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Abstract: The paper presents the operation of two neuro-fuzzy systems of an adaptive
type, intended for solving problems of the approximation of multi-variable functions in the
domain of real numbers. Neuro-fuzzy systems being a combination of the methodology of
artificial neural networks and fuzzy sets operate on the basis of a set of fuzzy rules “if-then”,
generated by means of the self-organization of data grouping and the estimation of relations
between fuzzy experiment results.

The article includes a description of neuro-fuzzy systems by Takaga-Sugeno-Kang
(TSK) and Wang-Mendel (WM), and in order to complement the problem in question, a
hierarchical structural self-organizing method of teaching a fuzzy network. A multi-layer
structure of the systems is a structure analogous to the structure of “classic” neural ne-
tworks. In its final part the article presents selected areas of application of neuro-fuzzy
systems in the field of geodesy and surveying engineering. Numerical examples showing
how the systems work concerned: the approximation of functions of several variables to be
used as algorithms in the Geographic Information Systems (the approximation of a terrain
model), the transformation of coordinates, and the prediction of a time series. The accuracy
characteristics of the results obtained have been taken into consideration.
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1. Introduction

Neural networks and neuro-fuzzy systems have been included in the arsenal of strong
adaptation procedures because of the possibility of applying them in specialized forms
of approximation of functions (classification, auto-association, prediction of time se-
ries). Both types of networks have one common feature, which is parallel information
processing. Neuro-fuzzy systems are neural networks characterised by the processing
of fuzzy sets. An advantage of neuro-fuzzy networks is the possibility of interpreting
knowledge contained in the weights of neural connections. “Classic” neural networks
perform processing a numerical operation but they lack the so called explaining mo-
dule, because knowledge represented by values of weights is dispersed and does not
have a physical representation in a form understandable to the user (Łęski, 2008). The
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construction of the neuro-fuzzy systems under discussion makes use of the method
of extraction of inference rules on the basis of numerical data about the inputs and
outputs of the phenomenon being modelled. The paper also includes a description of
the structure of systems and algorithms of linear weights as well as parameters of fuzzy
functions of the fuzzificator. The approximation process ends when a state of balance
is achieved in a fuzzy network as a result of the minimization of the error function
(the objective function), defined in general by means of the Euclidean norm (Osowski,
2006) as

E = 1
2

p∑
l=1

[y(x(l)) − d(l)]2 (1)

where: y(x) is the input signal of a neuro-fuzzy system, d is the value assigned corre-
sponding to the input vector x,p is the number of teaching data pairs (x, d).

2. Fuzzy logic system

The basic problem in the process of constructing a model is how to obtain the number
of inference rules “if-then” representing a certain local output-input dependence. It
is known from subject literature (Jang and Sun, 1993) that a number of methods of
extracting rules on the basis of measurement data results from a functional equivalence
between neural networks and certain types of fuzzy logic, which leads to the equiva-
lence of results. This idea is reflected in the construction of a neural network taught by
means of the gradient method, which realizes the Takaga-Sugeno-Kang system under
the name of ANFIS (Adaptive Neuro Fuzzy Inference System).

Fuzzy sets as a generalization of ordinary sets are characterized by a fuzzy mem-
bership of components in a particular set, i.e. each component can belong to a particular
set “in part”. The fuzzy set A in the space X can be characterised as a set of ordered
pairs (x, µA(x)), where the value of the membership function µA(x) ∈ [0, 1] expresses
the rate of membership of the component x in the fuzzy set A (Zadech, 1965). The
most frequently used functions are Gaussian membership functions, bell functions
and triangular and trapezoidal functions simple in shape. For example, the Gaussian
membership function used for a fuzzy representation of numbers is defined as (Duch
et al., 2000; Osowski, 2006)

µA(x) = exp
[
−

( x − c
σ

)2]
(2)

where the parameters c and σ denote the centre of the fuzzy set (for x = c, µA(x) = 1),
and the width of the fuzzy set (variance of the corresponding set A), respectively, and

+∞∫

−∞
µA(x)dx = σ

√
π (3)
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The basic fuzzy logic “if-then” rule called a fuzzy implication (function) in the
form “if x is A, then y is B” for the input variables x j ( j= 1, 2, . . . , N) and one output
y, can be written in a canonical form as follows (Markowska-Kaczmar, 2006):

if ∀
1≤ j≤N

x j is A j, then y is B (4)

With the use of the operator in the form of an algebraic product, the random
membership function νAx), where x = [x1, x2, ..., xN ]T , can be written as

νA(x) =

N∏

j=1

µA j (x j) (5)

A connection between input variables and a base of knowledge consisting of fuz-
zy rules leads to a fuzzy system in the form of a fuzzificator on the input and a
defuzzificator on the output. The fuzzificator transforms input data into a fuzzy set,
whereas the defuzzificator transforms the fuzzy set into a unique solution point. The
transformation of the N-dimensional vector x into the fuzzy set A is represented by the
membership function νA(x), and the process of choosing an optimum point from the
domain of a fuzzy membership function called defuzzification depends on the problem
in question. One of the popular defuzzification methods (a sharpening operation) is
the centre average method

y =

M∑
k=1

ckµ
(k)
A (x(k))

M∑
k=1

µ(k)
A (x(k))

(6)

where ck denotes the centre of the kth fuzzy rule, and µ(k)
A (x(k)) is the value of the

membership function of a fuzzy set corresponding to the kth rule.

3. Takaga-Sugeno-Kang and Wang-Mendel neuro-fuzzy systems

The knowledge base of the Takaga-Sugeno-Kang (TSK) system consists of a specified
number M of inference rules “if-then” with a linear function in the conclusion of the
kth rule, namely

M(k) = if ∀
1≤ j≤N

x j is A(k)
j , then y = fk(x) for k = 1, 2, . . . ,M (7)

Bearing in mind a fuzzy TSK system of the first rank the function fk(x) assumes
the form

fk(x) = pk0 +

N∑

j=1

pk jx j (8)
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of a first order polynomial, whose parameters pk0, ..., pkN are weights with values
characterizing the ratios of the linear function fk(x).

Applying a bell fuzzifying function (a rational function) in the relation

µA j (x j) =

1 +

(
x j − c j

σ j

)2b j

−1

(9)

and the aggregation of the predecessor in the form of an algebraic product for the kth

inference rule

ν(k)
A (x) =

N∏

j=1

1 +


x j − c(k)

j

σ(k)
j


2b(k)

j


−1

(10)

one obtains a numerical output value of the system

y (x) =

M∑
k=1

ν(k)
A (x) fk(x)

M∑
k=1

ν(k)
A (x)

(11)

The parameters c(k)
j , σ

(k)
j , b

(k)
j of the aggregated value ν(k)

A (x) undergo adaptation
in the process of teaching a TKS neuro-fuzzy network, whose architecture presented
in Figure 1 results from the description of the fuzzy system in question.

A simplified version of the Takaga-Sugeno-Kang (TSK) system is the Wang-Mendel
(WM) system, in which the linear functions f (x) have been restricted to the form of
a zero order polynomial. The WM system is a relatively simple method of obtaining
knowledge on the basis of numerical data, and the activation of the kth rule is carried
out analogously to the TKS system. A precisely determined output value of the system
is expressed by the formula

y (x) =

M∑
k=1

u(k)ν(k)
A (x)

M∑
k=1

ν(k)
A (x)

(12)

where u(k) = pk0 (the constant component – cf. formula (6)). A fuzzificator characte-
rised by the generalised Gaussian membership function has been used in this paper

µA j (x j) = exp

−
(
x j − c j

σ j

)2b j
 (13)

where the parameters of the fuzzification function c j, σ j, b j (centre, width and shape
(exponent)) are adjusted by means of the gradient method in the process of learning.
Both the TSK network and the WM network make it possible to solve of the problem of
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Fig. 1. The layout of a TSK neuro-fuzzy system

approximation in the form of the representation of the value assigned d corresponding
to the input vector x, on the basis of teaching data pairs (x, d).

4. Selected self-organisation algorithms in neuro-fuzzy systems

Self-organization included in localised areas consists in the decomposition of the data
vector x into subsets according to dominating features, which represent the centre c.
The analysis of homogenous features is known as the analysis of concentrations or
clusterisation. In general, the number of possible divisions of p input vectors into c
non-empty subsets is described by the formula (Feller, 1980; Łęski, 2008)

1
c !

c∑

k=1


c
k

 (−1)(c−k)kp (14)

For example, for p = 38 input vectors, the number of possible divisions into three
groups is 3.14 × 1021 (a practically unreal number of divisions).

From among a number of fuzzy methods of data grouping (partial membership),
methods frequently used are those effected on the basis of the minimization of a
criterion function, namely:
– grouping method c–means,
– grouping method of Gustafson – Kessel.

In order to carry out an initial analysis of centres the method of differential gro-
uping is used, effected on the assumption that each N–dimensional input vector x is
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accompanied by an assigned value d. Therefore, when we deal with a teaching data
set in the form of pairs (X, d), where X is the matrix consisting of rows equivalent
to consecutive vectors xk (k = 1, 2, . . . , p) and d is the vector of the respective dk ,
centres of teaching data set are obtained by extending the matrices X to the form

Y ← [X, d] (15)

It results from the above that the dimension of the centre being determined will be
equal to the sum of the dimensions of the matrix X and vector d. Denoting as p the
matrices X (the number of components N × p) and as q the vectors d one obtains
centres corresponding to both the input variables and the output variables, written as

c = [ p, q] (16)

For the denotations assumed, the aggregation of the output result of the Wang-Mendel
fuzzy network will be expressed by the formula

y(X) =

M∑
i=1

qiexp
(
− ||X−pi ||2bi

σ
2bi
i

)

M∑
i=1

exp
(
− ||X−pi ||2bi

σ
2bi
i

) . (17)

The geometrical shape of clusters grouped by means of the c-means method is
characterised by circular symmetry for the vector x ∈ R2 (for x ∈ RN the reception area
has a spherical shape). It is suggested that the condition

∀
1≤ j≤N

M∑

k=1

µk j = 1 (18)

should be met for the sum of membership of the vector x j in all the clusters represented
by centres ck .

The solution of the task consists in minimising the non-linear function

E =

M∑

k=1

p∑

j=1

µm
k j ||ck − x j ||2 (19)

where p denotes the number of input vectors, and the weight ratio is m ∈ [1, +∞].
The problem in question leads to a search for an optimum point of the Lagrange

function (Jang et al., 1997)

L(µ, c, λ) =

M∑

k=1

N∑

j=1

µm
k j ||ck − x j ||2 +

p∑

j=1

λ j(
M∑

k=1

µk j − 1) (20)

which is represented by



Approximation abilities of neuro-fuzzy networks 19

ck =

p∑
j=1
µm

k jx j

p∑
j=1
µm

k j

(21)

and

µk j =
1

M∑
i=1

(
dk j

di j

) 2
m−1

(22)

where dk j = ||ck − x j || (Osowski, 2006). The iterative process of searching for an
optimum point should be preceded by an preliminary initialisation of centres by means
of one of the abovementioned methods.

An improvement in the quality of grouping in comparison with the c-means method
can be achieved by means of the Gustafson-Kessel algorithm (Gustafson and Kessel,
1976). The clusterisation of data is effected on the basis of the minimization of the
criterion function

E =

M∑

k=1

p∑

j=1

µm
k jd

2
(
x j, ck

)
(23)

by means of the iterative method. The symbols included in formula (21) denote: pa-
rameter m ∈ [1, +∞], d2(x j, ck) = (x j − ck)TG(x j − ck) is the square of the distance
between the vector x j and the centre ck , G is the transformation matrix (positively
definite). The ratio of the membership of the vectors x j ( j = 1, 2, . . . , p) in the centres
ck (k = 1, 2, . . . , M) is defined by the formula

µk j =
1

M∑
i=1

[
d2(x j ,ck)
d2(x j ,ci)

] 2
m−1

(24)

and the position of the centres is determined on the basis of formula (19). For each
centre a fuzzy covariance matrix

Sk =

p∑
j=1
µm

k j(x j − ck)(x j − ck)T

p∑
j=1
µm

k j

(25)

is generated, which is used in the iterative process for specifying the transformation
matrix

Ak =
N
√

det(Sk)S− 1
k (26)



20 Maria Mrówczyńska

where N is the dimension of the input vector. For G = I clusters will have a circular
symmetry, and for a random positively definite matrix G, clusters in Euklidean space
have an elliptical shape, and in general hyper ellipsoids are preferred, which give
optimum shapes to the grouping results.

5. Algorithm for determinig an optimum number of inference rules

An important component in the construction of fuzzy systems is the determination of
the number of inference rules, whose activity corresponds to a group of data contained
in the cluster. Criteria for the quality of input data grouping, which can be used for
restricting the number of clusters (the elimination of empty clusters) are as follows
(Babuska and Verbruggen, 1997; Osowski, 2006):
• fuzzy volume of the cluster

Vh =

M∑

k=1

√
det(Sk) (27)

• average density of the partition

DA =
1
M

M∑

k=1

Uk√
det(Sk)

(28)

where Uk =
∑

j

uk jfor j satisfying the condition (x j − ck)TS− 1
k (x j − ck), i.e. the vectors

x j must belong to a hyper ellipsoid in the general sense of the word,
• average internal distance Dw between the data in the cluster and its centre ck

Dw =
1
M

M∑

k=1

p∑
j=1
µm

k jd
2
k j

p∑
j=1
µm

k j

(29)

• average flattening of the cluster

tA =
1
M

M∑

k=1

tk (30)

where tk is the ratio of the smallest eigenvalue of the covariance matrix Sk to its
greatest eigenvalue. Small values of the coefficients Vh and tA and great values of the
coefficients DA and Dw indicate a good quality of the division into clusters. These
conditions cannot be simultaneously satisfied. It is possible to obtain a sub-optimum
number of clusters on the basis of the value of the global static measure

α = a1Vh − a2DA − a3Dw + a4tA (31)
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where ai ∈ [0, 1] (i= 1, 2, 3, 4) are scalar coefficients, whose values have randomly
been chosen in this paper.

6. Numerical examples

The working quality of neuro-fuzzy systems in a particular branch of geodesy has
been illustrated by the examples below.

Example 1. The approximation of a non-linear function of several variables

In this case the problem consists in identifying a model of reality. The approxi-
mation has been carried out by the TSK system and the WM system. In order to show
the approximation abilities of both systems an approximation of a complex non-linear
function of two variables x = [x1, x2] having the form

f1(x) = 0.1 + (1.0 + sin(2x1 + 3x2))/(3.5 + sin(x1 − x2)) (32)

graphically illustrated in Figure 2.

Fig. 2. The form of function (32) being tested

The accuracy of the approximation for the test set with 1600 points carried out by
means of the TSK system and the WM system with a specified sub-optimum number
of 25 inference rules expressed in the form the root mean square error RMSE was: for
the TSK system equal to 0.0223, for the WM system equal to 0.0412.

Real data in the form of spatial coordinates (x1, x2, f (x)) of 483 points situated in
an area of 3 km2 were used for identifying the terrain model by means of the systems
under discussion. The efficiency of the approximation was evaluated on the basis of
the classification of testing errors in the form of a divergent multi-level series. The
classification of the absolute values of testing errors was carried out on the basis of
an optimum choice of the length of class ranges containing maximum information,
according to formula (Brillouin, 1969; Feller, 1980)
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s =

[
t + ln

tT
s (s − 1)

]
(33)

where T is the range of the feature under research, t is the length of the class range, s
is the value of the error classified. The solution of this equation is the number k ≈ t/s,
whose value expresses an optimum numerical relation between the length of the class
range and the value of the variable classified. Results of the representation of the terrain
model have been illustrated in Figure 3.

Evaluations of the quality of approximation by means of the abovementioned
procedures was carried out on the basis of RMSE, defined by the formula

RMSE =

√√√ p∑

j=1

[d j − f (x j)]2. (34)

Fig. 3. Result of the representation of a terrain model by means of the TSK system

The working quality of the TSK and WM systems in the case of the problem of
approximating a terrain model expressed in the form of a mean square error has been
presented in Table 1.

Table 1. Errors of TSK and WM neuro-fuzzy approximations

The fuzzy systems
The approximation errors RMSE [m]

The learninig set
RMSE(L)

The testing set
RMSE(T )

Takagi – Sugeno – Kanga fuzzy system 0.11 0.19

Wang – Mendel fuzzy system 0.12 0.21

It results from the above data concerning the approximation under way that the
evaluated accuracy of the task carried out by means of both systems is almost identical.
The evaluation method of the accuracy of the approximation by means of the RMSE
is most often mentioned in literature and preferred in practice.
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Example 2. The transformation of coordinates

Transformation understood as re-calculating coordinates from the primary system
onto the secondary system in the case of a two dimensional task consists in the re-
alization of the function f : R2 → R2 i.e. X = f 1(x, y), Y = f 2(x, y). The most
frequently used method in the numerical realization of this problem is the Helmert
transformation (imperfection of the method – lack of immunity to gross errors). The
numerical experiment of the transformation of coordinates from a local system onto
the system “2000” that is an official spatial reference system in Poland, was carried
out on a teaching set (adaptation points) consisting of 5 points and on a testing set of
25 points (Fig. 4)

Fig. 4. Position of points of the learing set and the testing set

Calculations were carried out in two stages. The first stage consisted in specify-
ing good values of approximate transformation results by means of neural networks
including the Levenberg-Marquardt gradient optimisation method. At the second stage
input variables (results of the operations carried out at the first stage) were transfor-
med into values of output variables by means of the TSK system, which are the final
transformation results.

The evaluation of how the algorithm works is optimistic, because the value of
the RMSE turned out to be 0.0071, and when the professional software C-GEO was
used the RMSE was equal to 0.0069. Let us notice that neural networks are explicitly
non-linear, and the functions fk(x) (formula (6)) in the conclusion of the kth rule
“if-then” are most often linear functions. Therefore, it is possible to conclude that the
TSK system makes it possible to model complicated relations between the input and
output of a system. The problem was discussed more profoundly in the monthly journal
“Przegląd Geodezyjny” (Mrówczyńska, 2009).

Example 3. The prediction of a time series

A time series is a series of specified values, registered at fixed time intervals. The
problem of prediction consists in estimating future values of a time series on the basis
of future values of the components of the series. From information available about the
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variable x at past moments as the set {x(k − 1), x(k − 2), ..., x(k − p)}, a neuro-fuzzy
system determines the value y(k) at the moment k.

Research into the application of a neuro-fuzzy system for predicting a time series
was carried out on GPS-RTK data, representing changes in the module of the “zero”
vector between the base station and a “moving” receiver (Szpunar et al., 2003). The
number of changes in the module of the vector x(k) undergoing prediction was reduced
to k= 2500, from which the first 1250 were adopted as a teaching part of the data set.
The time series, the 6-step prediction carried out with a neuro-fuzzy system and the
prediction error have been presented in Figures 5, 6 and 7. A thick vertical line separates
the teaching part and the testing part, and errors for both parts are also presented.

Fig. 5. Time series

Fig. 6. 6-step prediction by means of a TSK neuro-fuzzy system

The values of prediction estimated are presented as a function called the predicator
of series p. The predicator which results from the application of a neuro-fuzzy system
is a non-linear predicator.

Apart from the abovementioned examples of the application of neuro-fuzzy systems
in the field of geodesy, the author has also attempted to use the systems for assessing the
state of deformation of an object resulting from use, and she has applied the adaptation
algorithm functioning in the Wang-Mendel neuro-fuzzy system for the approximation
of a single variable function expressed by the equation
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Fig. 7. Prediction error (RMSE = 0.0000525)

Fig. 8. GPS signal smoothing by means of the Henderson moving average

Fig. 9. Smoothing of the predicted GPS signal by means of the Henderson moving average
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f3(x) = 0.1 sin(0.2πx) + 0.2 sin(0.3πx) + 0.4 sin(0.1πx) + 0.9 sin(1.9πx) + 1.9 sin(5.1πx) (35)

Neuro-fuzzy systems can also be used to obtain less distorted information from a
signal registered with interference noise and disturbances.

7. Conclusions

Fuzzy systems have exceptional approximation abilities for extremely complex
non-linear functions of several variables, which is indicated by the results of the tests
carried out in this research. Basic attributes of the systems presented in this paper are
the assumptions adopted for the Gaussian type of membership function and the method
of choosing the number of inference rules. The structure of neuro-fuzzy systems created
by a set of fuzzy rules makes it possible to deduce a cause and effect relation between
the input and the output of fuzzy systems, which is impossible to obtain by means
of ”classic” neural networks. The numerical experiments carried out by the author
indicate that a high quality of approximation by means of the TSK and Wang-Mendel
systems mostly depends on the sub-optimum number of inference rules determined on
the basis of an analysis of the value of the global statistical measure.

The numerical procedures presented in the article resulted from implementation
carried out by the author herself, with the exception of the procedure concerning the
prediction of a time series, available in the software Fuzzy Logic in the MATLAB
environment.
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Zdolności aproksymacyjne systemów neuronowo rozmytych

Maria Mrówczyńska

Wydział Inżynierii Lądowej i Środowiska
Instytut Budownictwa

Uniwersytet Zielonogórski
ul. Szafrana 1, 65-516 Zielona Góra

e-mail: m.mrowczynska@ib.uz.zgora.pl

Streszczenie

W pracy przedstawiono działanie dwóch systemów neuronowo rozmytych typu adaptacyjnego, przeznaczo-
nych do rozwiązywania zagadnienia aproksymacji funkcji wielu zmiennych w dziedzinie liczb rzeczywi-
stych. Systemy neuronowo rozmyte jako połączenie metodologii sztucznych sieci neuronowych i zbiorów
rozmytych funkcjonują na podstawie zbioru reguł rozmytych „jeżeli-to”, generowanych z zastosowaniem
samoorganizacji grupowania danych oraz estymacji relacji rozmytych wyników eksperymentu.

Artykuł zawiera opis systemów neuronowo rozmytych Takagi-Sugeno-Kanga (TSK), Wanga-Mendela
(WM) oraz celem uzupełnienia rozpatrywanego zagadnienia hierarchiczną strukturalną samoorganizującą
się metodę uczenia sieci rozmytej. Struktura wielowarstwowa systemów stanowi strukturę analogiczną do
struktury „klasycznych” sieci neuronowych. W końcowej części artykułu zostały zaprezentowane wybrane
obszary aplikacji systemów neuronowo rozmytych w dziedzinie geodezji. Przykłady numeryczne działania
systemów dotyczyły: aproksymacji funkcji wielu zmiennych w aspekcie ich wykorzystania jako algoryt-
mów uzupełniających w Systemach Informacji Przestrzennej (aproksymacja rzeźby terenu), transformacji
współrzędnych oraz predykcji szeregu czasowego. Uwzględniono charakterystykę dokładności uzyskanych
wyników.




