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Abstract. Digital map data sets (or geo-databases) are an important part of the spatial data infrastructure (SDI) of the European Community. 
Different methods of producing large-scale map data are described in the paper, and the aim is to compare the accuracy of these methods. Our 
analysis is based on statistical tools belonging to the multiple comparisons theory. The first method is the well-known analysis of variance 
(ANOVA), and the second one is the rank-based method. The latter approach, which is rarely used in geodetic research, allows us to determine 
the order of the considered methods with respect to the positional accuracy of digital map data that they produce. Using this approach, one can 
identify the least accurate set of map data or a fragment of a map that should be updated by a new direct survey. The rank-based methods can 
also be rather easily applied to other technical (engineering) disciplines, e.g. geodesy and cartography.
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detic registries of utilities (GESUT database). These data bases 
were obtained in recent decades using different methods of data 
acquisition.

The INSPIRE directive [1] requires the Commission to 
establish a geoportal, and the member states of the European 
Union shall provide access for this geoportal to their infra-
structures, as well as to any access points they themselves de-
cide to operate. A release of the INSPIRE geoportal has been 
published for enhancing access to European spatial data [9]. 
It enables searching through spatial data sets and spatial data 
services from the EU member states within the framework of 
the INSPIRE directive.

Furthermore, the European location framework (ELF) 
BaseMap project [10] provides platforms for accessing 
INSPIRE-based reference data [11]. This project comprises the 
datasets provided by national mapping and cadastral authorities 
(NMCAs) and (in the future) by other data providers [12]. The 
pilot-phase ELF BaseMap service began in spring 2015 for the 
Nordic cluster and the Netherlands. Meanwhile, more coun-
tries (Denmark, Poland, Czech Republic, and Belgium) have 
started producing national ELF BaseMap contributions. The 
recommended production process seems to be feasible, but the 
map concept needs further revision. In addition, the INSPIRE 
data models are generally too complex, and not adapted for 
mapping purposes: overlaps between INSPIRE themes, po-
tential presence of deprecated features, and sometimes attri-
butes of properties are not directly attached to geometry [13]. 
According to the ELF BaseMap project, the datasets prepared 
by the NMCAs have to be compatible with INSPIRE data spec-
ifications [14].

An interesting programme was realized in Great Britain 
by Ordnance Survey (OS). OS defined the “absolute posi-
tional accuracy” as a comparison between the coordinates of 
a point on the map and the coordinates of the same point on 
the ground (in the British National Grid Reference System). In 

1.	 Introduction

Different methods of producing digital map data are described 
in the paper. Large-scale digital map data, especially of urban-
ized territory (e.g. data sets acquired for producing cadastral 
maps and base maps), are an important part of the spatial data 
infrastructure (SDI) of the European Community (so-called 
INSPIRE data) [1]. The national geodetic and cartographic 
resources in Poland were obtained in recent decades using 
different coordinate systems and methods of data acquisition 
[2–4]. All data are currently integrated and harmonized in the 
national spatial reference system [5]. The key aspect to inte-
grating geographic data and their interoperability in the spatial 
data infrastructure is the accuracy of digital databases [6]. The 
aim of the paper is to compare distinct methods of producing 
digital map data and to rank them from the most accurate to 
the least. Obviously, knowing the least accurate fragment of 
a map, one can update it by performing a new direct survey. 
The updated and accurate map data should be used for land-use 
planning in realization of investments, as well as for the risk 
assessment of decision-making about the localization of objects 
(e.g. [7]).

It is well-known that a quality digital data description in-
cludes: genealogy, completeness, logical consistency, and also 
thematic, temporal, and positional accuracy [8]. The positional 
accuracy of data is crucial in the modern economy, in partic-
ular to support decision-making processes for planning and 
realization of investments supported by large-scale base maps. 
The base maps are created as standard cartographic products in 
1:500–1:5000 scales, and are developed from data sets and data 
bases of reference data, e.g.: topographic objects (BDOT500 
database), land and buildings registries (EGiB database), geo-
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years 2001– 2006, the positional accuracy improvement (PAI) 
programme was realized, checking and improving the absolute 
positional accuracy of all maps covering rural areas of Great 
Britain [15]. The result of the PAI Programme was: the root 
mean square error (RMSE) of the absolute positional accuracy 
of ±0.4 m for the re-survey of rural towns, and the RMSE of 
the overall absolute positional accuracy of ±1.1 m for all other 
1:2500 scale rural areas.

The positional accuracy of different methods of producing 
digital map data plays a key role in the current paper. The statis-
tical analysis basing on multiple comparisons (multiple hypoth-
esis testing) is used to compare the quality of these methods. 
The proposed approach can be rather easily applied to other 
branches of geodesy and cartography.

Large-scale maps are exploitable in many economic issues, 
for example in detailed localization of objects for land-use plan-
ning. Computer technology development enables converting 
them to digital maps. To produce large-scale digital map data, 
one has to plan a geodetic control network and a survey of field 
data (with total station, RTK/RTN GNSS, or smart station) or 
acquire data using other methods (digitalization or scanning of 
analogue maps). There are many methods of producing large-
scale map data [16]. They are briefly presented on Fig. 1.

In the paper four methods of producing digital map data that 
are used to create large-scale maps are considered:

●	 Method 1: a digital map in 1:500 scale was produced 
on the basis of direct survey performed in “Kortowo” 
campus using a total station,

●	 Method 2: a digital map was produced using existing 
results of surveys that were performed using the orthog-
onal measurements method and, in recent years, the polar 
method using a total station (in relation to the restorable 
third-order network). The data was obtained from the 
Municipal Surveying Documentation Centre (MSDC) of 
Zielona Góra,

●	 Method 3: a digital orthophoto map of Olsztyn was pro-
duced basing on 1:5000 aerial photographs. Aerial pho-
tographs were processed to a digital form using a matrix 
scanner with the resolution of 1000 dpi. This source data 
was provided to photogrammetric products with ground 
sample distance (GSD) 10–15 cm. Then, the digital or-
thophoto map was developed in scale of 1:2000.

The data was obtained from the MSDC of Olsztyn,
●	 Method 4: a digital map was produced using a graphi-

cal-and-digital processing method (by vectorization) of 
analogue base maps at a scale of 1:500 with layers of 
utilities at scales of 1:500 and 1:1000. Layers of vector 
digital maps were obtained from the MSDC of Olsztyn.

For every considered method, there is a sample containing 
its errors. Namely, for every procedure, control points within 
investigated areas were randomly selected. Then, the coordi-
nates (X, Y) of every control point were determined by means 
of new field surveys that were performed with a total station. 
Besides, the coordinates (X', Y' ) of every control point were 
also collected using database reports for methods 1, 2, and 4. 
For the third method, they were obtained by manual vectori-
sation of the raster image of the orthophoto map. The error of 
a given control point is the Euclidean distance between (X, Y) 
and (X', Y' ):
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An interesting programme was realized in Great 
Britain by Ordnance Survey (OS). OS defined the 
“absolute positional accuracy” as a comparison between  
the coordinates of a point on the map and the coordinates 
of the same point on the ground (in the British National 
Grid Reference System). In years 2001-2006 the 
Positional Accuracy Improvement (PAI) Programme was 
realized and one checked and improved the absolute 
positional accuracy of all maps covering rural areas of 
Great Britain [16]. The result of the PAI Programme was: 
the root mean square error (RMSE) of the absolute 
positional accuracy of ±0.4 m for the re-survey of rural 
towns, and the RMSE of the overall absolute positional 
accuracy of ±1.1 m for all other 1:2500 scale rural areas.  

The positional accuracy of different methods of 
producing digital map data plays a key role in the current 
paper. The statistical analysis basing on multiple 
comparisons (multiple hypothesis testing) is used to 
compare the quality of these methods. The proposed 
approach can be rather easily applied to other branches of 
geodesy and cartography. 

Large-scale maps are exploitable in many economic 
issues, for example in detailed localization of objects for 
land-use planning. Computer technology development 
enables converting them to digital maps. To produce 
large-scale digital map data one has to plan a geodetic 
control network and survey of field data (with total 
station, RTK/RTN GNSS or smart station) or acquire data 
using other methods (digitalization or scanning of 
analogue maps). There are many methods of producing 
large-scale map data [9]. They are briefly presented on 
Fig. 1. 

The positional accuracy of a digital map data is 
investigated by many researchers [18, 19] on the basis of 
the statistical analysis [20-23] as well as other methods 
[24-28]. They usually concern medium and small-scale 
maps. However, in Poland there exist also large-scale 
maps for the entire country in the form of base maps that 
can be investigated as well.  

In the paper one considers four methods of producing 
digital map data that are used to create large-scale maps: 

- method 1: a digital map in the scale 1:500 was 
produced on the basis of direct survey performed in 
student's campus “Kortowo” using a total station, 

- method 2: a digital map was produced using existing 
results of surveys that were performed using the 
orthogonal measurements method and, in recent years, the 
polar method using a total station (in relation to the 
restorable third order network). Data was obtained from 
the Municipal Surveying Documentation Centre (MSDC) 
of Zielona Góra, 

- method 3: a digital orthophotomap of Olsztyn was 
produced basing on 1:5000 aerial photographs. Aerial 
photographs were processed to the digital form using a 
matrix scanner with the resolution of 1000 dpi. This 
source data was provided to photogrammetric products 

with ground sample distance (GSD) 10 – 15 cm. Then the 
digital orthophotomap was developed at the scale 1:2000. 
Data was obtained from the MSDC of Olsztyn, 

- method 4: a digital map was produced using a 
graphical-and-digital processing method (by 
vectorization) of  analogue base maps at a scale of 1:500 
with layers of utilities at scales of 1:500 and 1:1000. 
Layers of vector digital maps were obtained from the 
MSDC of Olsztyn.  

Fig. 1. Methods of the situational data acquisition for large-scale maps 
[28]. 

For every considered method there is a sample 
containing its errors. Namely, for every procedure one 
randomly selected control points within investigated 
areas. Then the coordinates (X,Y) of every control point 
were determined by means of new field surveys that were 
performed with a total station. Besides, the coordinates 
(X',Y') of every control point were also collected using 
database reports for methods 1, 2 and 4. For the third 
method they were obtained by manual vectorisation of the 
raster image of the orthophotomap. The error of a given 
control point is the Euclidean distance between (X,Y) and 
(X’,Y’):  
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For the first method there were 4841 =n  control 
points covering the area of approximately 200 ha and for 
the second one 16362 =n  control points covering the area 
of 330 ha (out of 5800 ha of the total area of the city) 
were considered. Besides, 3113 =n  errors from the area 
of 115 ha were calculated for the third procedure and 

22874 =n  errors for the last one covering the area of 355 
ha (out of 8800 ha of the total area of the city). 

.� (1)

For the first method, there were n1 = 484 control points 
covering the area of approximately 200 ha, and for the second 
one, n2 = 1636 control points covering the area of 330 ha 
(out of 5800 ha of the total area of the city) were considered. 
Besides, n3 = 311 errors from the area of 115 ha were calcu-
lated for the third procedure, and n4 = 2287 errors for the last 
one, for an area of 355 ha (out of 8800 ha of the total area of 
the city).

As it has been already mentioned, comparing the accuracy 
of digital map data is challenging, but nevertheless, that is 
the aim of the current paper. The standard statistical analysis 
of these four data sets containing errors of the methods did 
not bring the expected results [28]. The main reason was that 
the considered data sets contain outliers and are not normally 
distributed, which is quite typical while working with real 
data sets, such as geodetic surveys. Thus, the argumentation 

Fig. 1. Methods of situational data acquisition for large-scale maps [27]
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An interesting programme was realized in Great 
Britain by Ordnance Survey (OS). OS defined the 
“absolute positional accuracy” as a comparison between  
the coordinates of a point on the map and the coordinates 
of the same point on the ground (in the British National 
Grid Reference System). In years 2001-2006 the 
Positional Accuracy Improvement (PAI) Programme was 
realized and one checked and improved the absolute 
positional accuracy of all maps covering rural areas of 
Great Britain [16]. The result of the PAI Programme was: 
the root mean square error (RMSE) of the absolute 
positional accuracy of ±0.4 m for the re-survey of rural 
towns, and the RMSE of the overall absolute positional 
accuracy of ±1.1 m for all other 1:2500 scale rural areas.  

The positional accuracy of different methods of 
producing digital map data plays a key role in the current 
paper. The statistical analysis basing on multiple 
comparisons (multiple hypothesis testing) is used to 
compare the quality of these methods. The proposed 
approach can be rather easily applied to other branches of 
geodesy and cartography. 

Large-scale maps are exploitable in many economic 
issues, for example in detailed localization of objects for 
land-use planning. Computer technology development 
enables converting them to digital maps. To produce 
large-scale digital map data one has to plan a geodetic 
control network and survey of field data (with total 
station, RTK/RTN GNSS or smart station) or acquire data 
using other methods (digitalization or scanning of 
analogue maps). There are many methods of producing 
large-scale map data [9]. They are briefly presented on 
Fig. 1. 

The positional accuracy of a digital map data is 
investigated by many researchers [18, 19] on the basis of 
the statistical analysis [20-23] as well as other methods 
[24-28]. They usually concern medium and small-scale 
maps. However, in Poland there exist also large-scale 
maps for the entire country in the form of base maps that 
can be investigated as well.  

In the paper one considers four methods of producing 
digital map data that are used to create large-scale maps: 

- method 1: a digital map in the scale 1:500 was 
produced on the basis of direct survey performed in 
student's campus “Kortowo” using a total station, 

- method 2: a digital map was produced using existing 
results of surveys that were performed using the 
orthogonal measurements method and, in recent years, the 
polar method using a total station (in relation to the 
restorable third order network). Data was obtained from 
the Municipal Surveying Documentation Centre (MSDC) 
of Zielona Góra, 

- method 3: a digital orthophotomap of Olsztyn was 
produced basing on 1:5000 aerial photographs. Aerial 
photographs were processed to the digital form using a 
matrix scanner with the resolution of 1000 dpi. This 
source data was provided to photogrammetric products 

with ground sample distance (GSD) 10 – 15 cm. Then the 
digital orthophotomap was developed at the scale 1:2000. 
Data was obtained from the MSDC of Olsztyn, 

- method 4: a digital map was produced using a 
graphical-and-digital processing method (by 
vectorization) of  analogue base maps at a scale of 1:500 
with layers of utilities at scales of 1:500 and 1:1000. 
Layers of vector digital maps were obtained from the 
MSDC of Olsztyn.  

Fig. 1. Methods of the situational data acquisition for large-scale maps 
[28]. 

For every considered method there is a sample 
containing its errors. Namely, for every procedure one 
randomly selected control points within investigated 
areas. Then the coordinates (X,Y) of every control point 
were determined by means of new field surveys that were 
performed with a total station. Besides, the coordinates 
(X',Y') of every control point were also collected using 
database reports for methods 1, 2 and 4. For the third 
method they were obtained by manual vectorisation of the 
raster image of the orthophotomap. The error of a given 
control point is the Euclidean distance between (X,Y) and 
(X’,Y’):  
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For the first method there were 4841 =n  control 
points covering the area of approximately 200 ha and for 
the second one 16362 =n  control points covering the area 
of 330 ha (out of 5800 ha of the total area of the city) 
were considered. Besides, 3113 =n  errors from the area 
of 115 ha were calculated for the third procedure and 

22874 =n  errors for the last one covering the area of 355 
ha (out of 8800 ha of the total area of the city). 

The positional accuracy of digital map data is investigated 
by many researchers [16–18] on the basis of statistical analysis 
[19–22], as well as other methods [23–27]. They usually con-
cern medium- and small-scale maps. However, in Poland there 
also exist large-scale maps of the entire country in the form of 
base maps that can be investigated as well.
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used in the current paper is based on rank methods [29] that 
are known in geodetic research, e.g. [30]. These methods are 
based on replacing each element of the sample by its rank, i.e. 
the number of this element in the sorted sample from least to 
greatest. Obviously, doing that, some information on the ob-
served phenomena is lost, but this approach makes the further 
reasoning free of inconvenient assumptions and more robust. 
Preliminary (and encouraging) results are contained in [31]. 
Using rank methods, confidence intervals were constructed 
and hypothesis tests concerning the errors of the methods were 
performed. But the weakness of these results is that they are 
“individual”. They do not take into consideration the fact that 
one compares four methods simultaneously, which needs more 
involved argumentation. In this paper, multiple comparisons 
are used to investigate the accuracy of the considered methods. 
They are briefly introduced in the next section. In [32] or [33], 
one can find more comprehensive description of this problem. 
In Section 3, the analysis of variance (ANOVA) is applied. This 
method is probably the most popular, if one chooses to com-
pare several methods. However, this approach can be applied 
only if some “regularity conditions” for the considered methods 
(via data sets containing errors of these methods) are satisfied. 
Unfortunately, for the considered data sets these assumptions 
are violated, and that makes the inference based on ANOVA 
deceptive. To overcome this difficulty, methods based on ranks 
are applied in Section 4.

The main contribution of the current paper to geodetic re-
search is the application of rank methods to multiple compar-
isons and demonstrating the supremacy of this approach over 
the widely-used ANOVA. Indeed, using rank methods, one can 
unambiguously determine the ordering between the accuracy of 
considered methods. It means that one can easily indicate the 
method producing the digital map with the highest accuracy, as 
well as the second one in this ranking, and so on. In the paper 
the positional accuracy of large-scale digital map data is com-
pared, but problems that are met, advantages and shortcomings 
of the described statistical methods are often found in other 
engineering sciences.

Finally, all calculations contained in the paper are obtained 
using “R” software [34].

2.	 Multiple comparisons

If the aim is to compare two methods (their means, medians 
etc.), then one can use the parametric Student’s t-test or the 
non-parametric Wilcoxon’s rank sum test to find out whether 
there is a significant difference between methods, and which one 
is “better”. In case of several, say K, competitive approaches, 
one can apply analogs of the aforementioned tests (the F-test 
or the Kruskal-Wallis test), but these tests only tell us whether 
all procedures give the same results. If this hypothesis should 
be rejected, they are not able to indicate which one is better or 
worse than others. To do it, the methods can be compared in 
pairs, but the first one should define the significance level of this 
multiple comparison, i.e. K(K-1)/2 tests. The experiment-wise 
significant level is the probability of making one or more type 1 

errors (false discoveries, rejecting a true null hypothesis) among 
all the hypotheses while performing multiple hypothesis tests. 
Therefore, K(K-1)/2 individual Studen’s or Wilcoxon’s tests on 
the standard significance level (say α = 0.05) cannot be used, 
because the experiment-wise significant level would increase, 
and too many true null hypotheses would be rejected. Methods 
of solving this problem have been developed since the fifties 
of the twentieth century [32, 33]. The simplest approach is the 
Bonferroni correction that is based on the fact that to have the 
experiment-wise significant level α, it is enough to perform 
every individual test on the significance level α/M, where M is 
the number of performed tests. The weakness of this procedure 
is its “conservativeness” which means that it rarely rejects null 
hypotheses. In the literature, there are many improvements of 
this procedure, for instance the Tukey’s honest significant dif-
ference (HSD) test [35], the Scheffé’s test [36], or the Holm’s 
procedure [37]. The first two methods relate to ANOVA and the 
former of the two is applied in the next section. In Section 4, 
the approach based on rank methods is introduced. It signifi-
cantly improves statistical inference, especially if one works 
with survey data sets that often contain outliers and violate the 
assumptions of ANOVA.

3.	 Analysis of variance (ANOVA)

The task is to compare four data sets containing errors of 
methods that were used to produce digital maps.

Table 1 Descriptive statistics 

m [m] med [m] sd [m] iqr [m]

method 1 0.06 0.04 0.08 0.04

method 2 0.20 0.12 0.54 0.14

method 3 0.18 0.16 0.11 0.15

method 4 0.34 0.28 0.27 0.27

In the preliminary phase of this analysis, elementary descrip-
tive statistics are calculated. They are contained in Table 1, 
where: m denotes the mean, similarly med – median, sd – stan-
dard deviation, iqr – interquartile range. Histograms and box-
plots of errors are also presented in Fig. 2 and Fig. 3, respec-
tively.

This rough analysis suggests that there are differences in 
the accuracy of the considered methods: the first one seems to 
be the best one, while the last one gives relatively poor results. 
Besides, one can notice that distributions of errors are positively 
skew, not distributed normally, and that samples probably con-
tain outliers (especially the second and the fourth one). These 
facts influence the further analysis, which is based on multiple 
comparisons.

The analysis of variance (ANOVA) is very popular and fa-
cilitative in solving problems similar to the considered ones. 
The number of elements in the sample is denoted by n1, n2, and 
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n3 correspondingly, and n = n1 + n2 + n3 + n4 is the overall 
number of elements (in our case n = 4718). The following 
model is considered

	 Zij = μ + μj + εij,   i = 1, …, nj,   j = 1, 2, 3, 4, � (2)

where Zij is the i-th element of the sample related to the j-th 
method. Besides, µ is the (unknown) overall mean, μj is the 
(also unknown) effect of the j-th method and Σ4

j=1μj = 0. The 
last equation makes the values μ, μ1, μ2, μ3, μ4 uniquely deter-
mined. Notice that in (1), the error Zij is decomposed into two 
parts: the first one (μ + μj) is a nonrandom, “systematic” error 
that describes the accuracy of j-th method, while the second 
component εij is a random error. This additive model is natural, 
and seems to reflect the real problems quite well.

The main assumption in ANOVA is that random errors εij are 
independent random variables having the normal distribution 
N (0, σ2) In particular, it means that errors εij have the same 
variance σ2, regardless of the sample they come from.

The accuracy of methods is compared by testing hypotheses 
concerning their μj effects. But first one needs a few equations:
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Therefore, jz  is the empirical mean of errors in the j-th 
sample, while z  is the overall empirical mean. Besides, 
SSB is the sum of squares between methods and SSW is 
the sum of squares within methods. They both (after 
norming) estimate the variance .2σ  The first step in 
ANOVA is checking, if there is any difference between 
considered methods (their effects jµ 's). Thus, the well-
known F-test is performed:  

43210 : µµµµ ===H ,  
.':1 differentaresoftwoleastatH jµ   

This elementary test is based on comparing values of 
SSB/3 and SSW/(n-4). Denominators 3 and (n-4) are 
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This sketchy analysis suggests that there are 
differences in the accuracy of considered methods: the 
first one seems to be the best one, while the last one gives 
relatively poor results. Besides, one can notice that 

distributions of errors are positively skew, not normally 
distributed and samples probably contain outliers 
(especially the second and the fourth one). These facts 
influence on the further analysis that is based on multiple 
comparisons. 

The analysis of variance (ANOVA)  is very popular 
and facilitative in solving similar to the considered 
problems. The number of elements in the sample is 
denoted by ,,,, 4321 nnnn  correspondingly, and 

4321 nnnnn +++=  is an overall number of elements (in 
our case 4718=n ). The following model is considered 
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natural and seems to reflect the real problems quite well. 

The main assumption in ANOVA is that random 
errors ijε  are independent random variables having the 

normal distribution ).,0( 2σN  In particular, it means that 

errors ijε  have the same variance 2σ , regardless of the 
sample they come from.  
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Therefore, jz  is the empirical mean of errors in the j-th 
sample, while z  is the overall empirical mean. Besides, 
SSB is the sum of squares between methods and SSW is 
the sum of squares within methods. They both (after 
norming) estimate the variance .2σ  The first step in 
ANOVA is checking, if there is any difference between 
considered methods (their effects jµ 's). Thus, the well-
known F-test is performed:  
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Therefore, jz  is the empirical mean of errors in the j-th 
sample, while z  is the overall empirical mean. Besides, 
SSB is the sum of squares between methods and SSW is 
the sum of squares within methods. They both (after 
norming) estimate the variance .2σ  The first step in 
ANOVA is checking, if there is any difference between 
considered methods (their effects jµ 's). Thus, the well-
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This elementary test is based on comparing values of 
SSB/3 and SSW/(n-4). Denominators 3 and (n-4) are 
degrees of freedom of SSB and SSW, correspondingly, if 
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This elementary test is based on comparing values of SSB/3 and 
SSW/(n – 4). Denominators 3 and (n – 4) are degrees of freedom 
of SSB and SSW correspondingly, if the hypothesis H0 is true 
and variables εij satisfy the aforementioned assumptions. In the 
considered problem, the p-value of the F-test is less than 10–5, 
so the considered samples are significantly distinct. However, 
to find out which of them differ, one should perform tests of 
pairs of methods, comparing their effects, this being the place 
where multiple testing methods are involved. Thus, the problem 
of testing six null hypotheses simultaneously is considered:
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where *q  is the critical value of the test [36]. In Table 2 
p-values of Tukey’s tests are given while comparing the 
accuracy of four methods used to produce large-scale 
digital maps. 

Table 2 
p-values of Tukey’s test  

 method 1 method 2 method 3 method 4 

method 1 - 510−< 5105 −⋅ 510−<

method 2 - - 76781.0 510−<

method 3 - - - 510−<

One can notice that the accuracy of the first method is 
different from all other cases, since corresponding  
p-values are close to zero. The similar situation is while 
considering the last method. However, one cannot find the 
difference between the second and the third method, 
because the p-value is 0.76781. Besides, regularity 
assumptions (given above) are not satisfied in this 
problem: samples do not have normal distributions and 
their variances differ. It has been already conjectured on 
the basis of the preliminary analysis that is given at the 
beginning of this section. Now these suspicions are 
confirmed by the Shapiro-Wilk test (all p-values less than 

510− ) and the Levene test (p-value also less than  510− ). 
Thus, ANOVA is not an appropriate tool to investigate the 
considered problem and conclusions formulated basing on 
it could be incorrect. It can be seen while comparing 
Table 2 to Table 3 in Section 4. Thus, one should use 
statistical methods that do not need such strong 
assumptions to be satisfied. The natural candidates are 
procedures related to ranks. 

4. Rank-based methods 

The model that is considered in this section is similar 
to (1), but one does not need such strong assumptions than 
in the previous section. Namely, one assumes only that  
random errors ijε  in the model (1) are independent and 
come from the same continuous population. In fact, the 
assumption that considered populations should be the 
same can be weakened (see Chapter 6 in [30]). Parameters 
µ  and jµ  play the same roles as in the previous section. 
One again compares the accuracy of methods by 
comparing their effects .'sjµ  Notice that the proceeding 
is similar to the one from Section 3. The main difference 
(and the reason of the “success”) is replacing values of 
errors by their ranks. 
Thus, one first calculates ranks of objects that is one sorts 
all n observations from least to greatest and the rank ijr  of 

an element ijz  is the number of ijz  in the sorted list of 
objects. Moreover, let  
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be the mean of  errors' ranks of the j-th method. The 
starting point is the test that checks, if all four methods 
have the same accuracy. Thus, one again tests 
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but now the Kruskal-Wallis test [30] is used. It can be 
viewed as a rank analog of F-test from the previous 
section. The p-value of this test is less than 510−  which 
means that considered four samples are significantly 
distinct. To find out which of them differ multiple 
comparisons are used. Namely, the Bonferroni correction 
is applied, so six null hypotheses are tested jointly:
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6/ αα −Φ= −u  and Φ is the standard normal 

distribution function. Besides, the value α is the 
experimentwise significant level. In fact, this method is an 
approximation of the pure procedure [30], but sizes of the 
considered samples are numerous, so this approximation 
works well and at the same time calculations are much 
easier than in the strict algorithm. The results (p-values of 
comparison tests) are given in Table 3.  
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Therefore, jz  is the empirical mean of errors in the j-th 
sample, while z  is the overall empirical mean. Besides, 
SSB is the sum of squares between methods and SSW is 
the sum of squares within methods. They both (after 
norming) estimate the variance .2σ  The first step in 
ANOVA is checking, if there is any difference between 
considered methods (their effects jµ 's). Thus, the well-
known F-test is performed:  
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Evaluation of accuracy of digital map data via multiple comparisons

where q* is the critical value of the test [35]. In Table 2, p-values 
of Tukey’s tests are given, while the accuracy of four methods 
used to produce large-scale digital maps is compared.

Table 2  
p-values of Tukey’s test 

method 1 method 2 method 3 method 4

method 1 – <10–5 5¢10–5 <10–5

method 2 – – 0.76781 <10–5

method 3 – – – <10–5

One can notice that the accuracy of the first method is dif-
ferent from all other cases, since the corresponding p-values 
are close to zero. The similar situation occurs when the last 
method is considered. However, one cannot find the difference 
between the second and third method, because the p-value is 
0.76781. Besides, regularity assumptions (given above) are not 
satisfied in this problem: samples do not have normal distribu-
tions and their variances differ. It has been already conjectured 
on the basis of the preliminary analysis that is given at the 
beginning of this section. These suspicions are confirmed by 
the Shapiro-Wilk test (all p-values less than <10–5) and the 
Levene test ( p-value also less than <10–5). Thus, ANOVA is 
not the appropriate tool to investigate the considered problem, 
and conclusions formulated basing on it could be incorrect. It 
can be seen while comparing Table 2 and Table 3 (Section 4). 
Thus, one should use statistical methods that do not need such 
strong assumptions to be satisfied. The natural candidates are 
procedures related to ranks.

4.	 Rank-based methods

The model that is considered in this section is similar to (2), but 
one does not need as strong assumptions as in the previous sec-
tion. Namely, one only assumes that random errors εij in (2) are 
independent and come from the same continuous population. In 
fact, the assumption that considered populations should be the 
same can be weakened (see Chapter 6 in [29]). Parameters μ 
and μj play the same roles as in the previous section. One, again, 
compares the accuracy of methods by comparing their effects 
μj 's Notice that the proceeding is similar to the one from Sec-
tion 3. The main difference (and the reason for the “success”) 
is replacing the values of errors with their ranks.

Thus, one first calculates the ranks of objects, that is sorts 
all n observations from least to greatest, and the rank rij of 
an element zij is the number of zij in the sorted list of objects. 
Moreover, let
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the hypothesis 0H  is true and variables ijε  satisfy the 
aforementioned assumptions. In the considered problem 
the p-value of the F-test is less than ,10 5−  so the 
considered samples are significantly distinct. However, to 
find out which of them differ one should perform pairwise 
tests comparing effects of methods and this is the place 
that multiple testing methods are involved. Thus, the 
problem of testing six null hypotheses simultaneously is 
considered: 
  kj
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where .4,3,2,1,, =< kjkj  The analysis is based on the 
widely-used Tukey’s test [36]. This procedure rejects the 
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where *q  is the critical value of the test [36]. In Table 2 
p-values of Tukey’s tests are given while comparing the 
accuracy of four methods used to produce large-scale 
digital maps. 

Table 2 
p-values of Tukey’s test  

 method 1 method 2 method 3 method 4 

method 1 - 510−< 5105 −⋅ 510−<

method 2 - - 76781.0 510−<

method 3 - - - 510−<

One can notice that the accuracy of the first method is 
different from all other cases, since corresponding  
p-values are close to zero. The similar situation is while 
considering the last method. However, one cannot find the 
difference between the second and the third method, 
because the p-value is 0.76781. Besides, regularity 
assumptions (given above) are not satisfied in this 
problem: samples do not have normal distributions and 
their variances differ. It has been already conjectured on 
the basis of the preliminary analysis that is given at the 
beginning of this section. Now these suspicions are 
confirmed by the Shapiro-Wilk test (all p-values less than 

510− ) and the Levene test (p-value also less than  510− ). 
Thus, ANOVA is not an appropriate tool to investigate the 
considered problem and conclusions formulated basing on 
it could be incorrect. It can be seen while comparing 
Table 2 to Table 3 in Section 4. Thus, one should use 
statistical methods that do not need such strong 
assumptions to be satisfied. The natural candidates are 
procedures related to ranks. 

4. Rank-based methods 

The model that is considered in this section is similar 
to (1), but one does not need such strong assumptions than 
in the previous section. Namely, one assumes only that  
random errors ijε  in the model (1) are independent and 
come from the same continuous population. In fact, the 
assumption that considered populations should be the 
same can be weakened (see Chapter 6 in [30]). Parameters 
µ  and jµ  play the same roles as in the previous section. 
One again compares the accuracy of methods by 
comparing their effects .'sjµ  Notice that the proceeding 
is similar to the one from Section 3. The main difference 
(and the reason of the “success”) is replacing values of 
errors by their ranks. 
Thus, one first calculates ranks of objects that is one sorts 
all n observations from least to greatest and the rank ijr  of 

an element ijz  is the number of ijz  in the sorted list of 
objects. Moreover, let  
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be the mean of  errors' ranks of the j-th method. The 
starting point is the test that checks, if all four methods 
have the same accuracy. Thus, one again tests 
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but now the Kruskal-Wallis test [30] is used. It can be 
viewed as a rank analog of F-test from the previous 
section. The p-value of this test is less than 510−  which 
means that considered four samples are significantly 
distinct. To find out which of them differ multiple 
comparisons are used. Namely, the Bonferroni correction 
is applied, so six null hypotheses are tested jointly:
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where )6/1(1
6/ αα −Φ= −u  and Φ is the standard normal 

distribution function. Besides, the value α is the 
experimentwise significant level. In fact, this method is an 
approximation of the pure procedure [30], but sizes of the 
considered samples are numerous, so this approximation 
works well and at the same time calculations are much 
easier than in the strict algorithm. The results (p-values of 
comparison tests) are given in Table 3.  
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be the mean of errors ranks of the j-th method. The starting 
point is the test that checks if all four methods have the same 
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but now, the Kruskal-Wallis test [29] is used. It can be viewed 
as a rank analog of F-test from the previous section. The 
p-value of this test is less than 10–5, which means that the 
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which of them differ, multiple comparisons are used. Namely, 
the Bonferroni correction is applied, so six null hypotheses 
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the hypothesis 0H  is true and variables ijε  satisfy the 
aforementioned assumptions. In the considered problem 
the p-value of the F-test is less than ,10 5−  so the 
considered samples are significantly distinct. However, to 
find out which of them differ one should perform pairwise 
tests comparing effects of methods and this is the place 
that multiple testing methods are involved. Thus, the 
problem of testing six null hypotheses simultaneously is 
considered: 
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where *q  is the critical value of the test [36]. In Table 2 
p-values of Tukey’s tests are given while comparing the 
accuracy of four methods used to produce large-scale 
digital maps. 

Table 2 
p-values of Tukey’s test  

 method 1 method 2 method 3 method 4 

method 1 - 510−< 5105 −⋅ 510−<

method 2 - - 76781.0 510−<

method 3 - - - 510−<

One can notice that the accuracy of the first method is 
different from all other cases, since corresponding  
p-values are close to zero. The similar situation is while 
considering the last method. However, one cannot find the 
difference between the second and the third method, 
because the p-value is 0.76781. Besides, regularity 
assumptions (given above) are not satisfied in this 
problem: samples do not have normal distributions and 
their variances differ. It has been already conjectured on 
the basis of the preliminary analysis that is given at the 
beginning of this section. Now these suspicions are 
confirmed by the Shapiro-Wilk test (all p-values less than 

510− ) and the Levene test (p-value also less than  510− ). 
Thus, ANOVA is not an appropriate tool to investigate the 
considered problem and conclusions formulated basing on 
it could be incorrect. It can be seen while comparing 
Table 2 to Table 3 in Section 4. Thus, one should use 
statistical methods that do not need such strong 
assumptions to be satisfied. The natural candidates are 
procedures related to ranks. 

4. Rank-based methods 

The model that is considered in this section is similar 
to (1), but one does not need such strong assumptions than 
in the previous section. Namely, one assumes only that  
random errors ijε  in the model (1) are independent and 
come from the same continuous population. In fact, the 
assumption that considered populations should be the 
same can be weakened (see Chapter 6 in [30]). Parameters 
µ  and jµ  play the same roles as in the previous section. 
One again compares the accuracy of methods by 
comparing their effects .'sjµ  Notice that the proceeding 
is similar to the one from Section 3. The main difference 
(and the reason of the “success”) is replacing values of 
errors by their ranks. 
Thus, one first calculates ranks of objects that is one sorts 
all n observations from least to greatest and the rank ijr  of 

an element ijz  is the number of ijz  in the sorted list of 
objects. Moreover, let  
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be the mean of  errors' ranks of the j-th method. The 
starting point is the test that checks, if all four methods 
have the same accuracy. Thus, one again tests 
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but now the Kruskal-Wallis test [30] is used. It can be 
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where *q  is the critical value of the test [36]. In Table 2 
p-values of Tukey’s tests are given while comparing the 
accuracy of four methods used to produce large-scale 
digital maps. 

Table 2 
p-values of Tukey’s test  

 method 1 method 2 method 3 method 4 

method 1 - 510−< 5105 −⋅ 510−<

method 2 - - 76781.0 510−<

method 3 - - - 510−<

One can notice that the accuracy of the first method is 
different from all other cases, since corresponding  
p-values are close to zero. The similar situation is while 
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difference between the second and the third method, 
because the p-value is 0.76781. Besides, regularity 
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problem: samples do not have normal distributions and 
their variances differ. It has been already conjectured on 
the basis of the preliminary analysis that is given at the 
beginning of this section. Now these suspicions are 
confirmed by the Shapiro-Wilk test (all p-values less than 

510− ) and the Levene test (p-value also less than  510− ). 
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where uα/6 = Φ–1(1 ¡ α/6) and Φ is the standard normal dis-
tribution function. Besides, the value α is the experiment-wise 
significant level. In fact, this method is an approximation of the 
pure procedure [29], but the sizes of the considered samples 
are varying, so this approximation works well, and at the same 
time, calculations are much easier than in the strict algorithm. 
The results ( p-values of comparison tests) are given in Table 3.

Method 1 has the highest accuracy, because p-values of tests 
that compare μ1 with μ2, μ3 and μ4 are close to zero. Moreover, 
method 2 is better than method 3 and method 4. It is worth to 
stress that using tests based on ranks, one can find the better 
method among the second and the third one. It was not possible 
while using ANOVA in the previous section. Finally, method 4 
is the least accurate.

It is important to emphasize the advantages of rank-based 
methods. Obviously, they need only weak assumptions to be 
satisfied, comparing to ANOVA. Moreover, using the very con-
servative Bonferroni correction, one can indicate differences 
between the accuracy of methods. In the previous section, ap-
plied was the Tukey’s test which is much less conservative, but 
it did not manage to estimate the methods’ accuracy. Further-
more, improvements of the Bonferroni correction for ranking 
the methods can be also found in the literature, for instance the 
Holm’s procedure [37].

Table 3  
p-values of test based on ranks 

method 1 method 2 method 3 method 4

method 1 – <10–5 <10–5 <10–5

method 2 – – 3¢10–5 <10–5

method 3 – – – <10–5
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5.	 Conclusions

The positional accuracy of different methods of producing 
digital map data is investigated in this paper. Two approaches 
to this problem are described, both belonging to the multiple 
comparisons theory. The first of them is the well-known 
ANOVA that gives reliable results only if quite strong as-
sumptions are satisfied. Unfortunately, they are often violated 
while working with surveying data sets. As a remedy, multiple 
comparisons based on ranking methods are used. Applying 
them, one can reach the aim of the paper that is comparing the 
positional accuracy of the considered methods of producing 
data sets. Indeed, the statistical analysis confirms the highest 
positional accuracy of the digital map produced on the basis 
of survey with a total station (method 1). The second place 
in the ranking is occupied by the digital map produced using 
past field surveys (method 2). Finally, the data stored in digital 
orthophoto map (method 3) is characterized by higher posi-
tional accuracy than the digital map data obtained by means of 
graphical-and-digital processing of analogue large-scale maps 
(method 4). However, the obtained results are only qualita-
tive. They should be completed by a quantitative comparison 
of the accuracy of methods. This will be the aim of future 
investigations.

In this paper, it was demonstrated that the use of geo-data-
bases or digital map data sets to support decision-making meets 
with difficulties, because decisions are based on combined 
data from different sources. Therefore, information (metadata) 
about the positional accuracy of data plays a key role in GIS 
(geographic information system) and other support systems. In 
authors’ opinion, the evaluation of the positional accuracy of 
digital map data via multiple comparisons is promising in auto-
mation of assessment of the quality of databases, and can help 
with producing an expert system for management of geo-data 
and their rational use (e.g. [39]). This is particularly important 
in the case of basic maps, which due to their purpose, are the 
most accurate cartographic product [40].
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