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Abstract 

In this paper it is shown that M class PMU (Phasor Measurement Unit) reference model for phasor estimation 

recommended by the IEEE Standard C37.118.1 with the Amendment 1 is not compliant with the Standard. The 

reference filter preserves only the limits for TVE (total vector error), and exceeds FE (frequency error) and RFE 

(rate of frequency error) limits. As a remedy we propose new filters for phasor estimation for M class PMU that 

are fully compliant with the Standard requirements. The proposed filters are designed: 1) by the window method;

2) as flat-top windows; or as 3) optimal min-max filters. The results for all Standard compliance tests are presented, 

confirming good performance of the proposed filters. The proposed filters are fixed at the nominal frequency, i.e. 

frequency tracking and adaptive filter tuning are not required, therefore they are well suited for application in low-

cost popular PMUs. 
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1. Introduction 
 

A phasor as defined by the Standard [1] plays significant role in the electric power system 

management [3, 4]. Phasor Measurement Units (PMUs) are designed for measuring synchro-

phasors, i.e. phasors with reference to the standard time. The problem of phasor estimation is 

addressed in many writings, e.g. [5−24]. The Standard compliance tests [1, 2] may be used for 

comparing and evaluating phasor estimation algorithms. Such comparisons may also include 

additional criteria not covered in the Standard, e.g. computational complexity. In general, the 

accuracy of phasor estimation algorithms may be improved at the cost of increased processing 

delay and increased computational complexity. Phasor estimation algorithms are often based 

on DFT (Discrete Fourier Transform) or IpDFT (Interpolated DFT) [5−12]. An extension of 

the DFT analysis is the Taylor–Fourier transform [13−15]. The DFT and the Taylor-Fourier 
transform may be applied as band-pass complex-coefficient FIR (Finite Impulse Response) 

filters. The phasor may also be estimated by a low-pass (LP) FIR filtering after signal 

demodulation with a quadrature oscillator [18−24], as recommended by the Standard [1, 

Fig. C.1]. The quadrature oscillator may either be fixed at the nominal frequency or tuned to an 

actual frequency with the benefit of higher estimation accuracy. The standard reference LP FIR 

filter is fixed at the nominal frequency [1]. It is only compliant with TVE (total vector error), 

and does not preserve the limits for FE (frequency error) and RFE (rate of frequency error). 

The contribution of this paper is a design of LP FIR filters fixed at the nominal frequency 

and preserving the limits for TVE, FE, and RFE in all compliance tests of the Standard [1, 2]. 
The new fully compliant filters are designed: 1) by the window method [25]; 2) as the perfectly 

flat-top (FT) windows [26]; or as 3) the optimal min-max filters [27]. The window method of 
designing LP FIR filters for phasor estimation is recommended by the Standard [1, 2], although 
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the parameters of fully compliant filters are not given there. The application of FT windows as 

LP FIR filters for phasor estimation is a new concept, which is an important contribution of this 

paper. These new filters very accurately estimate the frequency and its rate of change. The 

optimal min-max filters were found by simultaneous minimization of TVE, FE and RFE errors 

in all compliance tests. For the above three families of FIR filters ready to use designs are given 

and compared in this paper. It is shown that all of them are fully compliant with the IEEE 

Standard C37.118.1 requirements. 

 

2. Signal model and phasor definition 
 

Consider a continuous-time narrow-band  sinusoidal signal: 

 ))(cos()()( 0 tttatx ϕω += , (1) 

where: ω0 = 2πf0 is a nominal pulsation in rad/s; f0 is a nominal frequency in Hz; a(t) is a time-

varying amplitude; and φ(t) is a time-varying phase in radians. The phasor of (1), in respect to 

the frequency f0, is defined as: 
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The equations (1) and (2) are related by: 
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The phasor reporting rates FRR are given in [1, Table 1] for 50 Hz and 60 Hz systems. For 

the f0 = 50 Hz nominal frequency system the phasor should be estimated 10, 25, or 50 times per 

second. In this paper fully compliant FIR filters for f0 = 50 Hz and FRR = 50 Hz for the M class 

PMU are designed, and examples of filters compliant for FRR = {10, 25} Hz are given. 
The instantaneous frequency fin of (1) is the 1st order time derivative of the cosine argument 

in (1) [1]: 
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and the rate of change of frequency (ROCOF) is the 2nd order time derivative of the cosine 

angle [1]: 
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If fin ≠ f0, the phasor rotates on the complex plain. For example, the values of phasors for 

fin = 50 Hz and fin = 51 Hz for the f0 = 50 Hz system and for fin = 60 Hz and fin = 61 Hz for the 

f0 = 60 Hz system are given in [1, Table 2] for the 10 Hz reporting rate. 
The digital signal x[n] corresponding to (1) is obtained by anti-aliasing analog LP filtering 

and sampling by an analog-to-digital converter: 

 
sf

f
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where Ω0 is a normalized frequency (pulsation) in radians of the discrete-time signal, and 

n = −N,...,0,...,N is the sample index. In the Standard the values of digital complex phasor are 
found by multiplying x[n] with the quadrature oscillator (frequency converter to DC) and 

extraction of a near-DC component by LP FIR filtering [1, Fig. C.1]. The LP filter limits the 
spectrum of the phasor p[n] below half of the reporting rate FRR. In the passband the filter should 

be flat from 0 to 5 Hz to ensure accurate amplitude estimation. 

The instantaneous frequency of signal (1) is estimated as [2]: 
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and the rate of change of frequency is estimated as [2]: 

 
4

]2[][2]2[

2
][

2 −+−+
=

nnnf
nROCOF s ϕϕϕ

π
. (8) 

 

3. Low-pass FIR filters for phasor estimation 
 

3.1. Standard reference FIR filter 
 

The coefficients of the standard reference LP FIR filter designed by the window method [25] 
are defined as [1, 2]: 
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where ffr denotes the filter reference frequency [1, 2], which is equal to half of the filter cut-off 

frequency [25], and h[n] is the Hamming window of length L = 2N + 1. The DC gain of the 

standard filter (9) is equal to 1 if h[n] is divided by the sum of all coefficients. The values of ffr 

and N for different nominal frequencies (50 or 60 Hz) and different reporting rates FRR are given 

in [2, Table C.1]. In Section 4 it is shown that the Standard reference model meets the Standard 

limits only for the TVE error. 

Fully compliant FIR filters can be designed by the window method. The compliant filters 

are obtained by proper selection of a window type, its length, and the reference frequency ffr. 

The maximum length of the filter is limited by the allowed reporting latency [1, 2]. We have 

found that fully compliant filters may be obtained using the Hann window, the Blackman 

window, and the Rife-Vincent class I order 2 window (known also as the maximum side-lobe 

decay window or sinα(x) α = 4 window [28]). However, we were unable to obtain a fully 

compliant filter with the Hamming window recommended by the Standard [1, 2]. 

 

3.2. New flat-top FIR filters 
 

Flat-top (FT) windows have a unique feature of the spectral main lobe being perfectly flat 

or equiripple and – simultaneously − fast decaying of the sidelobes. The FT windows are cosine 

windows defined as [26]: 
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where M is the window order and aM[m] are the coefficients of an M-order window. The 
window (10) has L = 2N + 1 samples. The discrete-time sequence (10) may be used for signal 

windowing carried out by multiplication or for signal filtering carried out by discrete 
convolution. In this work we consider an FT window as an LP filter, which is denoted by 

hM[n] = wM[n]. By increasing M the passband width increases, and the passband flatness and 

the stopband attenuation may be improved. For a given M the cut-off frequency of the filter 

hM[n] can be adjusted by the length of its impulse response L. In [26] the coefficients aM[m] of 

13 new perfectly flat and equiripple FT windows were proposed. Computer simulations showed 

that both perfectly flat and equiripple FT windows may be used for obtaining fully compliant 



 

 K. Duda, T. P. Zieliński: FIR FILTERS COMPLIANT WITH THE IEEE STANDARD … 

 

M class PMU filters. However, for a given order M the performance of perfectly flat and 

equirriple FT windows is similar. For that reason only the results for perfectly flat windows are 

presented next. The designing of perfectly flat-top filters is explained in Appendix A. 

 

3.3. Optimal min-max filters 
 

Min-max LP filters are optimal Chebyshev approximations and have an equiripple 

magnitude response in the passband and in the stopband [27]. Designing min-max filters is 
based on the Remez exchange algorithm and is implemented, e.g., in the Matlab Signal 

Processing Toolbox [27] as the function firpm (where PM denotes the Parks-McClellan 

algorithm). The LP filter design requires 5 parameters: the length L of the filter, the passband 

and stopband edge frequencies fpass and fstop, and the weights in the passband and the stopband 

wpass and wstop, respectively. For fully compliant filters those parameters are determined by 

simultaneous minimization of TVE, FE and RFE errors in all compliance tests. We have found 

that fully compliant filters are obtained for fpass = 4.6 Hz, wpass = 1, and wstop = 1400, and the 

following stopband frequencies depending on the filter length: L = 197 and fstop = 25.7 Hz, 
L = 199 and fstop = 25.6 Hz, L = 201 and fstop = 25.6 Hz, L = 203 and fstop = 25.5 Hz, L = 205 and 

fstop = 25.5 Hz, L = 207 and fstop = 25.4 Hz, L = 209 and fstop = 25.3 Hz, L = 211 and fstop = 25.3 Hz, 
L = 213 and fstop = 25.2 Hz, L = 215 and fstop = 25.2 Hz, L = 217 and fstop = 25.1 Hz, L = 219 and 

fstop = 25.1 Hz. 

 

4. Results 
 

4.1. Magnitude responses 
 

The Standard [1, 2] defines the M (measurement) class reference model for phasor estimation 
for the f0 = 60 Hz nominal frequency. The sampling frequency is fs = 960 Hz, i.e. 16 samples 

per one cycle of nominal frequency are taken. For the f0 = 50 Hz system the same number of 

samples per one cycle is obtained with the sampling frequency fs = 800 Hz. The length of the 

reference filter for the f0 = 50 Hz system for fs = 800 Hz and FRR = 50 Hz is L = 143 samples. 

The impulse response of the reference filter is depicted in Figure 1, and its magnitude response 

is shown in Fig. 2. Figs. 1 and 2 also present fully compliant FIR filters designed: 

1) by the window method (9) with the Blackman window (L = 197, ffr = 6.65 Hz), the Hann 

window (L = 199, ffr = 5.75 Hz), and the Rife-Vincent class I order 2 (RV2) window (L = 213, 

ffr = 6.7 Hz); 

2) as flat-top windows (10) (FT, M = 4: L = 199, D0 = 2, DN = 1, FT, M = 5: L = 207, D0 = 2, 
DN = 2); 

3) as a min-max optimal LP filter (denoted by optimal FIR) with parameters L = 197, fpass = 4.6 

Hz, fstop = 25.7 Hz, wpass = 1, and wstop = 1400. 

The FIR filter delay must not exceed the allowed reporting latency, which equals to 7 

reporting times, i.e. 7/FRR, for the M class PMU [2, Table 11]. Therefore, the FIR filter impulse 

response must not exceed 14 reporting times. The maximum allowed filter length for the fs = 

800 Hz and FRR = 50 Hz system is equal to 224 samples. It is also convenient to use filters with 

an odd length and symmetrical impulse response in the middle sample. 
While searching for a fully compliant flat-top (FT) FIR filters we have tested all 49 FT 

windows reported in [26] and some other FT windows designed by the procedure given in [26], 
with the length L changing from 79 samples to 223 samples. From this broad set only 4 windows 

have passed all tests of the Standard. 

The compliant windows are: 

1) FT, M = 4, D0 = 2, DN = 1, L = 199; 
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2) FT, M = 4, D0 = 0, DN = 1, δ = [0 0.339463745 0.481494823], L = 201; 

3) FT, M = 5, D0 = 0, DN = 2, δ = [0 0.3396586 0.481532356], L = 207; 
4) FT, M = 5, D0 = 2, DN = 2, L = 207. 

Where the meaning of the symbols D0, DN, δ is the same as in [26]. The length L given in 

the above list of four fully compliant windows is the shortest possible length. A window may 

also be compliant for higher values of L, e.g. the window #1 is compliant for all odd lengths in 

the closed interval from 199 to 215. The window #4 was not given in [26]. The windows #1 

and #2, and the windows #3 and #4 give similar results in compliance tests. For that reason 

further results are presented only for perfectly flat-top windows #1 and #4. Fig. 1 shows the 

impulse responses of the FT compliant filters, whereas Fig. 2 depicts their magnitude responses. 
In Fig. 2 fast decaying of the sidelobes and the flat passband are observed for the FT filters. 

The coefficients of the FT filters are given in Table 1. 

For different sampling frequencies the proposed FT FIR filters comply all standard tests, if 

the length of their impulse response equals to approximately 13 periods of the nominal 

frequency. 

 

 

Fig. 1.  The impulse responses of phasor estimation FIR filters normalized for DC gain equal to 1.  

The filters’ parameters are: Hamming: L=143, ffr=7.75 Hz; Blackman: L=197, ffr=6.65 Hz;  

optimal FIR: L=197, fpass=4.6 Hz, fstop=25.7 Hz, wpass=1, wstop=1400; Hann: L=199, ffr=5.75 Hz;  

FT, M=4: D0=2, DN=1, L=199; FT, M=5: D0=2, DN=2, L=207; RV2: L=213, ffr=6.7 Hz.  

 
           a)                                                                                     b) 

 

Fig. 2.  The magnitude responses of phasor estimation FIR filters. The filters’ parameters are the same  

as in Fig. 1. a) The Standard recommendation for frequencies above 50 Hz is -59.4 dB [2, Fig. C.5]. 

b) The Standard recommendation for frequencies from 0 to 5 Hz is 0±0.043 dB [2, Fig. C.5]. 
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For given fs and FRR the length of the proposed FT FIR filter compliant with the Standard is: 

 
RR

s

F

f
L 13≈ . (11) 

The exact number of samples is established by computer simulations. As an example Table 2 

gives M = 4, D0 = 2, DN = 1 FT window coefficients for compliant FIR filters for the sampling 

frequencies fs = 400 Hz and fs = 1600 Hz, and the reporting rate FRR = 50 Hz. 

It is observed in Fig. 2 that all filters meet the Standard recommendation [2, Fig. C.5] in the 

stopband and the proposed filters do this in excess. Surprisingly, as seen in Fig. 2b, only the 

reference filter and the FT, M = 5 filter meet the Standard recommendation in the passband. 

The remaining filters do not fit into the Standard recommendation in the passband, yet, as 

shown next, they are all fully compliant. 
 

Table 1. The coefficients of compliant new flat-top PMU filters for the sampling frequency fs = 800 Hz. 
 

M = 4, D0 = 2, DN = 1, L = 199 
12.4375 cycles of f0 

M = 5, D0 = 2, DN = 2, L = 207 
12.9375 cycles of f0 

a4[0] = 1.005050505051 a5[0] = 1.004854368932 
a4[1] = 2.006242473998 a5[1] = 2.007611297343 
a4[2] = 1.853902546302 a5[2] = 1.917918999420 
a4[3] = 1.176285932351 a5[3] = 1.451047039136 
a4[4] = 0.323575354997 a5[4] = 0.666862839032 

 a5[5] = 0.130977870905 

 
Table 2. The coefficients of a compliant flat-top PMU filter M = 4, D0 = 2, DN = 1  

for different sampling frequencies. 
 

fs = 400 Hz, L = 101 
12.625 cycles of f0 

fs = 1600 Hz, L =405 
12.65625 cycles of f0 

a4[0] = 1.010000000000 a4[0] = 1.002475247525 
a4[1] = 2.016122461957 a4[1] = 2.001101845739 
a4[2] = 1.863032315327 a4[2] = 1.849152261195 
a4[3] = 1.182078693510 a4[3] = 1.173271915521 
a4[4] = 0.325168840140 a4[4] = 0.322746252540 

 

4.2. Compliance tests 
 

Table 3 presents normalized compliance test errors of phasor estimation obtained for the 

fs = 800 Hz and FRR = 50 Hz PMU system for filters presented in Figs. 1 and 2. The columns 

are ordered according to the increasing value of filter length L. The signal duration in every test 

was 10 s, and the test signal parameters were set as recommended by the Standard [1, 2]. Table 3 

shows the TVE [1, (12)], the FE [1, (13)], and the RFE [1, (14)] values for all tests from the 

Standard [1, 2] in consecutive rows. The number in brackets gives the filter position in the test 

(ascending sort along rows). 

For easer inspection all errors in Table 3 are divided by the required standard limits, what 

means that the value lower than 1 confirms compliance with the Standard. From Table 3 it is 
seen that only the reference standard filter with the Hamming window L = 143, and ffr = 7.75 

Hz does not preserve all errors limits. The reference filter keeps only the limits of TVE, but 

exceeds FE and RFE limits (bolded values in Table 3). The flat-top filter is the most frequent 

winner. 

It is observed in Table 3 that the proposed FT filters pass the out-of-band interference test 

[1, 2] but give the results close to the limits. The maximum TVE and FE errors along with the 

Standard limits for this test are shown in Fig. 3 for all filters. The standard reference filter fails 

to pass this test in the frequency measurement. 
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Table 3. The normalized compliance test errors for different filters. Sampling frequency fs = 800 Hz  

and reporting rate FRR = 50 Hz. 
 

Standard 
    test 
 

Hamming 
ffr = 7.75 Hz 

L = 143 

Blackman  
ffr = 6.65 Hz 

L = 197 

Optimal FIR 
fstop = 25.7 Hz 

L = 197 

Hann 
ffr = 5.75 Hz 

L = 199 

FT, M = 4,  
D0 = 2, DN = 1, 

L = 199 

FT, M = 5, 
D0 = 2, DN = 2, 

L = 207 

RV2 
ffr = 6.7 Hz 

L = 213 

S1, TVE 1.5e-001 (1) 9.3e-001 (5) 6.0e-001 (3) 0.9954    (7) 6.4e-001 (4) 4.4e-001 (2) 9.5e-001 (6) 

S2, TVE 2.5e-002 (7) 4.4e-004 (5) 2.0e-004 (3) 5.0e-004 (6) 2.4e-004 (4) 7.1e-006 (2) 6.1e-006 (1) 

S3, TVE 3.9e-002 (7) 2.2e-004 (5) 2.2e-004 (4) 4.3e-004 (6) 4.3e-005 (3) 9.2e-007 (1) 3.3e-006 (2) 

S4, TVE 3.2e-001 (5) 3.1e-002 (1) 4.2e-001 (6) 5.9e-001 (7) 4.0e-002 (3) 3.4e-002 (2) 6.2e-002 (4) 
S5, TVE 4.6e-002 (7) 1.4e-003 (2) 5.3e-004 (1) 7.3e-003 (4) 9.6e-003 (5) 1.0e-002 (6) 6.4e-003 (3) 
S6, TVE 3.1e-001 (5) 3.1e-002 (1) 4.2e-001 (6) 5.9e-001 (7) 4.0e-002 (3) 3.4e-002 (2) 6.2e-002 (4) 

S1, FE 11.36      (7) 4.1e-002 (5) 4.1e-002 (4) 7.6e-002 (6) 1.2e-002 (3) 2.8e-004 (1) 6.2e-004 (2) 

S2, FE 1.18        (7) 2.9e-003 (4) 8.0e-003 (5) 1.2e-002 (6) 2.5e-003 (3) 1.8e-004 (1) 2.8e-004 (2) 

S3, FE 1.20        (7) 6.5e-003 (5) 6.0e-003 (4) 1.2e-002 (6) 1.3e-003 (3) 2.7e-005 (1) 9.6e-005 (2) 

S4, FE 13.92      (7) 9.2e-001 (4) 6.0e-001 (2) 4.7e-001 (1) 9.9e-001 (6) 8.9e-001 (3) 9.7e-001 (5) 

S5, FE 4.05       (7) 6.8e-002 (2) 3.2e-002 (1) 2.6e-001 (4) 3.2e-001 (5) 3.2e-001 (6) 2.1e-001 (3) 
S6, FE 13.33      (7) 9.3e-001 (4) 6.0e-001 (2) 4.8e-001 (1) 9.9e-001 (6) 8.9e-001 (3) 9.7e-001 (5) 

D1, TVE 1.3e-002 (1) 3.4e-002 (5) 2.2e-002 (3) 3.7e-002 (7) 2.4e-002 (4) 1.6e-002 (2) 3.5e-002 (6) 

D2, TVE 1.7e-002 (1) 3.4e-002 (5) 2.7e-002 (4) 3.4e-002 (6) 2.6e-002 (3) 1.8e-002 (2) 3.5e-002 (7) 
D3, TVE 1.3e-001 (1) 8.1e-001 (5) 6.1e-001 (4) 0.9967    (7) 5.4e-001 (3) 3.7e-001 (2) 8.2e-001 (6) 

D4, TVE 1.3e-001 (1) 8.1e-001 (5) 6.1e-001 (4) 0.9967    (7) 5.4e-001 (3) 3.7e-001 (2) 8.2e-001 (6) 

D1, FE, 1.2e-001 (7) 7.4e-004 (4) 7.8e-004 (5) 1.4e-003 (6) 1.4e-004 (3) 3.1e-006 (1) 1.1e-005 (2) 

D2, FE 1.1e-001 (7) 1.6e-002 (6) 9.3e-003 (2) 1.3e-002 (4) 1.1e-002 (3) 7.8e-003 (1) 1.6e-002 (5) 
D3, FE 5.70       (7) 2.4e-002 (4) 2.6e-002 (5) 4.5e-002 (6) 1.0e-002 (3) 3.4e-003 (1) 3.7e-003 (2) 

D4, FE 5.70       (7) 2.4e-002 (4) 2.6e-002 (5) 4.5e-002 (6) 1.0e-002 (3) 3.4e-003 (1) 3.7e-003 (2) 

D1, RFE 2.0e-001 (7) 2.5e-004 (5) 1.8e-004 (4) 3.0e-004 (6) 1.5e-004 (3) 3.1e-006 (2) 1.6e-006 (1) 

D2, RFE 2.4e-001 (7) 1.1e-002 (5) 6.8e-003 (3) 6.6e-003 (2) 7.3e-003 (4) 4.9e-003 (1) 1.1e-002 (6) 

D3, RFE 171.19    (7) 5.4e-001 (4) 6.2e-001 (5) 9.9e-001 (6) 1.5e-001 (3) 3.6e-003 (1) 8.3e-003 (2) 
D4, RFE 171.19   (7) 5.4e-001 (4) 6.2e-001 (5) 9.9e-001 (6) 1.5e-001 (3) 3.6e-003 (1) 8.3e-003 (2) 

Max  
error 

171.19   (7) 9.3e-001 (3) 6.2e-001 (1) 0.9967    (6) 9.9e-001 (5) 8.9e-001 (2) 9.7e-001 (4) 

Mean Max  
error 

16.70     (7) 2.4e-001 (5) 2.2e-001 (4) 3.2e-001 (6) 1.9e-001 (2) 1.4e-001 (1) 2.1e-001 (3) 

Mean Mean  
error 

16.30     (7) 2.1e-001 (4) 2.2e-001 (5) 3.2e-001 (6) 1.6e-001 (2) 1.2e-001 (1) 1.8e-001 (3) 
 

Legend: 

The failed tests have normalized errors above 1 and they are bolded. 

The number in brackets gives the filter position in the test (ascending sort along rows). 

The tests are [1, 2]: 

S1:  Static compliance 45<fin<55, TVE limit 1%, FE limit 0.005 Hz. 

S2:  Static compliance 10% of 2nd harmonic, TVE limit 1%, FE limit 0.025 Hz. 

S3:  Static compliance 10% of 3rd harmonic, TVE limit 1%, FE limit 0.025 Hz. 
S4:  Static compliance out-of-band interference (OfB), fin=47.5 Hz, TVE limit 1.3 %, FE limit 0.01 Hz. 

S5:  Static compliance out-of-band interference, fin=50 Hz, TVE limit 1.3 %, FE limit 0.01 Hz. 

S6:  Static compliance out-of-band interference, fin=52.5 Hz, TVE limit 1.3 %, FE limit 0.01 Hz. 

D1: Dynamic compliance, amplitude modulation (AM) kx=0.1, ka=0, TVE limit 3%, FE limit 0.3 Hz,  

       RFE limit 14 Hz/s. 

D2: Dynamic compliance, phase modulation (PM) kx=0, ka=0.1, TVE limit 3%, FE limit 0.3 Hz,  

       RFE limit 14 Hz/s. 

D3: Dynamic compliance, positive ramp (linear frequency modulation LFM), TVE limit 1%,  

       FE limit 0.01 Hz, RFE limit 0.2 Hz/s. 

D4: Dynamic compliance, negative ramp, TVE limit 1%, FE limit 0.01 Hz, RFE limit 0.2 Hz/s. 

 

The proposed FT filters are good in estimation of the instantaneous frequency (7) and its rate 
of change (8). As an example, TVE, FE and RFE errors in the frequency ramp tests are 

presented in Fig. 4. Fig. 4a shows that the TVE for the proposed FT filter is over 100 times 

smaller than for the standard filter in the wide range of signal instantaneous frequency. The FE 
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error of the proposed FT filters, Fig. 4b, is over 100 times smaller than the Standard limit. The 

RFE error, Fig. 4c, for the proposed L = 207 FT filter is also more than 100 times smaller than 
the Standard limit.  

 
           a)                                                                                     b) 

 
Fig. 3.  The out-of-band interference test. The input test signal frequency fin = 50 Hz, fih is the frequency  

of interfering signal; a) Maximum TVE error, b) Maximum FE error.  

The filters’ parameters are the same as in Fig. 1. 

 
                                                       a) 

 
   b)                                                                                     c) 

 
Fig. 4.  The positive ramp of system frequency test. The input test signal frequency fin changes linearly  

from 45 Hz to 55 Hz with the rate 1 Hz/s; a) TVE error, b) FE error, c) RFE error.  

The filters’ parameters are the same as in Fig. 1. 
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Table 4. The maximum and mean errors from all compliance tests for different filter lengths L. 
 

L Filter 
Max 
error 

Mean Max 
error 

Mean Mean 
error 

143 Hamming, ff r= 7.75 Hz 171.19 16.70 16.30 

197 Optimal FIR, fstop = 25.7 Hz 0.6160 0.2204 0.2167 

197 Blackman, ffr = 6.65 Hz 0.9276 0.2414 0.2145 

199 Optimal FIR, fstop = 25.6 Hz 0.5855 0.2069 0.2036 
199 Blackman, ffr = 6.65 Hz 0.8571 0.2262 0.2011 
199 FT, M = 4, D0 = 2, DN = 1 0.9937 0.1888 0.1647 

199 Hann, ffr = 5.75 Hz 0.9967 0.3190 0.3214 

207 Optimal FIR, fstop = 25.4 Hz 0.4285 0.1524 0.1495 

207 Blackman, ffr = 6.7 Hz 0.6083 0.1748 0.1575 

207 FT, M = 4, D0 = 2, DN = 1 0.7909 0.1567 0.1375 

207 FT, M = 5, D0 = 2, DN = 2 0.8905 0.1429 0.1225 
207 Hann, ffr = 5.5 Hz 0.9794 0.3099 0.3123 

211 Optimal FIR, fstop = 25.3 Hz 0.3628 0.1278 0.1247 
211 FT, M = 5, D0 = 2, DN = 2 0.4868 0.0996 0.0863 

211 Blackman, ffr = 6.65 Hz 0.5619 0.1517 0.1369 

211 FT, M = 4, D0 = 2, DN = 1 0.8788 0.1550 0.1361 

211 Hann, ffr = 5.35 Hz 0.9446 0.3049 0.3062 

213 Optimal FIR, fstop = 25.2 Hz 0.3297 0.1164 0.1142 
213 FT, M = 5, D0 = 2, DN = 2 0.5131 0.1005 0.0870 

213 Blackman, ffr = 6.75 Hz 0.5346 0.1398 0.1270 

213 FT, M = 4, D0 = 2, DN = 1 0.9255 0.1575 0.1383 

213 Hann, ffr = 5.3 Hz 0.9452 0.3015 0.3036 

213 RV2, ffr = 6.7 Hz 0.9724 0.2075 0.1791 
219 Optimal FIR, fstop = 25.1 Hz 0.2409 0.0838 0.0811 

219 Blackman, ffr = 6.8 Hz 0.4196 0.1074 0.0980 
219 FT, M = 5, D0 = 2, DN = 2 0.5989 0.1058 0.0917 

219 RV2, ffr = 6.7 Hz 0.7071 0.1509 0.1317 

219 Hann, ffr = 7 Hz 0.9233 0.2421 0.2308 

 

The last three rows in Table 3 present overall errors from all compliance tests. These errors 

are defined for easy global comparison of filters. 
Max error is the normalized maximum error from all tests. For the fully compliant filter the 

value must be lower than 1. Mean Max error is the mean value of maximum errors from all 

compliance tests. Mean Mean error is the mean value of mean errors from all compliance tests. 

This error is proportional to the area under the error function. The broad comparison of the 

filters in the sense of above three errors is presented in Table 4 for different filter lengths L. For 

a given length L the rows are sorted according to the increasing value of Max error. It is seen 

that the optimal filter is the best in the sense of Max error, and the smallest Max error obtained 

for L = 219 equals to 0.2409. The smallest Mean Mean error equalled to 0.0811 was also 

obtained by the optimal filter L = 219. The second smallest Mean Mean error equalled to 0.0863 

was obtained by FT filter FT, M = 5, D0 = 2, DN = 2, L = 211. 

 

4.3. Remaining reporting rates 
 

The results similar to the presented above for the reporting rate FRR = 50 Hz can also be 

obtained for the reporting rates FRR = 10 Hz and FRR = 25 Hz recommended by the Standard [1, 

Table 1]. The detailed analysis of filters’ performance for FRR = 10 Hz and FRR = 25 Hz is not 

presented here. We only summarize that for fs = 800 Hz, and FRR = 10 Hz  [2, Table C1] the 

flat-top equiripple filter with length L = 1071, order M = 5 and coefficients (10) 
a5[m] = [1.0009345794, 2.0004235406, 2.0023075241, 2.0012570792, 1.7499164689, 

0.7514779527] is fully compliant with the Standard. Max error for this filter equals to 0.66. In 
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this case the standard filter has Max error equal to 41.63 and it is not compliant, it does not 

preserve even TVR errors in the ramp test (i.e. D3, and D4 in Table 3). For fs = 800 Hz, and FRR 

= 25 Hz [2, Table C1] fully compliant is the flat-top equiripple filter of length L = 425, order 

M=5 and with coefficients (10) a5[m] = [1.0023584906, 2.0062191835, 2.0049355827, 

1.9296489327, 1.3178926474, 0.3893186044]. Max error for this filter equals to 0.81. The 

standard filter in this case has Max error equalled to 87.22, and is not compliant. Fig. 5 presents 

the frequency responses of the proposed flat-top compliant filters for fs = 800 Hz, and FRR = 10 

Hz and 25 Hz, in comparison with the standard filters that are not compliant. 

 
  a)                                                                                       b) 

 
Fig. 5.  The magnitude responses of phasor estimation FIR filters for FRR = 10 Hz and FRR = 25 Hz. FT, M = 5,  

L = 1071 denotes the filter compliant for FRR = 10 Hz, and FT, M = 5, L = 425 denotes the filter compliant  

for FRR = 25 Hz. For comparison the standard filters designed with Hamming window are shown [2, Table C1]. 

a) Stopband; b) Passband. 

 

5. Conclusion 

 

In this paper we have shown that the Standard [1, 2] specifies the reference model for PMU 

estimation that is not compliant with its own requirements. Also, we have proposed new 

compliant filters. The designing of a compliant filter is not a trivial task, nevertheless we have 

demonstrated in this work that even the window method for FIR filter designing, recommended 
by the Standard, may be successfully used for obtaining compliant PMU filters. 

Several fully compliant fixed-frequency low-pass FIR filters for the M class PMU Standard 
signal processing model [1, 2] have been proposed. The filters have been designed by the 

window method with Blackman, Hann or Rife-Vincent class I window, as either the flat-top 

windows, or optimal min-max filters. Successful application of flat-top windows for accurate 

estimation of the phasor frequency and its rate of change is an important contribution of this 

work. The proposed LP FIR filters are good candidates for inclusion in a future version of the 

Standard [1, 2] as fully compliant reference filters. 
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Appendix A 
 

The Discrete-Time Fourier Transform (DTFT) of the filter hM[n] (10) is defined as: 
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The DTFT of hM[n] (10) is the superposition of 2M + 1 scaled and shifted in the frequency 

spectra of a rectangular window (h0[n]=1 for |n|≤ N, otherwise 0): 
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The bandwidth of hM[n] increases with increasing M. By selecting the filter coefficients 

aM[m] along with the filter order M and length L = 2N + 1 it is possible to influence the passband 

flatness, passband width, transition band width, and stopband attenuation of the filter spectrum 

(A.2). 

Perfectly flat-top filters are obtained by putting the following constraints upon the filter 

frequency response: 

1) DC gain: 

 
0(e )j

MH L= . (A.4) 

2) 2R-order flatness at Ω=0, i.e. zeroing its first 2R derivatives at Ω=0: 
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In (A.5) R denotes a parameter to be chosen, odd order derivatives of HM(ejΩ) are neglected 

since they are always equal to zero for Ω=0. 
The conditions (A.4) and (A.5) may be expressed as [26]: 
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Reducing discontinuity of the filter hM[n] (10) at n =± N increases the sidelobe decaying 

speed. By zeroing hM[n] and its first Q derivatives over n at n = N the following conditions for 

coefficients hM[m] can be derived for q = 1,2,3,...,Q [29]: 
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In (A.9) only the even order derivatives are considered because all odd order derivatives are 

equal to 0 for n = N. For a rectangular filter the sidelobes decaying speed is 6 dB/OCT. Then, 

fulfilling hM[N] = 0 (A.8) adds an extra 12 dB/OCT to this speed, and zeroing successive even 

order time derivatives of hM[n] for n = N (A.9) adds another 12 dB/OCT (per each derivative). 
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The flat-top filter design procedure is based on solving a set of equations in the least mean 

square sense (LSQ). The equations are chosen from (A.6), (A.8), (A.9). When M coefficients 

aM[m] are to be found, only M constraints can be used. The following set of M + 1 = (R+1)+1+Q 

equations is finally solved in a single step in the LSQ sense: 

 (R+1)×(A.6) + (A.8) + Q×(A.9). (A.10) 

The equation (A.8) is always used, thus the asymptotic rate of falloff of sidelobes is no 
slower than that for the Hann window, i.e. -18 dB per octave. 

A Matlab program for computation of the flat-top filter coefficients aM[m] is presented in 
[26]. 

 

Appendix B 
 

Implemented in Matlab function phasor_estimation, Program 1, estimates the 

instantaneous phase, amplitude, frequency, and rate of change of frequency of the signal x 
sampled with the frequency fs for the system nominal frequency f0 with an FIR filter having the 

impulse response h. An example of using this function is given in Program 2. 

 

Program 1 
function [pe, Xe, fe, ROCOFe] = phasor_estimation(x, h, f0, fs) 
% x  - time signal 
% h  - impulse response of estimating FIR filter 
% f0 – nominal signal frequency 
% fs – sampling frequency 
% pe – estimated instantaneous phase in (rad) 
% Xe – estimated instantaneous amplitude  
% fe – estimated instantaneous frequency (Hz) 
% ROCOFe – estimated Rate of Change of Frequency (Hz/s) 
L  = length(h); 
N  = (L-1)/2; 
n  = -N:N; 
w0 = 2*pi*f0/fs; 
h  = 2*h(:) .* exp(j*w0*n(:)) / (L*mean(h)); 
y  = conv(x, h);   
pe     = unwrap( angle(y)); 
Xe     = abs(y);  
fe     = conv( pe, [1 0 -1]/2 )/(1/fs)/(2*pi);     fe(1:1)=[]; 
ROCOFe = conv( fe, [1 0 -1]/2 )/(1/fs);        ROCOFe(1:1)=[]; 
 

Program 2 
clear all, close all, clc 
%% Parameters 
fs   = 800;                % sampling frequency in Hz  
f0   = 50;                 % nominal frequency in Hz 
Tmax = 10;                 % test signal length in s 
t    = [0:1/fs:Tmax-1/fs]; % time vector 
%% Test signal 
Xm = 1; % signal amplitude 
if(1) % joint amplitude and phase modulation test 
   kx = 0.1; % the amplitude modulation factor 
   ka = 0.1; % the phase angle modulation factor 
   fm = 1;   % modulation frequency in Hz 
   Xt   =  Xm*(1+kx*cos(2*pi*fm*t));   % instantaneous amplitude 
   Pt   =  ka*cos(2*pi*fm*t-pi);       % instantaneous phase 
   d1Pt = f0-ka*fm*sin(2*pi*fm*t-pi);  % frequency (1st phase derivative) 
   d2Pt =-ka*2*pi*fm.^2*cos(2*pi*fm*t-pi); % ROCOF (2nd phase derivative)   
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else % frequency ramp test 
   framp = -5; % ramp starts at f0+framp Hz 
   Xt =  Xm*ones(size(t));         % instantaneous amplitude 
   Pt =  pi*t.^2+2*pi*framp*t;     % instantaneous phase 
   d1Pt = f0+t+framp;              % frequency (1st phase derivative) 
   d2Pt = ones(size(t));           % ROCOF     (2nd phase derivative) 
end 
x = Xt.*cos(2*pi*f0*t+Pt); % test signal 
%% Phasor estimation 
M = 5; % Filter M=5, D0=2, DN=2, L=207 (Table I) 
L = 207; 
a5= [1.004854368932 2.007611297343 1.917918999420 ... 
    1.451047039136 0.666862839032 0.130977870905]; 
N = (L-1)/2; 
n = -N:N; 
h = zeros(size(n)); 
for m=0:M 
  h = h + a5(m+1)*cos(m*pi/N*n); %(10) 
end 
[Pte, Xte, fe, ROCOFe]=phasor_estimation(x, h, f0, fs); 
%% Errors  
t      =      t(N+1:end-N);  
Pt     =     Pt(N+1:end-N); 
Xt     =     Xt(N+1:end-N); 
d1Pt   =   d1Pt(N+1:end-N); 
d2Pt   =   d2Pt(N+1:end-N); 
Pte    =    Pte(L:length(t)+L-1)-2*pi*f0*t; 
Xte    =    Xte(L:length(t)+L-1); 
fe     =     fe(L:length(t)+L-1);  
ROCOFe = ROCOFe(L:length(t)+L-1); 
Pt     = unwrap( angle( exp(j*Pt))  );  
Pte    = unwrap( angle( exp(j*Pte)) );  
err_phase  = Pte-Pt; 
err_ampl   = Xte-Xt; 
err_freq   = fe-d1Pt; 
err_ROCOF  = ROCOFe-d2Pt; 
figure,  
    plot(t, err_phase,'.-r',t, err_ampl, '.-g',... 
        t, err_freq, '.-b',t, err_ROCOF,'.-k')     
    legend('phase error (rad)','X error (.)',... 
        'f error (Hz)','ROCOF error (Hz/s)') 
    xlabel('t (s)'), box on, grid on, axis tight 
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