [O@(al + 61)2(]171) + Oz%(al + 51)2}1”.]
1 =20f - fF 2 9 ) -
T I-(m+ /)2 1+ af(ar + 51)” +..Jai(ar + 51)

1—2018 = 8] of(ar + pi)*hY
1— (o1 + )2 1— (a1 +p1)?

and hence we have

var(y;) = (L+¢7+..)o,
_ {1 — 20161 — ﬁf] 2
I1—(a+p1)? ] "
and
_ 2 2 2
var(e;(h)) = (1491 + ... +¢,_1)0,
_ [1 ~ 20,0~ F2  adas + ﬂﬂ“h_”} 2
1—(aq + £h)? 1— (a1 + 1)? v
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It follows that

|- 1=2mb - B — af(ar + 4r)* Y
1— 2016 — 33
e + 80D
1— 20181 — 33
of(aq + Br) " 2(ea + B1)*"
1 -2 6 — (7

Now, we can show that the persistence parameter ¢ = a1 + 1 can be expressed in
terms of the predictability’s measure of squared returns. We have

R*(h) =

af(ar + fr)* D

2 _
R*(h+1) = =201 — 2
G 51)2 =Y (ay + B1)?
B 1— 2016 — 33
= R*(h)(oa + £1)?
Thus
R2(h+1
o+ 61 = H(’Th))

We conclude this section obtaining the persistence parameter ¢ = o + 1 as limit of

the sequence { 2/ R2(h) }

‘We have

lim %/R2(h) = lim T/O‘%(al + 51)"2(a1 + 1)

h—o0 h— o0 1- 204161 — 6%
[at(a1+ 512
— 1 2h al (Oél
(041 + 61) hl—{go 1-— 2(1151 — ﬁ%
= at+b
¢

3 A simulation study

In this paper we have investigated the relationship between the GARCH(1,1) persis-
tence parameter ¢ and the R? of h-step forecasts of squared returns. In particular we
have shown that the persistence parameter ¢ can be obtained as limit of the sequence

{ RV RQ(h)}. As an illustration of how this analytic relationship can be used in the
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practice, we note that if the maximum likelihood estimation (MLE) of ¢, ¢ =é1+5,
is downward biased and if

A2 A A \—2

—al(a{ﬁﬁﬂ —>1

1- 20«4151 - 51
then there exists a 6 € N such that the estimator

— R A2 A 5 \—2

W Re ) = (an+ 4y ) LA
1- 2CYlﬁl - ﬁ1

for h > ¢ produces parameter estimates which compare favorably with that of the
MLE.
This fact is relevant since it is well known that the MLE of ¢ is often severely down-
ward biased in small samples; see Bollerslev, Engle, Nelson (1994) and Hwang and
Valls Pereira (2006).

In order to show how the estimator */ R2(h) works a small Monte Carlo experi-
ment is conducted. The simulation results are obtained with 1000 replications for the
following GARCH(1,1) model:

Yt = Otz
of =w+ay;y + fof

with w = 0.01, oy = 0.2, 51 = 0.6 (DGP I) and with w = 0.01, a3 = 0.1, §; = 0.6
(DGP II). These values are utilized also in the simulation experiment presented in
Hwang and Valls Pereira (2006). When the DGP 1 is used and the sample size is 100,

in the 78.9% of cases the estimator '/ R2(7) (we have posed h = 7) performs better

than MLE QAS When the DGP II is used and the sample size is 100, this percentage
rises to the 88.8%.
The results from our Monte Carlo study suggest that when

a3 (61 + B) 2
1 —24:6 — 7
there exists a ¢ € N such that the quantity

2h &%(dl + Bl)_Q
V'1-2a:8 - 3

for h > §, works as a multiplicative bias correcting factor for the MLE (;3
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