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Abstract 

A recent IEEE Access Paper by Gunn, Allison and Abbott (GAA) proposed a new transient attack against 

the Kirchhoff-law-Johnson-noise (KLJN) secure key exchange system. The attack is valid, but it is easy to build 

a defense for the KLJN system. Here we note that GAA’s paper contains several invalid statements regarding 

security measures and the continuity of functions in classical physics. These deficiencies are clarified in our present 

paper, wherein we also emphasize that a new version of the KLJN system is immune against all existing attacks, 

including the one by GAA.   
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1. Introduction 

 
Research on and development of unconditionally secure communication and key exchange 

have a history of progress via attacks and debates and, for example, this type of evolution has 
taken place for Quantum Key Distributions (QKDs) [1, 2, and references therein]. The present 
paper concerns the classical statistical-physics-based Kirchhoff-law-Johnson-noise (KLJN) key 

distribution system, delineated in Fig. 1, which is no exception to the tradition of the research 

area, and the creation of the KLJN schemes [3, 4] immediately triggered attacks [5−7]. 
The various attacks  [5–16] have led to useful discussions [17–23], including corrections 
of flaws in the attacks [19–23] and developments of new defense protocols [5, 10, 11, 13, 24, 
25] as well as protocols that have increased immunity against attacks in general [24–27]. 

Furthermore, KLJN schemes that are totally immune to a certain attack have been presented 
[13, 28–30] as has a new system that is immune to all existing attacks [31]. Responses to 

the attacks have included plain denials of their validity [18, 21–23], and in some cases 
experimental results that purportedly supported an attack have been found flawed [23]. 
The debates sometimes represent a standoff between opposing parties with different scientific 

backgrounds, which is a typical feature of science debates on breakthrough results in physics, 
as observed already by Max Planck [32].  

Recently, Gunn, Allison and Abbott (GAA) published an interesting paper [15] with the first 
attack utilizing transients at the beginning of the bit-exchange. Their idea is impressively simple 
and involves monitoring the mean-square voltage before the front of the transient reaches the 

other end of the communication cable. We note that this approach requires a very short sampling 

time − less than 10% of the correlation time for the noise [14] − and the relative change of the 
voltage is typically small during this period.  

In a simple illustration of the key effect of GAA’s approach, we assume that Eve monitors 
the voltage on the cable while its capacitance C is charged up by a DC voltage via a resistor R.  
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According to the Johnson-Nyquist formula [3], the voltage noise spectrum can be written 

as S(f) = 4 kTR − where f is frequency, k is Boltzmann’s constant and T is temperature − which 

means that a larger resistance has a higher mean-square voltage. Thus the DC voltage scales 

with R , whereas the RC time constant scales linearly with the resistance and the rate scales 

inversely with this time constant. If Alice and Bob use no precaution and abruptly switch the 

resistors (with their generators) to the line, then the mean absolute value of the rate-of-change 

for cable voltage at the entry point will scale as . It is also obvious from the above 

considerations that a linear ramping-up of the noise amplitude is not helpful, at least not if the 
communicating parties perform the ramping in a symmetrical fashion as in the first 
experimental demonstration [11] of the KLJN scheme.  

 

 

 

Fig. 1. An outline of the KLJN scheme without defense circuitry [3] against active (invasive) attacks and attacks 

utilizing non-idealities. The RL and RH resistors, identical pairs at Alice and Bob, represent the Low (L) and High 

(H) bit-values. The corresponding (band-limited) white noise spectra SL and SH form identical pairs at the two 

ends, but they belong to independent Gaussian stochastic processes. Both parties are at the same temperature Teff, 

so the net power flow is zero. The LH and HL bit-situations of Alice and Bob produce identical voltage 

and current noise spectra, Su and Si, in the wire, implying that they represent a secure bit exchange. The total 

loop resistance Rloop is publicly known and can be calculated by the measured voltage noise or current noise 

spectrum and the Johnson formula, for example as Rloop = 4 kT/Si. In the LH and HL case, Alice and Bob can 

calculate the resistance at the other end of the cable by subtracting their own resistance value from Rloop. The LL 

and HH bit arrangements, which occur in 50% of the cases, do not offer security. Consequently, 50% of the bits 

must be discarded. This system works also with arbitrary, continuum resistor values to securely generate 
and share continuum random numbers. 

 

 
We have confirmed GAA’s conclusion [15] that their attack works with about p = 0.7 – 0.8, 

where p is Eve’s probability of successfully guessing the key-bits. These values of p require 
four stages of the simplest XOR-based privacy amplification in order to reduce p to its ideal 

range of 0.5 < p < 0.5006 [33], which implies a corresponding 16-fold slowdown of the key 
exchange. Then, the corresponding relative information leak toward Eve is less than 10–8 [33].  
 

2. A KLJN scheme that is immune against the attack 

 
There are many easily executable ways to reduce the efficiency of GAA’s attack [15], and 

some of them were outlined in their paper. Here, we emphasize that the new Random-Resistor-

Random-Temperature (RRRT) KLJN scheme [31], see Fig. 2, is totally immune against not 

only GAA’s recent attack but against all presently known attacks.  
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Fig. 2. An outline of the RRRT-KLJN scheme [31]. The temperatures and resistors at Alice (A) and Bob (B), 

and their corresponding voltage noise spectra, are continuum random variables with a new random choice made 

at the beginning of each KLJN period. The Low (L) and High (H) bit values at Alice and Bob are determined  

by relative resistance values; for example, the party with the higher resistance has the high bit. Eve cannot 

determine even the sum of the resistance values, because there is no public knowledge about the temperatures, 

and the mean-square noise voltages and the resistances fluctuate independently.  
(Various symbols are defined in Fig. 1 and elsewhere [31]). 

 

 
The mean-square generator voltages and the resistance values are independent random 

variables, and hence Eve cannot relate the measured transient mean-square voltage to the 
resistance value. Thus, GAA’s transient attack [15] yields zero information leak about the key 

(p = 0.5). 
 

3. Deficiencies in the GAA paper 

 
The main reason for writing our present article is that, although GAA’s attack works, there 

are important deficiencies in their paper [15], which we want to correct. A general comment 
is that GAA’s paper is poorly documented and void of details regarding simulations: for 
example, what cable model or software was used, how were the noise generated, what 

simplifications were assumed, etc. All of these questions point at essential information needed 
for assessing the validity of, and potential flaws in, GAA’s simulations [14, 22–24].  

We confirmed GAA’s results [15] by use of the LTSPICE industrial cable simulator (details 
of these types of simulations, and their underlying assumptions, are described elsewhere [14]), 
and in this section we focus on remaining problems inherent in GAA’s work [15]. First, 

in subsections A and B, we address two minor mistakes, the second one possibly emanating 
from an inadequacy in our former paper [24], which we also correct here. Finally, in subsection 

C, we deal with major flaws in GAA’s paper [15] regarding physics and security claims based 
on incomplete circuit theory. 

A. Secrecy rate as a measure of unconditional security 

GAA [15] use the term “secrecy rate” to characterize security. We note that GAA cite several 
old papers concerning the secrecy rate [4, 17, 34, 35], but this term does not exist in the 

mentioned papers. For a modern discussion of “secrecy rate”, we refer to work by Chorti and 
Poor [36]. 

When using the secrecy rate to characterize security, the bit-error probability q of Alice and 
Bob enters into the result: the higher the q, the lower the secrecy rate. Under certain special 
conditions, but not for KLJN in general, one can relate the secrecy rate to the maximum rate 

of secure bit-exchange after privacy amplification. However, security (secrecy) and secrecy rate 
are like apple and orange: both are fruits but are completely different. The secrecy rate is not 
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an ultimate measure of security but is only a practically useful performance parameter in some 

special situations of secure communication [36]. The basic condition of (perfect unconditional) 
secrecy of key exchange is that the probability of Eve’s successful guessing the key-bit is not 
improved by her monitoring the key exchange [37, 38].  

When Eve’s knowledge of a uniformly generated key is zero, then her probability 

of successfully guessing the bits is 0.5. In the case of perfect secrecy (security), p remains at 

this value even when Eve is eavesdropping, and the bit-error probability of key exchange 

between Alice and Bob is irrelevant. We offer the following illustrative example to show the 

inadequacy in using the secrecy rate to judge the security of the KLJN system [39, 40]. 

By manipulating wire resistance, frequency bandwidth and bit-detection thresholds, it is 

possible to design two different KLJN systems with the identical secrecy rate; one of the 

systems has very poor security (p ≈ 1) while the other has very strong security (p ≈ 0.5).  

One should note that, in the case of the KLJN system, the bit-error probability can be so low 

that it is not even measurable, such as 10–20, and therefore the use of secrecy rates may lead 

to the same conclusions as when p is employed. However, it is incorrect to use the secrecy rate 

in order to characterize the level of unconditional security of key exchange, and such an error 

can produce misleading results. 

B. Parameter tuning to approach perfect security 

The Appendix of GAA’s work [15] contains some incorrect comments about our general 

security proof [24] for the KLJN key exchange. Here we discuss a minor issue: how to reach 

a desired security level by properly tuning the parameters of the KLJN system to be sufficiently 

close to their ideal values. For a mathematical proof of unconditional security, it is not necessary 

that this tuning is economical or practical − the tuning merely has to be physically achievable. 

We first note that GAA cites the classical Diffie-Hellman paper [41] (their reference [2]) 

about unconditional security. This paper is from the times when physical unconditionally secure 

key exchange did not yet exist and the key was supposed to be perfectly unconditionally secure 

(such as by delivery via courier) or only conditionally secure by using one-way-functions. 

Unconditional security of physical key exchangers, on the other hand, was introduced [1] 25 

years later by Mayers [42]. An unconditionally secure physical key-exchanger is never perfectly 

secure, but perfect security can be approached arbitrarily at least conceptually.  

GAA argue [15] correctly that, when parameters are tuned towards their ideal values 

to match security requirements, there are some parameters that may have limits for doing that. 

GAA use the example of cable length, which can rarely be close to zero (except in intra-

instrument chip-to-chip communication). This limitation is true, but the goal of a proof 

for unconditional security is to show that there is a set of practical parameter values for which 

the required security level is reached. This was proved by us [24] via the continuity of functions 

in stable classical-physical systems, which implies that the parameters approach their ideal 

values when p converges towards 0.5 representing perfect security. However, all parameters 

are not required to approach their ideal values for convergence to perfect security. For example, 

the influence of a large cable-length can be evaded by privacy amplification [33] at the cost 

of a sufficiently small bandwidth (the more privacy amplification steps, the smaller 

the bandwidth), and thus one can reach the required security level even when the cable-length 

is significant. Clearly, invested time is the ultimate price to pay in order to approach perfect 

security, which is the same as in QKD [1]. 

We now illustrate the case of a finite cable-length with the hypothetical function 0.5 ,p xy= +

where x represents the cable-length and y the reduced bandwidth (reciprocal of the duration 

of bit-exchange). Perfect security is approached when 0x→ and/or 0.y→  Consequently, it is 

not necessary that both x and y approach their ideal values; one parameter can stay significant 
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and the system still converges to perfect security. Practical situations are of course more 

complex and less ideal than in this example.  

Finally, we note that our previous paper [15] contains an inadequacy in (5), where the Taylor 
polynomial is shown only up to the first order. However, most effects in the KLJN system 

require an expansion at least up to the second order and that is so for the example above. 
However, the inadequacy does not alter the main conclusion about the existence 

of unconditional security and the fact that the fundamental base of unconditional security 
of the KLJN system lies in the continuity of functions in stable classical-physical systems and 
in the existence of a parameter set, belonging to perfect security, which can be approached 

in a continuum fashion.  

C. Continuity of functions in stable classical-physical systems 
The last and most important point of concern about GAA’s paper [15] deals with security 

versus physics. As an objection to our earlier argument [24] that p can be tuned in a continuous 

fashion in KLJN, GAA claim in the Appendix of their article  [15], by using a circuit example, 

that functions in stable classical-physical systems are not always continuous. 

This is an assertion with very far-reaching consequences! However, it must be incorrect 

since otherwise the whole theoretical framework, as well as the education, of classical physics 

− including mechanics, elasticity, electrodynamics, fluid dynamics, statistical physics, 

condensed matter physics, etc. [43–50] − are flawed. We therefore investigate GAA’s claim 

[15] and argue that there are three different types of errors in their argumentation; they are 

related to electrical circuit theory, security and physics.  

We first note that the system examined by GAA [15] is not the KLJN system. The circuit 

underlying their demonstration is shown in Figure 3, which represents a situation wherein it is 

publicly known that Alice and Bob have 1 Ω resistors whereas their DC voltages UA and UB 

are secret. For the sake of simplicity, we assume that the arbitrary voltages UA and UB represent 

bit-values in a pre-agreed, realistic fashion. Eve measures the voltages UAE and UBE. If RE > 0, 

she can exactly determine the voltages UA and UB from the measured quantities, and thus Eve 

has perfect eavesdropping of the bit-values (p = 1). In the case of RE = 0, see Fig. 4, Eve cannot 

determine the secret voltages from UAE and UBE because the related matrix is not invertible, 

and then GAA [15] argue that Eve has zero information about the bits (p = 0.5). From this fact, 

GAA conclude that the transition from complete information with p = 1 (at RE > 0) to zero 

information with p = 0.5 (at RE = 0) proves the existence of a non-continuous p (RE) function 

because of the singularity of p at RE = 0. Thus, GAA profess that a function related to security 

is non-continuous in a classical-physical system. 

 

 

Fig. 3. An outline of the situation wherein Eve knows the resistor values and measures the voltages UAE and UBE. 

If RE > 0, she can determine the voltages UA and UB. 
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Fig. 4. An outline of the situation wherein Eve measures voltage and knows the resistor values but still cannot 

find out the voltages. However, this is an absurdly limited Eve because she does not measure current,  

which contradicts the rules of security that Eve must utilize all of the information she has access to.  

If she measures also the current, she can determine the voltages. 

 
The following questions emerge as a result of GAA’s claims: 

(i) When GAA [15] discuss security and eavesdropping, do they follow the elementary rules 

of attacks against unconditional security, in particular, do they exploit all of Eve’s available 
circuit measurement tools in the attack? 

(ii) Is GAA’s approach physical or is it only an unphysical engineering-type simplification from 
which one cannot draw safe conclusions about underlying physics? 

(iii)If GAA’s approach is indeed unphysical, does their conclusion hold if their approach 
is modified so as to make it physical?  

 

4. Discussion 

 
We now scrutinize the questions (i)−(iii). The answer to question (i) is that by ignoring 

the possibility of current measurement one makes a circuit-theoretical mistake that leads to 

an absurdly limited Eve. This contradicts the basic rules of security analysis that Eve must 
utilize all of the information she has access to. If she measures also the current I, as can be done 

in various ways, she can determine the voltages exactly by 
A E

*1ΩU U I= −  and 
B E

*1Ω.U U I= +  

Clearly, the role of a non-zero RE is to enable current to be used in order to provide extra 
information via the voltage drop over RE and, equally obviously, this information is lost 

at RE = 0. Consequently, there is no discontinuity within GAA’s approach [15]. In fact, Eve’s 
eavesdropping ability is constant and maximum (p = 1), and hence the situation explored 
by GAA does not offer security. 

The reply to question (ii) is that the system GAA investigate [15] in order to challenge 
a fundamental rule of classical physics is unphysical because their circuit model does not 

contain the Johnson noise voltage sources of the resistances. This deficiency implies 
an underlying assumption about the physical system, i.e. its being at zero absolute temperature. 
However, zero absolute temperature cannot be reached as a consequence of the laws 

of thermodynamics and statistical physics, and assuming its existence renders GAA’s model 
unphysical. 

To answer question (iii), finally, we make GAA’s system physical by adding Johnson noise 
generators UAn(t), UBn(t) and UEn(t) to the corresponding resistors;  see Fig. 5. The impact of the 
non-zero noise is pervasive, and the Gaussian distribution of Johnson noise voltage guarantees 

non-perfect eavesdropping and a continuous transition of p towards RE = 0. The amplitude 
density of a Gaussian process will never reach zero and thus, mathematically, noise can cause 

bit-flips at any finite value of UA and UB. For
E

0,R →  the DC voltage drop and noise on RE scale 
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with RE and
E
,R  respectively, which implies that the relative inaccuracy of the measured 

voltage on RE scales with 
E

1 / R  and is divergent when approaching the limit of RE = 0; this 

divergence takes place in a continuum fashion. Perfect eavesdropping at non-zero RE can be 

achieved only via infinitely long time-averaging, which is an unphysical situation. 
Consequently, p is a continuous function of RE at finite-time averaging and non-zero 

temperature. 
 

 
 

Fig. 5. An outline of the situation encompassing correct physics represented by non-zero Johnson noise voltages 

of the resistors. The impacts of UAn and UBn are significant: for GAA’s absurdly limited Eve it provides  

non-perfect eavesdropping and a continuous change of the information leak when RE converges to zero.  

Perfect eavesdropping can be achieved only after infinitely long time-averaging, which is unphysical. 

 

 

5. Conclusions 

 

We have analysed a recent paper entitled “A New Transient Attack on the Kish Distribution 
System” by Gunn, Allison and Abbott [15]. Their attack is valid, but countermeasures are 

readily found. Our present paper discusses the arguments behind the attack, and we show 
a number of found that are sufficiently general to warrant a detailed treatment, as presented 

above. In particular, GAA’s “proof” of the existence of a discontinuous function in a stable, 
linear, classical-physical system is invalid. Continuous functions prevail as soon as the system 
is made physical by including unavoidable thermal fluctuations. Our analysis shows, once 
again, that over-simplified engineering models are unable to prove or disprove the Laws 
of Physics. 

 

Appendix 

 

This manuscript, in its various versions, has been criticized by reviewers and others on issues 

of a fundamental character. Some of these issues, we believe, are connected with traditions and 
lines of thought entrenched in different disciplines, such as in Engineering and in Physics. Here 
we give a brief discussion of some of the contentious items that may be of general relevance 

and where, as we perceive the situation, the engineering tradition leads to over-simplified, 
or even erroneous, results. We underscore that the present exposition is preliminary and 

awaiting a more in-depth treatment. 
Our presentation in this paper rests on the existence of continuous functions. It has been 

questioned that such functions are important for the present purpose, and it has been argued that 

we are guilty of having invented an “imaginary law” without giving any reference. However, 
it is an elementary issue that, in classical physics, functions describing linear systems and stable 

non-linear systems must be continuous. This is the very reason why differential calculus 
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can be applied throughout classical physics [43–50]! The reliance on continuous functions 

is usually not stated explicitly, but it is as basic as the assumption that calculations in physics 
follow the rules of algebra.  

As a history aside, we note that the realization that continuous functions describe physics 

is underlying Newton’s formulation of differential and integral calculus. Discontinuities simply 
do not exist in classical physics, and if a model says so it is over-simplified. 

We illustrate our view with an example: High-school physics says that, when we heat ice, 
after reaching the melting point the temperature remains constant during continuous energy 
influx until the energy representing the latent heat of the ice is exceeded. At first sight this 

represents a discontinuity. But of course this is not so and statistical thermodynamics tells that 
the temperature and the latent heat are continuous functions associated with thermal 

fluctuations at the phase change. In fact, the same effect constitutes a vigorous research field 
in superconductivity, viz., fluctuation-conductance. Other examples could be given. 

An asserted counterexample to the continuity of functions in physics, which was put forward 

by a reviewer, is related to the special case of Euler’s disc, which is a well-known system 
in classical physics. A practical example of Euler’s disc is a coin spinning on a flat surface. 

This object oscillates with increasing frequency and then suddenly stops, seemingly via 
a discontinuous process. 

But what does “suddenly stops” mean here? According to Newton’s Second Law, the abrupt 

cessation of non-zero motion of non-zero mass requires an infinitely strong and infinitely 

narrow pulse of force − i.e., a Dirac pulse − which is unphysical although commonly employed 
in simplified calculations in electrical engineering  in order to estimate the behaviour of circuits. 

However, such simplified engineering-type estimations are insufficient to address fundamental 
questions in physics.  

A deeper investigation of the physics related to Euler’s disc shows that it never really stops. 
Its centre-of-mass and all of its molecules will continue to oscillate randomly to satisfy 
Boltzmann’s Equipartition Theorem, which states that there is kT/2 mean energy per thermal 

degree of motion, where k is Boltzmann’s constant and T is absolute temperature. Thus thermal 
noise guarantees that continuity prevails even when a simplified model may predict 

a discontinuity. 
Another bone of contention regards the fact that GAA’s paper, discussed by us above, 

purportedly highlights discontinuities in a probability function. As an example, it was argued 

that a stochastic physical system subjected to some limiter or threshold would have a truncated 
distribution (i.e., a discontinuity), and therefore GAA’s paper would be perfectly valid.  

But this assertion is flawed. Probability functions are always continuous in any physical 
system, and this includes not only classical physics but also quantum physics. Freshman 

quantum physics of quantum tunnelling serves as a good example: This treatment uses the fact 
that wave functions and their squared absolute values, which are the probability density of the 
particle under consideration, are always continuous whenever the height of the potential barrier 

is finite, i.e., for any physical system. The underpinning reason for this can be found 
in Schrödinger’s Equation. There are certainly discontinuous energy solutions in solid-state 

quantum systems, but they represent different states and continuity persists within any single 
state. The only discontinuities of probability in quantum physics happen during quantum 
measurements.  

Finally, a reviewer claimed that “a stochastic physical system that is subjected to some 
limiter or threshold will have a truncated distribution”. But this is obviously unphysical, and no 

physical limiter or threshold can be mathematically abrupt. There is always a continuous 
transition at the level of the limitation, which is evident since an abrupt limit would require not 

only infinite power but also infinitely fast response − and both requirements are unphysical. 

The analogy to Euler’s disc is evident.  
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