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global exponential stability of nonlinear time-varying Volterra 
difference equations in the literature. In particular, several ab-
stract criteria for exponential stability of some nonlinear Volt-
erra difference equations can be found in [5, 15, 22].

In this paper, we present a new approach to global exponen-
tial stability of nonlinear time-varying Volterra difference equa-
tions. Our approach is based on the celebrated Perron-Frobenius 
theorem and the comparison principle. Consequently, we get 
some new explicit criteria for global exponential stability of 
the zero solution of general nonlinear time-varying Volterra 
difference equations. Furthermore, we derive an explicit sta-
bility bound for equations subject to nonlinear time-varying 
perturbations. Finally, the obtained results are applied to study 
uniform attraction of equilibrium of discrete-time bidirectional 
associative memory neural networks. Some illustrative exam-
ples are given.

2.	 Preliminaries

In this section, we present notation and some preliminary results 
which will be of use in what follows. Let 
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1. Introduction
Volterra difference equations have been widely used in the
modeling of processes in continuous mechanics and biome-
chanics, problems of control and estimations and some
schemes of numerical solutions of integral and integro-
differential equations, see e.g. [2], [7], [12], [16]-[19].

Problems of stability of Volterra difference equations have
attracted much attention from researchers, during the last
twenty years, see e.g. [1],[4]-[13], [15], [21]-[23] and refer-
ences therein. Many various methods have been used to inves-
tigate stability of Volterra difference equations such as Lya-
punov functions, Z transform, comparison theorems, topologi-
cal methods, fixed point theorems, etc (see e.g. [7], [10], [15],
[23]).

In particular, the first significant result on exponential sta-
bility of Volterra difference equations is due to Elaydi and
Murakami, see [8]. Roughly speaking, Elaydi and Murakami
showed that even to the simplest Volterra difference equations
(namely, linear time-invariant Volterra difference equations of
convolution type), the exponential stability is “stronger” than
the uniform asymptotic stability. More precisely, a linear time-
invariant Volterra difference equation of convolution type is ex-
ponentially stable if and only if it is uniformly asymptotically
stable and its kernel exponentially decays, see [8]. For further
and updated information on stability of linear time-invariant
Volterra difference equations, we refer to the recent survey pa-
per [10].

In general, problems of global exponential stability of time-
varying Volterra difference equations are very hard even those
of linear time-varying Volterra equations. Most of existing re-
sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
ditions for exponential stability of linear time-varying Volterra
difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
nential stability of nonlinear time-varying Volterra difference
equations. Our approach is based on the celebrated Perron-
Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
nential stability of the zero solution of general nonlinear time-

varying Volterra difference equations. Furthermore, we derive
an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.

2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there

1

 be the set of all 
real numbers and let 
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1

 be the set of all natural numbers. For 
any k1, k2 2 
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1
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[k1, k2] be the set of all integers in the 
interval [k1, k2]. Set 
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ponentially stable if and only if it is uniformly asymptotically
stable and its kernel exponentially decays, see [8]. For further
and updated information on stability of linear time-invariant
Volterra difference equations, we refer to the recent survey pa-
per [10].

In general, problems of global exponential stability of time-
varying Volterra difference equations are very hard even those
of linear time-varying Volterra equations. Most of existing re-
sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
ditions for exponential stability of linear time-varying Volterra
difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
nential stability of nonlinear time-varying Volterra difference
equations. Our approach is based on the celebrated Perron-
Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
nential stability of the zero solution of general nonlinear time-

varying Volterra difference equations. Furthermore, we derive
an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.

2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there
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time bidirectional associative memory neural networks. Some
illustrative examples are given.

2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
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ponentially stable if and only if it is uniformly asymptotically
stable and its kernel exponentially decays, see [8]. For further
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sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
ditions for exponential stability of linear time-varying Volterra
difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].
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nential stability of nonlinear time-varying Volterra difference
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an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
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sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
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tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
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|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.
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bility of Volterra difference equations is due to Elaydi and
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showed that even to the simplest Volterra difference equations
(namely, linear time-invariant Volterra difference equations of
convolution type), the exponential stability is “stronger” than
the uniform asymptotic stability. More precisely, a linear time-
invariant Volterra difference equation of convolution type is ex-
ponentially stable if and only if it is uniformly asymptotically
stable and its kernel exponentially decays, see [8]. For further
and updated information on stability of linear time-invariant
Volterra difference equations, we refer to the recent survey pa-
per [10].
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varying Volterra difference equations are very hard even those
of linear time-varying Volterra equations. Most of existing re-
sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
ditions for exponential stability of linear time-varying Volterra
difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
nential stability of nonlinear time-varying Volterra difference
equations. Our approach is based on the celebrated Perron-
Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
nential stability of the zero solution of general nonlinear time-

varying Volterra difference equations. Furthermore, we derive
an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.
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of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
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be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)
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componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
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eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there

1
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1. Introduction
Volterra difference equations have been widely used in the
modeling of processes in continuous mechanics and biome-
chanics, problems of control and estimations and some
schemes of numerical solutions of integral and integro-
differential equations, see e.g. [2], [7], [12], [16]-[19].

Problems of stability of Volterra difference equations have
attracted much attention from researchers, during the last
twenty years, see e.g. [1],[4]-[13], [15], [21]-[23] and refer-
ences therein. Many various methods have been used to inves-
tigate stability of Volterra difference equations such as Lya-
punov functions, Z transform, comparison theorems, topologi-
cal methods, fixed point theorems, etc (see e.g. [7], [10], [15],
[23]).

In particular, the first significant result on exponential sta-
bility of Volterra difference equations is due to Elaydi and
Murakami, see [8]. Roughly speaking, Elaydi and Murakami
showed that even to the simplest Volterra difference equations
(namely, linear time-invariant Volterra difference equations of
convolution type), the exponential stability is “stronger” than
the uniform asymptotic stability. More precisely, a linear time-
invariant Volterra difference equation of convolution type is ex-
ponentially stable if and only if it is uniformly asymptotically
stable and its kernel exponentially decays, see [8]. For further
and updated information on stability of linear time-invariant
Volterra difference equations, we refer to the recent survey pa-
per [10].

In general, problems of global exponential stability of time-
varying Volterra difference equations are very hard even those
of linear time-varying Volterra equations. Most of existing re-
sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
ditions for exponential stability of linear time-varying Volterra
difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
nential stability of nonlinear time-varying Volterra difference
equations. Our approach is based on the celebrated Perron-
Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
nential stability of the zero solution of general nonlinear time-

varying Volterra difference equations. Furthermore, we derive
an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.

2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there

1

[1, q]. In particular, if aij > bij for i 2 
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modeling of processes in continuous mechanics and biome-
chanics, problems of control and estimations and some
schemes of numerical solutions of integral and integro-
differential equations, see e.g. [2], [7], [12], [16]-[19].

Problems of stability of Volterra difference equations have
attracted much attention from researchers, during the last
twenty years, see e.g. [1],[4]-[13], [15], [21]-[23] and refer-
ences therein. Many various methods have been used to inves-
tigate stability of Volterra difference equations such as Lya-
punov functions, Z transform, comparison theorems, topologi-
cal methods, fixed point theorems, etc (see e.g. [7], [10], [15],
[23]).

In particular, the first significant result on exponential sta-
bility of Volterra difference equations is due to Elaydi and
Murakami, see [8]. Roughly speaking, Elaydi and Murakami
showed that even to the simplest Volterra difference equations
(namely, linear time-invariant Volterra difference equations of
convolution type), the exponential stability is “stronger” than
the uniform asymptotic stability. More precisely, a linear time-
invariant Volterra difference equation of convolution type is ex-
ponentially stable if and only if it is uniformly asymptotically
stable and its kernel exponentially decays, see [8]. For further
and updated information on stability of linear time-invariant
Volterra difference equations, we refer to the recent survey pa-
per [10].

In general, problems of global exponential stability of time-
varying Volterra difference equations are very hard even those
of linear time-varying Volterra equations. Most of existing re-
sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
ditions for exponential stability of linear time-varying Volterra
difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
nential stability of nonlinear time-varying Volterra difference
equations. Our approach is based on the celebrated Perron-
Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
nential stability of the zero solution of general nonlinear time-

varying Volterra difference equations. Furthermore, we derive
an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.

2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there

1
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modeling of processes in continuous mechanics and biome-
chanics, problems of control and estimations and some
schemes of numerical solutions of integral and integro-
differential equations, see e.g. [2], [7], [12], [16]-[19].

Problems of stability of Volterra difference equations have
attracted much attention from researchers, during the last
twenty years, see e.g. [1],[4]-[13], [15], [21]-[23] and refer-
ences therein. Many various methods have been used to inves-
tigate stability of Volterra difference equations such as Lya-
punov functions, Z transform, comparison theorems, topologi-
cal methods, fixed point theorems, etc (see e.g. [7], [10], [15],
[23]).

In particular, the first significant result on exponential sta-
bility of Volterra difference equations is due to Elaydi and
Murakami, see [8]. Roughly speaking, Elaydi and Murakami
showed that even to the simplest Volterra difference equations
(namely, linear time-invariant Volterra difference equations of
convolution type), the exponential stability is “stronger” than
the uniform asymptotic stability. More precisely, a linear time-
invariant Volterra difference equation of convolution type is ex-
ponentially stable if and only if it is uniformly asymptotically
stable and its kernel exponentially decays, see [8]. For further
and updated information on stability of linear time-invariant
Volterra difference equations, we refer to the recent survey pa-
per [10].

In general, problems of global exponential stability of time-
varying Volterra difference equations are very hard even those
of linear time-varying Volterra equations. Most of existing re-
sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
ditions for exponential stability of linear time-varying Volterra
difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
nential stability of nonlinear time-varying Volterra difference
equations. Our approach is based on the celebrated Perron-
Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
nential stability of the zero solution of general nonlinear time-

varying Volterra difference equations. Furthermore, we derive
an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.

2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there

1

[1, q], then we write A À B instead of A ¸ B. The set of 
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chanics, problems of control and estimations and some
schemes of numerical solutions of integral and integro-
differential equations, see e.g. [2], [7], [12], [16]-[19].

Problems of stability of Volterra difference equations have
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In particular, the first significant result on exponential sta-
bility of Volterra difference equations is due to Elaydi and
Murakami, see [8]. Roughly speaking, Elaydi and Murakami
showed that even to the simplest Volterra difference equations
(namely, linear time-invariant Volterra difference equations of
convolution type), the exponential stability is “stronger” than
the uniform asymptotic stability. More precisely, a linear time-
invariant Volterra difference equation of convolution type is ex-
ponentially stable if and only if it is uniformly asymptotically
stable and its kernel exponentially decays, see [8]. For further
and updated information on stability of linear time-invariant
Volterra difference equations, we refer to the recent survey pa-
per [10].

In general, problems of global exponential stability of time-
varying Volterra difference equations are very hard even those
of linear time-varying Volterra equations. Most of existing re-
sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
ditions for exponential stability of linear time-varying Volterra
difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
nential stability of nonlinear time-varying Volterra difference
equations. Our approach is based on the celebrated Perron-
Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
nential stability of the zero solution of general nonlinear time-

varying Volterra difference equations. Furthermore, we derive
an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.

2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there

1
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Murakami, see [8]. Roughly speaking, Elaydi and Murakami
showed that even to the simplest Volterra difference equations
(namely, linear time-invariant Volterra difference equations of
convolution type), the exponential stability is “stronger” than
the uniform asymptotic stability. More precisely, a linear time-
invariant Volterra difference equation of convolution type is ex-
ponentially stable if and only if it is uniformly asymptotically
stable and its kernel exponentially decays, see [8]. For further
and updated information on stability of linear time-invariant
Volterra difference equations, we refer to the recent survey pa-
per [10].

In general, problems of global exponential stability of time-
varying Volterra difference equations are very hard even those
of linear time-varying Volterra equations. Most of existing re-
sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
ditions for exponential stability of linear time-varying Volterra
difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
nential stability of nonlinear time-varying Volterra difference
equations. Our approach is based on the celebrated Perron-
Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
nential stability of the zero solution of general nonlinear time-

varying Volterra difference equations. Furthermore, we derive
an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.

2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there

1

m  
and P = (pij) 2 
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matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
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1

l£q we define jxj = (jxij) and jPj = (jpijj). It 
is easy to see that jCDj = jCjjDj. For any matrix A 2 
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1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
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monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
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+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there

1

m×m, the 
spectral radius of A is denoted by ρ(A) = max{jzj : z 2 σ(A)}, 
where σ(A) := {z 2 
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 : det(zIm ¡ A) = 0} is the set of all ei-
genvalues of A. A norm k.k on 
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T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there

1

m is said to be monotonic if 
jxj ∙ jyj implies kxk ∙ kyk for all x, y 2 
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1. Introduction
Volterra difference equations have been widely used in the
modeling of processes in continuous mechanics and biome-
chanics, problems of control and estimations and some
schemes of numerical solutions of integral and integro-
differential equations, see e.g. [2], [7], [12], [16]-[19].

Problems of stability of Volterra difference equations have
attracted much attention from researchers, during the last
twenty years, see e.g. [1],[4]-[13], [15], [21]-[23] and refer-
ences therein. Many various methods have been used to inves-
tigate stability of Volterra difference equations such as Lya-
punov functions, Z transform, comparison theorems, topologi-
cal methods, fixed point theorems, etc (see e.g. [7], [10], [15],
[23]).

In particular, the first significant result on exponential sta-
bility of Volterra difference equations is due to Elaydi and
Murakami, see [8]. Roughly speaking, Elaydi and Murakami
showed that even to the simplest Volterra difference equations
(namely, linear time-invariant Volterra difference equations of
convolution type), the exponential stability is “stronger” than
the uniform asymptotic stability. More precisely, a linear time-
invariant Volterra difference equation of convolution type is ex-
ponentially stable if and only if it is uniformly asymptotically
stable and its kernel exponentially decays, see [8]. For further
and updated information on stability of linear time-invariant
Volterra difference equations, we refer to the recent survey pa-
per [10].

In general, problems of global exponential stability of time-
varying Volterra difference equations are very hard even those
of linear time-varying Volterra equations. Most of existing re-
sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
ditions for exponential stability of linear time-varying Volterra
difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
nential stability of nonlinear time-varying Volterra difference
equations. Our approach is based on the celebrated Perron-
Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
nential stability of the zero solution of general nonlinear time-

varying Volterra difference equations. Furthermore, we derive
an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.

2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there

1

m. Every p-norm  

1.	 Introduction

Volterra difference equations have been widely used in the mod-
eling of processes in continuous mechanics and biomechanics, 
problems of control and estimations and some schemes of nu-
merical solutions of integral and integro-differential equations, 
see e.g. [2, 7, 12, 16–19].

Problems of stability of Volterra difference equations have 
attracted much attention from researchers, during the last twenty 
years, see e.g. [1, 4–13, 15, 21–23] and references therein. 
Many various methods have been used to investigate stability 
of Volterra difference equations such as Lyapunov functions, 
Z transform, comparison theorems, topological methods, fixed 
point theorems, etc. (see e.g. [7, 10, 15, 23]).

In particular, the first significant result on exponential 
stability of Volterra difference equations was achieved by 
Elaydi and Murakami, see [8]. Roughly speaking, Elaydi and 
Murakami showed that even the simplest Volterra difference 
equations (namely, linear time-invariant Volterra difference 
equations of convolution type) have “stronger’’ exponential 
stability than the uniform asymptotic stability. More precisely, 
a linear time-invariant Volterra difference equation of convo-
lution type is exponentially stable if and only if it is uniformly 
asymptotically stable and its kernel exponentially decays, see 
[8]. For further and updated information on stability of linear 
time-invariant Volterra difference equations, we refer to the re-
cent survey paper [10].

In general, problems of global exponential stability of time-
varying Volterra difference equations are difficult, even when 
concerning linear time-varying Volterra equations. Most of 
existing results in the literature are derived by the method of 
Lyapunov functions and they are not easy to use. Some suffi-
cient conditions for exponential stability of linear time-varying 
Volterra difference equations can be found in [5, 10, 15]. To the 
best of our knowledge, there are not many explicit criteria for 
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1. Introduction
Volterra difference equations have been widely used in the
modeling of processes in continuous mechanics and biome-
chanics, problems of control and estimations and some
schemes of numerical solutions of integral and integro-
differential equations, see e.g. [2], [7], [12], [16]-[19].

Problems of stability of Volterra difference equations have
attracted much attention from researchers, during the last
twenty years, see e.g. [1],[4]-[13], [15], [21]-[23] and refer-
ences therein. Many various methods have been used to inves-
tigate stability of Volterra difference equations such as Lya-
punov functions, Z transform, comparison theorems, topologi-
cal methods, fixed point theorems, etc (see e.g. [7], [10], [15],
[23]).

In particular, the first significant result on exponential sta-
bility of Volterra difference equations is due to Elaydi and
Murakami, see [8]. Roughly speaking, Elaydi and Murakami
showed that even to the simplest Volterra difference equations
(namely, linear time-invariant Volterra difference equations of
convolution type), the exponential stability is “stronger” than
the uniform asymptotic stability. More precisely, a linear time-
invariant Volterra difference equation of convolution type is ex-
ponentially stable if and only if it is uniformly asymptotically
stable and its kernel exponentially decays, see [8]. For further
and updated information on stability of linear time-invariant
Volterra difference equations, we refer to the recent survey pa-
per [10].

In general, problems of global exponential stability of time-
varying Volterra difference equations are very hard even those
of linear time-varying Volterra equations. Most of existing re-
sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
ditions for exponential stability of linear time-varying Volterra
difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
nential stability of nonlinear time-varying Volterra difference
equations. Our approach is based on the celebrated Perron-
Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
nential stability of the zero solution of general nonlinear time-

varying Volterra difference equations. Furthermore, we derive
an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.

2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there

1

m(kxkp = (jx1jp + jx2jp + … + jxmjp)
1
p, 1 ∙ p < 1 and 

kxk1 = maxi 2 

BULLETIN OF THE POLISH ACADEMY OF SCIENCES
TECHNICAL SCIENCES, Vol. XX, No. Y, 2016
DOI: 10.1515/bpasts-2016-00ZZ

Stability of nonlinear Volterra equations

Abstract. Using a novel approach, we present some new explicit criteria for global exponential stability of the zero solution of general
nonlinear time-varying Volterra difference equations. Furthermore, an explicit stability bound for equations subject to nonlinear time-varying
perturbations is given. Finally, the obtained results are used to study uniform attraction of equilibrium of discrete-time bidirectional associative
memory (BAM) neural networks. Some illustrative examples are given.

Key words: Global exponential stability, Volterra equations

1. Introduction
Volterra difference equations have been widely used in the
modeling of processes in continuous mechanics and biome-
chanics, problems of control and estimations and some
schemes of numerical solutions of integral and integro-
differential equations, see e.g. [2], [7], [12], [16]-[19].

Problems of stability of Volterra difference equations have
attracted much attention from researchers, during the last
twenty years, see e.g. [1],[4]-[13], [15], [21]-[23] and refer-
ences therein. Many various methods have been used to inves-
tigate stability of Volterra difference equations such as Lya-
punov functions, Z transform, comparison theorems, topologi-
cal methods, fixed point theorems, etc (see e.g. [7], [10], [15],
[23]).

In particular, the first significant result on exponential sta-
bility of Volterra difference equations is due to Elaydi and
Murakami, see [8]. Roughly speaking, Elaydi and Murakami
showed that even to the simplest Volterra difference equations
(namely, linear time-invariant Volterra difference equations of
convolution type), the exponential stability is “stronger” than
the uniform asymptotic stability. More precisely, a linear time-
invariant Volterra difference equation of convolution type is ex-
ponentially stable if and only if it is uniformly asymptotically
stable and its kernel exponentially decays, see [8]. For further
and updated information on stability of linear time-invariant
Volterra difference equations, we refer to the recent survey pa-
per [10].

In general, problems of global exponential stability of time-
varying Volterra difference equations are very hard even those
of linear time-varying Volterra equations. Most of existing re-
sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
ditions for exponential stability of linear time-varying Volterra
difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
nential stability of nonlinear time-varying Volterra difference
equations. Our approach is based on the celebrated Perron-
Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
nential stability of the zero solution of general nonlinear time-

varying Volterra difference equations. Furthermore, we derive
an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.

2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there

1

[1, m]
jxij), is monotonic. Note that kxk = kjxjk, 
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1. Introduction
Volterra difference equations have been widely used in the
modeling of processes in continuous mechanics and biome-
chanics, problems of control and estimations and some
schemes of numerical solutions of integral and integro-
differential equations, see e.g. [2], [7], [12], [16]-[19].

Problems of stability of Volterra difference equations have
attracted much attention from researchers, during the last
twenty years, see e.g. [1],[4]-[13], [15], [21]-[23] and refer-
ences therein. Many various methods have been used to inves-
tigate stability of Volterra difference equations such as Lya-
punov functions, Z transform, comparison theorems, topologi-
cal methods, fixed point theorems, etc (see e.g. [7], [10], [15],
[23]).

In particular, the first significant result on exponential sta-
bility of Volterra difference equations is due to Elaydi and
Murakami, see [8]. Roughly speaking, Elaydi and Murakami
showed that even to the simplest Volterra difference equations
(namely, linear time-invariant Volterra difference equations of
convolution type), the exponential stability is “stronger” than
the uniform asymptotic stability. More precisely, a linear time-
invariant Volterra difference equation of convolution type is ex-
ponentially stable if and only if it is uniformly asymptotically
stable and its kernel exponentially decays, see [8]. For further
and updated information on stability of linear time-invariant
Volterra difference equations, we refer to the recent survey pa-
per [10].

In general, problems of global exponential stability of time-
varying Volterra difference equations are very hard even those
of linear time-varying Volterra equations. Most of existing re-
sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
ditions for exponential stability of linear time-varying Volterra
difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
nential stability of nonlinear time-varying Volterra difference
equations. Our approach is based on the celebrated Perron-
Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
nential stability of the zero solution of general nonlinear time-

varying Volterra difference equations. Furthermore, we derive
an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.

2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there

1

m for any monotonic norm.
Throughout this paper, the norm of vectors is assumed 
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1. Introduction
Volterra difference equations have been widely used in the
modeling of processes in continuous mechanics and biome-
chanics, problems of control and estimations and some
schemes of numerical solutions of integral and integro-
differential equations, see e.g. [2], [7], [12], [16]-[19].

Problems of stability of Volterra difference equations have
attracted much attention from researchers, during the last
twenty years, see e.g. [1],[4]-[13], [15], [21]-[23] and refer-
ences therein. Many various methods have been used to inves-
tigate stability of Volterra difference equations such as Lya-
punov functions, Z transform, comparison theorems, topologi-
cal methods, fixed point theorems, etc (see e.g. [7], [10], [15],
[23]).

In particular, the first significant result on exponential sta-
bility of Volterra difference equations is due to Elaydi and
Murakami, see [8]. Roughly speaking, Elaydi and Murakami
showed that even to the simplest Volterra difference equations
(namely, linear time-invariant Volterra difference equations of
convolution type), the exponential stability is “stronger” than
the uniform asymptotic stability. More precisely, a linear time-
invariant Volterra difference equation of convolution type is ex-
ponentially stable if and only if it is uniformly asymptotically
stable and its kernel exponentially decays, see [8]. For further
and updated information on stability of linear time-invariant
Volterra difference equations, we refer to the recent survey pa-
per [10].

In general, problems of global exponential stability of time-
varying Volterra difference equations are very hard even those
of linear time-varying Volterra equations. Most of existing re-
sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
ditions for exponential stability of linear time-varying Volterra
difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
nential stability of nonlinear time-varying Volterra difference
equations. Our approach is based on the celebrated Perron-
Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
nential stability of the zero solution of general nonlinear time-

varying Volterra difference equations. Furthermore, we derive
an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.

2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there

1

l£q 
is always understood as the operator norm defined by 
kMk = maxkyk =1kMyk, where 
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sults which will be of use in what follows. Let R be the set
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bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
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equalities between real matrices and vectors will be understood
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B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
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we write A � B instead of A ≥ B. The set of all nonnega-
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+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
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norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there
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ponentially stable if and only if it is uniformly asymptotically
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In general, problems of global exponential stability of time-
varying Volterra difference equations are very hard even those
of linear time-varying Volterra equations. Most of existing re-
sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
ditions for exponential stability of linear time-varying Volterra
difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
nential stability of nonlinear time-varying Volterra difference
equations. Our approach is based on the celebrated Perron-
Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
nential stability of the zero solution of general nonlinear time-
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time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.

2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there

1

q are provided with 
some monotonic vector norms. Recall that ρ(M) ∙ kMk for 
any matrix norm, see e.g. [7], and the operator norm k¢k has the 
following monotonicity property, see e.g. [14],
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of linear time-varying Volterra equations. Most of existing re-
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functions and they are not easy to use. Some sufficient con-
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criteria for exponential stability of some nonlinear Volterra dif-
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2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there
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Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there

1

+
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1. Introduction
Volterra difference equations have been widely used in the
modeling of processes in continuous mechanics and biome-
chanics, problems of control and estimations and some
schemes of numerical solutions of integral and integro-
differential equations, see e.g. [2], [7], [12], [16]-[19].

Problems of stability of Volterra difference equations have
attracted much attention from researchers, during the last
twenty years, see e.g. [1],[4]-[13], [15], [21]-[23] and refer-
ences therein. Many various methods have been used to inves-
tigate stability of Volterra difference equations such as Lya-
punov functions, Z transform, comparison theorems, topologi-
cal methods, fixed point theorems, etc (see e.g. [7], [10], [15],
[23]).

In particular, the first significant result on exponential sta-
bility of Volterra difference equations is due to Elaydi and
Murakami, see [8]. Roughly speaking, Elaydi and Murakami
showed that even to the simplest Volterra difference equations
(namely, linear time-invariant Volterra difference equations of
convolution type), the exponential stability is “stronger” than
the uniform asymptotic stability. More precisely, a linear time-
invariant Volterra difference equation of convolution type is ex-
ponentially stable if and only if it is uniformly asymptotically
stable and its kernel exponentially decays, see [8]. For further
and updated information on stability of linear time-invariant
Volterra difference equations, we refer to the recent survey pa-
per [10].

In general, problems of global exponential stability of time-
varying Volterra difference equations are very hard even those
of linear time-varying Volterra equations. Most of existing re-
sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
ditions for exponential stability of linear time-varying Volterra
difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
nential stability of nonlinear time-varying Volterra difference
equations. Our approach is based on the celebrated Perron-
Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
nential stability of the zero solution of general nonlinear time-

varying Volterra difference equations. Furthermore, we derive
an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.

2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there

1

, then
	 (i)	� (Perron-Frobenius) ρ(M) is an eigenvalue of M and 

there exists a nonnegative eigenvector x 2 
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Volterra difference equations have been widely used in the
modeling of processes in continuous mechanics and biome-
chanics, problems of control and estimations and some
schemes of numerical solutions of integral and integro-
differential equations, see e.g. [2], [7], [12], [16]-[19].

Problems of stability of Volterra difference equations have
attracted much attention from researchers, during the last
twenty years, see e.g. [1],[4]-[13], [15], [21]-[23] and refer-
ences therein. Many various methods have been used to inves-
tigate stability of Volterra difference equations such as Lya-
punov functions, Z transform, comparison theorems, topologi-
cal methods, fixed point theorems, etc (see e.g. [7], [10], [15],
[23]).

In particular, the first significant result on exponential sta-
bility of Volterra difference equations is due to Elaydi and
Murakami, see [8]. Roughly speaking, Elaydi and Murakami
showed that even to the simplest Volterra difference equations
(namely, linear time-invariant Volterra difference equations of
convolution type), the exponential stability is “stronger” than
the uniform asymptotic stability. More precisely, a linear time-
invariant Volterra difference equation of convolution type is ex-
ponentially stable if and only if it is uniformly asymptotically
stable and its kernel exponentially decays, see [8]. For further
and updated information on stability of linear time-invariant
Volterra difference equations, we refer to the recent survey pa-
per [10].

In general, problems of global exponential stability of time-
varying Volterra difference equations are very hard even those
of linear time-varying Volterra equations. Most of existing re-
sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
ditions for exponential stability of linear time-varying Volterra
difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
nential stability of nonlinear time-varying Volterra difference
equations. Our approach is based on the celebrated Perron-
Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
nential stability of the zero solution of general nonlinear time-

varying Volterra difference equations. Furthermore, we derive
an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.

2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there

1

m, x  6= 0 
such that Mx = ρ(M)x.

	 (ii)	� (tIm ¡ M)–1 exists and is nonnegative if and only if 
t > ρ(M).

The following theorem follows from Theorem 2.1.

Theorem 2.2. [20]. Let M 2 
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Volterra difference equations have been widely used in the
modeling of processes in continuous mechanics and biome-
chanics, problems of control and estimations and some
schemes of numerical solutions of integral and integro-
differential equations, see e.g. [2], [7], [12], [16]-[19].

Problems of stability of Volterra difference equations have
attracted much attention from researchers, during the last
twenty years, see e.g. [1],[4]-[13], [15], [21]-[23] and refer-
ences therein. Many various methods have been used to inves-
tigate stability of Volterra difference equations such as Lya-
punov functions, Z transform, comparison theorems, topologi-
cal methods, fixed point theorems, etc (see e.g. [7], [10], [15],
[23]).

In particular, the first significant result on exponential sta-
bility of Volterra difference equations is due to Elaydi and
Murakami, see [8]. Roughly speaking, Elaydi and Murakami
showed that even to the simplest Volterra difference equations
(namely, linear time-invariant Volterra difference equations of
convolution type), the exponential stability is “stronger” than
the uniform asymptotic stability. More precisely, a linear time-
invariant Volterra difference equation of convolution type is ex-
ponentially stable if and only if it is uniformly asymptotically
stable and its kernel exponentially decays, see [8]. For further
and updated information on stability of linear time-invariant
Volterra difference equations, we refer to the recent survey pa-
per [10].

In general, problems of global exponential stability of time-
varying Volterra difference equations are very hard even those
of linear time-varying Volterra equations. Most of existing re-
sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
ditions for exponential stability of linear time-varying Volterra
difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
nential stability of nonlinear time-varying Volterra difference
equations. Our approach is based on the celebrated Perron-
Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
nential stability of the zero solution of general nonlinear time-

varying Volterra difference equations. Furthermore, we derive
an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.

2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there

1

+
m£m. Then the following state-

ments are equivalent:
	 (i)	� ρ(M) < 1;
	 (ii)	� 9p 2 
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bility of Volterra difference equations is due to Elaydi and
Murakami, see [8]. Roughly speaking, Elaydi and Murakami
showed that even to the simplest Volterra difference equations
(namely, linear time-invariant Volterra difference equations of
convolution type), the exponential stability is “stronger” than
the uniform asymptotic stability. More precisely, a linear time-
invariant Volterra difference equation of convolution type is ex-
ponentially stable if and only if it is uniformly asymptotically
stable and its kernel exponentially decays, see [8]. For further
and updated information on stability of linear time-invariant
Volterra difference equations, we refer to the recent survey pa-
per [10].

In general, problems of global exponential stability of time-
varying Volterra difference equations are very hard even those
of linear time-varying Volterra equations. Most of existing re-
sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
ditions for exponential stability of linear time-varying Volterra
difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
nential stability of nonlinear time-varying Volterra difference
equations. Our approach is based on the celebrated Perron-
Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
nential stability of the zero solution of general nonlinear time-

varying Volterra difference equations. Furthermore, we derive
an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.

2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there

1

m, p À 0 : Mp ¿ p;
	 (iii)	� (Im ¡ M)–1 ¸ 0.

3.	 Explicit criteria for exponential stability

Consider a nonlinear Volterra difference equation of the form

	

exists a nonnegative eigenvector x ∈ Rm, x �= 0 such that
Mx = ρ(M)x.

(ii) (tIm − M)−1 exists and is nonnegative if and only if t >
ρ(M).

The following theorem follows from Theorem 2.1.

THEOREM 2.2 [20]. Let M ∈ Rm×m
+ . Then the following

statements are equivalent:

(i) ρ(M)< 1;
(ii) ∃p ∈ Rm, p � 0 : Mp � p;

(iii) (Im −M)−1 ≥ 0.

3. Explicit criteria for exponential stability
Consider a nonlinear Volterra difference equation of the form

x(n+1) = F
(
n,x(n)

)
+

n

∑
k=0

G
(
n,k,x(k)

)
, n ≥ n0, (2)

where F(·, ·) : Z+×Rm →Rm and G(·, ·, ·) : Z+×Z+×Rm →
Rm are given functions such that F(n,0) = 0 for all n ∈Z+ and
G(n,k,0) = 0 for n ≥ k, n,k ∈ Z+ (i.e. ξ = 0 is an equilibrium
point of the equation (2)).

For given n0 ∈ Z+, denote Sn0 the set of all functions ϕ(·) :
Z[0,n0] →Rm. Let ‖ϕ‖n0 = max{‖ϕ(n)‖ : n ∈Z[0,n0]}, for each
ϕ(·) ∈ Sn0 . Clearly, for fixed n0 ∈ Z+ and given ϕ ∈ Sn0 , (2)
has a unique solution satisfying the initial condition

x(n) = ϕ(n), for all n ∈ Z[0,n0]. (3)

This solution is denoted by x(·,n0,ϕ).

DEFINITION 3.1. The zero solution of (2) is said to be glob-
ally exponentially stable (shortly, GES) if there exist K > 0 and
λ ∈ (0,1) such that

‖x(n,n0,ϕ)‖ ≤ Kλ n−n0‖ϕ‖n0 , (4)

for all n,n0 ∈ Z+,n ≥ n0,ϕ(·) ∈ Sn0 .

We are now in the position to prove the main result of this
paper.

THEOREM 3.2. Suppose there exist A(·) : Z+ → Rm×m
+ and

B(·, ·) : Z+×Z+ → Rm×m
+ such that

|F(n,x)| ≤ A(n)|x| and |G(n,k,x)| ≤ B(n,k)|x|, (5)

for all n,k ∈ Z+,n ≥ k,x ∈Rm. Then the zero solution of (2) is
GES provided one of the following conditions holds:
(i) There exist α > 1 and p ∈ Rm

+, p � 0 so that
(

A(n)+
n

∑
k=0

B(n,k)αn−k
)

p ≤ α−1 p, ∀n ∈ Z+. (6)

(ii) There exist β > 1 and A ∈ Rm×m
+ , ρ(A)< 1 so that

(
A(n)+

n

∑
k=0

B(n,k)β n−k
)
≤ A, ∀n ∈ Z+. (7)

(iii) There exist γ > 1 so that

sup
n∈Z+

(
‖A(n)‖+

n

∑
k=0

‖B(n,k)‖γn−k
)
< 1. (8)

REMARK 3.3. Roughly speaking, (5) means that (2) is
“bounded above” by the linear equation

y(n+1) = A(n)y(n)+
n

∑
k=0

B(n,k)y(k), n ∈ Z+. (9)

On the other hand, as shown in the proof of Theorem 3.2, any
one of conditions (6), (7) (8), ensures that (9) is GES. There-
fore, Theorem 3.2 says that if (2) is “bounded above" by the
linear Volterra equation (9) and (9) is GES (one of conditions
(6), (7), (8) holds) then the zero solution of (2) is GES too.

Proof. We first prove that the zero solution of (2) is GES pro-
vided (i) holds. The proof consists of two steps.

Step I: We show that

‖x(n,n0,ϕ)‖ ≤ Kλ n−n0 ,

for all n,n0 ∈ Z+,n ≥ n0,ϕ ∈ Sn0 ,‖ϕ‖n0 ≤ 1, for some K >
0,λ ∈ (0,1).

Since p � 0, there exists M > 1 (M is independent of n0)
such that

Mp � |ϕ(n)|, ∀n ∈ Z[0,n0],∀ϕ ∈ Sn0 ,‖ϕ‖n0 ≤ 1. (10)

Let us define λ := α−1 and u(n) := Mλ n−n0 p, n ∈Z. From (3)
and (10), it follows that

u(n)� |x(n)|, ∀n ∈ Z[0,n0]. (11)

It is worth noticing that

|x(n0 +1)| (2)
=

∣∣F(n0,x(n0))+
n0

∑
k=0

G(n0,k,x(k))
∣∣

≤ |F(n0,x(n0))|+
n0

∑
k=0

|G(n0,k,x(k))|

(5)
≤ A(n0)|x(n0)|+

n0

∑
k=0

B(n0,k)|x(k)|

(11)
≤ A(n0)Mp+

n0

∑
k=0

B(n0,k)Mλ k−n0 p

= M
(
A(n0)+

n0

∑
k=0

B(n0,k)αn0−k)p

(6)
≤ Mα−1 p

= u(n0 +1).

By induction, we can show that

|x(n)|= |x(n,n0,ϕ)| ≤Mλ n−n0 p,∀n≥ n0,∀ϕ ∈Sn0 ,‖ϕ‖n0 ≤ 1.

By the monotonicity of vector norms, it follows that

‖x(n,n0,ϕ)‖ ≤ M‖p‖λ n−n0 = Kλ n−n0 ,

for all n ≥ n0,ϕ ∈ Sn0 ,‖ϕ‖n0 ≤ 1, where K := M‖p‖.
Step II: We show that (4) holds.

Consider the linear Volterra equation (9). By Step I, we have
for any ϕ ∈ Sn0 ,‖ϕ‖n0 ≤ 1,

‖y(n,n0,ϕ)‖ ≤ Kλ n−n0 , ∀n ≥ n0,
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1. Introduction
Volterra difference equations have been widely used in the
modeling of processes in continuous mechanics and biome-
chanics, problems of control and estimations and some
schemes of numerical solutions of integral and integro-
differential equations, see e.g. [2], [7], [12], [16]-[19].

Problems of stability of Volterra difference equations have
attracted much attention from researchers, during the last
twenty years, see e.g. [1],[4]-[13], [15], [21]-[23] and refer-
ences therein. Many various methods have been used to inves-
tigate stability of Volterra difference equations such as Lya-
punov functions, Z transform, comparison theorems, topologi-
cal methods, fixed point theorems, etc (see e.g. [7], [10], [15],
[23]).

In particular, the first significant result on exponential sta-
bility of Volterra difference equations is due to Elaydi and
Murakami, see [8]. Roughly speaking, Elaydi and Murakami
showed that even to the simplest Volterra difference equations
(namely, linear time-invariant Volterra difference equations of
convolution type), the exponential stability is “stronger” than
the uniform asymptotic stability. More precisely, a linear time-
invariant Volterra difference equation of convolution type is ex-
ponentially stable if and only if it is uniformly asymptotically
stable and its kernel exponentially decays, see [8]. For further
and updated information on stability of linear time-invariant
Volterra difference equations, we refer to the recent survey pa-
per [10].

In general, problems of global exponential stability of time-
varying Volterra difference equations are very hard even those
of linear time-varying Volterra equations. Most of existing re-
sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
ditions for exponential stability of linear time-varying Volterra
difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
nential stability of nonlinear time-varying Volterra difference
equations. Our approach is based on the celebrated Perron-
Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
nential stability of the zero solution of general nonlinear time-

varying Volterra difference equations. Furthermore, we derive
an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.

2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there

1

+£
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1. Introduction
Volterra difference equations have been widely used in the
modeling of processes in continuous mechanics and biome-
chanics, problems of control and estimations and some
schemes of numerical solutions of integral and integro-
differential equations, see e.g. [2], [7], [12], [16]-[19].

Problems of stability of Volterra difference equations have
attracted much attention from researchers, during the last
twenty years, see e.g. [1],[4]-[13], [15], [21]-[23] and refer-
ences therein. Many various methods have been used to inves-
tigate stability of Volterra difference equations such as Lya-
punov functions, Z transform, comparison theorems, topologi-
cal methods, fixed point theorems, etc (see e.g. [7], [10], [15],
[23]).

In particular, the first significant result on exponential sta-
bility of Volterra difference equations is due to Elaydi and
Murakami, see [8]. Roughly speaking, Elaydi and Murakami
showed that even to the simplest Volterra difference equations
(namely, linear time-invariant Volterra difference equations of
convolution type), the exponential stability is “stronger” than
the uniform asymptotic stability. More precisely, a linear time-
invariant Volterra difference equation of convolution type is ex-
ponentially stable if and only if it is uniformly asymptotically
stable and its kernel exponentially decays, see [8]. For further
and updated information on stability of linear time-invariant
Volterra difference equations, we refer to the recent survey pa-
per [10].

In general, problems of global exponential stability of time-
varying Volterra difference equations are very hard even those
of linear time-varying Volterra equations. Most of existing re-
sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
ditions for exponential stability of linear time-varying Volterra
difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
nential stability of nonlinear time-varying Volterra difference
equations. Our approach is based on the celebrated Perron-
Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
nential stability of the zero solution of general nonlinear time-

varying Volterra difference equations. Furthermore, we derive
an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.

2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there

1

m ! 
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1. Introduction
Volterra difference equations have been widely used in the
modeling of processes in continuous mechanics and biome-
chanics, problems of control and estimations and some
schemes of numerical solutions of integral and integro-
differential equations, see e.g. [2], [7], [12], [16]-[19].

Problems of stability of Volterra difference equations have
attracted much attention from researchers, during the last
twenty years, see e.g. [1],[4]-[13], [15], [21]-[23] and refer-
ences therein. Many various methods have been used to inves-
tigate stability of Volterra difference equations such as Lya-
punov functions, Z transform, comparison theorems, topologi-
cal methods, fixed point theorems, etc (see e.g. [7], [10], [15],
[23]).

In particular, the first significant result on exponential sta-
bility of Volterra difference equations is due to Elaydi and
Murakami, see [8]. Roughly speaking, Elaydi and Murakami
showed that even to the simplest Volterra difference equations
(namely, linear time-invariant Volterra difference equations of
convolution type), the exponential stability is “stronger” than
the uniform asymptotic stability. More precisely, a linear time-
invariant Volterra difference equation of convolution type is ex-
ponentially stable if and only if it is uniformly asymptotically
stable and its kernel exponentially decays, see [8]. For further
and updated information on stability of linear time-invariant
Volterra difference equations, we refer to the recent survey pa-
per [10].

In general, problems of global exponential stability of time-
varying Volterra difference equations are very hard even those
of linear time-varying Volterra equations. Most of existing re-
sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
ditions for exponential stability of linear time-varying Volterra
difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
nential stability of nonlinear time-varying Volterra difference
equations. Our approach is based on the celebrated Perron-
Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
nential stability of the zero solution of general nonlinear time-

varying Volterra difference equations. Furthermore, we derive
an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.

2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there

1
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Volterra difference equations have been widely used in the
modeling of processes in continuous mechanics and biome-
chanics, problems of control and estimations and some
schemes of numerical solutions of integral and integro-
differential equations, see e.g. [2], [7], [12], [16]-[19].

Problems of stability of Volterra difference equations have
attracted much attention from researchers, during the last
twenty years, see e.g. [1],[4]-[13], [15], [21]-[23] and refer-
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bility of Volterra difference equations is due to Elaydi and
Murakami, see [8]. Roughly speaking, Elaydi and Murakami
showed that even to the simplest Volterra difference equations
(namely, linear time-invariant Volterra difference equations of
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the uniform asymptotic stability. More precisely, a linear time-
invariant Volterra difference equation of convolution type is ex-
ponentially stable if and only if it is uniformly asymptotically
stable and its kernel exponentially decays, see [8]. For further
and updated information on stability of linear time-invariant
Volterra difference equations, we refer to the recent survey pa-
per [10].

In general, problems of global exponential stability of time-
varying Volterra difference equations are very hard even those
of linear time-varying Volterra equations. Most of existing re-
sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
ditions for exponential stability of linear time-varying Volterra
difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
nential stability of nonlinear time-varying Volterra difference
equations. Our approach is based on the celebrated Perron-
Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
nential stability of the zero solution of general nonlinear time-

varying Volterra difference equations. Furthermore, we derive
an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.

2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there
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1. Introduction
Volterra difference equations have been widely used in the
modeling of processes in continuous mechanics and biome-
chanics, problems of control and estimations and some
schemes of numerical solutions of integral and integro-
differential equations, see e.g. [2], [7], [12], [16]-[19].

Problems of stability of Volterra difference equations have
attracted much attention from researchers, during the last
twenty years, see e.g. [1],[4]-[13], [15], [21]-[23] and refer-
ences therein. Many various methods have been used to inves-
tigate stability of Volterra difference equations such as Lya-
punov functions, Z transform, comparison theorems, topologi-
cal methods, fixed point theorems, etc (see e.g. [7], [10], [15],
[23]).

In particular, the first significant result on exponential sta-
bility of Volterra difference equations is due to Elaydi and
Murakami, see [8]. Roughly speaking, Elaydi and Murakami
showed that even to the simplest Volterra difference equations
(namely, linear time-invariant Volterra difference equations of
convolution type), the exponential stability is “stronger” than
the uniform asymptotic stability. More precisely, a linear time-
invariant Volterra difference equation of convolution type is ex-
ponentially stable if and only if it is uniformly asymptotically
stable and its kernel exponentially decays, see [8]. For further
and updated information on stability of linear time-invariant
Volterra difference equations, we refer to the recent survey pa-
per [10].

In general, problems of global exponential stability of time-
varying Volterra difference equations are very hard even those
of linear time-varying Volterra equations. Most of existing re-
sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
ditions for exponential stability of linear time-varying Volterra
difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
nential stability of nonlinear time-varying Volterra difference
equations. Our approach is based on the celebrated Perron-
Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
nential stability of the zero solution of general nonlinear time-

varying Volterra difference equations. Furthermore, we derive
an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.

2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there
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Volterra difference equations have been widely used in the
modeling of processes in continuous mechanics and biome-
chanics, problems of control and estimations and some
schemes of numerical solutions of integral and integro-
differential equations, see e.g. [2], [7], [12], [16]-[19].

Problems of stability of Volterra difference equations have
attracted much attention from researchers, during the last
twenty years, see e.g. [1],[4]-[13], [15], [21]-[23] and refer-
ences therein. Many various methods have been used to inves-
tigate stability of Volterra difference equations such as Lya-
punov functions, Z transform, comparison theorems, topologi-
cal methods, fixed point theorems, etc (see e.g. [7], [10], [15],
[23]).

In particular, the first significant result on exponential sta-
bility of Volterra difference equations is due to Elaydi and
Murakami, see [8]. Roughly speaking, Elaydi and Murakami
showed that even to the simplest Volterra difference equations
(namely, linear time-invariant Volterra difference equations of
convolution type), the exponential stability is “stronger” than
the uniform asymptotic stability. More precisely, a linear time-
invariant Volterra difference equation of convolution type is ex-
ponentially stable if and only if it is uniformly asymptotically
stable and its kernel exponentially decays, see [8]. For further
and updated information on stability of linear time-invariant
Volterra difference equations, we refer to the recent survey pa-
per [10].

In general, problems of global exponential stability of time-
varying Volterra difference equations are very hard even those
of linear time-varying Volterra equations. Most of existing re-
sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
ditions for exponential stability of linear time-varying Volterra
difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
nential stability of nonlinear time-varying Volterra difference
equations. Our approach is based on the celebrated Perron-
Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
nential stability of the zero solution of general nonlinear time-

varying Volterra difference equations. Furthermore, we derive
an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.

2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there
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Volterra difference equations have been widely used in the
modeling of processes in continuous mechanics and biome-
chanics, problems of control and estimations and some
schemes of numerical solutions of integral and integro-
differential equations, see e.g. [2], [7], [12], [16]-[19].

Problems of stability of Volterra difference equations have
attracted much attention from researchers, during the last
twenty years, see e.g. [1],[4]-[13], [15], [21]-[23] and refer-
ences therein. Many various methods have been used to inves-
tigate stability of Volterra difference equations such as Lya-
punov functions, Z transform, comparison theorems, topologi-
cal methods, fixed point theorems, etc (see e.g. [7], [10], [15],
[23]).

In particular, the first significant result on exponential sta-
bility of Volterra difference equations is due to Elaydi and
Murakami, see [8]. Roughly speaking, Elaydi and Murakami
showed that even to the simplest Volterra difference equations
(namely, linear time-invariant Volterra difference equations of
convolution type), the exponential stability is “stronger” than
the uniform asymptotic stability. More precisely, a linear time-
invariant Volterra difference equation of convolution type is ex-
ponentially stable if and only if it is uniformly asymptotically
stable and its kernel exponentially decays, see [8]. For further
and updated information on stability of linear time-invariant
Volterra difference equations, we refer to the recent survey pa-
per [10].

In general, problems of global exponential stability of time-
varying Volterra difference equations are very hard even those
of linear time-varying Volterra equations. Most of existing re-
sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
ditions for exponential stability of linear time-varying Volterra
difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
nential stability of nonlinear time-varying Volterra difference
equations. Our approach is based on the celebrated Perron-
Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
nential stability of the zero solution of general nonlinear time-

varying Volterra difference equations. Furthermore, we derive
an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.

2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there
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modeling of processes in continuous mechanics and biome-
chanics, problems of control and estimations and some
schemes of numerical solutions of integral and integro-
differential equations, see e.g. [2], [7], [12], [16]-[19].

Problems of stability of Volterra difference equations have
attracted much attention from researchers, during the last
twenty years, see e.g. [1],[4]-[13], [15], [21]-[23] and refer-
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In particular, the first significant result on exponential sta-
bility of Volterra difference equations is due to Elaydi and
Murakami, see [8]. Roughly speaking, Elaydi and Murakami
showed that even to the simplest Volterra difference equations
(namely, linear time-invariant Volterra difference equations of
convolution type), the exponential stability is “stronger” than
the uniform asymptotic stability. More precisely, a linear time-
invariant Volterra difference equation of convolution type is ex-
ponentially stable if and only if it is uniformly asymptotically
stable and its kernel exponentially decays, see [8]. For further
and updated information on stability of linear time-invariant
Volterra difference equations, we refer to the recent survey pa-
per [10].

In general, problems of global exponential stability of time-
varying Volterra difference equations are very hard even those
of linear time-varying Volterra equations. Most of existing re-
sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
ditions for exponential stability of linear time-varying Volterra
difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
nential stability of nonlinear time-varying Volterra difference
equations. Our approach is based on the celebrated Perron-
Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
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varying Volterra difference equations. Furthermore, we derive
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time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
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2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
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1
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be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.
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attracted much attention from researchers, during the last
twenty years, see e.g. [1],[4]-[13], [15], [21]-[23] and refer-
ences therein. Many various methods have been used to inves-
tigate stability of Volterra difference equations such as Lya-
punov functions, Z transform, comparison theorems, topologi-
cal methods, fixed point theorems, etc (see e.g. [7], [10], [15],
[23]).

In particular, the first significant result on exponential sta-
bility of Volterra difference equations is due to Elaydi and
Murakami, see [8]. Roughly speaking, Elaydi and Murakami
showed that even to the simplest Volterra difference equations
(namely, linear time-invariant Volterra difference equations of
convolution type), the exponential stability is “stronger” than
the uniform asymptotic stability. More precisely, a linear time-
invariant Volterra difference equation of convolution type is ex-
ponentially stable if and only if it is uniformly asymptotically
stable and its kernel exponentially decays, see [8]. For further
and updated information on stability of linear time-invariant
Volterra difference equations, we refer to the recent survey pa-
per [10].

In general, problems of global exponential stability of time-
varying Volterra difference equations are very hard even those
of linear time-varying Volterra equations. Most of existing re-
sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
ditions for exponential stability of linear time-varying Volterra
difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
nential stability of nonlinear time-varying Volterra difference
equations. Our approach is based on the celebrated Perron-
Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
nential stability of the zero solution of general nonlinear time-

varying Volterra difference equations. Furthermore, we derive
an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.

2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there

1

+ (i.e. ξ = 0 is an equilibrium 
point of (2)).

For given n0 2 
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B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
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matrix will be denoted by Im. If x = (x1,x2, ...,xm)
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P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
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eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there

1

+, denote 

exists a nonnegative eigenvector x ∈ Rm, x �= 0 such that
Mx = ρ(M)x.

(ii) (tIm − M)−1 exists and is nonnegative if and only if t >
ρ(M).

The following theorem follows from Theorem 2.1.

THEOREM 2.2 [20]. Let M ∈ Rm×m
+ . Then the following

statements are equivalent:

(i) ρ(M)< 1;
(ii) ∃p ∈ Rm, p � 0 : Mp � p;

(iii) (Im −M)−1 ≥ 0.

3. Explicit criteria for exponential stability
Consider a nonlinear Volterra difference equation of the form

x(n+1) = F
(
n,x(n)

)
+

n

∑
k=0

G
(
n,k,x(k)

)
, n ≥ n0, (2)

where F(·, ·) : Z+×Rm →Rm and G(·, ·, ·) : Z+×Z+×Rm →
Rm are given functions such that F(n,0) = 0 for all n ∈Z+ and
G(n,k,0) = 0 for n ≥ k, n,k ∈ Z+ (i.e. ξ = 0 is an equilibrium
point of the equation (2)).

For given n0 ∈ Z+, denote Sn0 the set of all functions ϕ(·) :
Z[0,n0] →Rm. Let ‖ϕ‖n0 = max{‖ϕ(n)‖ : n ∈Z[0,n0]}, for each
ϕ(·) ∈ Sn0 . Clearly, for fixed n0 ∈ Z+ and given ϕ ∈ Sn0 , (2)
has a unique solution satisfying the initial condition

x(n) = ϕ(n), for all n ∈ Z[0,n0]. (3)

This solution is denoted by x(·,n0,ϕ).

DEFINITION 3.1. The zero solution of (2) is said to be glob-
ally exponentially stable (shortly, GES) if there exist K > 0 and
λ ∈ (0,1) such that

‖x(n,n0,ϕ)‖ ≤ Kλ n−n0‖ϕ‖n0 , (4)

for all n,n0 ∈ Z+,n ≥ n0,ϕ(·) ∈ Sn0 .

We are now in the position to prove the main result of this
paper.

THEOREM 3.2. Suppose there exist A(·) : Z+ → Rm×m
+ and

B(·, ·) : Z+×Z+ → Rm×m
+ such that

|F(n,x)| ≤ A(n)|x| and |G(n,k,x)| ≤ B(n,k)|x|, (5)

for all n,k ∈ Z+,n ≥ k,x ∈Rm. Then the zero solution of (2) is
GES provided one of the following conditions holds:
(i) There exist α > 1 and p ∈ Rm

+, p � 0 so that
(

A(n)+
n

∑
k=0

B(n,k)αn−k
)

p ≤ α−1 p, ∀n ∈ Z+. (6)

(ii) There exist β > 1 and A ∈ Rm×m
+ , ρ(A)< 1 so that

(
A(n)+

n

∑
k=0

B(n,k)β n−k
)
≤ A, ∀n ∈ Z+. (7)

(iii) There exist γ > 1 so that

sup
n∈Z+

(
‖A(n)‖+

n

∑
k=0

‖B(n,k)‖γn−k
)
< 1. (8)

REMARK 3.3. Roughly speaking, (5) means that (2) is
“bounded above” by the linear equation

y(n+1) = A(n)y(n)+
n

∑
k=0

B(n,k)y(k), n ∈ Z+. (9)

On the other hand, as shown in the proof of Theorem 3.2, any
one of conditions (6), (7) (8), ensures that (9) is GES. There-
fore, Theorem 3.2 says that if (2) is “bounded above" by the
linear Volterra equation (9) and (9) is GES (one of conditions
(6), (7), (8) holds) then the zero solution of (2) is GES too.

Proof. We first prove that the zero solution of (2) is GES pro-
vided (i) holds. The proof consists of two steps.

Step I: We show that

‖x(n,n0,ϕ)‖ ≤ Kλ n−n0 ,

for all n,n0 ∈ Z+,n ≥ n0,ϕ ∈ Sn0 ,‖ϕ‖n0 ≤ 1, for some K >
0,λ ∈ (0,1).

Since p � 0, there exists M > 1 (M is independent of n0)
such that

Mp � |ϕ(n)|, ∀n ∈ Z[0,n0],∀ϕ ∈ Sn0 ,‖ϕ‖n0 ≤ 1. (10)

Let us define λ := α−1 and u(n) := Mλ n−n0 p, n ∈Z. From (3)
and (10), it follows that

u(n)� |x(n)|, ∀n ∈ Z[0,n0]. (11)

It is worth noticing that

|x(n0 +1)| (2)
=

∣∣F(n0,x(n0))+
n0

∑
k=0

G(n0,k,x(k))
∣∣

≤ |F(n0,x(n0))|+
n0

∑
k=0

|G(n0,k,x(k))|

(5)
≤ A(n0)|x(n0)|+

n0

∑
k=0

B(n0,k)|x(k)|

(11)
≤ A(n0)Mp+

n0

∑
k=0

B(n0,k)Mλ k−n0 p

= M
(
A(n0)+

n0

∑
k=0

B(n0,k)αn0−k)p

(6)
≤ Mα−1 p

= u(n0 +1).

By induction, we can show that

|x(n)|= |x(n,n0,ϕ)| ≤Mλ n−n0 p,∀n≥ n0,∀ϕ ∈Sn0 ,‖ϕ‖n0 ≤ 1.

By the monotonicity of vector norms, it follows that

‖x(n,n0,ϕ)‖ ≤ M‖p‖λ n−n0 = Kλ n−n0 ,

for all n ≥ n0,ϕ ∈ Sn0 ,‖ϕ‖n0 ≤ 1, where K := M‖p‖.
Step II: We show that (4) holds.

Consider the linear Volterra equation (9). By Step I, we have
for any ϕ ∈ Sn0 ,‖ϕ‖n0 ≤ 1,

‖y(n,n0,ϕ)‖ ≤ Kλ n−n0 , ∀n ≥ n0,
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In particular, the first significant result on exponential sta-
bility of Volterra difference equations is due to Elaydi and
Murakami, see [8]. Roughly speaking, Elaydi and Murakami
showed that even to the simplest Volterra difference equations
(namely, linear time-invariant Volterra difference equations of
convolution type), the exponential stability is “stronger” than
the uniform asymptotic stability. More precisely, a linear time-
invariant Volterra difference equation of convolution type is ex-
ponentially stable if and only if it is uniformly asymptotically
stable and its kernel exponentially decays, see [8]. For further
and updated information on stability of linear time-invariant
Volterra difference equations, we refer to the recent survey pa-
per [10].

In general, problems of global exponential stability of time-
varying Volterra difference equations are very hard even those
of linear time-varying Volterra equations. Most of existing re-
sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
ditions for exponential stability of linear time-varying Volterra
difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
nential stability of nonlinear time-varying Volterra difference
equations. Our approach is based on the celebrated Perron-
Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
nential stability of the zero solution of general nonlinear time-

varying Volterra difference equations. Furthermore, we derive
an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.

2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there

1

[0, n0] ! 
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equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there

1

m. Let kφkn0 = max{kφ(n)k : n 2 
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1. Introduction
Volterra difference equations have been widely used in the
modeling of processes in continuous mechanics and biome-
chanics, problems of control and estimations and some
schemes of numerical solutions of integral and integro-
differential equations, see e.g. [2], [7], [12], [16]-[19].

Problems of stability of Volterra difference equations have
attracted much attention from researchers, during the last
twenty years, see e.g. [1],[4]-[13], [15], [21]-[23] and refer-
ences therein. Many various methods have been used to inves-
tigate stability of Volterra difference equations such as Lya-
punov functions, Z transform, comparison theorems, topologi-
cal methods, fixed point theorems, etc (see e.g. [7], [10], [15],
[23]).

In particular, the first significant result on exponential sta-
bility of Volterra difference equations is due to Elaydi and
Murakami, see [8]. Roughly speaking, Elaydi and Murakami
showed that even to the simplest Volterra difference equations
(namely, linear time-invariant Volterra difference equations of
convolution type), the exponential stability is “stronger” than
the uniform asymptotic stability. More precisely, a linear time-
invariant Volterra difference equation of convolution type is ex-
ponentially stable if and only if it is uniformly asymptotically
stable and its kernel exponentially decays, see [8]. For further
and updated information on stability of linear time-invariant
Volterra difference equations, we refer to the recent survey pa-
per [10].

In general, problems of global exponential stability of time-
varying Volterra difference equations are very hard even those
of linear time-varying Volterra equations. Most of existing re-
sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
ditions for exponential stability of linear time-varying Volterra
difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
nential stability of nonlinear time-varying Volterra difference
equations. Our approach is based on the celebrated Perron-
Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
nential stability of the zero solution of general nonlinear time-

varying Volterra difference equations. Furthermore, we derive
an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.

2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there

1

[0, n0]}, for each 
φ(¢) 2 

exists a nonnegative eigenvector x ∈ Rm, x �= 0 such that
Mx = ρ(M)x.

(ii) (tIm − M)−1 exists and is nonnegative if and only if t >
ρ(M).

The following theorem follows from Theorem 2.1.

THEOREM 2.2 [20]. Let M ∈ Rm×m
+ . Then the following

statements are equivalent:

(i) ρ(M)< 1;
(ii) ∃p ∈ Rm, p � 0 : Mp � p;

(iii) (Im −M)−1 ≥ 0.

3. Explicit criteria for exponential stability
Consider a nonlinear Volterra difference equation of the form

x(n+1) = F
(
n,x(n)

)
+

n

∑
k=0

G
(
n,k,x(k)

)
, n ≥ n0, (2)

where F(·, ·) : Z+×Rm →Rm and G(·, ·, ·) : Z+×Z+×Rm →
Rm are given functions such that F(n,0) = 0 for all n ∈Z+ and
G(n,k,0) = 0 for n ≥ k, n,k ∈ Z+ (i.e. ξ = 0 is an equilibrium
point of the equation (2)).

For given n0 ∈ Z+, denote Sn0 the set of all functions ϕ(·) :
Z[0,n0] →Rm. Let ‖ϕ‖n0 = max{‖ϕ(n)‖ : n ∈Z[0,n0]}, for each
ϕ(·) ∈ Sn0 . Clearly, for fixed n0 ∈ Z+ and given ϕ ∈ Sn0 , (2)
has a unique solution satisfying the initial condition

x(n) = ϕ(n), for all n ∈ Z[0,n0]. (3)

This solution is denoted by x(·,n0,ϕ).

DEFINITION 3.1. The zero solution of (2) is said to be glob-
ally exponentially stable (shortly, GES) if there exist K > 0 and
λ ∈ (0,1) such that

‖x(n,n0,ϕ)‖ ≤ Kλ n−n0‖ϕ‖n0 , (4)

for all n,n0 ∈ Z+,n ≥ n0,ϕ(·) ∈ Sn0 .

We are now in the position to prove the main result of this
paper.

THEOREM 3.2. Suppose there exist A(·) : Z+ → Rm×m
+ and

B(·, ·) : Z+×Z+ → Rm×m
+ such that

|F(n,x)| ≤ A(n)|x| and |G(n,k,x)| ≤ B(n,k)|x|, (5)

for all n,k ∈ Z+,n ≥ k,x ∈Rm. Then the zero solution of (2) is
GES provided one of the following conditions holds:
(i) There exist α > 1 and p ∈ Rm

+, p � 0 so that
(

A(n)+
n

∑
k=0

B(n,k)αn−k
)

p ≤ α−1 p, ∀n ∈ Z+. (6)

(ii) There exist β > 1 and A ∈ Rm×m
+ , ρ(A)< 1 so that

(
A(n)+

n

∑
k=0

B(n,k)β n−k
)
≤ A, ∀n ∈ Z+. (7)

(iii) There exist γ > 1 so that

sup
n∈Z+

(
‖A(n)‖+

n

∑
k=0

‖B(n,k)‖γn−k
)
< 1. (8)

REMARK 3.3. Roughly speaking, (5) means that (2) is
“bounded above” by the linear equation

y(n+1) = A(n)y(n)+
n

∑
k=0

B(n,k)y(k), n ∈ Z+. (9)

On the other hand, as shown in the proof of Theorem 3.2, any
one of conditions (6), (7) (8), ensures that (9) is GES. There-
fore, Theorem 3.2 says that if (2) is “bounded above" by the
linear Volterra equation (9) and (9) is GES (one of conditions
(6), (7), (8) holds) then the zero solution of (2) is GES too.

Proof. We first prove that the zero solution of (2) is GES pro-
vided (i) holds. The proof consists of two steps.

Step I: We show that

‖x(n,n0,ϕ)‖ ≤ Kλ n−n0 ,

for all n,n0 ∈ Z+,n ≥ n0,ϕ ∈ Sn0 ,‖ϕ‖n0 ≤ 1, for some K >
0,λ ∈ (0,1).

Since p � 0, there exists M > 1 (M is independent of n0)
such that

Mp � |ϕ(n)|, ∀n ∈ Z[0,n0],∀ϕ ∈ Sn0 ,‖ϕ‖n0 ≤ 1. (10)

Let us define λ := α−1 and u(n) := Mλ n−n0 p, n ∈Z. From (3)
and (10), it follows that

u(n)� |x(n)|, ∀n ∈ Z[0,n0]. (11)

It is worth noticing that

|x(n0 +1)| (2)
=

∣∣F(n0,x(n0))+
n0

∑
k=0

G(n0,k,x(k))
∣∣

≤ |F(n0,x(n0))|+
n0

∑
k=0

|G(n0,k,x(k))|

(5)
≤ A(n0)|x(n0)|+

n0

∑
k=0

B(n0,k)|x(k)|

(11)
≤ A(n0)Mp+

n0

∑
k=0

B(n0,k)Mλ k−n0 p

= M
(
A(n0)+

n0

∑
k=0

B(n0,k)αn0−k)p

(6)
≤ Mα−1 p

= u(n0 +1).

By induction, we can show that

|x(n)|= |x(n,n0,ϕ)| ≤Mλ n−n0 p,∀n≥ n0,∀ϕ ∈Sn0 ,‖ϕ‖n0 ≤ 1.

By the monotonicity of vector norms, it follows that

‖x(n,n0,ϕ)‖ ≤ M‖p‖λ n−n0 = Kλ n−n0 ,

for all n ≥ n0,ϕ ∈ Sn0 ,‖ϕ‖n0 ≤ 1, where K := M‖p‖.
Step II: We show that (4) holds.

Consider the linear Volterra equation (9). By Step I, we have
for any ϕ ∈ Sn0 ,‖ϕ‖n0 ≤ 1,

‖y(n,n0,ϕ)‖ ≤ Kλ n−n0 , ∀n ≥ n0,

2 Bull. Pol. Ac.: Tech. XX(Y) 2016

n0. Clearly, for fixed n0 2 

BULLETIN OF THE POLISH ACADEMY OF SCIENCES
TECHNICAL SCIENCES, Vol. XX, No. Y, 2016
DOI: 10.1515/bpasts-2016-00ZZ

Stability of nonlinear Volterra equations

Abstract. Using a novel approach, we present some new explicit criteria for global exponential stability of the zero solution of general
nonlinear time-varying Volterra difference equations. Furthermore, an explicit stability bound for equations subject to nonlinear time-varying
perturbations is given. Finally, the obtained results are used to study uniform attraction of equilibrium of discrete-time bidirectional associative
memory (BAM) neural networks. Some illustrative examples are given.

Key words: Global exponential stability, Volterra equations

1. Introduction
Volterra difference equations have been widely used in the
modeling of processes in continuous mechanics and biome-
chanics, problems of control and estimations and some
schemes of numerical solutions of integral and integro-
differential equations, see e.g. [2], [7], [12], [16]-[19].

Problems of stability of Volterra difference equations have
attracted much attention from researchers, during the last
twenty years, see e.g. [1],[4]-[13], [15], [21]-[23] and refer-
ences therein. Many various methods have been used to inves-
tigate stability of Volterra difference equations such as Lya-
punov functions, Z transform, comparison theorems, topologi-
cal methods, fixed point theorems, etc (see e.g. [7], [10], [15],
[23]).

In particular, the first significant result on exponential sta-
bility of Volterra difference equations is due to Elaydi and
Murakami, see [8]. Roughly speaking, Elaydi and Murakami
showed that even to the simplest Volterra difference equations
(namely, linear time-invariant Volterra difference equations of
convolution type), the exponential stability is “stronger” than
the uniform asymptotic stability. More precisely, a linear time-
invariant Volterra difference equation of convolution type is ex-
ponentially stable if and only if it is uniformly asymptotically
stable and its kernel exponentially decays, see [8]. For further
and updated information on stability of linear time-invariant
Volterra difference equations, we refer to the recent survey pa-
per [10].

In general, problems of global exponential stability of time-
varying Volterra difference equations are very hard even those
of linear time-varying Volterra equations. Most of existing re-
sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
ditions for exponential stability of linear time-varying Volterra
difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
nential stability of nonlinear time-varying Volterra difference
equations. Our approach is based on the celebrated Perron-
Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
nential stability of the zero solution of general nonlinear time-

varying Volterra difference equations. Furthermore, we derive
an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.

2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there

1

+ and given φ 2 

exists a nonnegative eigenvector x ∈ Rm, x �= 0 such that
Mx = ρ(M)x.

(ii) (tIm − M)−1 exists and is nonnegative if and only if t >
ρ(M).

The following theorem follows from Theorem 2.1.

THEOREM 2.2 [20]. Let M ∈ Rm×m
+ . Then the following

statements are equivalent:

(i) ρ(M)< 1;
(ii) ∃p ∈ Rm, p � 0 : Mp � p;

(iii) (Im −M)−1 ≥ 0.

3. Explicit criteria for exponential stability
Consider a nonlinear Volterra difference equation of the form

x(n+1) = F
(
n,x(n)

)
+

n

∑
k=0

G
(
n,k,x(k)

)
, n ≥ n0, (2)

where F(·, ·) : Z+×Rm →Rm and G(·, ·, ·) : Z+×Z+×Rm →
Rm are given functions such that F(n,0) = 0 for all n ∈Z+ and
G(n,k,0) = 0 for n ≥ k, n,k ∈ Z+ (i.e. ξ = 0 is an equilibrium
point of the equation (2)).

For given n0 ∈ Z+, denote Sn0 the set of all functions ϕ(·) :
Z[0,n0] →Rm. Let ‖ϕ‖n0 = max{‖ϕ(n)‖ : n ∈Z[0,n0]}, for each
ϕ(·) ∈ Sn0 . Clearly, for fixed n0 ∈ Z+ and given ϕ ∈ Sn0 , (2)
has a unique solution satisfying the initial condition

x(n) = ϕ(n), for all n ∈ Z[0,n0]. (3)

This solution is denoted by x(·,n0,ϕ).

DEFINITION 3.1. The zero solution of (2) is said to be glob-
ally exponentially stable (shortly, GES) if there exist K > 0 and
λ ∈ (0,1) such that

‖x(n,n0,ϕ)‖ ≤ Kλ n−n0‖ϕ‖n0 , (4)

for all n,n0 ∈ Z+,n ≥ n0,ϕ(·) ∈ Sn0 .

We are now in the position to prove the main result of this
paper.

THEOREM 3.2. Suppose there exist A(·) : Z+ → Rm×m
+ and

B(·, ·) : Z+×Z+ → Rm×m
+ such that

|F(n,x)| ≤ A(n)|x| and |G(n,k,x)| ≤ B(n,k)|x|, (5)

for all n,k ∈ Z+,n ≥ k,x ∈Rm. Then the zero solution of (2) is
GES provided one of the following conditions holds:
(i) There exist α > 1 and p ∈ Rm

+, p � 0 so that
(

A(n)+
n

∑
k=0

B(n,k)αn−k
)

p ≤ α−1 p, ∀n ∈ Z+. (6)

(ii) There exist β > 1 and A ∈ Rm×m
+ , ρ(A)< 1 so that

(
A(n)+

n

∑
k=0

B(n,k)β n−k
)
≤ A, ∀n ∈ Z+. (7)

(iii) There exist γ > 1 so that

sup
n∈Z+

(
‖A(n)‖+

n

∑
k=0

‖B(n,k)‖γn−k
)
< 1. (8)

REMARK 3.3. Roughly speaking, (5) means that (2) is
“bounded above” by the linear equation

y(n+1) = A(n)y(n)+
n

∑
k=0

B(n,k)y(k), n ∈ Z+. (9)

On the other hand, as shown in the proof of Theorem 3.2, any
one of conditions (6), (7) (8), ensures that (9) is GES. There-
fore, Theorem 3.2 says that if (2) is “bounded above" by the
linear Volterra equation (9) and (9) is GES (one of conditions
(6), (7), (8) holds) then the zero solution of (2) is GES too.

Proof. We first prove that the zero solution of (2) is GES pro-
vided (i) holds. The proof consists of two steps.

Step I: We show that

‖x(n,n0,ϕ)‖ ≤ Kλ n−n0 ,

for all n,n0 ∈ Z+,n ≥ n0,ϕ ∈ Sn0 ,‖ϕ‖n0 ≤ 1, for some K >
0,λ ∈ (0,1).

Since p � 0, there exists M > 1 (M is independent of n0)
such that

Mp � |ϕ(n)|, ∀n ∈ Z[0,n0],∀ϕ ∈ Sn0 ,‖ϕ‖n0 ≤ 1. (10)

Let us define λ := α−1 and u(n) := Mλ n−n0 p, n ∈Z. From (3)
and (10), it follows that

u(n)� |x(n)|, ∀n ∈ Z[0,n0]. (11)

It is worth noticing that

|x(n0 +1)| (2)
=

∣∣F(n0,x(n0))+
n0

∑
k=0

G(n0,k,x(k))
∣∣

≤ |F(n0,x(n0))|+
n0

∑
k=0

|G(n0,k,x(k))|

(5)
≤ A(n0)|x(n0)|+

n0

∑
k=0

B(n0,k)|x(k)|

(11)
≤ A(n0)Mp+

n0

∑
k=0

B(n0,k)Mλ k−n0 p

= M
(
A(n0)+

n0

∑
k=0

B(n0,k)αn0−k)p

(6)
≤ Mα−1 p

= u(n0 +1).

By induction, we can show that

|x(n)|= |x(n,n0,ϕ)| ≤Mλ n−n0 p,∀n≥ n0,∀ϕ ∈Sn0 ,‖ϕ‖n0 ≤ 1.

By the monotonicity of vector norms, it follows that

‖x(n,n0,ϕ)‖ ≤ M‖p‖λ n−n0 = Kλ n−n0 ,

for all n ≥ n0,ϕ ∈ Sn0 ,‖ϕ‖n0 ≤ 1, where K := M‖p‖.
Step II: We show that (4) holds.

Consider the linear Volterra equation (9). By Step I, we have
for any ϕ ∈ Sn0 ,‖ϕ‖n0 ≤ 1,

‖y(n,n0,ϕ)‖ ≤ Kλ n−n0 , ∀n ≥ n0,
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n0, (2) 
has a unique solution satisfying the initial condition

	

exists a nonnegative eigenvector x ∈ Rm, x �= 0 such that
Mx = ρ(M)x.

(ii) (tIm − M)−1 exists and is nonnegative if and only if t >
ρ(M).

The following theorem follows from Theorem 2.1.

THEOREM 2.2 [20]. Let M ∈ Rm×m
+ . Then the following

statements are equivalent:

(i) ρ(M)< 1;
(ii) ∃p ∈ Rm, p � 0 : Mp � p;

(iii) (Im −M)−1 ≥ 0.

3. Explicit criteria for exponential stability
Consider a nonlinear Volterra difference equation of the form

x(n+1) = F
(
n,x(n)

)
+

n

∑
k=0

G
(
n,k,x(k)

)
, n ≥ n0, (2)

where F(·, ·) : Z+×Rm →Rm and G(·, ·, ·) : Z+×Z+×Rm →
Rm are given functions such that F(n,0) = 0 for all n ∈Z+ and
G(n,k,0) = 0 for n ≥ k, n,k ∈ Z+ (i.e. ξ = 0 is an equilibrium
point of the equation (2)).

For given n0 ∈ Z+, denote Sn0 the set of all functions ϕ(·) :
Z[0,n0] →Rm. Let ‖ϕ‖n0 = max{‖ϕ(n)‖ : n ∈Z[0,n0]}, for each
ϕ(·) ∈ Sn0 . Clearly, for fixed n0 ∈ Z+ and given ϕ ∈ Sn0 , (2)
has a unique solution satisfying the initial condition

x(n) = ϕ(n), for all n ∈ Z[0,n0]. (3)

This solution is denoted by x(·,n0,ϕ).

DEFINITION 3.1. The zero solution of (2) is said to be glob-
ally exponentially stable (shortly, GES) if there exist K > 0 and
λ ∈ (0,1) such that

‖x(n,n0,ϕ)‖ ≤ Kλ n−n0‖ϕ‖n0 , (4)

for all n,n0 ∈ Z+,n ≥ n0,ϕ(·) ∈ Sn0 .

We are now in the position to prove the main result of this
paper.

THEOREM 3.2. Suppose there exist A(·) : Z+ → Rm×m
+ and

B(·, ·) : Z+×Z+ → Rm×m
+ such that

|F(n,x)| ≤ A(n)|x| and |G(n,k,x)| ≤ B(n,k)|x|, (5)

for all n,k ∈ Z+,n ≥ k,x ∈Rm. Then the zero solution of (2) is
GES provided one of the following conditions holds:
(i) There exist α > 1 and p ∈ Rm

+, p � 0 so that
(

A(n)+
n

∑
k=0

B(n,k)αn−k
)

p ≤ α−1 p, ∀n ∈ Z+. (6)

(ii) There exist β > 1 and A ∈ Rm×m
+ , ρ(A)< 1 so that

(
A(n)+

n

∑
k=0

B(n,k)β n−k
)
≤ A, ∀n ∈ Z+. (7)

(iii) There exist γ > 1 so that

sup
n∈Z+

(
‖A(n)‖+

n

∑
k=0

‖B(n,k)‖γn−k
)
< 1. (8)

REMARK 3.3. Roughly speaking, (5) means that (2) is
“bounded above” by the linear equation

y(n+1) = A(n)y(n)+
n

∑
k=0

B(n,k)y(k), n ∈ Z+. (9)

On the other hand, as shown in the proof of Theorem 3.2, any
one of conditions (6), (7) (8), ensures that (9) is GES. There-
fore, Theorem 3.2 says that if (2) is “bounded above" by the
linear Volterra equation (9) and (9) is GES (one of conditions
(6), (7), (8) holds) then the zero solution of (2) is GES too.

Proof. We first prove that the zero solution of (2) is GES pro-
vided (i) holds. The proof consists of two steps.

Step I: We show that

‖x(n,n0,ϕ)‖ ≤ Kλ n−n0 ,

for all n,n0 ∈ Z+,n ≥ n0,ϕ ∈ Sn0 ,‖ϕ‖n0 ≤ 1, for some K >
0,λ ∈ (0,1).

Since p � 0, there exists M > 1 (M is independent of n0)
such that

Mp � |ϕ(n)|, ∀n ∈ Z[0,n0],∀ϕ ∈ Sn0 ,‖ϕ‖n0 ≤ 1. (10)

Let us define λ := α−1 and u(n) := Mλ n−n0 p, n ∈Z. From (3)
and (10), it follows that

u(n)� |x(n)|, ∀n ∈ Z[0,n0]. (11)

It is worth noticing that

|x(n0 +1)| (2)
=

∣∣F(n0,x(n0))+
n0

∑
k=0

G(n0,k,x(k))
∣∣

≤ |F(n0,x(n0))|+
n0

∑
k=0

|G(n0,k,x(k))|

(5)
≤ A(n0)|x(n0)|+

n0

∑
k=0

B(n0,k)|x(k)|

(11)
≤ A(n0)Mp+

n0

∑
k=0

B(n0,k)Mλ k−n0 p

= M
(
A(n0)+

n0

∑
k=0

B(n0,k)αn0−k)p

(6)
≤ Mα−1 p

= u(n0 +1).

By induction, we can show that

|x(n)|= |x(n,n0,ϕ)| ≤Mλ n−n0 p,∀n≥ n0,∀ϕ ∈Sn0 ,‖ϕ‖n0 ≤ 1.

By the monotonicity of vector norms, it follows that

‖x(n,n0,ϕ)‖ ≤ M‖p‖λ n−n0 = Kλ n−n0 ,

for all n ≥ n0,ϕ ∈ Sn0 ,‖ϕ‖n0 ≤ 1, where K := M‖p‖.
Step II: We show that (4) holds.

Consider the linear Volterra equation (9). By Step I, we have
for any ϕ ∈ Sn0 ,‖ϕ‖n0 ≤ 1,

‖y(n,n0,ϕ)‖ ≤ Kλ n−n0 , ∀n ≥ n0,
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.� (3)

This solution is denoted by x(¢, n0, φ).

Definition 3.1. The zero solution of (2) is said to be globally 
exponentially stable (shortly, GES) if there exist K > 0 and 
λ 2 (0, 1) such that

	

exists a nonnegative eigenvector x ∈ Rm, x �= 0 such that
Mx = ρ(M)x.

(ii) (tIm − M)−1 exists and is nonnegative if and only if t >
ρ(M).

The following theorem follows from Theorem 2.1.

THEOREM 2.2 [20]. Let M ∈ Rm×m
+ . Then the following

statements are equivalent:

(i) ρ(M)< 1;
(ii) ∃p ∈ Rm, p � 0 : Mp � p;

(iii) (Im −M)−1 ≥ 0.

3. Explicit criteria for exponential stability
Consider a nonlinear Volterra difference equation of the form

x(n+1) = F
(
n,x(n)

)
+

n

∑
k=0

G
(
n,k,x(k)

)
, n ≥ n0, (2)

where F(·, ·) : Z+×Rm →Rm and G(·, ·, ·) : Z+×Z+×Rm →
Rm are given functions such that F(n,0) = 0 for all n ∈Z+ and
G(n,k,0) = 0 for n ≥ k, n,k ∈ Z+ (i.e. ξ = 0 is an equilibrium
point of the equation (2)).

For given n0 ∈ Z+, denote Sn0 the set of all functions ϕ(·) :
Z[0,n0] →Rm. Let ‖ϕ‖n0 = max{‖ϕ(n)‖ : n ∈Z[0,n0]}, for each
ϕ(·) ∈ Sn0 . Clearly, for fixed n0 ∈ Z+ and given ϕ ∈ Sn0 , (2)
has a unique solution satisfying the initial condition

x(n) = ϕ(n), for all n ∈ Z[0,n0]. (3)

This solution is denoted by x(·,n0,ϕ).

DEFINITION 3.1. The zero solution of (2) is said to be glob-
ally exponentially stable (shortly, GES) if there exist K > 0 and
λ ∈ (0,1) such that

‖x(n,n0,ϕ)‖ ≤ Kλ n−n0‖ϕ‖n0 , (4)

for all n,n0 ∈ Z+,n ≥ n0,ϕ(·) ∈ Sn0 .

We are now in the position to prove the main result of this
paper.

THEOREM 3.2. Suppose there exist A(·) : Z+ → Rm×m
+ and

B(·, ·) : Z+×Z+ → Rm×m
+ such that

|F(n,x)| ≤ A(n)|x| and |G(n,k,x)| ≤ B(n,k)|x|, (5)

for all n,k ∈ Z+,n ≥ k,x ∈Rm. Then the zero solution of (2) is
GES provided one of the following conditions holds:
(i) There exist α > 1 and p ∈ Rm

+, p � 0 so that
(

A(n)+
n

∑
k=0

B(n,k)αn−k
)

p ≤ α−1 p, ∀n ∈ Z+. (6)

(ii) There exist β > 1 and A ∈ Rm×m
+ , ρ(A)< 1 so that

(
A(n)+

n

∑
k=0

B(n,k)β n−k
)
≤ A, ∀n ∈ Z+. (7)

(iii) There exist γ > 1 so that

sup
n∈Z+

(
‖A(n)‖+

n

∑
k=0

‖B(n,k)‖γn−k
)
< 1. (8)

REMARK 3.3. Roughly speaking, (5) means that (2) is
“bounded above” by the linear equation

y(n+1) = A(n)y(n)+
n

∑
k=0

B(n,k)y(k), n ∈ Z+. (9)

On the other hand, as shown in the proof of Theorem 3.2, any
one of conditions (6), (7) (8), ensures that (9) is GES. There-
fore, Theorem 3.2 says that if (2) is “bounded above" by the
linear Volterra equation (9) and (9) is GES (one of conditions
(6), (7), (8) holds) then the zero solution of (2) is GES too.

Proof. We first prove that the zero solution of (2) is GES pro-
vided (i) holds. The proof consists of two steps.

Step I: We show that

‖x(n,n0,ϕ)‖ ≤ Kλ n−n0 ,

for all n,n0 ∈ Z+,n ≥ n0,ϕ ∈ Sn0 ,‖ϕ‖n0 ≤ 1, for some K >
0,λ ∈ (0,1).

Since p � 0, there exists M > 1 (M is independent of n0)
such that

Mp � |ϕ(n)|, ∀n ∈ Z[0,n0],∀ϕ ∈ Sn0 ,‖ϕ‖n0 ≤ 1. (10)

Let us define λ := α−1 and u(n) := Mλ n−n0 p, n ∈Z. From (3)
and (10), it follows that

u(n)� |x(n)|, ∀n ∈ Z[0,n0]. (11)

It is worth noticing that

|x(n0 +1)| (2)
=

∣∣F(n0,x(n0))+
n0

∑
k=0

G(n0,k,x(k))
∣∣

≤ |F(n0,x(n0))|+
n0

∑
k=0

|G(n0,k,x(k))|

(5)
≤ A(n0)|x(n0)|+

n0

∑
k=0

B(n0,k)|x(k)|

(11)
≤ A(n0)Mp+

n0

∑
k=0

B(n0,k)Mλ k−n0 p

= M
(
A(n0)+

n0

∑
k=0

B(n0,k)αn0−k)p

(6)
≤ Mα−1 p

= u(n0 +1).

By induction, we can show that

|x(n)|= |x(n,n0,ϕ)| ≤Mλ n−n0 p,∀n≥ n0,∀ϕ ∈Sn0 ,‖ϕ‖n0 ≤ 1.

By the monotonicity of vector norms, it follows that

‖x(n,n0,ϕ)‖ ≤ M‖p‖λ n−n0 = Kλ n−n0 ,

for all n ≥ n0,ϕ ∈ Sn0 ,‖ϕ‖n0 ≤ 1, where K := M‖p‖.
Step II: We show that (4) holds.

Consider the linear Volterra equation (9). By Step I, we have
for any ϕ ∈ Sn0 ,‖ϕ‖n0 ≤ 1,

‖y(n,n0,ϕ)‖ ≤ Kλ n−n0 , ∀n ≥ n0,
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for all n, n0 2 
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1. Introduction
Volterra difference equations have been widely used in the
modeling of processes in continuous mechanics and biome-
chanics, problems of control and estimations and some
schemes of numerical solutions of integral and integro-
differential equations, see e.g. [2], [7], [12], [16]-[19].

Problems of stability of Volterra difference equations have
attracted much attention from researchers, during the last
twenty years, see e.g. [1],[4]-[13], [15], [21]-[23] and refer-
ences therein. Many various methods have been used to inves-
tigate stability of Volterra difference equations such as Lya-
punov functions, Z transform, comparison theorems, topologi-
cal methods, fixed point theorems, etc (see e.g. [7], [10], [15],
[23]).

In particular, the first significant result on exponential sta-
bility of Volterra difference equations is due to Elaydi and
Murakami, see [8]. Roughly speaking, Elaydi and Murakami
showed that even to the simplest Volterra difference equations
(namely, linear time-invariant Volterra difference equations of
convolution type), the exponential stability is “stronger” than
the uniform asymptotic stability. More precisely, a linear time-
invariant Volterra difference equation of convolution type is ex-
ponentially stable if and only if it is uniformly asymptotically
stable and its kernel exponentially decays, see [8]. For further
and updated information on stability of linear time-invariant
Volterra difference equations, we refer to the recent survey pa-
per [10].

In general, problems of global exponential stability of time-
varying Volterra difference equations are very hard even those
of linear time-varying Volterra equations. Most of existing re-
sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
ditions for exponential stability of linear time-varying Volterra
difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
nential stability of nonlinear time-varying Volterra difference
equations. Our approach is based on the celebrated Perron-
Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
nential stability of the zero solution of general nonlinear time-

varying Volterra difference equations. Furthermore, we derive
an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.

2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there

1

+, n ¸ n0, φ(¢) 2 

exists a nonnegative eigenvector x ∈ Rm, x �= 0 such that
Mx = ρ(M)x.

(ii) (tIm − M)−1 exists and is nonnegative if and only if t >
ρ(M).

The following theorem follows from Theorem 2.1.

THEOREM 2.2 [20]. Let M ∈ Rm×m
+ . Then the following

statements are equivalent:

(i) ρ(M)< 1;
(ii) ∃p ∈ Rm, p � 0 : Mp � p;

(iii) (Im −M)−1 ≥ 0.

3. Explicit criteria for exponential stability
Consider a nonlinear Volterra difference equation of the form

x(n+1) = F
(
n,x(n)

)
+

n

∑
k=0

G
(
n,k,x(k)

)
, n ≥ n0, (2)

where F(·, ·) : Z+×Rm →Rm and G(·, ·, ·) : Z+×Z+×Rm →
Rm are given functions such that F(n,0) = 0 for all n ∈Z+ and
G(n,k,0) = 0 for n ≥ k, n,k ∈ Z+ (i.e. ξ = 0 is an equilibrium
point of the equation (2)).

For given n0 ∈ Z+, denote Sn0 the set of all functions ϕ(·) :
Z[0,n0] →Rm. Let ‖ϕ‖n0 = max{‖ϕ(n)‖ : n ∈Z[0,n0]}, for each
ϕ(·) ∈ Sn0 . Clearly, for fixed n0 ∈ Z+ and given ϕ ∈ Sn0 , (2)
has a unique solution satisfying the initial condition

x(n) = ϕ(n), for all n ∈ Z[0,n0]. (3)

This solution is denoted by x(·,n0,ϕ).

DEFINITION 3.1. The zero solution of (2) is said to be glob-
ally exponentially stable (shortly, GES) if there exist K > 0 and
λ ∈ (0,1) such that

‖x(n,n0,ϕ)‖ ≤ Kλ n−n0‖ϕ‖n0 , (4)

for all n,n0 ∈ Z+,n ≥ n0,ϕ(·) ∈ Sn0 .

We are now in the position to prove the main result of this
paper.

THEOREM 3.2. Suppose there exist A(·) : Z+ → Rm×m
+ and

B(·, ·) : Z+×Z+ → Rm×m
+ such that

|F(n,x)| ≤ A(n)|x| and |G(n,k,x)| ≤ B(n,k)|x|, (5)

for all n,k ∈ Z+,n ≥ k,x ∈Rm. Then the zero solution of (2) is
GES provided one of the following conditions holds:
(i) There exist α > 1 and p ∈ Rm

+, p � 0 so that
(

A(n)+
n

∑
k=0

B(n,k)αn−k
)

p ≤ α−1 p, ∀n ∈ Z+. (6)

(ii) There exist β > 1 and A ∈ Rm×m
+ , ρ(A)< 1 so that

(
A(n)+

n

∑
k=0

B(n,k)β n−k
)
≤ A, ∀n ∈ Z+. (7)

(iii) There exist γ > 1 so that

sup
n∈Z+

(
‖A(n)‖+

n

∑
k=0

‖B(n,k)‖γn−k
)
< 1. (8)

REMARK 3.3. Roughly speaking, (5) means that (2) is
“bounded above” by the linear equation

y(n+1) = A(n)y(n)+
n

∑
k=0

B(n,k)y(k), n ∈ Z+. (9)

On the other hand, as shown in the proof of Theorem 3.2, any
one of conditions (6), (7) (8), ensures that (9) is GES. There-
fore, Theorem 3.2 says that if (2) is “bounded above" by the
linear Volterra equation (9) and (9) is GES (one of conditions
(6), (7), (8) holds) then the zero solution of (2) is GES too.

Proof. We first prove that the zero solution of (2) is GES pro-
vided (i) holds. The proof consists of two steps.

Step I: We show that

‖x(n,n0,ϕ)‖ ≤ Kλ n−n0 ,

for all n,n0 ∈ Z+,n ≥ n0,ϕ ∈ Sn0 ,‖ϕ‖n0 ≤ 1, for some K >
0,λ ∈ (0,1).

Since p � 0, there exists M > 1 (M is independent of n0)
such that

Mp � |ϕ(n)|, ∀n ∈ Z[0,n0],∀ϕ ∈ Sn0 ,‖ϕ‖n0 ≤ 1. (10)

Let us define λ := α−1 and u(n) := Mλ n−n0 p, n ∈Z. From (3)
and (10), it follows that

u(n)� |x(n)|, ∀n ∈ Z[0,n0]. (11)

It is worth noticing that

|x(n0 +1)| (2)
=

∣∣F(n0,x(n0))+
n0

∑
k=0

G(n0,k,x(k))
∣∣

≤ |F(n0,x(n0))|+
n0

∑
k=0

|G(n0,k,x(k))|

(5)
≤ A(n0)|x(n0)|+

n0

∑
k=0

B(n0,k)|x(k)|

(11)
≤ A(n0)Mp+

n0

∑
k=0

B(n0,k)Mλ k−n0 p

= M
(
A(n0)+

n0

∑
k=0

B(n0,k)αn0−k)p

(6)
≤ Mα−1 p

= u(n0 +1).

By induction, we can show that

|x(n)|= |x(n,n0,ϕ)| ≤Mλ n−n0 p,∀n≥ n0,∀ϕ ∈Sn0 ,‖ϕ‖n0 ≤ 1.

By the monotonicity of vector norms, it follows that

‖x(n,n0,ϕ)‖ ≤ M‖p‖λ n−n0 = Kλ n−n0 ,

for all n ≥ n0,ϕ ∈ Sn0 ,‖ϕ‖n0 ≤ 1, where K := M‖p‖.
Step II: We show that (4) holds.

Consider the linear Volterra equation (9). By Step I, we have
for any ϕ ∈ Sn0 ,‖ϕ‖n0 ≤ 1,

‖y(n,n0,ϕ)‖ ≤ Kλ n−n0 , ∀n ≥ n0,
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n0.

We are now in a position to prove the main result of this 
paper.

Theorem 3.2. Suppose there exist A(¢) : 
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1. Introduction
Volterra difference equations have been widely used in the
modeling of processes in continuous mechanics and biome-
chanics, problems of control and estimations and some
schemes of numerical solutions of integral and integro-
differential equations, see e.g. [2], [7], [12], [16]-[19].

Problems of stability of Volterra difference equations have
attracted much attention from researchers, during the last
twenty years, see e.g. [1],[4]-[13], [15], [21]-[23] and refer-
ences therein. Many various methods have been used to inves-
tigate stability of Volterra difference equations such as Lya-
punov functions, Z transform, comparison theorems, topologi-
cal methods, fixed point theorems, etc (see e.g. [7], [10], [15],
[23]).

In particular, the first significant result on exponential sta-
bility of Volterra difference equations is due to Elaydi and
Murakami, see [8]. Roughly speaking, Elaydi and Murakami
showed that even to the simplest Volterra difference equations
(namely, linear time-invariant Volterra difference equations of
convolution type), the exponential stability is “stronger” than
the uniform asymptotic stability. More precisely, a linear time-
invariant Volterra difference equation of convolution type is ex-
ponentially stable if and only if it is uniformly asymptotically
stable and its kernel exponentially decays, see [8]. For further
and updated information on stability of linear time-invariant
Volterra difference equations, we refer to the recent survey pa-
per [10].

In general, problems of global exponential stability of time-
varying Volterra difference equations are very hard even those
of linear time-varying Volterra equations. Most of existing re-
sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
ditions for exponential stability of linear time-varying Volterra
difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
nential stability of nonlinear time-varying Volterra difference
equations. Our approach is based on the celebrated Perron-
Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
nential stability of the zero solution of general nonlinear time-

varying Volterra difference equations. Furthermore, we derive
an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.

2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there
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B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there

1

+
m£m such that

	

exists a nonnegative eigenvector x ∈ Rm, x �= 0 such that
Mx = ρ(M)x.

(ii) (tIm − M)−1 exists and is nonnegative if and only if t >
ρ(M).

The following theorem follows from Theorem 2.1.

THEOREM 2.2 [20]. Let M ∈ Rm×m
+ . Then the following

statements are equivalent:

(i) ρ(M)< 1;
(ii) ∃p ∈ Rm, p � 0 : Mp � p;

(iii) (Im −M)−1 ≥ 0.

3. Explicit criteria for exponential stability
Consider a nonlinear Volterra difference equation of the form

x(n+1) = F
(
n,x(n)

)
+

n

∑
k=0

G
(
n,k,x(k)

)
, n ≥ n0, (2)

where F(·, ·) : Z+×Rm →Rm and G(·, ·, ·) : Z+×Z+×Rm →
Rm are given functions such that F(n,0) = 0 for all n ∈Z+ and
G(n,k,0) = 0 for n ≥ k, n,k ∈ Z+ (i.e. ξ = 0 is an equilibrium
point of the equation (2)).

For given n0 ∈ Z+, denote Sn0 the set of all functions ϕ(·) :
Z[0,n0] →Rm. Let ‖ϕ‖n0 = max{‖ϕ(n)‖ : n ∈Z[0,n0]}, for each
ϕ(·) ∈ Sn0 . Clearly, for fixed n0 ∈ Z+ and given ϕ ∈ Sn0 , (2)
has a unique solution satisfying the initial condition

x(n) = ϕ(n), for all n ∈ Z[0,n0]. (3)

This solution is denoted by x(·,n0,ϕ).

DEFINITION 3.1. The zero solution of (2) is said to be glob-
ally exponentially stable (shortly, GES) if there exist K > 0 and
λ ∈ (0,1) such that

‖x(n,n0,ϕ)‖ ≤ Kλ n−n0‖ϕ‖n0 , (4)

for all n,n0 ∈ Z+,n ≥ n0,ϕ(·) ∈ Sn0 .

We are now in the position to prove the main result of this
paper.

THEOREM 3.2. Suppose there exist A(·) : Z+ → Rm×m
+ and

B(·, ·) : Z+×Z+ → Rm×m
+ such that

|F(n,x)| ≤ A(n)|x| and |G(n,k,x)| ≤ B(n,k)|x|, (5)

for all n,k ∈ Z+,n ≥ k,x ∈Rm. Then the zero solution of (2) is
GES provided one of the following conditions holds:
(i) There exist α > 1 and p ∈ Rm

+, p � 0 so that
(

A(n)+
n

∑
k=0

B(n,k)αn−k
)

p ≤ α−1 p, ∀n ∈ Z+. (6)

(ii) There exist β > 1 and A ∈ Rm×m
+ , ρ(A)< 1 so that

(
A(n)+

n

∑
k=0

B(n,k)β n−k
)
≤ A, ∀n ∈ Z+. (7)

(iii) There exist γ > 1 so that

sup
n∈Z+

(
‖A(n)‖+

n

∑
k=0

‖B(n,k)‖γn−k
)
< 1. (8)

REMARK 3.3. Roughly speaking, (5) means that (2) is
“bounded above” by the linear equation

y(n+1) = A(n)y(n)+
n

∑
k=0

B(n,k)y(k), n ∈ Z+. (9)

On the other hand, as shown in the proof of Theorem 3.2, any
one of conditions (6), (7) (8), ensures that (9) is GES. There-
fore, Theorem 3.2 says that if (2) is “bounded above" by the
linear Volterra equation (9) and (9) is GES (one of conditions
(6), (7), (8) holds) then the zero solution of (2) is GES too.

Proof. We first prove that the zero solution of (2) is GES pro-
vided (i) holds. The proof consists of two steps.

Step I: We show that

‖x(n,n0,ϕ)‖ ≤ Kλ n−n0 ,

for all n,n0 ∈ Z+,n ≥ n0,ϕ ∈ Sn0 ,‖ϕ‖n0 ≤ 1, for some K >
0,λ ∈ (0,1).

Since p � 0, there exists M > 1 (M is independent of n0)
such that

Mp � |ϕ(n)|, ∀n ∈ Z[0,n0],∀ϕ ∈ Sn0 ,‖ϕ‖n0 ≤ 1. (10)

Let us define λ := α−1 and u(n) := Mλ n−n0 p, n ∈Z. From (3)
and (10), it follows that

u(n)� |x(n)|, ∀n ∈ Z[0,n0]. (11)

It is worth noticing that

|x(n0 +1)| (2)
=

∣∣F(n0,x(n0))+
n0

∑
k=0

G(n0,k,x(k))
∣∣

≤ |F(n0,x(n0))|+
n0

∑
k=0

|G(n0,k,x(k))|

(5)
≤ A(n0)|x(n0)|+

n0

∑
k=0

B(n0,k)|x(k)|

(11)
≤ A(n0)Mp+

n0

∑
k=0

B(n0,k)Mλ k−n0 p

= M
(
A(n0)+

n0

∑
k=0

B(n0,k)αn0−k)p

(6)
≤ Mα−1 p

= u(n0 +1).

By induction, we can show that

|x(n)|= |x(n,n0,ϕ)| ≤Mλ n−n0 p,∀n≥ n0,∀ϕ ∈Sn0 ,‖ϕ‖n0 ≤ 1.

By the monotonicity of vector norms, it follows that

‖x(n,n0,ϕ)‖ ≤ M‖p‖λ n−n0 = Kλ n−n0 ,

for all n ≥ n0,ϕ ∈ Sn0 ,‖ϕ‖n0 ≤ 1, where K := M‖p‖.
Step II: We show that (4) holds.

Consider the linear Volterra equation (9). By Step I, we have
for any ϕ ∈ Sn0 ,‖ϕ‖n0 ≤ 1,

‖y(n,n0,ϕ)‖ ≤ Kλ n−n0 , ∀n ≥ n0,
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1. Introduction
Volterra difference equations have been widely used in the
modeling of processes in continuous mechanics and biome-
chanics, problems of control and estimations and some
schemes of numerical solutions of integral and integro-
differential equations, see e.g. [2], [7], [12], [16]-[19].

Problems of stability of Volterra difference equations have
attracted much attention from researchers, during the last
twenty years, see e.g. [1],[4]-[13], [15], [21]-[23] and refer-
ences therein. Many various methods have been used to inves-
tigate stability of Volterra difference equations such as Lya-
punov functions, Z transform, comparison theorems, topologi-
cal methods, fixed point theorems, etc (see e.g. [7], [10], [15],
[23]).

In particular, the first significant result on exponential sta-
bility of Volterra difference equations is due to Elaydi and
Murakami, see [8]. Roughly speaking, Elaydi and Murakami
showed that even to the simplest Volterra difference equations
(namely, linear time-invariant Volterra difference equations of
convolution type), the exponential stability is “stronger” than
the uniform asymptotic stability. More precisely, a linear time-
invariant Volterra difference equation of convolution type is ex-
ponentially stable if and only if it is uniformly asymptotically
stable and its kernel exponentially decays, see [8]. For further
and updated information on stability of linear time-invariant
Volterra difference equations, we refer to the recent survey pa-
per [10].

In general, problems of global exponential stability of time-
varying Volterra difference equations are very hard even those
of linear time-varying Volterra equations. Most of existing re-
sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
ditions for exponential stability of linear time-varying Volterra
difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
nential stability of nonlinear time-varying Volterra difference
equations. Our approach is based on the celebrated Perron-
Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
nential stability of the zero solution of general nonlinear time-

varying Volterra difference equations. Furthermore, we derive
an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.

2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there

1

+, n ¸ k, x 2 
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1. Introduction
Volterra difference equations have been widely used in the
modeling of processes in continuous mechanics and biome-
chanics, problems of control and estimations and some
schemes of numerical solutions of integral and integro-
differential equations, see e.g. [2], [7], [12], [16]-[19].

Problems of stability of Volterra difference equations have
attracted much attention from researchers, during the last
twenty years, see e.g. [1],[4]-[13], [15], [21]-[23] and refer-
ences therein. Many various methods have been used to inves-
tigate stability of Volterra difference equations such as Lya-
punov functions, Z transform, comparison theorems, topologi-
cal methods, fixed point theorems, etc (see e.g. [7], [10], [15],
[23]).

In particular, the first significant result on exponential sta-
bility of Volterra difference equations is due to Elaydi and
Murakami, see [8]. Roughly speaking, Elaydi and Murakami
showed that even to the simplest Volterra difference equations
(namely, linear time-invariant Volterra difference equations of
convolution type), the exponential stability is “stronger” than
the uniform asymptotic stability. More precisely, a linear time-
invariant Volterra difference equation of convolution type is ex-
ponentially stable if and only if it is uniformly asymptotically
stable and its kernel exponentially decays, see [8]. For further
and updated information on stability of linear time-invariant
Volterra difference equations, we refer to the recent survey pa-
per [10].

In general, problems of global exponential stability of time-
varying Volterra difference equations are very hard even those
of linear time-varying Volterra equations. Most of existing re-
sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
ditions for exponential stability of linear time-varying Volterra
difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
nential stability of nonlinear time-varying Volterra difference
equations. Our approach is based on the celebrated Perron-
Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
nential stability of the zero solution of general nonlinear time-

varying Volterra difference equations. Furthermore, we derive
an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.

2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there

1

m. Then the zero solution of (2) is 
GES provided one of the following conditions holds:
	 (i)	� There exist α > 1 and p 2 
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Volterra difference equations have been widely used in the
modeling of processes in continuous mechanics and biome-
chanics, problems of control and estimations and some
schemes of numerical solutions of integral and integro-
differential equations, see e.g. [2], [7], [12], [16]-[19].

Problems of stability of Volterra difference equations have
attracted much attention from researchers, during the last
twenty years, see e.g. [1],[4]-[13], [15], [21]-[23] and refer-
ences therein. Many various methods have been used to inves-
tigate stability of Volterra difference equations such as Lya-
punov functions, Z transform, comparison theorems, topologi-
cal methods, fixed point theorems, etc (see e.g. [7], [10], [15],
[23]).

In particular, the first significant result on exponential sta-
bility of Volterra difference equations is due to Elaydi and
Murakami, see [8]. Roughly speaking, Elaydi and Murakami
showed that even to the simplest Volterra difference equations
(namely, linear time-invariant Volterra difference equations of
convolution type), the exponential stability is “stronger” than
the uniform asymptotic stability. More precisely, a linear time-
invariant Volterra difference equation of convolution type is ex-
ponentially stable if and only if it is uniformly asymptotically
stable and its kernel exponentially decays, see [8]. For further
and updated information on stability of linear time-invariant
Volterra difference equations, we refer to the recent survey pa-
per [10].

In general, problems of global exponential stability of time-
varying Volterra difference equations are very hard even those
of linear time-varying Volterra equations. Most of existing re-
sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
ditions for exponential stability of linear time-varying Volterra
difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
nential stability of nonlinear time-varying Volterra difference
equations. Our approach is based on the celebrated Perron-
Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
nential stability of the zero solution of general nonlinear time-

varying Volterra difference equations. Furthermore, we derive
an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.

2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there

1

+
m, p À 0 so that

exists a nonnegative eigenvector x ∈ Rm, x �= 0 such that
Mx = ρ(M)x.

(ii) (tIm − M)−1 exists and is nonnegative if and only if t >
ρ(M).

The following theorem follows from Theorem 2.1.

THEOREM 2.2 [20]. Let M ∈ Rm×m
+ . Then the following

statements are equivalent:

(i) ρ(M)< 1;
(ii) ∃p ∈ Rm, p � 0 : Mp � p;

(iii) (Im −M)−1 ≥ 0.

3. Explicit criteria for exponential stability
Consider a nonlinear Volterra difference equation of the form

x(n+1) = F
(
n,x(n)

)
+

n

∑
k=0

G
(
n,k,x(k)

)
, n ≥ n0, (2)

where F(·, ·) : Z+×Rm →Rm and G(·, ·, ·) : Z+×Z+×Rm →
Rm are given functions such that F(n,0) = 0 for all n ∈Z+ and
G(n,k,0) = 0 for n ≥ k, n,k ∈ Z+ (i.e. ξ = 0 is an equilibrium
point of the equation (2)).

For given n0 ∈ Z+, denote Sn0 the set of all functions ϕ(·) :
Z[0,n0] →Rm. Let ‖ϕ‖n0 = max{‖ϕ(n)‖ : n ∈Z[0,n0]}, for each
ϕ(·) ∈ Sn0 . Clearly, for fixed n0 ∈ Z+ and given ϕ ∈ Sn0 , (2)
has a unique solution satisfying the initial condition

x(n) = ϕ(n), for all n ∈ Z[0,n0]. (3)

This solution is denoted by x(·,n0,ϕ).

DEFINITION 3.1. The zero solution of (2) is said to be glob-
ally exponentially stable (shortly, GES) if there exist K > 0 and
λ ∈ (0,1) such that

‖x(n,n0,ϕ)‖ ≤ Kλ n−n0‖ϕ‖n0 , (4)

for all n,n0 ∈ Z+,n ≥ n0,ϕ(·) ∈ Sn0 .

We are now in the position to prove the main result of this
paper.

THEOREM 3.2. Suppose there exist A(·) : Z+ → Rm×m
+ and

B(·, ·) : Z+×Z+ → Rm×m
+ such that

|F(n,x)| ≤ A(n)|x| and |G(n,k,x)| ≤ B(n,k)|x|, (5)

for all n,k ∈ Z+,n ≥ k,x ∈Rm. Then the zero solution of (2) is
GES provided one of the following conditions holds:
(i) There exist α > 1 and p ∈ Rm

+, p � 0 so that
(

A(n)+
n

∑
k=0

B(n,k)αn−k
)

p ≤ α−1 p, ∀n ∈ Z+. (6)

(ii) There exist β > 1 and A ∈ Rm×m
+ , ρ(A)< 1 so that

(
A(n)+

n

∑
k=0

B(n,k)β n−k
)
≤ A, ∀n ∈ Z+. (7)

(iii) There exist γ > 1 so that

sup
n∈Z+

(
‖A(n)‖+

n

∑
k=0

‖B(n,k)‖γn−k
)
< 1. (8)

REMARK 3.3. Roughly speaking, (5) means that (2) is
“bounded above” by the linear equation

y(n+1) = A(n)y(n)+
n

∑
k=0

B(n,k)y(k), n ∈ Z+. (9)

On the other hand, as shown in the proof of Theorem 3.2, any
one of conditions (6), (7) (8), ensures that (9) is GES. There-
fore, Theorem 3.2 says that if (2) is “bounded above" by the
linear Volterra equation (9) and (9) is GES (one of conditions
(6), (7), (8) holds) then the zero solution of (2) is GES too.

Proof. We first prove that the zero solution of (2) is GES pro-
vided (i) holds. The proof consists of two steps.

Step I: We show that

‖x(n,n0,ϕ)‖ ≤ Kλ n−n0 ,

for all n,n0 ∈ Z+,n ≥ n0,ϕ ∈ Sn0 ,‖ϕ‖n0 ≤ 1, for some K >
0,λ ∈ (0,1).

Since p � 0, there exists M > 1 (M is independent of n0)
such that

Mp � |ϕ(n)|, ∀n ∈ Z[0,n0],∀ϕ ∈ Sn0 ,‖ϕ‖n0 ≤ 1. (10)

Let us define λ := α−1 and u(n) := Mλ n−n0 p, n ∈Z. From (3)
and (10), it follows that

u(n)� |x(n)|, ∀n ∈ Z[0,n0]. (11)

It is worth noticing that

|x(n0 +1)| (2)
=

∣∣F(n0,x(n0))+
n0

∑
k=0

G(n0,k,x(k))
∣∣

≤ |F(n0,x(n0))|+
n0

∑
k=0

|G(n0,k,x(k))|

(5)
≤ A(n0)|x(n0)|+

n0

∑
k=0

B(n0,k)|x(k)|

(11)
≤ A(n0)Mp+

n0

∑
k=0

B(n0,k)Mλ k−n0 p

= M
(
A(n0)+

n0

∑
k=0

B(n0,k)αn0−k)p

(6)
≤ Mα−1 p

= u(n0 +1).

By induction, we can show that

|x(n)|= |x(n,n0,ϕ)| ≤Mλ n−n0 p,∀n≥ n0,∀ϕ ∈Sn0 ,‖ϕ‖n0 ≤ 1.

By the monotonicity of vector norms, it follows that

‖x(n,n0,ϕ)‖ ≤ M‖p‖λ n−n0 = Kλ n−n0 ,

for all n ≥ n0,ϕ ∈ Sn0 ,‖ϕ‖n0 ≤ 1, where K := M‖p‖.
Step II: We show that (4) holds.

Consider the linear Volterra equation (9). By Step I, we have
for any ϕ ∈ Sn0 ,‖ϕ‖n0 ≤ 1,

‖y(n,n0,ϕ)‖ ≤ Kλ n−n0 , ∀n ≥ n0,
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exists a nonnegative eigenvector x ∈ Rm, x �= 0 such that
Mx = ρ(M)x.

(ii) (tIm − M)−1 exists and is nonnegative if and only if t >
ρ(M).

The following theorem follows from Theorem 2.1.

THEOREM 2.2 [20]. Let M ∈ Rm×m
+ . Then the following

statements are equivalent:
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(ii) ∃p ∈ Rm, p � 0 : Mp � p;

(iii) (Im −M)−1 ≥ 0.
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n
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n,k,x(k)
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where F(·, ·) : Z+×Rm →Rm and G(·, ·, ·) : Z+×Z+×Rm →
Rm are given functions such that F(n,0) = 0 for all n ∈Z+ and
G(n,k,0) = 0 for n ≥ k, n,k ∈ Z+ (i.e. ξ = 0 is an equilibrium
point of the equation (2)).

For given n0 ∈ Z+, denote Sn0 the set of all functions ϕ(·) :
Z[0,n0] →Rm. Let ‖ϕ‖n0 = max{‖ϕ(n)‖ : n ∈Z[0,n0]}, for each
ϕ(·) ∈ Sn0 . Clearly, for fixed n0 ∈ Z+ and given ϕ ∈ Sn0 , (2)
has a unique solution satisfying the initial condition

x(n) = ϕ(n), for all n ∈ Z[0,n0]. (3)

This solution is denoted by x(·,n0,ϕ).

DEFINITION 3.1. The zero solution of (2) is said to be glob-
ally exponentially stable (shortly, GES) if there exist K > 0 and
λ ∈ (0,1) such that

‖x(n,n0,ϕ)‖ ≤ Kλ n−n0‖ϕ‖n0 , (4)

for all n,n0 ∈ Z+,n ≥ n0,ϕ(·) ∈ Sn0 .

We are now in the position to prove the main result of this
paper.

THEOREM 3.2. Suppose there exist A(·) : Z+ → Rm×m
+ and

B(·, ·) : Z+×Z+ → Rm×m
+ such that

|F(n,x)| ≤ A(n)|x| and |G(n,k,x)| ≤ B(n,k)|x|, (5)

for all n,k ∈ Z+,n ≥ k,x ∈Rm. Then the zero solution of (2) is
GES provided one of the following conditions holds:
(i) There exist α > 1 and p ∈ Rm

+, p � 0 so that
(

A(n)+
n

∑
k=0

B(n,k)αn−k
)

p ≤ α−1 p, ∀n ∈ Z+. (6)

(ii) There exist β > 1 and A ∈ Rm×m
+ , ρ(A)< 1 so that

(
A(n)+

n

∑
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B(n,k)β n−k
)
≤ A, ∀n ∈ Z+. (7)

(iii) There exist γ > 1 so that

sup
n∈Z+

(
‖A(n)‖+

n

∑
k=0

‖B(n,k)‖γn−k
)
< 1. (8)

REMARK 3.3. Roughly speaking, (5) means that (2) is
“bounded above” by the linear equation

y(n+1) = A(n)y(n)+
n

∑
k=0

B(n,k)y(k), n ∈ Z+. (9)

On the other hand, as shown in the proof of Theorem 3.2, any
one of conditions (6), (7) (8), ensures that (9) is GES. There-
fore, Theorem 3.2 says that if (2) is “bounded above" by the
linear Volterra equation (9) and (9) is GES (one of conditions
(6), (7), (8) holds) then the zero solution of (2) is GES too.

Proof. We first prove that the zero solution of (2) is GES pro-
vided (i) holds. The proof consists of two steps.

Step I: We show that

‖x(n,n0,ϕ)‖ ≤ Kλ n−n0 ,

for all n,n0 ∈ Z+,n ≥ n0,ϕ ∈ Sn0 ,‖ϕ‖n0 ≤ 1, for some K >
0,λ ∈ (0,1).

Since p � 0, there exists M > 1 (M is independent of n0)
such that

Mp � |ϕ(n)|, ∀n ∈ Z[0,n0],∀ϕ ∈ Sn0 ,‖ϕ‖n0 ≤ 1. (10)

Let us define λ := α−1 and u(n) := Mλ n−n0 p, n ∈Z. From (3)
and (10), it follows that

u(n)� |x(n)|, ∀n ∈ Z[0,n0]. (11)

It is worth noticing that

|x(n0 +1)| (2)
=

∣∣F(n0,x(n0))+
n0

∑
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G(n0,k,x(k))
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≤ |F(n0,x(n0))|+
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|G(n0,k,x(k))|

(5)
≤ A(n0)|x(n0)|+

n0

∑
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B(n0,k)|x(k)|

(11)
≤ A(n0)Mp+

n0

∑
k=0

B(n0,k)Mλ k−n0 p

= M
(
A(n0)+

n0

∑
k=0

B(n0,k)αn0−k)p

(6)
≤ Mα−1 p

= u(n0 +1).

By induction, we can show that

|x(n)|= |x(n,n0,ϕ)| ≤Mλ n−n0 p,∀n≥ n0,∀ϕ ∈Sn0 ,‖ϕ‖n0 ≤ 1.

By the monotonicity of vector norms, it follows that

‖x(n,n0,ϕ)‖ ≤ M‖p‖λ n−n0 = Kλ n−n0 ,

for all n ≥ n0,ϕ ∈ Sn0 ,‖ϕ‖n0 ≤ 1, where K := M‖p‖.
Step II: We show that (4) holds.

Consider the linear Volterra equation (9). By Step I, we have
for any ϕ ∈ Sn0 ,‖ϕ‖n0 ≤ 1,

‖y(n,n0,ϕ)‖ ≤ Kλ n−n0 , ∀n ≥ n0,
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1. Introduction
Volterra difference equations have been widely used in the
modeling of processes in continuous mechanics and biome-
chanics, problems of control and estimations and some
schemes of numerical solutions of integral and integro-
differential equations, see e.g. [2], [7], [12], [16]-[19].

Problems of stability of Volterra difference equations have
attracted much attention from researchers, during the last
twenty years, see e.g. [1],[4]-[13], [15], [21]-[23] and refer-
ences therein. Many various methods have been used to inves-
tigate stability of Volterra difference equations such as Lya-
punov functions, Z transform, comparison theorems, topologi-
cal methods, fixed point theorems, etc (see e.g. [7], [10], [15],
[23]).

In particular, the first significant result on exponential sta-
bility of Volterra difference equations is due to Elaydi and
Murakami, see [8]. Roughly speaking, Elaydi and Murakami
showed that even to the simplest Volterra difference equations
(namely, linear time-invariant Volterra difference equations of
convolution type), the exponential stability is “stronger” than
the uniform asymptotic stability. More precisely, a linear time-
invariant Volterra difference equation of convolution type is ex-
ponentially stable if and only if it is uniformly asymptotically
stable and its kernel exponentially decays, see [8]. For further
and updated information on stability of linear time-invariant
Volterra difference equations, we refer to the recent survey pa-
per [10].

In general, problems of global exponential stability of time-
varying Volterra difference equations are very hard even those
of linear time-varying Volterra equations. Most of existing re-
sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
ditions for exponential stability of linear time-varying Volterra
difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
nential stability of nonlinear time-varying Volterra difference
equations. Our approach is based on the celebrated Perron-
Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
nential stability of the zero solution of general nonlinear time-

varying Volterra difference equations. Furthermore, we derive
an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.

2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there

1

+
m£m, ρ(A) < 1 so that

	

exists a nonnegative eigenvector x ∈ Rm, x �= 0 such that
Mx = ρ(M)x.

(ii) (tIm − M)−1 exists and is nonnegative if and only if t >
ρ(M).

The following theorem follows from Theorem 2.1.

THEOREM 2.2 [20]. Let M ∈ Rm×m
+ . Then the following

statements are equivalent:

(i) ρ(M)< 1;
(ii) ∃p ∈ Rm, p � 0 : Mp � p;

(iii) (Im −M)−1 ≥ 0.

3. Explicit criteria for exponential stability
Consider a nonlinear Volterra difference equation of the form

x(n+1) = F
(
n,x(n)

)
+

n

∑
k=0

G
(
n,k,x(k)

)
, n ≥ n0, (2)

where F(·, ·) : Z+×Rm →Rm and G(·, ·, ·) : Z+×Z+×Rm →
Rm are given functions such that F(n,0) = 0 for all n ∈Z+ and
G(n,k,0) = 0 for n ≥ k, n,k ∈ Z+ (i.e. ξ = 0 is an equilibrium
point of the equation (2)).

For given n0 ∈ Z+, denote Sn0 the set of all functions ϕ(·) :
Z[0,n0] →Rm. Let ‖ϕ‖n0 = max{‖ϕ(n)‖ : n ∈Z[0,n0]}, for each
ϕ(·) ∈ Sn0 . Clearly, for fixed n0 ∈ Z+ and given ϕ ∈ Sn0 , (2)
has a unique solution satisfying the initial condition

x(n) = ϕ(n), for all n ∈ Z[0,n0]. (3)

This solution is denoted by x(·,n0,ϕ).

DEFINITION 3.1. The zero solution of (2) is said to be glob-
ally exponentially stable (shortly, GES) if there exist K > 0 and
λ ∈ (0,1) such that

‖x(n,n0,ϕ)‖ ≤ Kλ n−n0‖ϕ‖n0 , (4)

for all n,n0 ∈ Z+,n ≥ n0,ϕ(·) ∈ Sn0 .

We are now in the position to prove the main result of this
paper.

THEOREM 3.2. Suppose there exist A(·) : Z+ → Rm×m
+ and

B(·, ·) : Z+×Z+ → Rm×m
+ such that

|F(n,x)| ≤ A(n)|x| and |G(n,k,x)| ≤ B(n,k)|x|, (5)

for all n,k ∈ Z+,n ≥ k,x ∈Rm. Then the zero solution of (2) is
GES provided one of the following conditions holds:
(i) There exist α > 1 and p ∈ Rm

+, p � 0 so that
(

A(n)+
n

∑
k=0

B(n,k)αn−k
)

p ≤ α−1 p, ∀n ∈ Z+. (6)

(ii) There exist β > 1 and A ∈ Rm×m
+ , ρ(A)< 1 so that

(
A(n)+

n

∑
k=0

B(n,k)β n−k
)
≤ A, ∀n ∈ Z+. (7)

(iii) There exist γ > 1 so that

sup
n∈Z+

(
‖A(n)‖+

n

∑
k=0

‖B(n,k)‖γn−k
)
< 1. (8)

REMARK 3.3. Roughly speaking, (5) means that (2) is
“bounded above” by the linear equation

y(n+1) = A(n)y(n)+
n

∑
k=0

B(n,k)y(k), n ∈ Z+. (9)

On the other hand, as shown in the proof of Theorem 3.2, any
one of conditions (6), (7) (8), ensures that (9) is GES. There-
fore, Theorem 3.2 says that if (2) is “bounded above" by the
linear Volterra equation (9) and (9) is GES (one of conditions
(6), (7), (8) holds) then the zero solution of (2) is GES too.

Proof. We first prove that the zero solution of (2) is GES pro-
vided (i) holds. The proof consists of two steps.

Step I: We show that

‖x(n,n0,ϕ)‖ ≤ Kλ n−n0 ,

for all n,n0 ∈ Z+,n ≥ n0,ϕ ∈ Sn0 ,‖ϕ‖n0 ≤ 1, for some K >
0,λ ∈ (0,1).

Since p � 0, there exists M > 1 (M is independent of n0)
such that

Mp � |ϕ(n)|, ∀n ∈ Z[0,n0],∀ϕ ∈ Sn0 ,‖ϕ‖n0 ≤ 1. (10)

Let us define λ := α−1 and u(n) := Mλ n−n0 p, n ∈Z. From (3)
and (10), it follows that

u(n)� |x(n)|, ∀n ∈ Z[0,n0]. (11)

It is worth noticing that

|x(n0 +1)| (2)
=

∣∣F(n0,x(n0))+
n0

∑
k=0

G(n0,k,x(k))
∣∣

≤ |F(n0,x(n0))|+
n0

∑
k=0

|G(n0,k,x(k))|

(5)
≤ A(n0)|x(n0)|+

n0

∑
k=0

B(n0,k)|x(k)|

(11)
≤ A(n0)Mp+

n0

∑
k=0

B(n0,k)Mλ k−n0 p

= M
(
A(n0)+

n0

∑
k=0

B(n0,k)αn0−k)p

(6)
≤ Mα−1 p

= u(n0 +1).

By induction, we can show that

|x(n)|= |x(n,n0,ϕ)| ≤Mλ n−n0 p,∀n≥ n0,∀ϕ ∈Sn0 ,‖ϕ‖n0 ≤ 1.

By the monotonicity of vector norms, it follows that

‖x(n,n0,ϕ)‖ ≤ M‖p‖λ n−n0 = Kλ n−n0 ,

for all n ≥ n0,ϕ ∈ Sn0 ,‖ϕ‖n0 ≤ 1, where K := M‖p‖.
Step II: We show that (4) holds.

Consider the linear Volterra equation (9). By Step I, we have
for any ϕ ∈ Sn0 ,‖ϕ‖n0 ≤ 1,

‖y(n,n0,ϕ)‖ ≤ Kλ n−n0 , ∀n ≥ n0,
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exists a nonnegative eigenvector x ∈ Rm, x �= 0 such that
Mx = ρ(M)x.

(ii) (tIm − M)−1 exists and is nonnegative if and only if t >
ρ(M).

The following theorem follows from Theorem 2.1.

THEOREM 2.2 [20]. Let M ∈ Rm×m
+ . Then the following

statements are equivalent:

(i) ρ(M)< 1;
(ii) ∃p ∈ Rm, p � 0 : Mp � p;

(iii) (Im −M)−1 ≥ 0.
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)
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Rm are given functions such that F(n,0) = 0 for all n ∈Z+ and
G(n,k,0) = 0 for n ≥ k, n,k ∈ Z+ (i.e. ξ = 0 is an equilibrium
point of the equation (2)).

For given n0 ∈ Z+, denote Sn0 the set of all functions ϕ(·) :
Z[0,n0] →Rm. Let ‖ϕ‖n0 = max{‖ϕ(n)‖ : n ∈Z[0,n0]}, for each
ϕ(·) ∈ Sn0 . Clearly, for fixed n0 ∈ Z+ and given ϕ ∈ Sn0 , (2)
has a unique solution satisfying the initial condition

x(n) = ϕ(n), for all n ∈ Z[0,n0]. (3)

This solution is denoted by x(·,n0,ϕ).

DEFINITION 3.1. The zero solution of (2) is said to be glob-
ally exponentially stable (shortly, GES) if there exist K > 0 and
λ ∈ (0,1) such that

‖x(n,n0,ϕ)‖ ≤ Kλ n−n0‖ϕ‖n0 , (4)

for all n,n0 ∈ Z+,n ≥ n0,ϕ(·) ∈ Sn0 .

We are now in the position to prove the main result of this
paper.

THEOREM 3.2. Suppose there exist A(·) : Z+ → Rm×m
+ and

B(·, ·) : Z+×Z+ → Rm×m
+ such that

|F(n,x)| ≤ A(n)|x| and |G(n,k,x)| ≤ B(n,k)|x|, (5)

for all n,k ∈ Z+,n ≥ k,x ∈Rm. Then the zero solution of (2) is
GES provided one of the following conditions holds:
(i) There exist α > 1 and p ∈ Rm

+, p � 0 so that
(

A(n)+
n

∑
k=0

B(n,k)αn−k
)

p ≤ α−1 p, ∀n ∈ Z+. (6)

(ii) There exist β > 1 and A ∈ Rm×m
+ , ρ(A)< 1 so that

(
A(n)+

n

∑
k=0

B(n,k)β n−k
)
≤ A, ∀n ∈ Z+. (7)

(iii) There exist γ > 1 so that

sup
n∈Z+

(
‖A(n)‖+

n

∑
k=0

‖B(n,k)‖γn−k
)
< 1. (8)

REMARK 3.3. Roughly speaking, (5) means that (2) is
“bounded above” by the linear equation

y(n+1) = A(n)y(n)+
n

∑
k=0

B(n,k)y(k), n ∈ Z+. (9)

On the other hand, as shown in the proof of Theorem 3.2, any
one of conditions (6), (7) (8), ensures that (9) is GES. There-
fore, Theorem 3.2 says that if (2) is “bounded above" by the
linear Volterra equation (9) and (9) is GES (one of conditions
(6), (7), (8) holds) then the zero solution of (2) is GES too.

Proof. We first prove that the zero solution of (2) is GES pro-
vided (i) holds. The proof consists of two steps.

Step I: We show that

‖x(n,n0,ϕ)‖ ≤ Kλ n−n0 ,

for all n,n0 ∈ Z+,n ≥ n0,ϕ ∈ Sn0 ,‖ϕ‖n0 ≤ 1, for some K >
0,λ ∈ (0,1).

Since p � 0, there exists M > 1 (M is independent of n0)
such that

Mp � |ϕ(n)|, ∀n ∈ Z[0,n0],∀ϕ ∈ Sn0 ,‖ϕ‖n0 ≤ 1. (10)

Let us define λ := α−1 and u(n) := Mλ n−n0 p, n ∈Z. From (3)
and (10), it follows that

u(n)� |x(n)|, ∀n ∈ Z[0,n0]. (11)

It is worth noticing that

|x(n0 +1)| (2)
=

∣∣F(n0,x(n0))+
n0

∑
k=0

G(n0,k,x(k))
∣∣

≤ |F(n0,x(n0))|+
n0

∑
k=0

|G(n0,k,x(k))|

(5)
≤ A(n0)|x(n0)|+

n0

∑
k=0

B(n0,k)|x(k)|

(11)
≤ A(n0)Mp+

n0

∑
k=0

B(n0,k)Mλ k−n0 p

= M
(
A(n0)+

n0

∑
k=0

B(n0,k)αn0−k)p

(6)
≤ Mα−1 p

= u(n0 +1).

By induction, we can show that

|x(n)|= |x(n,n0,ϕ)| ≤Mλ n−n0 p,∀n≥ n0,∀ϕ ∈Sn0 ,‖ϕ‖n0 ≤ 1.

By the monotonicity of vector norms, it follows that

‖x(n,n0,ϕ)‖ ≤ M‖p‖λ n−n0 = Kλ n−n0 ,

for all n ≥ n0,ϕ ∈ Sn0 ,‖ϕ‖n0 ≤ 1, where K := M‖p‖.
Step II: We show that (4) holds.

Consider the linear Volterra equation (9). By Step I, we have
for any ϕ ∈ Sn0 ,‖ϕ‖n0 ≤ 1,

‖y(n,n0,ϕ)‖ ≤ Kλ n−n0 , ∀n ≥ n0,
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ρ(M).

The following theorem follows from Theorem 2.1.

THEOREM 2.2 [20]. Let M ∈ Rm×m
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1. Introduction
Volterra difference equations have been widely used in the
modeling of processes in continuous mechanics and biome-
chanics, problems of control and estimations and some
schemes of numerical solutions of integral and integro-
differential equations, see e.g. [2], [7], [12], [16]-[19].

Problems of stability of Volterra difference equations have
attracted much attention from researchers, during the last
twenty years, see e.g. [1],[4]-[13], [15], [21]-[23] and refer-
ences therein. Many various methods have been used to inves-
tigate stability of Volterra difference equations such as Lya-
punov functions, Z transform, comparison theorems, topologi-
cal methods, fixed point theorems, etc (see e.g. [7], [10], [15],
[23]).

In particular, the first significant result on exponential sta-
bility of Volterra difference equations is due to Elaydi and
Murakami, see [8]. Roughly speaking, Elaydi and Murakami
showed that even to the simplest Volterra difference equations
(namely, linear time-invariant Volterra difference equations of
convolution type), the exponential stability is “stronger” than
the uniform asymptotic stability. More precisely, a linear time-
invariant Volterra difference equation of convolution type is ex-
ponentially stable if and only if it is uniformly asymptotically
stable and its kernel exponentially decays, see [8]. For further
and updated information on stability of linear time-invariant
Volterra difference equations, we refer to the recent survey pa-
per [10].

In general, problems of global exponential stability of time-
varying Volterra difference equations are very hard even those
of linear time-varying Volterra equations. Most of existing re-
sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
ditions for exponential stability of linear time-varying Volterra
difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
nential stability of nonlinear time-varying Volterra difference
equations. Our approach is based on the celebrated Perron-
Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
nential stability of the zero solution of general nonlinear time-

varying Volterra difference equations. Furthermore, we derive
an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.

2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there

1

+, n ¸ n0, φ 2 

exists a nonnegative eigenvector x ∈ Rm, x �= 0 such that
Mx = ρ(M)x.

(ii) (tIm − M)−1 exists and is nonnegative if and only if t >
ρ(M).

The following theorem follows from Theorem 2.1.

THEOREM 2.2 [20]. Let M ∈ Rm×m
+ . Then the following

statements are equivalent:

(i) ρ(M)< 1;
(ii) ∃p ∈ Rm, p � 0 : Mp � p;

(iii) (Im −M)−1 ≥ 0.

3. Explicit criteria for exponential stability
Consider a nonlinear Volterra difference equation of the form

x(n+1) = F
(
n,x(n)

)
+

n

∑
k=0

G
(
n,k,x(k)

)
, n ≥ n0, (2)

where F(·, ·) : Z+×Rm →Rm and G(·, ·, ·) : Z+×Z+×Rm →
Rm are given functions such that F(n,0) = 0 for all n ∈Z+ and
G(n,k,0) = 0 for n ≥ k, n,k ∈ Z+ (i.e. ξ = 0 is an equilibrium
point of the equation (2)).

For given n0 ∈ Z+, denote Sn0 the set of all functions ϕ(·) :
Z[0,n0] →Rm. Let ‖ϕ‖n0 = max{‖ϕ(n)‖ : n ∈Z[0,n0]}, for each
ϕ(·) ∈ Sn0 . Clearly, for fixed n0 ∈ Z+ and given ϕ ∈ Sn0 , (2)
has a unique solution satisfying the initial condition

x(n) = ϕ(n), for all n ∈ Z[0,n0]. (3)

This solution is denoted by x(·,n0,ϕ).

DEFINITION 3.1. The zero solution of (2) is said to be glob-
ally exponentially stable (shortly, GES) if there exist K > 0 and
λ ∈ (0,1) such that

‖x(n,n0,ϕ)‖ ≤ Kλ n−n0‖ϕ‖n0 , (4)

for all n,n0 ∈ Z+,n ≥ n0,ϕ(·) ∈ Sn0 .

We are now in the position to prove the main result of this
paper.

THEOREM 3.2. Suppose there exist A(·) : Z+ → Rm×m
+ and

B(·, ·) : Z+×Z+ → Rm×m
+ such that

|F(n,x)| ≤ A(n)|x| and |G(n,k,x)| ≤ B(n,k)|x|, (5)

for all n,k ∈ Z+,n ≥ k,x ∈Rm. Then the zero solution of (2) is
GES provided one of the following conditions holds:
(i) There exist α > 1 and p ∈ Rm

+, p � 0 so that
(

A(n)+
n

∑
k=0

B(n,k)αn−k
)

p ≤ α−1 p, ∀n ∈ Z+. (6)

(ii) There exist β > 1 and A ∈ Rm×m
+ , ρ(A)< 1 so that

(
A(n)+

n

∑
k=0

B(n,k)β n−k
)
≤ A, ∀n ∈ Z+. (7)

(iii) There exist γ > 1 so that

sup
n∈Z+

(
‖A(n)‖+

n

∑
k=0

‖B(n,k)‖γn−k
)
< 1. (8)

REMARK 3.3. Roughly speaking, (5) means that (2) is
“bounded above” by the linear equation

y(n+1) = A(n)y(n)+
n

∑
k=0

B(n,k)y(k), n ∈ Z+. (9)

On the other hand, as shown in the proof of Theorem 3.2, any
one of conditions (6), (7) (8), ensures that (9) is GES. There-
fore, Theorem 3.2 says that if (2) is “bounded above" by the
linear Volterra equation (9) and (9) is GES (one of conditions
(6), (7), (8) holds) then the zero solution of (2) is GES too.

Proof. We first prove that the zero solution of (2) is GES pro-
vided (i) holds. The proof consists of two steps.

Step I: We show that

‖x(n,n0,ϕ)‖ ≤ Kλ n−n0 ,

for all n,n0 ∈ Z+,n ≥ n0,ϕ ∈ Sn0 ,‖ϕ‖n0 ≤ 1, for some K >
0,λ ∈ (0,1).

Since p � 0, there exists M > 1 (M is independent of n0)
such that

Mp � |ϕ(n)|, ∀n ∈ Z[0,n0],∀ϕ ∈ Sn0 ,‖ϕ‖n0 ≤ 1. (10)

Let us define λ := α−1 and u(n) := Mλ n−n0 p, n ∈Z. From (3)
and (10), it follows that

u(n)� |x(n)|, ∀n ∈ Z[0,n0]. (11)

It is worth noticing that

|x(n0 +1)| (2)
=

∣∣F(n0,x(n0))+
n0

∑
k=0

G(n0,k,x(k))
∣∣

≤ |F(n0,x(n0))|+
n0

∑
k=0

|G(n0,k,x(k))|

(5)
≤ A(n0)|x(n0)|+

n0

∑
k=0

B(n0,k)|x(k)|

(11)
≤ A(n0)Mp+

n0

∑
k=0

B(n0,k)Mλ k−n0 p

= M
(
A(n0)+

n0

∑
k=0

B(n0,k)αn0−k)p

(6)
≤ Mα−1 p

= u(n0 +1).

By induction, we can show that

|x(n)|= |x(n,n0,ϕ)| ≤Mλ n−n0 p,∀n≥ n0,∀ϕ ∈Sn0 ,‖ϕ‖n0 ≤ 1.

By the monotonicity of vector norms, it follows that

‖x(n,n0,ϕ)‖ ≤ M‖p‖λ n−n0 = Kλ n−n0 ,

for all n ≥ n0,ϕ ∈ Sn0 ,‖ϕ‖n0 ≤ 1, where K := M‖p‖.
Step II: We show that (4) holds.

Consider the linear Volterra equation (9). By Step I, we have
for any ϕ ∈ Sn0 ,‖ϕ‖n0 ≤ 1,

‖y(n,n0,ϕ)‖ ≤ Kλ n−n0 , ∀n ≥ n0,
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n0, kφkn0 ∙ 1, for some K > 0, 
λ 2 (0, 1).

Since p À 0, there exists M > 1 (M is independent of n0) 
such that
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Let us define λ := α–1 and u(n) := Mλn–n0p, n 2 
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1. Introduction
Volterra difference equations have been widely used in the
modeling of processes in continuous mechanics and biome-
chanics, problems of control and estimations and some
schemes of numerical solutions of integral and integro-
differential equations, see e.g. [2], [7], [12], [16]-[19].

Problems of stability of Volterra difference equations have
attracted much attention from researchers, during the last
twenty years, see e.g. [1],[4]-[13], [15], [21]-[23] and refer-
ences therein. Many various methods have been used to inves-
tigate stability of Volterra difference equations such as Lya-
punov functions, Z transform, comparison theorems, topologi-
cal methods, fixed point theorems, etc (see e.g. [7], [10], [15],
[23]).

In particular, the first significant result on exponential sta-
bility of Volterra difference equations is due to Elaydi and
Murakami, see [8]. Roughly speaking, Elaydi and Murakami
showed that even to the simplest Volterra difference equations
(namely, linear time-invariant Volterra difference equations of
convolution type), the exponential stability is “stronger” than
the uniform asymptotic stability. More precisely, a linear time-
invariant Volterra difference equation of convolution type is ex-
ponentially stable if and only if it is uniformly asymptotically
stable and its kernel exponentially decays, see [8]. For further
and updated information on stability of linear time-invariant
Volterra difference equations, we refer to the recent survey pa-
per [10].

In general, problems of global exponential stability of time-
varying Volterra difference equations are very hard even those
of linear time-varying Volterra equations. Most of existing re-
sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
ditions for exponential stability of linear time-varying Volterra
difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
nential stability of nonlinear time-varying Volterra difference
equations. Our approach is based on the celebrated Perron-
Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
nential stability of the zero solution of general nonlinear time-

varying Volterra difference equations. Furthermore, we derive
an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.

2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there

1

. From (3) 
and (10), it follows that

	

exists a nonnegative eigenvector x ∈ Rm, x �= 0 such that
Mx = ρ(M)x.

(ii) (tIm − M)−1 exists and is nonnegative if and only if t >
ρ(M).

The following theorem follows from Theorem 2.1.

THEOREM 2.2 [20]. Let M ∈ Rm×m
+ . Then the following

statements are equivalent:

(i) ρ(M)< 1;
(ii) ∃p ∈ Rm, p � 0 : Mp � p;

(iii) (Im −M)−1 ≥ 0.

3. Explicit criteria for exponential stability
Consider a nonlinear Volterra difference equation of the form

x(n+1) = F
(
n,x(n)

)
+

n

∑
k=0

G
(
n,k,x(k)

)
, n ≥ n0, (2)

where F(·, ·) : Z+×Rm →Rm and G(·, ·, ·) : Z+×Z+×Rm →
Rm are given functions such that F(n,0) = 0 for all n ∈Z+ and
G(n,k,0) = 0 for n ≥ k, n,k ∈ Z+ (i.e. ξ = 0 is an equilibrium
point of the equation (2)).

For given n0 ∈ Z+, denote Sn0 the set of all functions ϕ(·) :
Z[0,n0] →Rm. Let ‖ϕ‖n0 = max{‖ϕ(n)‖ : n ∈Z[0,n0]}, for each
ϕ(·) ∈ Sn0 . Clearly, for fixed n0 ∈ Z+ and given ϕ ∈ Sn0 , (2)
has a unique solution satisfying the initial condition

x(n) = ϕ(n), for all n ∈ Z[0,n0]. (3)

This solution is denoted by x(·,n0,ϕ).

DEFINITION 3.1. The zero solution of (2) is said to be glob-
ally exponentially stable (shortly, GES) if there exist K > 0 and
λ ∈ (0,1) such that

‖x(n,n0,ϕ)‖ ≤ Kλ n−n0‖ϕ‖n0 , (4)

for all n,n0 ∈ Z+,n ≥ n0,ϕ(·) ∈ Sn0 .

We are now in the position to prove the main result of this
paper.

THEOREM 3.2. Suppose there exist A(·) : Z+ → Rm×m
+ and

B(·, ·) : Z+×Z+ → Rm×m
+ such that

|F(n,x)| ≤ A(n)|x| and |G(n,k,x)| ≤ B(n,k)|x|, (5)

for all n,k ∈ Z+,n ≥ k,x ∈Rm. Then the zero solution of (2) is
GES provided one of the following conditions holds:
(i) There exist α > 1 and p ∈ Rm

+, p � 0 so that
(

A(n)+
n

∑
k=0

B(n,k)αn−k
)

p ≤ α−1 p, ∀n ∈ Z+. (6)

(ii) There exist β > 1 and A ∈ Rm×m
+ , ρ(A)< 1 so that

(
A(n)+

n

∑
k=0

B(n,k)β n−k
)
≤ A, ∀n ∈ Z+. (7)

(iii) There exist γ > 1 so that

sup
n∈Z+

(
‖A(n)‖+

n

∑
k=0

‖B(n,k)‖γn−k
)
< 1. (8)

REMARK 3.3. Roughly speaking, (5) means that (2) is
“bounded above” by the linear equation

y(n+1) = A(n)y(n)+
n

∑
k=0

B(n,k)y(k), n ∈ Z+. (9)

On the other hand, as shown in the proof of Theorem 3.2, any
one of conditions (6), (7) (8), ensures that (9) is GES. There-
fore, Theorem 3.2 says that if (2) is “bounded above" by the
linear Volterra equation (9) and (9) is GES (one of conditions
(6), (7), (8) holds) then the zero solution of (2) is GES too.

Proof. We first prove that the zero solution of (2) is GES pro-
vided (i) holds. The proof consists of two steps.

Step I: We show that

‖x(n,n0,ϕ)‖ ≤ Kλ n−n0 ,

for all n,n0 ∈ Z+,n ≥ n0,ϕ ∈ Sn0 ,‖ϕ‖n0 ≤ 1, for some K >
0,λ ∈ (0,1).

Since p � 0, there exists M > 1 (M is independent of n0)
such that

Mp � |ϕ(n)|, ∀n ∈ Z[0,n0],∀ϕ ∈ Sn0 ,‖ϕ‖n0 ≤ 1. (10)

Let us define λ := α−1 and u(n) := Mλ n−n0 p, n ∈Z. From (3)
and (10), it follows that

u(n)� |x(n)|, ∀n ∈ Z[0,n0]. (11)

It is worth noticing that

|x(n0 +1)| (2)
=

∣∣F(n0,x(n0))+
n0

∑
k=0

G(n0,k,x(k))
∣∣

≤ |F(n0,x(n0))|+
n0

∑
k=0

|G(n0,k,x(k))|

(5)
≤ A(n0)|x(n0)|+

n0

∑
k=0

B(n0,k)|x(k)|

(11)
≤ A(n0)Mp+

n0

∑
k=0

B(n0,k)Mλ k−n0 p

= M
(
A(n0)+

n0

∑
k=0

B(n0,k)αn0−k)p

(6)
≤ Mα−1 p

= u(n0 +1).

By induction, we can show that

|x(n)|= |x(n,n0,ϕ)| ≤Mλ n−n0 p,∀n≥ n0,∀ϕ ∈Sn0 ,‖ϕ‖n0 ≤ 1.

By the monotonicity of vector norms, it follows that

‖x(n,n0,ϕ)‖ ≤ M‖p‖λ n−n0 = Kλ n−n0 ,

for all n ≥ n0,ϕ ∈ Sn0 ,‖ϕ‖n0 ≤ 1, where K := M‖p‖.
Step II: We show that (4) holds.

Consider the linear Volterra equation (9). By Step I, we have
for any ϕ ∈ Sn0 ,‖ϕ‖n0 ≤ 1,

‖y(n,n0,ϕ)‖ ≤ Kλ n−n0 , ∀n ≥ n0,
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It is worth noticing that

exists a nonnegative eigenvector x ∈ Rm, x �= 0 such that
Mx = ρ(M)x.

(ii) (tIm − M)−1 exists and is nonnegative if and only if t >
ρ(M).

The following theorem follows from Theorem 2.1.

THEOREM 2.2 [20]. Let M ∈ Rm×m
+ . Then the following

statements are equivalent:

(i) ρ(M)< 1;
(ii) ∃p ∈ Rm, p � 0 : Mp � p;

(iii) (Im −M)−1 ≥ 0.

3. Explicit criteria for exponential stability
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n
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G
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Rm are given functions such that F(n,0) = 0 for all n ∈Z+ and
G(n,k,0) = 0 for n ≥ k, n,k ∈ Z+ (i.e. ξ = 0 is an equilibrium
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For given n0 ∈ Z+, denote Sn0 the set of all functions ϕ(·) :
Z[0,n0] →Rm. Let ‖ϕ‖n0 = max{‖ϕ(n)‖ : n ∈Z[0,n0]}, for each
ϕ(·) ∈ Sn0 . Clearly, for fixed n0 ∈ Z+ and given ϕ ∈ Sn0 , (2)
has a unique solution satisfying the initial condition

x(n) = ϕ(n), for all n ∈ Z[0,n0]. (3)

This solution is denoted by x(·,n0,ϕ).

DEFINITION 3.1. The zero solution of (2) is said to be glob-
ally exponentially stable (shortly, GES) if there exist K > 0 and
λ ∈ (0,1) such that

‖x(n,n0,ϕ)‖ ≤ Kλ n−n0‖ϕ‖n0 , (4)

for all n,n0 ∈ Z+,n ≥ n0,ϕ(·) ∈ Sn0 .

We are now in the position to prove the main result of this
paper.

THEOREM 3.2. Suppose there exist A(·) : Z+ → Rm×m
+ and

B(·, ·) : Z+×Z+ → Rm×m
+ such that

|F(n,x)| ≤ A(n)|x| and |G(n,k,x)| ≤ B(n,k)|x|, (5)

for all n,k ∈ Z+,n ≥ k,x ∈Rm. Then the zero solution of (2) is
GES provided one of the following conditions holds:
(i) There exist α > 1 and p ∈ Rm

+, p � 0 so that
(

A(n)+
n
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B(n,k)αn−k
)

p ≤ α−1 p, ∀n ∈ Z+. (6)

(ii) There exist β > 1 and A ∈ Rm×m
+ , ρ(A)< 1 so that

(
A(n)+

n
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B(n,k)β n−k
)
≤ A, ∀n ∈ Z+. (7)

(iii) There exist γ > 1 so that

sup
n∈Z+

(
‖A(n)‖+

n

∑
k=0

‖B(n,k)‖γn−k
)
< 1. (8)

REMARK 3.3. Roughly speaking, (5) means that (2) is
“bounded above” by the linear equation

y(n+1) = A(n)y(n)+
n

∑
k=0

B(n,k)y(k), n ∈ Z+. (9)

On the other hand, as shown in the proof of Theorem 3.2, any
one of conditions (6), (7) (8), ensures that (9) is GES. There-
fore, Theorem 3.2 says that if (2) is “bounded above" by the
linear Volterra equation (9) and (9) is GES (one of conditions
(6), (7), (8) holds) then the zero solution of (2) is GES too.

Proof. We first prove that the zero solution of (2) is GES pro-
vided (i) holds. The proof consists of two steps.

Step I: We show that

‖x(n,n0,ϕ)‖ ≤ Kλ n−n0 ,

for all n,n0 ∈ Z+,n ≥ n0,ϕ ∈ Sn0 ,‖ϕ‖n0 ≤ 1, for some K >
0,λ ∈ (0,1).

Since p � 0, there exists M > 1 (M is independent of n0)
such that

Mp � |ϕ(n)|, ∀n ∈ Z[0,n0],∀ϕ ∈ Sn0 ,‖ϕ‖n0 ≤ 1. (10)

Let us define λ := α−1 and u(n) := Mλ n−n0 p, n ∈Z. From (3)
and (10), it follows that

u(n)� |x(n)|, ∀n ∈ Z[0,n0]. (11)

It is worth noticing that

|x(n0 +1)| (2)
=

∣∣F(n0,x(n0))+
n0

∑
k=0

G(n0,k,x(k))
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≤ |F(n0,x(n0))|+
n0

∑
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|G(n0,k,x(k))|

(5)
≤ A(n0)|x(n0)|+

n0

∑
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B(n0,k)|x(k)|

(11)
≤ A(n0)Mp+

n0

∑
k=0

B(n0,k)Mλ k−n0 p

= M
(
A(n0)+

n0

∑
k=0

B(n0,k)αn0−k)p

(6)
≤ Mα−1 p

= u(n0 +1).

By induction, we can show that

|x(n)|= |x(n,n0,ϕ)| ≤Mλ n−n0 p,∀n≥ n0,∀ϕ ∈Sn0 ,‖ϕ‖n0 ≤ 1.

By the monotonicity of vector norms, it follows that

‖x(n,n0,ϕ)‖ ≤ M‖p‖λ n−n0 = Kλ n−n0 ,

for all n ≥ n0,ϕ ∈ Sn0 ,‖ϕ‖n0 ≤ 1, where K := M‖p‖.
Step II: We show that (4) holds.

Consider the linear Volterra equation (9). By Step I, we have
for any ϕ ∈ Sn0 ,‖ϕ‖n0 ≤ 1,

‖y(n,n0,ϕ)‖ ≤ Kλ n−n0 , ∀n ≥ n0,
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exists a nonnegative eigenvector x ∈ Rm, x �= 0 such that
Mx = ρ(M)x.

(ii) (tIm − M)−1 exists and is nonnegative if and only if t >
ρ(M).

The following theorem follows from Theorem 2.1.

THEOREM 2.2 [20]. Let M ∈ Rm×m
+ . Then the following

statements are equivalent:

(i) ρ(M)< 1;
(ii) ∃p ∈ Rm, p � 0 : Mp � p;

(iii) (Im −M)−1 ≥ 0.

3. Explicit criteria for exponential stability
Consider a nonlinear Volterra difference equation of the form
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(
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)
+

n

∑
k=0

G
(
n,k,x(k)

)
, n ≥ n0, (2)

where F(·, ·) : Z+×Rm →Rm and G(·, ·, ·) : Z+×Z+×Rm →
Rm are given functions such that F(n,0) = 0 for all n ∈Z+ and
G(n,k,0) = 0 for n ≥ k, n,k ∈ Z+ (i.e. ξ = 0 is an equilibrium
point of the equation (2)).
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ϕ(·) ∈ Sn0 . Clearly, for fixed n0 ∈ Z+ and given ϕ ∈ Sn0 , (2)
has a unique solution satisfying the initial condition

x(n) = ϕ(n), for all n ∈ Z[0,n0]. (3)

This solution is denoted by x(·,n0,ϕ).

DEFINITION 3.1. The zero solution of (2) is said to be glob-
ally exponentially stable (shortly, GES) if there exist K > 0 and
λ ∈ (0,1) such that

‖x(n,n0,ϕ)‖ ≤ Kλ n−n0‖ϕ‖n0 , (4)

for all n,n0 ∈ Z+,n ≥ n0,ϕ(·) ∈ Sn0 .

We are now in the position to prove the main result of this
paper.
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+ and
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+ such that

|F(n,x)| ≤ A(n)|x| and |G(n,k,x)| ≤ B(n,k)|x|, (5)

for all n,k ∈ Z+,n ≥ k,x ∈Rm. Then the zero solution of (2) is
GES provided one of the following conditions holds:
(i) There exist α > 1 and p ∈ Rm

+, p � 0 so that
(

A(n)+
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∑
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B(n,k)αn−k
)
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(ii) There exist β > 1 and A ∈ Rm×m
+ , ρ(A)< 1 so that
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(iii) There exist γ > 1 so that
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REMARK 3.3. Roughly speaking, (5) means that (2) is
“bounded above” by the linear equation

y(n+1) = A(n)y(n)+
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∑
k=0

B(n,k)y(k), n ∈ Z+. (9)

On the other hand, as shown in the proof of Theorem 3.2, any
one of conditions (6), (7) (8), ensures that (9) is GES. There-
fore, Theorem 3.2 says that if (2) is “bounded above" by the
linear Volterra equation (9) and (9) is GES (one of conditions
(6), (7), (8) holds) then the zero solution of (2) is GES too.

Proof. We first prove that the zero solution of (2) is GES pro-
vided (i) holds. The proof consists of two steps.

Step I: We show that

‖x(n,n0,ϕ)‖ ≤ Kλ n−n0 ,

for all n,n0 ∈ Z+,n ≥ n0,ϕ ∈ Sn0 ,‖ϕ‖n0 ≤ 1, for some K >
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Since p � 0, there exists M > 1 (M is independent of n0)
such that

Mp � |ϕ(n)|, ∀n ∈ Z[0,n0],∀ϕ ∈ Sn0 ,‖ϕ‖n0 ≤ 1. (10)

Let us define λ := α−1 and u(n) := Mλ n−n0 p, n ∈Z. From (3)
and (10), it follows that

u(n)� |x(n)|, ∀n ∈ Z[0,n0]. (11)

It is worth noticing that
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=
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(
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By induction, we can show that

|x(n)|= |x(n,n0,ϕ)| ≤Mλ n−n0 p,∀n≥ n0,∀ϕ ∈Sn0 ,‖ϕ‖n0 ≤ 1.
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for all n ≥ n0,ϕ ∈ Sn0 ,‖ϕ‖n0 ≤ 1, where K := M‖p‖.
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By induction, we can show that
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such that

Mp � |ϕ(n)|, ∀n ∈ Z[0,n0],∀ϕ ∈ Sn0 ,‖ϕ‖n0 ≤ 1. (10)

Let us define λ := α−1 and u(n) := Mλ n−n0 p, n ∈Z. From (3)
and (10), it follows that

u(n)� |x(n)|, ∀n ∈ Z[0,n0]. (11)

It is worth noticing that

|x(n0 +1)| (2)
=

∣∣F(n0,x(n0))+
n0

∑
k=0

G(n0,k,x(k))
∣∣

≤ |F(n0,x(n0))|+
n0

∑
k=0

|G(n0,k,x(k))|

(5)
≤ A(n0)|x(n0)|+

n0

∑
k=0

B(n0,k)|x(k)|

(11)
≤ A(n0)Mp+

n0

∑
k=0

B(n0,k)Mλ k−n0 p

= M
(
A(n0)+

n0

∑
k=0

B(n0,k)αn0−k)p

(6)
≤ Mα−1 p

= u(n0 +1).

By induction, we can show that

|x(n)|= |x(n,n0,ϕ)| ≤Mλ n−n0 p,∀n≥ n0,∀ϕ ∈Sn0 ,‖ϕ‖n0 ≤ 1.

By the monotonicity of vector norms, it follows that

‖x(n,n0,ϕ)‖ ≤ M‖p‖λ n−n0 = Kλ n−n0 ,

for all n ≥ n0,ϕ ∈ Sn0 ,‖ϕ‖n0 ≤ 1, where K := M‖p‖.
Step II: We show that (4) holds.

Consider the linear Volterra equation (9). By Step I, we have
for any ϕ ∈ Sn0 ,‖ϕ‖n0 ≤ 1,

‖y(n,n0,ϕ)‖ ≤ Kλ n−n0 , ∀n ≥ n0,
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exists a nonnegative eigenvector x ∈ Rm, x �= 0 such that
Mx = ρ(M)x.

(ii) (tIm − M)−1 exists and is nonnegative if and only if t >
ρ(M).

The following theorem follows from Theorem 2.1.

THEOREM 2.2 [20]. Let M ∈ Rm×m
+ . Then the following

statements are equivalent:

(i) ρ(M)< 1;
(ii) ∃p ∈ Rm, p � 0 : Mp � p;

(iii) (Im −M)−1 ≥ 0.

3. Explicit criteria for exponential stability
Consider a nonlinear Volterra difference equation of the form

x(n+1) = F
(
n,x(n)

)
+

n

∑
k=0

G
(
n,k,x(k)

)
, n ≥ n0, (2)

where F(·, ·) : Z+×Rm →Rm and G(·, ·, ·) : Z+×Z+×Rm →
Rm are given functions such that F(n,0) = 0 for all n ∈Z+ and
G(n,k,0) = 0 for n ≥ k, n,k ∈ Z+ (i.e. ξ = 0 is an equilibrium
point of the equation (2)).

For given n0 ∈ Z+, denote Sn0 the set of all functions ϕ(·) :
Z[0,n0] →Rm. Let ‖ϕ‖n0 = max{‖ϕ(n)‖ : n ∈Z[0,n0]}, for each
ϕ(·) ∈ Sn0 . Clearly, for fixed n0 ∈ Z+ and given ϕ ∈ Sn0 , (2)
has a unique solution satisfying the initial condition

x(n) = ϕ(n), for all n ∈ Z[0,n0]. (3)

This solution is denoted by x(·,n0,ϕ).

DEFINITION 3.1. The zero solution of (2) is said to be glob-
ally exponentially stable (shortly, GES) if there exist K > 0 and
λ ∈ (0,1) such that

‖x(n,n0,ϕ)‖ ≤ Kλ n−n0‖ϕ‖n0 , (4)

for all n,n0 ∈ Z+,n ≥ n0,ϕ(·) ∈ Sn0 .

We are now in the position to prove the main result of this
paper.

THEOREM 3.2. Suppose there exist A(·) : Z+ → Rm×m
+ and

B(·, ·) : Z+×Z+ → Rm×m
+ such that

|F(n,x)| ≤ A(n)|x| and |G(n,k,x)| ≤ B(n,k)|x|, (5)

for all n,k ∈ Z+,n ≥ k,x ∈Rm. Then the zero solution of (2) is
GES provided one of the following conditions holds:
(i) There exist α > 1 and p ∈ Rm

+, p � 0 so that
(

A(n)+
n

∑
k=0

B(n,k)αn−k
)

p ≤ α−1 p, ∀n ∈ Z+. (6)

(ii) There exist β > 1 and A ∈ Rm×m
+ , ρ(A)< 1 so that

(
A(n)+

n

∑
k=0

B(n,k)β n−k
)
≤ A, ∀n ∈ Z+. (7)

(iii) There exist γ > 1 so that

sup
n∈Z+

(
‖A(n)‖+

n

∑
k=0

‖B(n,k)‖γn−k
)
< 1. (8)

REMARK 3.3. Roughly speaking, (5) means that (2) is
“bounded above” by the linear equation

y(n+1) = A(n)y(n)+
n

∑
k=0

B(n,k)y(k), n ∈ Z+. (9)

On the other hand, as shown in the proof of Theorem 3.2, any
one of conditions (6), (7) (8), ensures that (9) is GES. There-
fore, Theorem 3.2 says that if (2) is “bounded above" by the
linear Volterra equation (9) and (9) is GES (one of conditions
(6), (7), (8) holds) then the zero solution of (2) is GES too.

Proof. We first prove that the zero solution of (2) is GES pro-
vided (i) holds. The proof consists of two steps.

Step I: We show that

‖x(n,n0,ϕ)‖ ≤ Kλ n−n0 ,

for all n,n0 ∈ Z+,n ≥ n0,ϕ ∈ Sn0 ,‖ϕ‖n0 ≤ 1, for some K >
0,λ ∈ (0,1).

Since p � 0, there exists M > 1 (M is independent of n0)
such that

Mp � |ϕ(n)|, ∀n ∈ Z[0,n0],∀ϕ ∈ Sn0 ,‖ϕ‖n0 ≤ 1. (10)

Let us define λ := α−1 and u(n) := Mλ n−n0 p, n ∈Z. From (3)
and (10), it follows that

u(n)� |x(n)|, ∀n ∈ Z[0,n0]. (11)

It is worth noticing that

|x(n0 +1)| (2)
=

∣∣F(n0,x(n0))+
n0

∑
k=0

G(n0,k,x(k))
∣∣

≤ |F(n0,x(n0))|+
n0

∑
k=0

|G(n0,k,x(k))|

(5)
≤ A(n0)|x(n0)|+

n0

∑
k=0

B(n0,k)|x(k)|

(11)
≤ A(n0)Mp+

n0

∑
k=0

B(n0,k)Mλ k−n0 p

= M
(
A(n0)+

n0

∑
k=0

B(n0,k)αn0−k)p

(6)
≤ Mα−1 p

= u(n0 +1).

By induction, we can show that

|x(n)|= |x(n,n0,ϕ)| ≤Mλ n−n0 p,∀n≥ n0,∀ϕ ∈Sn0 ,‖ϕ‖n0 ≤ 1.

By the monotonicity of vector norms, it follows that

‖x(n,n0,ϕ)‖ ≤ M‖p‖λ n−n0 = Kλ n−n0 ,

for all n ≥ n0,ϕ ∈ Sn0 ,‖ϕ‖n0 ≤ 1, where K := M‖p‖.
Step II: We show that (4) holds.

Consider the linear Volterra equation (9). By Step I, we have
for any ϕ ∈ Sn0 ,‖ϕ‖n0 ≤ 1,

‖y(n,n0,ϕ)‖ ≤ Kλ n−n0 , ∀n ≥ n0,
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By the monotonicity of vector norms, it follows that

exists a nonnegative eigenvector x ∈ Rm, x �= 0 such that
Mx = ρ(M)x.

(ii) (tIm − M)−1 exists and is nonnegative if and only if t >
ρ(M).

The following theorem follows from Theorem 2.1.

THEOREM 2.2 [20]. Let M ∈ Rm×m
+ . Then the following

statements are equivalent:

(i) ρ(M)< 1;
(ii) ∃p ∈ Rm, p � 0 : Mp � p;

(iii) (Im −M)−1 ≥ 0.

3. Explicit criteria for exponential stability
Consider a nonlinear Volterra difference equation of the form

x(n+1) = F
(
n,x(n)

)
+

n

∑
k=0

G
(
n,k,x(k)

)
, n ≥ n0, (2)

where F(·, ·) : Z+×Rm →Rm and G(·, ·, ·) : Z+×Z+×Rm →
Rm are given functions such that F(n,0) = 0 for all n ∈Z+ and
G(n,k,0) = 0 for n ≥ k, n,k ∈ Z+ (i.e. ξ = 0 is an equilibrium
point of the equation (2)).

For given n0 ∈ Z+, denote Sn0 the set of all functions ϕ(·) :
Z[0,n0] →Rm. Let ‖ϕ‖n0 = max{‖ϕ(n)‖ : n ∈Z[0,n0]}, for each
ϕ(·) ∈ Sn0 . Clearly, for fixed n0 ∈ Z+ and given ϕ ∈ Sn0 , (2)
has a unique solution satisfying the initial condition

x(n) = ϕ(n), for all n ∈ Z[0,n0]. (3)

This solution is denoted by x(·,n0,ϕ).

DEFINITION 3.1. The zero solution of (2) is said to be glob-
ally exponentially stable (shortly, GES) if there exist K > 0 and
λ ∈ (0,1) such that

‖x(n,n0,ϕ)‖ ≤ Kλ n−n0‖ϕ‖n0 , (4)

for all n,n0 ∈ Z+,n ≥ n0,ϕ(·) ∈ Sn0 .

We are now in the position to prove the main result of this
paper.

THEOREM 3.2. Suppose there exist A(·) : Z+ → Rm×m
+ and

B(·, ·) : Z+×Z+ → Rm×m
+ such that

|F(n,x)| ≤ A(n)|x| and |G(n,k,x)| ≤ B(n,k)|x|, (5)

for all n,k ∈ Z+,n ≥ k,x ∈Rm. Then the zero solution of (2) is
GES provided one of the following conditions holds:
(i) There exist α > 1 and p ∈ Rm

+, p � 0 so that
(

A(n)+
n

∑
k=0

B(n,k)αn−k
)

p ≤ α−1 p, ∀n ∈ Z+. (6)

(ii) There exist β > 1 and A ∈ Rm×m
+ , ρ(A)< 1 so that

(
A(n)+

n

∑
k=0

B(n,k)β n−k
)
≤ A, ∀n ∈ Z+. (7)

(iii) There exist γ > 1 so that

sup
n∈Z+

(
‖A(n)‖+

n

∑
k=0

‖B(n,k)‖γn−k
)
< 1. (8)

REMARK 3.3. Roughly speaking, (5) means that (2) is
“bounded above” by the linear equation

y(n+1) = A(n)y(n)+
n

∑
k=0

B(n,k)y(k), n ∈ Z+. (9)

On the other hand, as shown in the proof of Theorem 3.2, any
one of conditions (6), (7) (8), ensures that (9) is GES. There-
fore, Theorem 3.2 says that if (2) is “bounded above" by the
linear Volterra equation (9) and (9) is GES (one of conditions
(6), (7), (8) holds) then the zero solution of (2) is GES too.

Proof. We first prove that the zero solution of (2) is GES pro-
vided (i) holds. The proof consists of two steps.

Step I: We show that

‖x(n,n0,ϕ)‖ ≤ Kλ n−n0 ,

for all n,n0 ∈ Z+,n ≥ n0,ϕ ∈ Sn0 ,‖ϕ‖n0 ≤ 1, for some K >
0,λ ∈ (0,1).

Since p � 0, there exists M > 1 (M is independent of n0)
such that

Mp � |ϕ(n)|, ∀n ∈ Z[0,n0],∀ϕ ∈ Sn0 ,‖ϕ‖n0 ≤ 1. (10)

Let us define λ := α−1 and u(n) := Mλ n−n0 p, n ∈Z. From (3)
and (10), it follows that

u(n)� |x(n)|, ∀n ∈ Z[0,n0]. (11)

It is worth noticing that

|x(n0 +1)| (2)
=

∣∣F(n0,x(n0))+
n0

∑
k=0

G(n0,k,x(k))
∣∣

≤ |F(n0,x(n0))|+
n0

∑
k=0

|G(n0,k,x(k))|

(5)
≤ A(n0)|x(n0)|+

n0

∑
k=0

B(n0,k)|x(k)|

(11)
≤ A(n0)Mp+

n0

∑
k=0

B(n0,k)Mλ k−n0 p

= M
(
A(n0)+

n0

∑
k=0

B(n0,k)αn0−k)p

(6)
≤ Mα−1 p

= u(n0 +1).

By induction, we can show that

|x(n)|= |x(n,n0,ϕ)| ≤Mλ n−n0 p,∀n≥ n0,∀ϕ ∈Sn0 ,‖ϕ‖n0 ≤ 1.

By the monotonicity of vector norms, it follows that

‖x(n,n0,ϕ)‖ ≤ M‖p‖λ n−n0 = Kλ n−n0 ,

for all n ≥ n0,ϕ ∈ Sn0 ,‖ϕ‖n0 ≤ 1, where K := M‖p‖.
Step II: We show that (4) holds.

Consider the linear Volterra equation (9). By Step I, we have
for any ϕ ∈ Sn0 ,‖ϕ‖n0 ≤ 1,

‖y(n,n0,ϕ)‖ ≤ Kλ n−n0 , ∀n ≥ n0,
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,

for all n ¸ n0, φ 2 

exists a nonnegative eigenvector x ∈ Rm, x �= 0 such that
Mx = ρ(M)x.

(ii) (tIm − M)−1 exists and is nonnegative if and only if t >
ρ(M).

The following theorem follows from Theorem 2.1.

THEOREM 2.2 [20]. Let M ∈ Rm×m
+ . Then the following

statements are equivalent:

(i) ρ(M)< 1;
(ii) ∃p ∈ Rm, p � 0 : Mp � p;

(iii) (Im −M)−1 ≥ 0.

3. Explicit criteria for exponential stability
Consider a nonlinear Volterra difference equation of the form

x(n+1) = F
(
n,x(n)

)
+

n

∑
k=0

G
(
n,k,x(k)

)
, n ≥ n0, (2)

where F(·, ·) : Z+×Rm →Rm and G(·, ·, ·) : Z+×Z+×Rm →
Rm are given functions such that F(n,0) = 0 for all n ∈Z+ and
G(n,k,0) = 0 for n ≥ k, n,k ∈ Z+ (i.e. ξ = 0 is an equilibrium
point of the equation (2)).

For given n0 ∈ Z+, denote Sn0 the set of all functions ϕ(·) :
Z[0,n0] →Rm. Let ‖ϕ‖n0 = max{‖ϕ(n)‖ : n ∈Z[0,n0]}, for each
ϕ(·) ∈ Sn0 . Clearly, for fixed n0 ∈ Z+ and given ϕ ∈ Sn0 , (2)
has a unique solution satisfying the initial condition

x(n) = ϕ(n), for all n ∈ Z[0,n0]. (3)

This solution is denoted by x(·,n0,ϕ).

DEFINITION 3.1. The zero solution of (2) is said to be glob-
ally exponentially stable (shortly, GES) if there exist K > 0 and
λ ∈ (0,1) such that

‖x(n,n0,ϕ)‖ ≤ Kλ n−n0‖ϕ‖n0 , (4)

for all n,n0 ∈ Z+,n ≥ n0,ϕ(·) ∈ Sn0 .

We are now in the position to prove the main result of this
paper.

THEOREM 3.2. Suppose there exist A(·) : Z+ → Rm×m
+ and

B(·, ·) : Z+×Z+ → Rm×m
+ such that

|F(n,x)| ≤ A(n)|x| and |G(n,k,x)| ≤ B(n,k)|x|, (5)

for all n,k ∈ Z+,n ≥ k,x ∈Rm. Then the zero solution of (2) is
GES provided one of the following conditions holds:
(i) There exist α > 1 and p ∈ Rm

+, p � 0 so that
(

A(n)+
n

∑
k=0

B(n,k)αn−k
)

p ≤ α−1 p, ∀n ∈ Z+. (6)

(ii) There exist β > 1 and A ∈ Rm×m
+ , ρ(A)< 1 so that

(
A(n)+

n

∑
k=0

B(n,k)β n−k
)
≤ A, ∀n ∈ Z+. (7)

(iii) There exist γ > 1 so that

sup
n∈Z+

(
‖A(n)‖+

n

∑
k=0

‖B(n,k)‖γn−k
)
< 1. (8)

REMARK 3.3. Roughly speaking, (5) means that (2) is
“bounded above” by the linear equation

y(n+1) = A(n)y(n)+
n

∑
k=0

B(n,k)y(k), n ∈ Z+. (9)

On the other hand, as shown in the proof of Theorem 3.2, any
one of conditions (6), (7) (8), ensures that (9) is GES. There-
fore, Theorem 3.2 says that if (2) is “bounded above" by the
linear Volterra equation (9) and (9) is GES (one of conditions
(6), (7), (8) holds) then the zero solution of (2) is GES too.

Proof. We first prove that the zero solution of (2) is GES pro-
vided (i) holds. The proof consists of two steps.

Step I: We show that

‖x(n,n0,ϕ)‖ ≤ Kλ n−n0 ,

for all n,n0 ∈ Z+,n ≥ n0,ϕ ∈ Sn0 ,‖ϕ‖n0 ≤ 1, for some K >
0,λ ∈ (0,1).

Since p � 0, there exists M > 1 (M is independent of n0)
such that

Mp � |ϕ(n)|, ∀n ∈ Z[0,n0],∀ϕ ∈ Sn0 ,‖ϕ‖n0 ≤ 1. (10)

Let us define λ := α−1 and u(n) := Mλ n−n0 p, n ∈Z. From (3)
and (10), it follows that

u(n)� |x(n)|, ∀n ∈ Z[0,n0]. (11)

It is worth noticing that

|x(n0 +1)| (2)
=

∣∣F(n0,x(n0))+
n0

∑
k=0

G(n0,k,x(k))
∣∣

≤ |F(n0,x(n0))|+
n0

∑
k=0

|G(n0,k,x(k))|

(5)
≤ A(n0)|x(n0)|+

n0

∑
k=0

B(n0,k)|x(k)|

(11)
≤ A(n0)Mp+

n0

∑
k=0

B(n0,k)Mλ k−n0 p

= M
(
A(n0)+

n0

∑
k=0

B(n0,k)αn0−k)p

(6)
≤ Mα−1 p

= u(n0 +1).

By induction, we can show that

|x(n)|= |x(n,n0,ϕ)| ≤Mλ n−n0 p,∀n≥ n0,∀ϕ ∈Sn0 ,‖ϕ‖n0 ≤ 1.

By the monotonicity of vector norms, it follows that

‖x(n,n0,ϕ)‖ ≤ M‖p‖λ n−n0 = Kλ n−n0 ,

for all n ≥ n0,ϕ ∈ Sn0 ,‖ϕ‖n0 ≤ 1, where K := M‖p‖.
Step II: We show that (4) holds.

Consider the linear Volterra equation (9). By Step I, we have
for any ϕ ∈ Sn0 ,‖ϕ‖n0 ≤ 1,

‖y(n,n0,ϕ)‖ ≤ Kλ n−n0 , ∀n ≥ n0,
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n0, kφkn0 ∙ 1, where K := Mkpk.

Step 2. We show that (4) holds.
Consider the linear Volterra equation (9). By Step 1, we have 
for any φ 2 

exists a nonnegative eigenvector x ∈ Rm, x �= 0 such that
Mx = ρ(M)x.

(ii) (tIm − M)−1 exists and is nonnegative if and only if t >
ρ(M).

The following theorem follows from Theorem 2.1.

THEOREM 2.2 [20]. Let M ∈ Rm×m
+ . Then the following

statements are equivalent:

(i) ρ(M)< 1;
(ii) ∃p ∈ Rm, p � 0 : Mp � p;

(iii) (Im −M)−1 ≥ 0.

3. Explicit criteria for exponential stability
Consider a nonlinear Volterra difference equation of the form

x(n+1) = F
(
n,x(n)

)
+

n

∑
k=0

G
(
n,k,x(k)

)
, n ≥ n0, (2)

where F(·, ·) : Z+×Rm →Rm and G(·, ·, ·) : Z+×Z+×Rm →
Rm are given functions such that F(n,0) = 0 for all n ∈Z+ and
G(n,k,0) = 0 for n ≥ k, n,k ∈ Z+ (i.e. ξ = 0 is an equilibrium
point of the equation (2)).

For given n0 ∈ Z+, denote Sn0 the set of all functions ϕ(·) :
Z[0,n0] →Rm. Let ‖ϕ‖n0 = max{‖ϕ(n)‖ : n ∈Z[0,n0]}, for each
ϕ(·) ∈ Sn0 . Clearly, for fixed n0 ∈ Z+ and given ϕ ∈ Sn0 , (2)
has a unique solution satisfying the initial condition

x(n) = ϕ(n), for all n ∈ Z[0,n0]. (3)

This solution is denoted by x(·,n0,ϕ).

DEFINITION 3.1. The zero solution of (2) is said to be glob-
ally exponentially stable (shortly, GES) if there exist K > 0 and
λ ∈ (0,1) such that

‖x(n,n0,ϕ)‖ ≤ Kλ n−n0‖ϕ‖n0 , (4)

for all n,n0 ∈ Z+,n ≥ n0,ϕ(·) ∈ Sn0 .

We are now in the position to prove the main result of this
paper.

THEOREM 3.2. Suppose there exist A(·) : Z+ → Rm×m
+ and

B(·, ·) : Z+×Z+ → Rm×m
+ such that

|F(n,x)| ≤ A(n)|x| and |G(n,k,x)| ≤ B(n,k)|x|, (5)

for all n,k ∈ Z+,n ≥ k,x ∈Rm. Then the zero solution of (2) is
GES provided one of the following conditions holds:
(i) There exist α > 1 and p ∈ Rm

+, p � 0 so that
(

A(n)+
n

∑
k=0

B(n,k)αn−k
)

p ≤ α−1 p, ∀n ∈ Z+. (6)

(ii) There exist β > 1 and A ∈ Rm×m
+ , ρ(A)< 1 so that

(
A(n)+

n

∑
k=0

B(n,k)β n−k
)
≤ A, ∀n ∈ Z+. (7)

(iii) There exist γ > 1 so that

sup
n∈Z+

(
‖A(n)‖+

n

∑
k=0

‖B(n,k)‖γn−k
)
< 1. (8)

REMARK 3.3. Roughly speaking, (5) means that (2) is
“bounded above” by the linear equation

y(n+1) = A(n)y(n)+
n

∑
k=0

B(n,k)y(k), n ∈ Z+. (9)

On the other hand, as shown in the proof of Theorem 3.2, any
one of conditions (6), (7) (8), ensures that (9) is GES. There-
fore, Theorem 3.2 says that if (2) is “bounded above" by the
linear Volterra equation (9) and (9) is GES (one of conditions
(6), (7), (8) holds) then the zero solution of (2) is GES too.

Proof. We first prove that the zero solution of (2) is GES pro-
vided (i) holds. The proof consists of two steps.

Step I: We show that

‖x(n,n0,ϕ)‖ ≤ Kλ n−n0 ,

for all n,n0 ∈ Z+,n ≥ n0,ϕ ∈ Sn0 ,‖ϕ‖n0 ≤ 1, for some K >
0,λ ∈ (0,1).

Since p � 0, there exists M > 1 (M is independent of n0)
such that

Mp � |ϕ(n)|, ∀n ∈ Z[0,n0],∀ϕ ∈ Sn0 ,‖ϕ‖n0 ≤ 1. (10)

Let us define λ := α−1 and u(n) := Mλ n−n0 p, n ∈Z. From (3)
and (10), it follows that

u(n)� |x(n)|, ∀n ∈ Z[0,n0]. (11)

It is worth noticing that

|x(n0 +1)| (2)
=

∣∣F(n0,x(n0))+
n0

∑
k=0

G(n0,k,x(k))
∣∣

≤ |F(n0,x(n0))|+
n0

∑
k=0

|G(n0,k,x(k))|

(5)
≤ A(n0)|x(n0)|+

n0

∑
k=0

B(n0,k)|x(k)|

(11)
≤ A(n0)Mp+

n0

∑
k=0

B(n0,k)Mλ k−n0 p

= M
(
A(n0)+

n0

∑
k=0

B(n0,k)αn0−k)p

(6)
≤ Mα−1 p

= u(n0 +1).

By induction, we can show that

|x(n)|= |x(n,n0,ϕ)| ≤Mλ n−n0 p,∀n≥ n0,∀ϕ ∈Sn0 ,‖ϕ‖n0 ≤ 1.

By the monotonicity of vector norms, it follows that

‖x(n,n0,ϕ)‖ ≤ M‖p‖λ n−n0 = Kλ n−n0 ,

for all n ≥ n0,ϕ ∈ Sn0 ,‖ϕ‖n0 ≤ 1, where K := M‖p‖.
Step II: We show that (4) holds.

Consider the linear Volterra equation (9). By Step I, we have
for any ϕ ∈ Sn0 ,‖ϕ‖n0 ≤ 1,

‖y(n,n0,ϕ)‖ ≤ Kλ n−n0 , ∀n ≥ n0,
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n0, kφkn0 ∙ 1,

exists a nonnegative eigenvector x ∈ Rm, x �= 0 such that
Mx = ρ(M)x.

(ii) (tIm − M)−1 exists and is nonnegative if and only if t >
ρ(M).

The following theorem follows from Theorem 2.1.

THEOREM 2.2 [20]. Let M ∈ Rm×m
+ . Then the following

statements are equivalent:

(i) ρ(M)< 1;
(ii) ∃p ∈ Rm, p � 0 : Mp � p;

(iii) (Im −M)−1 ≥ 0.

3. Explicit criteria for exponential stability
Consider a nonlinear Volterra difference equation of the form

x(n+1) = F
(
n,x(n)

)
+

n

∑
k=0

G
(
n,k,x(k)

)
, n ≥ n0, (2)

where F(·, ·) : Z+×Rm →Rm and G(·, ·, ·) : Z+×Z+×Rm →
Rm are given functions such that F(n,0) = 0 for all n ∈Z+ and
G(n,k,0) = 0 for n ≥ k, n,k ∈ Z+ (i.e. ξ = 0 is an equilibrium
point of the equation (2)).

For given n0 ∈ Z+, denote Sn0 the set of all functions ϕ(·) :
Z[0,n0] →Rm. Let ‖ϕ‖n0 = max{‖ϕ(n)‖ : n ∈Z[0,n0]}, for each
ϕ(·) ∈ Sn0 . Clearly, for fixed n0 ∈ Z+ and given ϕ ∈ Sn0 , (2)
has a unique solution satisfying the initial condition

x(n) = ϕ(n), for all n ∈ Z[0,n0]. (3)

This solution is denoted by x(·,n0,ϕ).

DEFINITION 3.1. The zero solution of (2) is said to be glob-
ally exponentially stable (shortly, GES) if there exist K > 0 and
λ ∈ (0,1) such that

‖x(n,n0,ϕ)‖ ≤ Kλ n−n0‖ϕ‖n0 , (4)

for all n,n0 ∈ Z+,n ≥ n0,ϕ(·) ∈ Sn0 .

We are now in the position to prove the main result of this
paper.

THEOREM 3.2. Suppose there exist A(·) : Z+ → Rm×m
+ and

B(·, ·) : Z+×Z+ → Rm×m
+ such that

|F(n,x)| ≤ A(n)|x| and |G(n,k,x)| ≤ B(n,k)|x|, (5)

for all n,k ∈ Z+,n ≥ k,x ∈Rm. Then the zero solution of (2) is
GES provided one of the following conditions holds:
(i) There exist α > 1 and p ∈ Rm

+, p � 0 so that
(

A(n)+
n

∑
k=0

B(n,k)αn−k
)

p ≤ α−1 p, ∀n ∈ Z+. (6)

(ii) There exist β > 1 and A ∈ Rm×m
+ , ρ(A)< 1 so that

(
A(n)+

n

∑
k=0

B(n,k)β n−k
)
≤ A, ∀n ∈ Z+. (7)

(iii) There exist γ > 1 so that

sup
n∈Z+

(
‖A(n)‖+

n

∑
k=0

‖B(n,k)‖γn−k
)
< 1. (8)

REMARK 3.3. Roughly speaking, (5) means that (2) is
“bounded above” by the linear equation

y(n+1) = A(n)y(n)+
n

∑
k=0

B(n,k)y(k), n ∈ Z+. (9)

On the other hand, as shown in the proof of Theorem 3.2, any
one of conditions (6), (7) (8), ensures that (9) is GES. There-
fore, Theorem 3.2 says that if (2) is “bounded above" by the
linear Volterra equation (9) and (9) is GES (one of conditions
(6), (7), (8) holds) then the zero solution of (2) is GES too.

Proof. We first prove that the zero solution of (2) is GES pro-
vided (i) holds. The proof consists of two steps.

Step I: We show that

‖x(n,n0,ϕ)‖ ≤ Kλ n−n0 ,

for all n,n0 ∈ Z+,n ≥ n0,ϕ ∈ Sn0 ,‖ϕ‖n0 ≤ 1, for some K >
0,λ ∈ (0,1).

Since p � 0, there exists M > 1 (M is independent of n0)
such that

Mp � |ϕ(n)|, ∀n ∈ Z[0,n0],∀ϕ ∈ Sn0 ,‖ϕ‖n0 ≤ 1. (10)

Let us define λ := α−1 and u(n) := Mλ n−n0 p, n ∈Z. From (3)
and (10), it follows that

u(n)� |x(n)|, ∀n ∈ Z[0,n0]. (11)

It is worth noticing that

|x(n0 +1)| (2)
=

∣∣F(n0,x(n0))+
n0

∑
k=0

G(n0,k,x(k))
∣∣

≤ |F(n0,x(n0))|+
n0

∑
k=0

|G(n0,k,x(k))|

(5)
≤ A(n0)|x(n0)|+

n0

∑
k=0

B(n0,k)|x(k)|

(11)
≤ A(n0)Mp+

n0

∑
k=0

B(n0,k)Mλ k−n0 p

= M
(
A(n0)+

n0

∑
k=0

B(n0,k)αn0−k)p

(6)
≤ Mα−1 p

= u(n0 +1).

By induction, we can show that

|x(n)|= |x(n,n0,ϕ)| ≤Mλ n−n0 p,∀n≥ n0,∀ϕ ∈Sn0 ,‖ϕ‖n0 ≤ 1.

By the monotonicity of vector norms, it follows that

‖x(n,n0,ϕ)‖ ≤ M‖p‖λ n−n0 = Kλ n−n0 ,

for all n ≥ n0,ϕ ∈ Sn0 ,‖ϕ‖n0 ≤ 1, where K := M‖p‖.
Step II: We show that (4) holds.

Consider the linear Volterra equation (9). By Step I, we have
for any ϕ ∈ Sn0 ,‖ϕ‖n0 ≤ 1,

‖y(n,n0,ϕ)‖ ≤ Kλ n−n0 , ∀n ≥ n0,
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where K := M‖p‖. By the linearity of (9),

‖y(n,n0,
ϕ

‖ϕ‖n0

)‖= 1
‖ϕ‖n0

‖y(n,n0,ϕ)‖ ≤ Kλ n−n0 ,

for all n ≥ n0,ϕ ∈ Sn0 ,‖ϕ‖n0 �= 0.
Therefore,

‖y(n,n0,ϕ)‖ ≤ Kλ n−n0‖ϕ‖n0 , ∀n ≥ n0, ∀ϕ ∈ Sn0 . (12)

For given ϕ ∈ Sn0 , let x(·) := x(·,n0,ϕ) be the solution of
(2)-(3) and let y(·) := y(·,n0, |ϕ|), where |ϕ|(n) := |ϕ(n)|,n ∈
Z[0,n0]. Since A(n) ≥ 0,B(n,k) ≥ 0 for n,k ∈ Z+,n ≥ k, and
|ϕ| ≥ 0, it follows that y(n)≥ 0,∀n ∈ Z+,n ≥ n0.
Note that

|x(n0 +1)| ≤ |F(n0,x(n0))|+
n0

∑
k=0

|G(n0,k,x(k))|

(5)
≤ A(n0)|x(n0)|+

n0

∑
k=0

B(n0,k)|x(k)|

(3)
= A(n0)|ϕ(n0)|+

n0

∑
k=0

B(n0,k)|ϕ(k)|

(9)
= A(n0)y(n0)+

n0

∑
k=0

B(n0,k)y(k)

= y(n0 +1).

By induction, we have

|x(n)| ≤ y(n), ∀n ∈ Z+.

By the monotonicity of vector norms,

‖x(n)‖= ‖|x(n)|‖ ≤ ‖y(n)‖, ∀n ∈ Z+. (13)

Thus, (4) follows from (12) and (13). Hence, the zero solution
of (2) is GES.

Next, we show that (ii) implies (i). Since A ∈Rm×m
+ ,ρ(A)<

1, there is a vector p ∈ Rm, p � 0 such that Ap � p, by Theo-
rem 2.2. By continuity,

Ap � η−1 p, (14)

for some η > 1. Let β be as in (ii) and let α0 := min{β ,η}.
Clearly, α0 > 1 and
(

A(n)+
n

∑
k=0

B(n,k)αn−k
0

)
≤
(

A(n)+
n

∑
k=0

B(n,k)β n−k
)

(7)
≤ A.

Therefore,(
A(n)+

n

∑
k=0

B(n,k)αn−k
0

)
p ≤ Ap

(14)
≤ η−1 p ≤ α−1

0 p.

Thus, (i) holds.
Finally, it remains to show that the zero solution of (2) is
GES provided (iii) holds. From (8), it follows that ‖A(n)‖+
∑n

k=0 ‖B(n,k)‖γn−k < a, ∀n ∈ Z+, for some a ∈ [0,1). Thus,
the zero solution of the scalar difference equation

z(n+1) = ‖A(n)‖z(n)+
n

∑
k=0

‖B(n,k)‖z(k), n ∈ Z+, (15)

is GES, by (ii). Fix ϕ ∈ Sn0 . Let x(·) := x(·,n0,ϕ) be the
solution of (2)-(3) and let z(·) := z(·,n0,‖ϕ(·)‖) be the solution

of (15) with the initial value function ‖ϕ(·)‖. By a similar
argument as in Step II of the proof of (i), we get

‖x(n)‖ ≤ z(n), ∀n ∈ Z+. (16)

Therefore, the zero solution of (2) is GES. This completes the
proof.

For given γ > 1, let us denote

lγ(Km×m) :=
{
(B(n))n : B(n) ∈Km×m,n ∈ Z+,

∞

∑
n=0

‖B(n)‖γn <+∞
}
,

K := R,C.

In particular, the following follows from Theorem 3.2.

THEOREM 3.4. Suppose there exist A ∈ Rm×m
+ and B(·) :

Z+ → Rm×m
+ such that

|F(n,x)| ≤ A|x| and |G(n,k,x)| ≤ B(n− k)|x|, (17)

for all n,k ∈Z+,n≥ k,x∈Rm. If (B(n))n ∈ lγ(Rm×m) for some
γ > 1 and ρ(A+∑+∞

n=0 B(n)) < 1 then the zero solution of (2)
is GES.

Proof. Since ρ(A+∑+∞
k=0 B(k)) < 1 and (B(k))k ∈ lγ(Rm×m)

with γ > 1, ρ(A + ∑+∞
k=0 B(k)β k) < 1, for some β ∈

(1,γ], by continuity of the spectral radius, see [3]. Note
that A + ∑n

k=0 B(n − k)β n−k = A + ∑n
k=0 B(k)β k ≤ A +

∑+∞
k=0 B(k)β k,∀n ∈ Z+. Therefore, (ii) of Theorem 3.4 holds

and the zero solution of (2) is GES.

We illustrate the obtained results by a couple of examples.

EXAMPLE 3.5. Consider a scalar nonlinear Volterra differ-
ence equation

x(n+1) =
ne−x2(n)x(n)

4n+1
+

n

∑
k=0

2k2 arctan
(
an−kx(k)

)

(k2 +1)
(
3(n− k)+1

)(
3(n− k)+4

) , (18)

where 0 < a < 1 and n ∈ Z+.
Let

F(n,x) =
ne−x2

x
4n+1

and

G(n,k,x) =
2k2 arctan

(
an−kx

)

(k2 +1)
(
3(n− k)+1

)(
3(n− k)+4

) , (19)

where n,k ∈ Z+,n ≥ k and x ∈ R. Since
∣∣∣∣
ne−x2

x
4n+1

∣∣∣∣≤
1
4
|x| and

∣∣∣∣
k2 arctan

(
an−kx

)
k2 +1

∣∣∣∣≤ an−k|x|,

for all x ∈ R,n,k ∈ Z+,n ≥ k, it follows that

|F(n,x)| ≤ A|x| and |G(n,k,x)| ≤ B(n− k)|x|, (20)

for all x ∈ R,n,k ∈ Z+,n ≥ k, where A = 1
4 and B(n) =

2an
(
3n+1

)(
3n+4

), n ∈ Z+.
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for all n ¸ n0, φ 2 

exists a nonnegative eigenvector x ∈ Rm, x �= 0 such that
Mx = ρ(M)x.

(ii) (tIm − M)−1 exists and is nonnegative if and only if t >
ρ(M).

The following theorem follows from Theorem 2.1.

THEOREM 2.2 [20]. Let M ∈ Rm×m
+ . Then the following

statements are equivalent:

(i) ρ(M)< 1;
(ii) ∃p ∈ Rm, p � 0 : Mp � p;

(iii) (Im −M)−1 ≥ 0.

3. Explicit criteria for exponential stability
Consider a nonlinear Volterra difference equation of the form

x(n+1) = F
(
n,x(n)

)
+

n

∑
k=0

G
(
n,k,x(k)

)
, n ≥ n0, (2)

where F(·, ·) : Z+×Rm →Rm and G(·, ·, ·) : Z+×Z+×Rm →
Rm are given functions such that F(n,0) = 0 for all n ∈Z+ and
G(n,k,0) = 0 for n ≥ k, n,k ∈ Z+ (i.e. ξ = 0 is an equilibrium
point of the equation (2)).

For given n0 ∈ Z+, denote Sn0 the set of all functions ϕ(·) :
Z[0,n0] →Rm. Let ‖ϕ‖n0 = max{‖ϕ(n)‖ : n ∈Z[0,n0]}, for each
ϕ(·) ∈ Sn0 . Clearly, for fixed n0 ∈ Z+ and given ϕ ∈ Sn0 , (2)
has a unique solution satisfying the initial condition

x(n) = ϕ(n), for all n ∈ Z[0,n0]. (3)

This solution is denoted by x(·,n0,ϕ).

DEFINITION 3.1. The zero solution of (2) is said to be glob-
ally exponentially stable (shortly, GES) if there exist K > 0 and
λ ∈ (0,1) such that

‖x(n,n0,ϕ)‖ ≤ Kλ n−n0‖ϕ‖n0 , (4)

for all n,n0 ∈ Z+,n ≥ n0,ϕ(·) ∈ Sn0 .

We are now in the position to prove the main result of this
paper.

THEOREM 3.2. Suppose there exist A(·) : Z+ → Rm×m
+ and

B(·, ·) : Z+×Z+ → Rm×m
+ such that

|F(n,x)| ≤ A(n)|x| and |G(n,k,x)| ≤ B(n,k)|x|, (5)

for all n,k ∈ Z+,n ≥ k,x ∈Rm. Then the zero solution of (2) is
GES provided one of the following conditions holds:
(i) There exist α > 1 and p ∈ Rm

+, p � 0 so that
(

A(n)+
n

∑
k=0

B(n,k)αn−k
)

p ≤ α−1 p, ∀n ∈ Z+. (6)

(ii) There exist β > 1 and A ∈ Rm×m
+ , ρ(A)< 1 so that

(
A(n)+

n

∑
k=0

B(n,k)β n−k
)
≤ A, ∀n ∈ Z+. (7)

(iii) There exist γ > 1 so that

sup
n∈Z+

(
‖A(n)‖+

n

∑
k=0

‖B(n,k)‖γn−k
)
< 1. (8)

REMARK 3.3. Roughly speaking, (5) means that (2) is
“bounded above” by the linear equation

y(n+1) = A(n)y(n)+
n

∑
k=0

B(n,k)y(k), n ∈ Z+. (9)

On the other hand, as shown in the proof of Theorem 3.2, any
one of conditions (6), (7) (8), ensures that (9) is GES. There-
fore, Theorem 3.2 says that if (2) is “bounded above" by the
linear Volterra equation (9) and (9) is GES (one of conditions
(6), (7), (8) holds) then the zero solution of (2) is GES too.

Proof. We first prove that the zero solution of (2) is GES pro-
vided (i) holds. The proof consists of two steps.

Step I: We show that

‖x(n,n0,ϕ)‖ ≤ Kλ n−n0 ,

for all n,n0 ∈ Z+,n ≥ n0,ϕ ∈ Sn0 ,‖ϕ‖n0 ≤ 1, for some K >
0,λ ∈ (0,1).

Since p � 0, there exists M > 1 (M is independent of n0)
such that

Mp � |ϕ(n)|, ∀n ∈ Z[0,n0],∀ϕ ∈ Sn0 ,‖ϕ‖n0 ≤ 1. (10)

Let us define λ := α−1 and u(n) := Mλ n−n0 p, n ∈Z. From (3)
and (10), it follows that

u(n)� |x(n)|, ∀n ∈ Z[0,n0]. (11)

It is worth noticing that

|x(n0 +1)| (2)
=

∣∣F(n0,x(n0))+
n0

∑
k=0

G(n0,k,x(k))
∣∣

≤ |F(n0,x(n0))|+
n0

∑
k=0

|G(n0,k,x(k))|

(5)
≤ A(n0)|x(n0)|+

n0

∑
k=0

B(n0,k)|x(k)|

(11)
≤ A(n0)Mp+

n0

∑
k=0

B(n0,k)Mλ k−n0 p

= M
(
A(n0)+

n0

∑
k=0

B(n0,k)αn0−k)p

(6)
≤ Mα−1 p

= u(n0 +1).

By induction, we can show that

|x(n)|= |x(n,n0,ϕ)| ≤Mλ n−n0 p,∀n≥ n0,∀ϕ ∈Sn0 ,‖ϕ‖n0 ≤ 1.

By the monotonicity of vector norms, it follows that

‖x(n,n0,ϕ)‖ ≤ M‖p‖λ n−n0 = Kλ n−n0 ,

for all n ≥ n0,ϕ ∈ Sn0 ,‖ϕ‖n0 ≤ 1, where K := M‖p‖.
Step II: We show that (4) holds.

Consider the linear Volterra equation (9). By Step I, we have
for any ϕ ∈ Sn0 ,‖ϕ‖n0 ≤ 1,

‖y(n,n0,ϕ)‖ ≤ Kλ n−n0 , ∀n ≥ n0,
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where K := M‖p‖. By the linearity of (9),

‖y(n,n0,
ϕ

‖ϕ‖n0

)‖= 1
‖ϕ‖n0

‖y(n,n0,ϕ)‖ ≤ Kλ n−n0 ,

for all n ≥ n0,ϕ ∈ Sn0 ,‖ϕ‖n0 �= 0.
Therefore,

‖y(n,n0,ϕ)‖ ≤ Kλ n−n0‖ϕ‖n0 , ∀n ≥ n0, ∀ϕ ∈ Sn0 . (12)

For given ϕ ∈ Sn0 , let x(·) := x(·,n0,ϕ) be the solution of
(2)-(3) and let y(·) := y(·,n0, |ϕ|), where |ϕ|(n) := |ϕ(n)|,n ∈
Z[0,n0]. Since A(n) ≥ 0,B(n,k) ≥ 0 for n,k ∈ Z+,n ≥ k, and
|ϕ| ≥ 0, it follows that y(n)≥ 0,∀n ∈ Z+,n ≥ n0.
Note that

|x(n0 +1)| ≤ |F(n0,x(n0))|+
n0

∑
k=0

|G(n0,k,x(k))|

(5)
≤ A(n0)|x(n0)|+

n0

∑
k=0

B(n0,k)|x(k)|

(3)
= A(n0)|ϕ(n0)|+

n0

∑
k=0

B(n0,k)|ϕ(k)|

(9)
= A(n0)y(n0)+

n0

∑
k=0

B(n0,k)y(k)

= y(n0 +1).

By induction, we have

|x(n)| ≤ y(n), ∀n ∈ Z+.

By the monotonicity of vector norms,

‖x(n)‖= ‖|x(n)|‖ ≤ ‖y(n)‖, ∀n ∈ Z+. (13)

Thus, (4) follows from (12) and (13). Hence, the zero solution
of (2) is GES.

Next, we show that (ii) implies (i). Since A ∈Rm×m
+ ,ρ(A)<

1, there is a vector p ∈ Rm, p � 0 such that Ap � p, by Theo-
rem 2.2. By continuity,

Ap � η−1 p, (14)

for some η > 1. Let β be as in (ii) and let α0 := min{β ,η}.
Clearly, α0 > 1 and
(

A(n)+
n

∑
k=0

B(n,k)αn−k
0

)
≤
(

A(n)+
n

∑
k=0

B(n,k)β n−k
)

(7)
≤ A.

Therefore,(
A(n)+

n

∑
k=0

B(n,k)αn−k
0

)
p ≤ Ap

(14)
≤ η−1 p ≤ α−1

0 p.

Thus, (i) holds.
Finally, it remains to show that the zero solution of (2) is
GES provided (iii) holds. From (8), it follows that ‖A(n)‖+
∑n

k=0 ‖B(n,k)‖γn−k < a, ∀n ∈ Z+, for some a ∈ [0,1). Thus,
the zero solution of the scalar difference equation

z(n+1) = ‖A(n)‖z(n)+
n

∑
k=0

‖B(n,k)‖z(k), n ∈ Z+, (15)

is GES, by (ii). Fix ϕ ∈ Sn0 . Let x(·) := x(·,n0,ϕ) be the
solution of (2)-(3) and let z(·) := z(·,n0,‖ϕ(·)‖) be the solution

of (15) with the initial value function ‖ϕ(·)‖. By a similar
argument as in Step II of the proof of (i), we get

‖x(n)‖ ≤ z(n), ∀n ∈ Z+. (16)

Therefore, the zero solution of (2) is GES. This completes the
proof.

For given γ > 1, let us denote

lγ(Km×m) :=
{
(B(n))n : B(n) ∈Km×m,n ∈ Z+,

∞

∑
n=0

‖B(n)‖γn <+∞
}
,

K := R,C.

In particular, the following follows from Theorem 3.2.

THEOREM 3.4. Suppose there exist A ∈ Rm×m
+ and B(·) :

Z+ → Rm×m
+ such that

|F(n,x)| ≤ A|x| and |G(n,k,x)| ≤ B(n− k)|x|, (17)

for all n,k ∈Z+,n≥ k,x∈Rm. If (B(n))n ∈ lγ(Rm×m) for some
γ > 1 and ρ(A+∑+∞

n=0 B(n)) < 1 then the zero solution of (2)
is GES.

Proof. Since ρ(A+∑+∞
k=0 B(k)) < 1 and (B(k))k ∈ lγ(Rm×m)

with γ > 1, ρ(A + ∑+∞
k=0 B(k)β k) < 1, for some β ∈

(1,γ], by continuity of the spectral radius, see [3]. Note
that A + ∑n

k=0 B(n − k)β n−k = A + ∑n
k=0 B(k)β k ≤ A +

∑+∞
k=0 B(k)β k,∀n ∈ Z+. Therefore, (ii) of Theorem 3.4 holds

and the zero solution of (2) is GES.

We illustrate the obtained results by a couple of examples.

EXAMPLE 3.5. Consider a scalar nonlinear Volterra differ-
ence equation

x(n+1) =
ne−x2(n)x(n)

4n+1
+

n

∑
k=0

2k2 arctan
(
an−kx(k)

)

(k2 +1)
(
3(n− k)+1

)(
3(n− k)+4

) , (18)

where 0 < a < 1 and n ∈ Z+.
Let

F(n,x) =
ne−x2

x
4n+1

and

G(n,k,x) =
2k2 arctan

(
an−kx

)

(k2 +1)
(
3(n− k)+1

)(
3(n− k)+4

) , (19)

where n,k ∈ Z+,n ≥ k and x ∈ R. Since
∣∣∣∣
ne−x2

x
4n+1

∣∣∣∣≤
1
4
|x| and

∣∣∣∣
k2 arctan

(
an−kx

)
k2 +1

∣∣∣∣≤ an−k|x|,

for all x ∈ R,n,k ∈ Z+,n ≥ k, it follows that

|F(n,x)| ≤ A|x| and |G(n,k,x)| ≤ B(n− k)|x|, (20)

for all x ∈ R,n,k ∈ Z+,n ≥ k, where A = 1
4 and B(n) =

2an
(
3n+1

)(
3n+4

), n ∈ Z+.
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where K := M‖p‖. By the linearity of (9),

‖y(n,n0,
ϕ

‖ϕ‖n0

)‖= 1
‖ϕ‖n0

‖y(n,n0,ϕ)‖ ≤ Kλ n−n0 ,

for all n ≥ n0,ϕ ∈ Sn0 ,‖ϕ‖n0 �= 0.
Therefore,

‖y(n,n0,ϕ)‖ ≤ Kλ n−n0‖ϕ‖n0 , ∀n ≥ n0, ∀ϕ ∈ Sn0 . (12)
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|ϕ| ≥ 0, it follows that y(n)≥ 0,∀n ∈ Z+,n ≥ n0.
Note that

|x(n0 +1)| ≤ |F(n0,x(n0))|+
n0

∑
k=0

|G(n0,k,x(k))|

(5)
≤ A(n0)|x(n0)|+

n0

∑
k=0

B(n0,k)|x(k)|

(3)
= A(n0)|ϕ(n0)|+

n0

∑
k=0

B(n0,k)|ϕ(k)|

(9)
= A(n0)y(n0)+

n0

∑
k=0

B(n0,k)y(k)

= y(n0 +1).

By induction, we have

|x(n)| ≤ y(n), ∀n ∈ Z+.

By the monotonicity of vector norms,

‖x(n)‖= ‖|x(n)|‖ ≤ ‖y(n)‖, ∀n ∈ Z+. (13)

Thus, (4) follows from (12) and (13). Hence, the zero solution
of (2) is GES.

Next, we show that (ii) implies (i). Since A ∈Rm×m
+ ,ρ(A)<

1, there is a vector p ∈ Rm, p � 0 such that Ap � p, by Theo-
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Ap � η−1 p, (14)

for some η > 1. Let β be as in (ii) and let α0 := min{β ,η}.
Clearly, α0 > 1 and
(

A(n)+
n

∑
k=0

B(n,k)αn−k
0

)
≤
(

A(n)+
n

∑
k=0

B(n,k)β n−k
)

(7)
≤ A.

Therefore,(
A(n)+

n

∑
k=0

B(n,k)αn−k
0

)
p ≤ Ap

(14)
≤ η−1 p ≤ α−1

0 p.

Thus, (i) holds.
Finally, it remains to show that the zero solution of (2) is
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∑n

k=0 ‖B(n,k)‖γn−k < a, ∀n ∈ Z+, for some a ∈ [0,1). Thus,
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z(n+1) = ‖A(n)‖z(n)+
n

∑
k=0

‖B(n,k)‖z(k), n ∈ Z+, (15)

is GES, by (ii). Fix ϕ ∈ Sn0 . Let x(·) := x(·,n0,ϕ) be the
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‖x(n)‖ ≤ z(n), ∀n ∈ Z+. (16)

Therefore, the zero solution of (2) is GES. This completes the
proof.

For given γ > 1, let us denote

lγ(Km×m) :=
{
(B(n))n : B(n) ∈Km×m,n ∈ Z+,

∞

∑
n=0

‖B(n)‖γn <+∞
}
,

K := R,C.

In particular, the following follows from Theorem 3.2.
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+ and B(·) :
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For given φ 2 

exists a nonnegative eigenvector x ∈ Rm, x �= 0 such that
Mx = ρ(M)x.

(ii) (tIm − M)−1 exists and is nonnegative if and only if t >
ρ(M).

The following theorem follows from Theorem 2.1.

THEOREM 2.2 [20]. Let M ∈ Rm×m
+ . Then the following

statements are equivalent:

(i) ρ(M)< 1;
(ii) ∃p ∈ Rm, p � 0 : Mp � p;

(iii) (Im −M)−1 ≥ 0.

3. Explicit criteria for exponential stability
Consider a nonlinear Volterra difference equation of the form

x(n+1) = F
(
n,x(n)

)
+

n

∑
k=0

G
(
n,k,x(k)

)
, n ≥ n0, (2)

where F(·, ·) : Z+×Rm →Rm and G(·, ·, ·) : Z+×Z+×Rm →
Rm are given functions such that F(n,0) = 0 for all n ∈Z+ and
G(n,k,0) = 0 for n ≥ k, n,k ∈ Z+ (i.e. ξ = 0 is an equilibrium
point of the equation (2)).

For given n0 ∈ Z+, denote Sn0 the set of all functions ϕ(·) :
Z[0,n0] →Rm. Let ‖ϕ‖n0 = max{‖ϕ(n)‖ : n ∈Z[0,n0]}, for each
ϕ(·) ∈ Sn0 . Clearly, for fixed n0 ∈ Z+ and given ϕ ∈ Sn0 , (2)
has a unique solution satisfying the initial condition

x(n) = ϕ(n), for all n ∈ Z[0,n0]. (3)

This solution is denoted by x(·,n0,ϕ).

DEFINITION 3.1. The zero solution of (2) is said to be glob-
ally exponentially stable (shortly, GES) if there exist K > 0 and
λ ∈ (0,1) such that

‖x(n,n0,ϕ)‖ ≤ Kλ n−n0‖ϕ‖n0 , (4)

for all n,n0 ∈ Z+,n ≥ n0,ϕ(·) ∈ Sn0 .

We are now in the position to prove the main result of this
paper.

THEOREM 3.2. Suppose there exist A(·) : Z+ → Rm×m
+ and

B(·, ·) : Z+×Z+ → Rm×m
+ such that

|F(n,x)| ≤ A(n)|x| and |G(n,k,x)| ≤ B(n,k)|x|, (5)

for all n,k ∈ Z+,n ≥ k,x ∈Rm. Then the zero solution of (2) is
GES provided one of the following conditions holds:
(i) There exist α > 1 and p ∈ Rm

+, p � 0 so that
(

A(n)+
n

∑
k=0

B(n,k)αn−k
)

p ≤ α−1 p, ∀n ∈ Z+. (6)

(ii) There exist β > 1 and A ∈ Rm×m
+ , ρ(A)< 1 so that

(
A(n)+

n

∑
k=0

B(n,k)β n−k
)
≤ A, ∀n ∈ Z+. (7)

(iii) There exist γ > 1 so that

sup
n∈Z+

(
‖A(n)‖+

n

∑
k=0

‖B(n,k)‖γn−k
)
< 1. (8)

REMARK 3.3. Roughly speaking, (5) means that (2) is
“bounded above” by the linear equation

y(n+1) = A(n)y(n)+
n

∑
k=0

B(n,k)y(k), n ∈ Z+. (9)

On the other hand, as shown in the proof of Theorem 3.2, any
one of conditions (6), (7) (8), ensures that (9) is GES. There-
fore, Theorem 3.2 says that if (2) is “bounded above" by the
linear Volterra equation (9) and (9) is GES (one of conditions
(6), (7), (8) holds) then the zero solution of (2) is GES too.

Proof. We first prove that the zero solution of (2) is GES pro-
vided (i) holds. The proof consists of two steps.

Step I: We show that

‖x(n,n0,ϕ)‖ ≤ Kλ n−n0 ,

for all n,n0 ∈ Z+,n ≥ n0,ϕ ∈ Sn0 ,‖ϕ‖n0 ≤ 1, for some K >
0,λ ∈ (0,1).

Since p � 0, there exists M > 1 (M is independent of n0)
such that

Mp � |ϕ(n)|, ∀n ∈ Z[0,n0],∀ϕ ∈ Sn0 ,‖ϕ‖n0 ≤ 1. (10)

Let us define λ := α−1 and u(n) := Mλ n−n0 p, n ∈Z. From (3)
and (10), it follows that

u(n)� |x(n)|, ∀n ∈ Z[0,n0]. (11)

It is worth noticing that

|x(n0 +1)| (2)
=

∣∣F(n0,x(n0))+
n0

∑
k=0

G(n0,k,x(k))
∣∣

≤ |F(n0,x(n0))|+
n0

∑
k=0

|G(n0,k,x(k))|

(5)
≤ A(n0)|x(n0)|+

n0

∑
k=0

B(n0,k)|x(k)|

(11)
≤ A(n0)Mp+

n0

∑
k=0

B(n0,k)Mλ k−n0 p

= M
(
A(n0)+

n0

∑
k=0

B(n0,k)αn0−k)p

(6)
≤ Mα−1 p

= u(n0 +1).

By induction, we can show that

|x(n)|= |x(n,n0,ϕ)| ≤Mλ n−n0 p,∀n≥ n0,∀ϕ ∈Sn0 ,‖ϕ‖n0 ≤ 1.

By the monotonicity of vector norms, it follows that

‖x(n,n0,ϕ)‖ ≤ M‖p‖λ n−n0 = Kλ n−n0 ,

for all n ≥ n0,ϕ ∈ Sn0 ,‖ϕ‖n0 ≤ 1, where K := M‖p‖.
Step II: We show that (4) holds.

Consider the linear Volterra equation (9). By Step I, we have
for any ϕ ∈ Sn0 ,‖ϕ‖n0 ≤ 1,

‖y(n,n0,ϕ)‖ ≤ Kλ n−n0 , ∀n ≥ n0,
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n0, let x(¢) := x(¢, n0, φ) be the solution of (2–3) 
and let y(¢) := y(¢, n0, jφj), where jφj(n) := jφ(n)j, n 2 

BULLETIN OF THE POLISH ACADEMY OF SCIENCES
TECHNICAL SCIENCES, Vol. XX, No. Y, 2016
DOI: 10.1515/bpasts-2016-00ZZ

Stability of nonlinear Volterra equations

Abstract. Using a novel approach, we present some new explicit criteria for global exponential stability of the zero solution of general
nonlinear time-varying Volterra difference equations. Furthermore, an explicit stability bound for equations subject to nonlinear time-varying
perturbations is given. Finally, the obtained results are used to study uniform attraction of equilibrium of discrete-time bidirectional associative
memory (BAM) neural networks. Some illustrative examples are given.

Key words: Global exponential stability, Volterra equations

1. Introduction
Volterra difference equations have been widely used in the
modeling of processes in continuous mechanics and biome-
chanics, problems of control and estimations and some
schemes of numerical solutions of integral and integro-
differential equations, see e.g. [2], [7], [12], [16]-[19].

Problems of stability of Volterra difference equations have
attracted much attention from researchers, during the last
twenty years, see e.g. [1],[4]-[13], [15], [21]-[23] and refer-
ences therein. Many various methods have been used to inves-
tigate stability of Volterra difference equations such as Lya-
punov functions, Z transform, comparison theorems, topologi-
cal methods, fixed point theorems, etc (see e.g. [7], [10], [15],
[23]).

In particular, the first significant result on exponential sta-
bility of Volterra difference equations is due to Elaydi and
Murakami, see [8]. Roughly speaking, Elaydi and Murakami
showed that even to the simplest Volterra difference equations
(namely, linear time-invariant Volterra difference equations of
convolution type), the exponential stability is “stronger” than
the uniform asymptotic stability. More precisely, a linear time-
invariant Volterra difference equation of convolution type is ex-
ponentially stable if and only if it is uniformly asymptotically
stable and its kernel exponentially decays, see [8]. For further
and updated information on stability of linear time-invariant
Volterra difference equations, we refer to the recent survey pa-
per [10].

In general, problems of global exponential stability of time-
varying Volterra difference equations are very hard even those
of linear time-varying Volterra equations. Most of existing re-
sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
ditions for exponential stability of linear time-varying Volterra
difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
nential stability of nonlinear time-varying Volterra difference
equations. Our approach is based on the celebrated Perron-
Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
nential stability of the zero solution of general nonlinear time-

varying Volterra difference equations. Furthermore, we derive
an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.

2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there

1

[0, n0]. 
Since A(n) ¸ 0, B(n, k) ¸ 0 for n, k 2 
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max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there

1
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1. Introduction
Volterra difference equations have been widely used in the
modeling of processes in continuous mechanics and biome-
chanics, problems of control and estimations and some
schemes of numerical solutions of integral and integro-
differential equations, see e.g. [2], [7], [12], [16]-[19].

Problems of stability of Volterra difference equations have
attracted much attention from researchers, during the last
twenty years, see e.g. [1],[4]-[13], [15], [21]-[23] and refer-
ences therein. Many various methods have been used to inves-
tigate stability of Volterra difference equations such as Lya-
punov functions, Z transform, comparison theorems, topologi-
cal methods, fixed point theorems, etc (see e.g. [7], [10], [15],
[23]).

In particular, the first significant result on exponential sta-
bility of Volterra difference equations is due to Elaydi and
Murakami, see [8]. Roughly speaking, Elaydi and Murakami
showed that even to the simplest Volterra difference equations
(namely, linear time-invariant Volterra difference equations of
convolution type), the exponential stability is “stronger” than
the uniform asymptotic stability. More precisely, a linear time-
invariant Volterra difference equation of convolution type is ex-
ponentially stable if and only if it is uniformly asymptotically
stable and its kernel exponentially decays, see [8]. For further
and updated information on stability of linear time-invariant
Volterra difference equations, we refer to the recent survey pa-
per [10].

In general, problems of global exponential stability of time-
varying Volterra difference equations are very hard even those
of linear time-varying Volterra equations. Most of existing re-
sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
ditions for exponential stability of linear time-varying Volterra
difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
nential stability of nonlinear time-varying Volterra difference
equations. Our approach is based on the celebrated Perron-
Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
nential stability of the zero solution of general nonlinear time-

varying Volterra difference equations. Furthermore, we derive
an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.

2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there

1

+, n ¸ n0.

Note that
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where K := M‖p‖. By the linearity of (9),

‖y(n,n0,
ϕ

‖ϕ‖n0

)‖= 1
‖ϕ‖n0

‖y(n,n0,ϕ)‖ ≤ Kλ n−n0 ,

for all n ≥ n0,ϕ ∈ Sn0 ,‖ϕ‖n0 �= 0.
Therefore,

‖y(n,n0,ϕ)‖ ≤ Kλ n−n0‖ϕ‖n0 , ∀n ≥ n0, ∀ϕ ∈ Sn0 . (12)

For given ϕ ∈ Sn0 , let x(·) := x(·,n0,ϕ) be the solution of
(2)-(3) and let y(·) := y(·,n0, |ϕ|), where |ϕ|(n) := |ϕ(n)|,n ∈
Z[0,n0]. Since A(n) ≥ 0,B(n,k) ≥ 0 for n,k ∈ Z+,n ≥ k, and
|ϕ| ≥ 0, it follows that y(n)≥ 0,∀n ∈ Z+,n ≥ n0.
Note that

|x(n0 +1)| ≤ |F(n0,x(n0))|+
n0

∑
k=0

|G(n0,k,x(k))|

(5)
≤ A(n0)|x(n0)|+

n0

∑
k=0

B(n0,k)|x(k)|

(3)
= A(n0)|ϕ(n0)|+

n0

∑
k=0

B(n0,k)|ϕ(k)|

(9)
= A(n0)y(n0)+

n0

∑
k=0

B(n0,k)y(k)

= y(n0 +1).

By induction, we have

|x(n)| ≤ y(n), ∀n ∈ Z+.

By the monotonicity of vector norms,

‖x(n)‖= ‖|x(n)|‖ ≤ ‖y(n)‖, ∀n ∈ Z+. (13)

Thus, (4) follows from (12) and (13). Hence, the zero solution
of (2) is GES.

Next, we show that (ii) implies (i). Since A ∈Rm×m
+ ,ρ(A)<

1, there is a vector p ∈ Rm, p � 0 such that Ap � p, by Theo-
rem 2.2. By continuity,

Ap � η−1 p, (14)

for some η > 1. Let β be as in (ii) and let α0 := min{β ,η}.
Clearly, α0 > 1 and
(

A(n)+
n

∑
k=0

B(n,k)αn−k
0

)
≤
(

A(n)+
n

∑
k=0

B(n,k)β n−k
)

(7)
≤ A.

Therefore,(
A(n)+

n

∑
k=0

B(n,k)αn−k
0

)
p ≤ Ap

(14)
≤ η−1 p ≤ α−1

0 p.

Thus, (i) holds.
Finally, it remains to show that the zero solution of (2) is
GES provided (iii) holds. From (8), it follows that ‖A(n)‖+
∑n

k=0 ‖B(n,k)‖γn−k < a, ∀n ∈ Z+, for some a ∈ [0,1). Thus,
the zero solution of the scalar difference equation

z(n+1) = ‖A(n)‖z(n)+
n

∑
k=0

‖B(n,k)‖z(k), n ∈ Z+, (15)

is GES, by (ii). Fix ϕ ∈ Sn0 . Let x(·) := x(·,n0,ϕ) be the
solution of (2)-(3) and let z(·) := z(·,n0,‖ϕ(·)‖) be the solution

of (15) with the initial value function ‖ϕ(·)‖. By a similar
argument as in Step II of the proof of (i), we get

‖x(n)‖ ≤ z(n), ∀n ∈ Z+. (16)

Therefore, the zero solution of (2) is GES. This completes the
proof.

For given γ > 1, let us denote

lγ(Km×m) :=
{
(B(n))n : B(n) ∈Km×m,n ∈ Z+,

∞

∑
n=0

‖B(n)‖γn <+∞
}
,

K := R,C.

In particular, the following follows from Theorem 3.2.

THEOREM 3.4. Suppose there exist A ∈ Rm×m
+ and B(·) :

Z+ → Rm×m
+ such that

|F(n,x)| ≤ A|x| and |G(n,k,x)| ≤ B(n− k)|x|, (17)

for all n,k ∈Z+,n≥ k,x∈Rm. If (B(n))n ∈ lγ(Rm×m) for some
γ > 1 and ρ(A+∑+∞

n=0 B(n)) < 1 then the zero solution of (2)
is GES.

Proof. Since ρ(A+∑+∞
k=0 B(k)) < 1 and (B(k))k ∈ lγ(Rm×m)

with γ > 1, ρ(A + ∑+∞
k=0 B(k)β k) < 1, for some β ∈

(1,γ], by continuity of the spectral radius, see [3]. Note
that A + ∑n

k=0 B(n − k)β n−k = A + ∑n
k=0 B(k)β k ≤ A +

∑+∞
k=0 B(k)β k,∀n ∈ Z+. Therefore, (ii) of Theorem 3.4 holds

and the zero solution of (2) is GES.

We illustrate the obtained results by a couple of examples.

EXAMPLE 3.5. Consider a scalar nonlinear Volterra differ-
ence equation

x(n+1) =
ne−x2(n)x(n)

4n+1
+

n

∑
k=0

2k2 arctan
(
an−kx(k)

)

(k2 +1)
(
3(n− k)+1

)(
3(n− k)+4

) , (18)

where 0 < a < 1 and n ∈ Z+.
Let

F(n,x) =
ne−x2

x
4n+1

and

G(n,k,x) =
2k2 arctan

(
an−kx

)

(k2 +1)
(
3(n− k)+1

)(
3(n− k)+4

) , (19)

where n,k ∈ Z+,n ≥ k and x ∈ R. Since
∣∣∣∣
ne−x2

x
4n+1

∣∣∣∣≤
1
4
|x| and

∣∣∣∣
k2 arctan

(
an−kx

)
k2 +1

∣∣∣∣≤ an−k|x|,

for all x ∈ R,n,k ∈ Z+,n ≥ k, it follows that

|F(n,x)| ≤ A|x| and |G(n,k,x)| ≤ B(n− k)|x|, (20)

for all x ∈ R,n,k ∈ Z+,n ≥ k, where A = 1
4 and B(n) =

2an
(
3n+1

)(
3n+4

), n ∈ Z+.
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where K := M‖p‖. By the linearity of (9),

‖y(n,n0,
ϕ

‖ϕ‖n0

)‖= 1
‖ϕ‖n0

‖y(n,n0,ϕ)‖ ≤ Kλ n−n0 ,

for all n ≥ n0,ϕ ∈ Sn0 ,‖ϕ‖n0 �= 0.
Therefore,

‖y(n,n0,ϕ)‖ ≤ Kλ n−n0‖ϕ‖n0 , ∀n ≥ n0, ∀ϕ ∈ Sn0 . (12)

For given ϕ ∈ Sn0 , let x(·) := x(·,n0,ϕ) be the solution of
(2)-(3) and let y(·) := y(·,n0, |ϕ|), where |ϕ|(n) := |ϕ(n)|,n ∈
Z[0,n0]. Since A(n) ≥ 0,B(n,k) ≥ 0 for n,k ∈ Z+,n ≥ k, and
|ϕ| ≥ 0, it follows that y(n)≥ 0,∀n ∈ Z+,n ≥ n0.
Note that

|x(n0 +1)| ≤ |F(n0,x(n0))|+
n0

∑
k=0

|G(n0,k,x(k))|

(5)
≤ A(n0)|x(n0)|+

n0

∑
k=0

B(n0,k)|x(k)|

(3)
= A(n0)|ϕ(n0)|+

n0

∑
k=0

B(n0,k)|ϕ(k)|

(9)
= A(n0)y(n0)+

n0

∑
k=0

B(n0,k)y(k)

= y(n0 +1).

By induction, we have

|x(n)| ≤ y(n), ∀n ∈ Z+.

By the monotonicity of vector norms,

‖x(n)‖= ‖|x(n)|‖ ≤ ‖y(n)‖, ∀n ∈ Z+. (13)

Thus, (4) follows from (12) and (13). Hence, the zero solution
of (2) is GES.

Next, we show that (ii) implies (i). Since A ∈Rm×m
+ ,ρ(A)<

1, there is a vector p ∈ Rm, p � 0 such that Ap � p, by Theo-
rem 2.2. By continuity,

Ap � η−1 p, (14)

for some η > 1. Let β be as in (ii) and let α0 := min{β ,η}.
Clearly, α0 > 1 and
(

A(n)+
n

∑
k=0

B(n,k)αn−k
0

)
≤
(

A(n)+
n

∑
k=0

B(n,k)β n−k
)

(7)
≤ A.

Therefore,(
A(n)+

n

∑
k=0

B(n,k)αn−k
0

)
p ≤ Ap

(14)
≤ η−1 p ≤ α−1

0 p.

Thus, (i) holds.
Finally, it remains to show that the zero solution of (2) is
GES provided (iii) holds. From (8), it follows that ‖A(n)‖+
∑n

k=0 ‖B(n,k)‖γn−k < a, ∀n ∈ Z+, for some a ∈ [0,1). Thus,
the zero solution of the scalar difference equation

z(n+1) = ‖A(n)‖z(n)+
n

∑
k=0

‖B(n,k)‖z(k), n ∈ Z+, (15)

is GES, by (ii). Fix ϕ ∈ Sn0 . Let x(·) := x(·,n0,ϕ) be the
solution of (2)-(3) and let z(·) := z(·,n0,‖ϕ(·)‖) be the solution

of (15) with the initial value function ‖ϕ(·)‖. By a similar
argument as in Step II of the proof of (i), we get

‖x(n)‖ ≤ z(n), ∀n ∈ Z+. (16)

Therefore, the zero solution of (2) is GES. This completes the
proof.

For given γ > 1, let us denote

lγ(Km×m) :=
{
(B(n))n : B(n) ∈Km×m,n ∈ Z+,

∞

∑
n=0

‖B(n)‖γn <+∞
}
,

K := R,C.

In particular, the following follows from Theorem 3.2.

THEOREM 3.4. Suppose there exist A ∈ Rm×m
+ and B(·) :

Z+ → Rm×m
+ such that

|F(n,x)| ≤ A|x| and |G(n,k,x)| ≤ B(n− k)|x|, (17)

for all n,k ∈Z+,n≥ k,x∈Rm. If (B(n))n ∈ lγ(Rm×m) for some
γ > 1 and ρ(A+∑+∞

n=0 B(n)) < 1 then the zero solution of (2)
is GES.

Proof. Since ρ(A+∑+∞
k=0 B(k)) < 1 and (B(k))k ∈ lγ(Rm×m)

with γ > 1, ρ(A + ∑+∞
k=0 B(k)β k) < 1, for some β ∈

(1,γ], by continuity of the spectral radius, see [3]. Note
that A + ∑n

k=0 B(n − k)β n−k = A + ∑n
k=0 B(k)β k ≤ A +

∑+∞
k=0 B(k)β k,∀n ∈ Z+. Therefore, (ii) of Theorem 3.4 holds

and the zero solution of (2) is GES.

We illustrate the obtained results by a couple of examples.

EXAMPLE 3.5. Consider a scalar nonlinear Volterra differ-
ence equation

x(n+1) =
ne−x2(n)x(n)

4n+1
+

n

∑
k=0

2k2 arctan
(
an−kx(k)

)

(k2 +1)
(
3(n− k)+1

)(
3(n− k)+4

) , (18)

where 0 < a < 1 and n ∈ Z+.
Let

F(n,x) =
ne−x2

x
4n+1

and

G(n,k,x) =
2k2 arctan

(
an−kx

)

(k2 +1)
(
3(n− k)+1

)(
3(n− k)+4

) , (19)

where n,k ∈ Z+,n ≥ k and x ∈ R. Since
∣∣∣∣
ne−x2

x
4n+1

∣∣∣∣≤
1
4
|x| and

∣∣∣∣
k2 arctan

(
an−kx

)
k2 +1

∣∣∣∣≤ an−k|x|,

for all x ∈ R,n,k ∈ Z+,n ≥ k, it follows that

|F(n,x)| ≤ A|x| and |G(n,k,x)| ≤ B(n− k)|x|, (20)

for all x ∈ R,n,k ∈ Z+,n ≥ k, where A = 1
4 and B(n) =

2an
(
3n+1

)(
3n+4

), n ∈ Z+.
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where K := M‖p‖. By the linearity of (9),

‖y(n,n0,
ϕ

‖ϕ‖n0

)‖= 1
‖ϕ‖n0

‖y(n,n0,ϕ)‖ ≤ Kλ n−n0 ,

for all n ≥ n0,ϕ ∈ Sn0 ,‖ϕ‖n0 �= 0.
Therefore,

‖y(n,n0,ϕ)‖ ≤ Kλ n−n0‖ϕ‖n0 , ∀n ≥ n0, ∀ϕ ∈ Sn0 . (12)

For given ϕ ∈ Sn0 , let x(·) := x(·,n0,ϕ) be the solution of
(2)-(3) and let y(·) := y(·,n0, |ϕ|), where |ϕ|(n) := |ϕ(n)|,n ∈
Z[0,n0]. Since A(n) ≥ 0,B(n,k) ≥ 0 for n,k ∈ Z+,n ≥ k, and
|ϕ| ≥ 0, it follows that y(n)≥ 0,∀n ∈ Z+,n ≥ n0.
Note that

|x(n0 +1)| ≤ |F(n0,x(n0))|+
n0

∑
k=0

|G(n0,k,x(k))|

(5)
≤ A(n0)|x(n0)|+

n0

∑
k=0

B(n0,k)|x(k)|

(3)
= A(n0)|ϕ(n0)|+

n0

∑
k=0

B(n0,k)|ϕ(k)|

(9)
= A(n0)y(n0)+

n0

∑
k=0

B(n0,k)y(k)

= y(n0 +1).

By induction, we have

|x(n)| ≤ y(n), ∀n ∈ Z+.

By the monotonicity of vector norms,

‖x(n)‖= ‖|x(n)|‖ ≤ ‖y(n)‖, ∀n ∈ Z+. (13)

Thus, (4) follows from (12) and (13). Hence, the zero solution
of (2) is GES.

Next, we show that (ii) implies (i). Since A ∈Rm×m
+ ,ρ(A)<

1, there is a vector p ∈ Rm, p � 0 such that Ap � p, by Theo-
rem 2.2. By continuity,

Ap � η−1 p, (14)

for some η > 1. Let β be as in (ii) and let α0 := min{β ,η}.
Clearly, α0 > 1 and
(

A(n)+
n

∑
k=0

B(n,k)αn−k
0

)
≤
(

A(n)+
n

∑
k=0

B(n,k)β n−k
)

(7)
≤ A.

Therefore,(
A(n)+

n

∑
k=0

B(n,k)αn−k
0

)
p ≤ Ap

(14)
≤ η−1 p ≤ α−1

0 p.

Thus, (i) holds.
Finally, it remains to show that the zero solution of (2) is
GES provided (iii) holds. From (8), it follows that ‖A(n)‖+
∑n

k=0 ‖B(n,k)‖γn−k < a, ∀n ∈ Z+, for some a ∈ [0,1). Thus,
the zero solution of the scalar difference equation

z(n+1) = ‖A(n)‖z(n)+
n

∑
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‖B(n,k)‖z(k), n ∈ Z+, (15)

is GES, by (ii). Fix ϕ ∈ Sn0 . Let x(·) := x(·,n0,ϕ) be the
solution of (2)-(3) and let z(·) := z(·,n0,‖ϕ(·)‖) be the solution

of (15) with the initial value function ‖ϕ(·)‖. By a similar
argument as in Step II of the proof of (i), we get

‖x(n)‖ ≤ z(n), ∀n ∈ Z+. (16)

Therefore, the zero solution of (2) is GES. This completes the
proof.

For given γ > 1, let us denote

lγ(Km×m) :=
{
(B(n))n : B(n) ∈Km×m,n ∈ Z+,

∞

∑
n=0

‖B(n)‖γn <+∞
}
,

K := R,C.

In particular, the following follows from Theorem 3.2.

THEOREM 3.4. Suppose there exist A ∈ Rm×m
+ and B(·) :

Z+ → Rm×m
+ such that

|F(n,x)| ≤ A|x| and |G(n,k,x)| ≤ B(n− k)|x|, (17)

for all n,k ∈Z+,n≥ k,x∈Rm. If (B(n))n ∈ lγ(Rm×m) for some
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is GES.
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k=0 B(k)β k ≤ A +

∑+∞
k=0 B(k)β k,∀n ∈ Z+. Therefore, (ii) of Theorem 3.4 holds

and the zero solution of (2) is GES.

We illustrate the obtained results by a couple of examples.

EXAMPLE 3.5. Consider a scalar nonlinear Volterra differ-
ence equation

x(n+1) =
ne−x2(n)x(n)

4n+1
+

n

∑
k=0

2k2 arctan
(
an−kx(k)

)

(k2 +1)
(
3(n− k)+1

)(
3(n− k)+4

) , (18)

where 0 < a < 1 and n ∈ Z+.
Let

F(n,x) =
ne−x2

x
4n+1

and

G(n,k,x) =
2k2 arctan

(
an−kx

)

(k2 +1)
(
3(n− k)+1

)(
3(n− k)+4

) , (19)

where n,k ∈ Z+,n ≥ k and x ∈ R. Since
∣∣∣∣
ne−x2

x
4n+1

∣∣∣∣≤
1
4
|x| and

∣∣∣∣
k2 arctan

(
an−kx

)
k2 +1

∣∣∣∣≤ an−k|x|,

for all x ∈ R,n,k ∈ Z+,n ≥ k, it follows that

|F(n,x)| ≤ A|x| and |G(n,k,x)| ≤ B(n− k)|x|, (20)

for all x ∈ R,n,k ∈ Z+,n ≥ k, where A = 1
4 and B(n) =

2an
(
3n+1

)(
3n+4

), n ∈ Z+.
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Thus, (4) follows from (12) and (13). Hence, the zero solution 
of (2) is GES.

Next, we show that (ii) implies (i). Since A 2 

BULLETIN OF THE POLISH ACADEMY OF SCIENCES
TECHNICAL SCIENCES, Vol. XX, No. Y, 2016
DOI: 10.1515/bpasts-2016-00ZZ

Stability of nonlinear Volterra equations

Abstract. Using a novel approach, we present some new explicit criteria for global exponential stability of the zero solution of general
nonlinear time-varying Volterra difference equations. Furthermore, an explicit stability bound for equations subject to nonlinear time-varying
perturbations is given. Finally, the obtained results are used to study uniform attraction of equilibrium of discrete-time bidirectional associative
memory (BAM) neural networks. Some illustrative examples are given.

Key words: Global exponential stability, Volterra equations

1. Introduction
Volterra difference equations have been widely used in the
modeling of processes in continuous mechanics and biome-
chanics, problems of control and estimations and some
schemes of numerical solutions of integral and integro-
differential equations, see e.g. [2], [7], [12], [16]-[19].

Problems of stability of Volterra difference equations have
attracted much attention from researchers, during the last
twenty years, see e.g. [1],[4]-[13], [15], [21]-[23] and refer-
ences therein. Many various methods have been used to inves-
tigate stability of Volterra difference equations such as Lya-
punov functions, Z transform, comparison theorems, topologi-
cal methods, fixed point theorems, etc (see e.g. [7], [10], [15],
[23]).

In particular, the first significant result on exponential sta-
bility of Volterra difference equations is due to Elaydi and
Murakami, see [8]. Roughly speaking, Elaydi and Murakami
showed that even to the simplest Volterra difference equations
(namely, linear time-invariant Volterra difference equations of
convolution type), the exponential stability is “stronger” than
the uniform asymptotic stability. More precisely, a linear time-
invariant Volterra difference equation of convolution type is ex-
ponentially stable if and only if it is uniformly asymptotically
stable and its kernel exponentially decays, see [8]. For further
and updated information on stability of linear time-invariant
Volterra difference equations, we refer to the recent survey pa-
per [10].

In general, problems of global exponential stability of time-
varying Volterra difference equations are very hard even those
of linear time-varying Volterra equations. Most of existing re-
sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
ditions for exponential stability of linear time-varying Volterra
difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
nential stability of nonlinear time-varying Volterra difference
equations. Our approach is based on the celebrated Perron-
Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
nential stability of the zero solution of general nonlinear time-

varying Volterra difference equations. Furthermore, we derive
an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.

2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there

1

+
m£m, 

ρ(A) < 1, there is a vector p 2 
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we write A � B instead of A ≥ B. The set of all nonnega-
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matrix will be denoted by Im. If x = (x1,x2, ...,xm)
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1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],
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+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there

1

m, p À 0 such that Ap ¿ p, 
by Theorem 2.2. By continuity,
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where K := M‖p‖. By the linearity of (9),

‖y(n,n0,
ϕ

‖ϕ‖n0

)‖= 1
‖ϕ‖n0

‖y(n,n0,ϕ)‖ ≤ Kλ n−n0 ,

for all n ≥ n0,ϕ ∈ Sn0 ,‖ϕ‖n0 �= 0.
Therefore,

‖y(n,n0,ϕ)‖ ≤ Kλ n−n0‖ϕ‖n0 , ∀n ≥ n0, ∀ϕ ∈ Sn0 . (12)

For given ϕ ∈ Sn0 , let x(·) := x(·,n0,ϕ) be the solution of
(2)-(3) and let y(·) := y(·,n0, |ϕ|), where |ϕ|(n) := |ϕ(n)|,n ∈
Z[0,n0]. Since A(n) ≥ 0,B(n,k) ≥ 0 for n,k ∈ Z+,n ≥ k, and
|ϕ| ≥ 0, it follows that y(n)≥ 0,∀n ∈ Z+,n ≥ n0.
Note that

|x(n0 +1)| ≤ |F(n0,x(n0))|+
n0

∑
k=0

|G(n0,k,x(k))|

(5)
≤ A(n0)|x(n0)|+

n0

∑
k=0

B(n0,k)|x(k)|

(3)
= A(n0)|ϕ(n0)|+

n0

∑
k=0

B(n0,k)|ϕ(k)|

(9)
= A(n0)y(n0)+

n0

∑
k=0

B(n0,k)y(k)

= y(n0 +1).

By induction, we have

|x(n)| ≤ y(n), ∀n ∈ Z+.

By the monotonicity of vector norms,

‖x(n)‖= ‖|x(n)|‖ ≤ ‖y(n)‖, ∀n ∈ Z+. (13)

Thus, (4) follows from (12) and (13). Hence, the zero solution
of (2) is GES.

Next, we show that (ii) implies (i). Since A ∈Rm×m
+ ,ρ(A)<

1, there is a vector p ∈ Rm, p � 0 such that Ap � p, by Theo-
rem 2.2. By continuity,

Ap � η−1 p, (14)

for some η > 1. Let β be as in (ii) and let α0 := min{β ,η}.
Clearly, α0 > 1 and
(

A(n)+
n

∑
k=0

B(n,k)αn−k
0

)
≤
(

A(n)+
n

∑
k=0

B(n,k)β n−k
)

(7)
≤ A.

Therefore,(
A(n)+

n

∑
k=0

B(n,k)αn−k
0

)
p ≤ Ap

(14)
≤ η−1 p ≤ α−1

0 p.

Thus, (i) holds.
Finally, it remains to show that the zero solution of (2) is
GES provided (iii) holds. From (8), it follows that ‖A(n)‖+
∑n

k=0 ‖B(n,k)‖γn−k < a, ∀n ∈ Z+, for some a ∈ [0,1). Thus,
the zero solution of the scalar difference equation

z(n+1) = ‖A(n)‖z(n)+
n

∑
k=0

‖B(n,k)‖z(k), n ∈ Z+, (15)

is GES, by (ii). Fix ϕ ∈ Sn0 . Let x(·) := x(·,n0,ϕ) be the
solution of (2)-(3) and let z(·) := z(·,n0,‖ϕ(·)‖) be the solution

of (15) with the initial value function ‖ϕ(·)‖. By a similar
argument as in Step II of the proof of (i), we get

‖x(n)‖ ≤ z(n), ∀n ∈ Z+. (16)

Therefore, the zero solution of (2) is GES. This completes the
proof.

For given γ > 1, let us denote

lγ(Km×m) :=
{
(B(n))n : B(n) ∈Km×m,n ∈ Z+,

∞

∑
n=0

‖B(n)‖γn <+∞
}
,

K := R,C.

In particular, the following follows from Theorem 3.2.

THEOREM 3.4. Suppose there exist A ∈ Rm×m
+ and B(·) :

Z+ → Rm×m
+ such that

|F(n,x)| ≤ A|x| and |G(n,k,x)| ≤ B(n− k)|x|, (17)

for all n,k ∈Z+,n≥ k,x∈Rm. If (B(n))n ∈ lγ(Rm×m) for some
γ > 1 and ρ(A+∑+∞

n=0 B(n)) < 1 then the zero solution of (2)
is GES.

Proof. Since ρ(A+∑+∞
k=0 B(k)) < 1 and (B(k))k ∈ lγ(Rm×m)

with γ > 1, ρ(A + ∑+∞
k=0 B(k)β k) < 1, for some β ∈

(1,γ], by continuity of the spectral radius, see [3]. Note
that A + ∑n

k=0 B(n − k)β n−k = A + ∑n
k=0 B(k)β k ≤ A +

∑+∞
k=0 B(k)β k,∀n ∈ Z+. Therefore, (ii) of Theorem 3.4 holds

and the zero solution of (2) is GES.

We illustrate the obtained results by a couple of examples.

EXAMPLE 3.5. Consider a scalar nonlinear Volterra differ-
ence equation

x(n+1) =
ne−x2(n)x(n)

4n+1
+

n

∑
k=0

2k2 arctan
(
an−kx(k)

)

(k2 +1)
(
3(n− k)+1

)(
3(n− k)+4

) , (18)

where 0 < a < 1 and n ∈ Z+.
Let

F(n,x) =
ne−x2

x
4n+1

and

G(n,k,x) =
2k2 arctan

(
an−kx

)

(k2 +1)
(
3(n− k)+1

)(
3(n− k)+4

) , (19)

where n,k ∈ Z+,n ≥ k and x ∈ R. Since
∣∣∣∣
ne−x2

x
4n+1

∣∣∣∣≤
1
4
|x| and

∣∣∣∣
k2 arctan

(
an−kx

)
k2 +1

∣∣∣∣≤ an−k|x|,

for all x ∈ R,n,k ∈ Z+,n ≥ k, it follows that

|F(n,x)| ≤ A|x| and |G(n,k,x)| ≤ B(n− k)|x|, (20)

for all x ∈ R,n,k ∈ Z+,n ≥ k, where A = 1
4 and B(n) =

2an
(
3n+1

)(
3n+4

), n ∈ Z+.
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for some η > 1. Let β be as in (ii) and let α0 := min{β, η}. 
Clearly, α0 > 1 and
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where K := M‖p‖. By the linearity of (9),

‖y(n,n0,
ϕ

‖ϕ‖n0

)‖= 1
‖ϕ‖n0

‖y(n,n0,ϕ)‖ ≤ Kλ n−n0 ,

for all n ≥ n0,ϕ ∈ Sn0 ,‖ϕ‖n0 �= 0.
Therefore,

‖y(n,n0,ϕ)‖ ≤ Kλ n−n0‖ϕ‖n0 , ∀n ≥ n0, ∀ϕ ∈ Sn0 . (12)

For given ϕ ∈ Sn0 , let x(·) := x(·,n0,ϕ) be the solution of
(2)-(3) and let y(·) := y(·,n0, |ϕ|), where |ϕ|(n) := |ϕ(n)|,n ∈
Z[0,n0]. Since A(n) ≥ 0,B(n,k) ≥ 0 for n,k ∈ Z+,n ≥ k, and
|ϕ| ≥ 0, it follows that y(n)≥ 0,∀n ∈ Z+,n ≥ n0.
Note that

|x(n0 +1)| ≤ |F(n0,x(n0))|+
n0

∑
k=0

|G(n0,k,x(k))|

(5)
≤ A(n0)|x(n0)|+

n0

∑
k=0

B(n0,k)|x(k)|

(3)
= A(n0)|ϕ(n0)|+

n0

∑
k=0

B(n0,k)|ϕ(k)|

(9)
= A(n0)y(n0)+

n0

∑
k=0

B(n0,k)y(k)

= y(n0 +1).

By induction, we have

|x(n)| ≤ y(n), ∀n ∈ Z+.

By the monotonicity of vector norms,

‖x(n)‖= ‖|x(n)|‖ ≤ ‖y(n)‖, ∀n ∈ Z+. (13)

Thus, (4) follows from (12) and (13). Hence, the zero solution
of (2) is GES.

Next, we show that (ii) implies (i). Since A ∈Rm×m
+ ,ρ(A)<

1, there is a vector p ∈ Rm, p � 0 such that Ap � p, by Theo-
rem 2.2. By continuity,

Ap � η−1 p, (14)

for some η > 1. Let β be as in (ii) and let α0 := min{β ,η}.
Clearly, α0 > 1 and
(

A(n)+
n

∑
k=0

B(n,k)αn−k
0

)
≤
(

A(n)+
n

∑
k=0

B(n,k)β n−k
)

(7)
≤ A.

Therefore,(
A(n)+

n

∑
k=0

B(n,k)αn−k
0

)
p ≤ Ap

(14)
≤ η−1 p ≤ α−1

0 p.

Thus, (i) holds.
Finally, it remains to show that the zero solution of (2) is
GES provided (iii) holds. From (8), it follows that ‖A(n)‖+
∑n

k=0 ‖B(n,k)‖γn−k < a, ∀n ∈ Z+, for some a ∈ [0,1). Thus,
the zero solution of the scalar difference equation
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solution of (2)-(3) and let z(·) := z(·,n0,‖ϕ(·)‖) be the solution

of (15) with the initial value function ‖ϕ(·)‖. By a similar
argument as in Step II of the proof of (i), we get
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proof.
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(
an−kx

)

(k2 +1)
(
3(n− k)+1

)(
3(n− k)+4

) , (19)

where n,k ∈ Z+,n ≥ k and x ∈ R. Since
∣∣∣∣
ne−x2

x
4n+1

∣∣∣∣≤
1
4
|x| and

∣∣∣∣
k2 arctan

(
an−kx

)
k2 +1

∣∣∣∣≤ an−k|x|,

for all x ∈ R,n,k ∈ Z+,n ≥ k, it follows that

|F(n,x)| ≤ A|x| and |G(n,k,x)| ≤ B(n− k)|x|, (20)

for all x ∈ R,n,k ∈ Z+,n ≥ k, where A = 1
4 and B(n) =

2an
(
3n+1

)(
3n+4

), n ∈ Z+.
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where K := M‖p‖. By the linearity of (9),

‖y(n,n0,
ϕ

‖ϕ‖n0

)‖= 1
‖ϕ‖n0

‖y(n,n0,ϕ)‖ ≤ Kλ n−n0 ,

for all n ≥ n0,ϕ ∈ Sn0 ,‖ϕ‖n0 �= 0.
Therefore,

‖y(n,n0,ϕ)‖ ≤ Kλ n−n0‖ϕ‖n0 , ∀n ≥ n0, ∀ϕ ∈ Sn0 . (12)

For given ϕ ∈ Sn0 , let x(·) := x(·,n0,ϕ) be the solution of
(2)-(3) and let y(·) := y(·,n0, |ϕ|), where |ϕ|(n) := |ϕ(n)|,n ∈
Z[0,n0]. Since A(n) ≥ 0,B(n,k) ≥ 0 for n,k ∈ Z+,n ≥ k, and
|ϕ| ≥ 0, it follows that y(n)≥ 0,∀n ∈ Z+,n ≥ n0.
Note that

|x(n0 +1)| ≤ |F(n0,x(n0))|+
n0

∑
k=0

|G(n0,k,x(k))|

(5)
≤ A(n0)|x(n0)|+

n0

∑
k=0

B(n0,k)|x(k)|

(3)
= A(n0)|ϕ(n0)|+

n0

∑
k=0

B(n0,k)|ϕ(k)|

(9)
= A(n0)y(n0)+

n0

∑
k=0

B(n0,k)y(k)

= y(n0 +1).

By induction, we have

|x(n)| ≤ y(n), ∀n ∈ Z+.

By the monotonicity of vector norms,

‖x(n)‖= ‖|x(n)|‖ ≤ ‖y(n)‖, ∀n ∈ Z+. (13)

Thus, (4) follows from (12) and (13). Hence, the zero solution
of (2) is GES.

Next, we show that (ii) implies (i). Since A ∈Rm×m
+ ,ρ(A)<

1, there is a vector p ∈ Rm, p � 0 such that Ap � p, by Theo-
rem 2.2. By continuity,

Ap � η−1 p, (14)

for some η > 1. Let β be as in (ii) and let α0 := min{β ,η}.
Clearly, α0 > 1 and
(

A(n)+
n

∑
k=0

B(n,k)αn−k
0

)
≤
(

A(n)+
n

∑
k=0

B(n,k)β n−k
)

(7)
≤ A.

Therefore,(
A(n)+

n

∑
k=0

B(n,k)αn−k
0

)
p ≤ Ap

(14)
≤ η−1 p ≤ α−1

0 p.

Thus, (i) holds.
Finally, it remains to show that the zero solution of (2) is
GES provided (iii) holds. From (8), it follows that ‖A(n)‖+
∑n

k=0 ‖B(n,k)‖γn−k < a, ∀n ∈ Z+, for some a ∈ [0,1). Thus,
the zero solution of the scalar difference equation

z(n+1) = ‖A(n)‖z(n)+
n

∑
k=0

‖B(n,k)‖z(k), n ∈ Z+, (15)

is GES, by (ii). Fix ϕ ∈ Sn0 . Let x(·) := x(·,n0,ϕ) be the
solution of (2)-(3) and let z(·) := z(·,n0,‖ϕ(·)‖) be the solution

of (15) with the initial value function ‖ϕ(·)‖. By a similar
argument as in Step II of the proof of (i), we get

‖x(n)‖ ≤ z(n), ∀n ∈ Z+. (16)

Therefore, the zero solution of (2) is GES. This completes the
proof.

For given γ > 1, let us denote

lγ(Km×m) :=
{
(B(n))n : B(n) ∈Km×m,n ∈ Z+,

∞

∑
n=0

‖B(n)‖γn <+∞
}
,

K := R,C.

In particular, the following follows from Theorem 3.2.

THEOREM 3.4. Suppose there exist A ∈ Rm×m
+ and B(·) :

Z+ → Rm×m
+ such that

|F(n,x)| ≤ A|x| and |G(n,k,x)| ≤ B(n− k)|x|, (17)

for all n,k ∈Z+,n≥ k,x∈Rm. If (B(n))n ∈ lγ(Rm×m) for some
γ > 1 and ρ(A+∑+∞

n=0 B(n)) < 1 then the zero solution of (2)
is GES.

Proof. Since ρ(A+∑+∞
k=0 B(k)) < 1 and (B(k))k ∈ lγ(Rm×m)

with γ > 1, ρ(A + ∑+∞
k=0 B(k)β k) < 1, for some β ∈

(1,γ], by continuity of the spectral radius, see [3]. Note
that A + ∑n

k=0 B(n − k)β n−k = A + ∑n
k=0 B(k)β k ≤ A +

∑+∞
k=0 B(k)β k,∀n ∈ Z+. Therefore, (ii) of Theorem 3.4 holds

and the zero solution of (2) is GES.

We illustrate the obtained results by a couple of examples.

EXAMPLE 3.5. Consider a scalar nonlinear Volterra differ-
ence equation

x(n+1) =
ne−x2(n)x(n)

4n+1
+

n

∑
k=0

2k2 arctan
(
an−kx(k)

)

(k2 +1)
(
3(n− k)+1

)(
3(n− k)+4

) , (18)

where 0 < a < 1 and n ∈ Z+.
Let

F(n,x) =
ne−x2

x
4n+1

and

G(n,k,x) =
2k2 arctan

(
an−kx

)

(k2 +1)
(
3(n− k)+1

)(
3(n− k)+4

) , (19)

where n,k ∈ Z+,n ≥ k and x ∈ R. Since
∣∣∣∣
ne−x2

x
4n+1

∣∣∣∣≤
1
4
|x| and

∣∣∣∣
k2 arctan

(
an−kx

)
k2 +1

∣∣∣∣≤ an−k|x|,

for all x ∈ R,n,k ∈ Z+,n ≥ k, it follows that

|F(n,x)| ≤ A|x| and |G(n,k,x)| ≤ B(n− k)|x|, (20)

for all x ∈ R,n,k ∈ Z+,n ≥ k, where A = 1
4 and B(n) =

2an
(
3n+1

)(
3n+4

), n ∈ Z+.
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where K := M‖p‖. By the linearity of (9),

‖y(n,n0,
ϕ

‖ϕ‖n0

)‖= 1
‖ϕ‖n0

‖y(n,n0,ϕ)‖ ≤ Kλ n−n0 ,

for all n ≥ n0,ϕ ∈ Sn0 ,‖ϕ‖n0 �= 0.
Therefore,

‖y(n,n0,ϕ)‖ ≤ Kλ n−n0‖ϕ‖n0 , ∀n ≥ n0, ∀ϕ ∈ Sn0 . (12)

For given ϕ ∈ Sn0 , let x(·) := x(·,n0,ϕ) be the solution of
(2)-(3) and let y(·) := y(·,n0, |ϕ|), where |ϕ|(n) := |ϕ(n)|,n ∈
Z[0,n0]. Since A(n) ≥ 0,B(n,k) ≥ 0 for n,k ∈ Z+,n ≥ k, and
|ϕ| ≥ 0, it follows that y(n)≥ 0,∀n ∈ Z+,n ≥ n0.
Note that

|x(n0 +1)| ≤ |F(n0,x(n0))|+
n0

∑
k=0

|G(n0,k,x(k))|

(5)
≤ A(n0)|x(n0)|+

n0

∑
k=0

B(n0,k)|x(k)|

(3)
= A(n0)|ϕ(n0)|+

n0

∑
k=0

B(n0,k)|ϕ(k)|

(9)
= A(n0)y(n0)+

n0

∑
k=0

B(n0,k)y(k)

= y(n0 +1).

By induction, we have

|x(n)| ≤ y(n), ∀n ∈ Z+.

By the monotonicity of vector norms,

‖x(n)‖= ‖|x(n)|‖ ≤ ‖y(n)‖, ∀n ∈ Z+. (13)

Thus, (4) follows from (12) and (13). Hence, the zero solution
of (2) is GES.

Next, we show that (ii) implies (i). Since A ∈Rm×m
+ ,ρ(A)<

1, there is a vector p ∈ Rm, p � 0 such that Ap � p, by Theo-
rem 2.2. By continuity,

Ap � η−1 p, (14)

for some η > 1. Let β be as in (ii) and let α0 := min{β ,η}.
Clearly, α0 > 1 and
(

A(n)+
n

∑
k=0

B(n,k)αn−k
0

)
≤
(

A(n)+
n

∑
k=0

B(n,k)β n−k
)

(7)
≤ A.

Therefore,(
A(n)+

n

∑
k=0

B(n,k)αn−k
0

)
p ≤ Ap

(14)
≤ η−1 p ≤ α−1

0 p.

Thus, (i) holds.
Finally, it remains to show that the zero solution of (2) is
GES provided (iii) holds. From (8), it follows that ‖A(n)‖+
∑n

k=0 ‖B(n,k)‖γn−k < a, ∀n ∈ Z+, for some a ∈ [0,1). Thus,
the zero solution of the scalar difference equation

z(n+1) = ‖A(n)‖z(n)+
n

∑
k=0

‖B(n,k)‖z(k), n ∈ Z+, (15)

is GES, by (ii). Fix ϕ ∈ Sn0 . Let x(·) := x(·,n0,ϕ) be the
solution of (2)-(3) and let z(·) := z(·,n0,‖ϕ(·)‖) be the solution

of (15) with the initial value function ‖ϕ(·)‖. By a similar
argument as in Step II of the proof of (i), we get

‖x(n)‖ ≤ z(n), ∀n ∈ Z+. (16)

Therefore, the zero solution of (2) is GES. This completes the
proof.

For given γ > 1, let us denote

lγ(Km×m) :=
{
(B(n))n : B(n) ∈Km×m,n ∈ Z+,

∞

∑
n=0

‖B(n)‖γn <+∞
}
,

K := R,C.

In particular, the following follows from Theorem 3.2.

THEOREM 3.4. Suppose there exist A ∈ Rm×m
+ and B(·) :

Z+ → Rm×m
+ such that

|F(n,x)| ≤ A|x| and |G(n,k,x)| ≤ B(n− k)|x|, (17)

for all n,k ∈Z+,n≥ k,x∈Rm. If (B(n))n ∈ lγ(Rm×m) for some
γ > 1 and ρ(A+∑+∞

n=0 B(n)) < 1 then the zero solution of (2)
is GES.

Proof. Since ρ(A+∑+∞
k=0 B(k)) < 1 and (B(k))k ∈ lγ(Rm×m)

with γ > 1, ρ(A + ∑+∞
k=0 B(k)β k) < 1, for some β ∈

(1,γ], by continuity of the spectral radius, see [3]. Note
that A + ∑n

k=0 B(n − k)β n−k = A + ∑n
k=0 B(k)β k ≤ A +

∑+∞
k=0 B(k)β k,∀n ∈ Z+. Therefore, (ii) of Theorem 3.4 holds

and the zero solution of (2) is GES.

We illustrate the obtained results by a couple of examples.

EXAMPLE 3.5. Consider a scalar nonlinear Volterra differ-
ence equation

x(n+1) =
ne−x2(n)x(n)

4n+1
+

n

∑
k=0

2k2 arctan
(
an−kx(k)

)

(k2 +1)
(
3(n− k)+1

)(
3(n− k)+4

) , (18)

where 0 < a < 1 and n ∈ Z+.
Let

F(n,x) =
ne−x2

x
4n+1

and

G(n,k,x) =
2k2 arctan

(
an−kx

)

(k2 +1)
(
3(n− k)+1

)(
3(n− k)+4

) , (19)

where n,k ∈ Z+,n ≥ k and x ∈ R. Since
∣∣∣∣
ne−x2

x
4n+1

∣∣∣∣≤
1
4
|x| and

∣∣∣∣
k2 arctan

(
an−kx

)
k2 +1

∣∣∣∣≤ an−k|x|,

for all x ∈ R,n,k ∈ Z+,n ≥ k, it follows that

|F(n,x)| ≤ A|x| and |G(n,k,x)| ≤ B(n− k)|x|, (20)

for all x ∈ R,n,k ∈ Z+,n ≥ k, where A = 1
4 and B(n) =

2an
(
3n+1

)(
3n+4

), n ∈ Z+.
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Thus, (i) holds.
Finally, it remains to show that the zero solution of (2) is 
GES provided (iii) holds. From (8), it follows that kA(n)k + 
∑n

k=0kB(n, k)kγn–k < a, 8n 2 
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1. Introduction
Volterra difference equations have been widely used in the
modeling of processes in continuous mechanics and biome-
chanics, problems of control and estimations and some
schemes of numerical solutions of integral and integro-
differential equations, see e.g. [2], [7], [12], [16]-[19].

Problems of stability of Volterra difference equations have
attracted much attention from researchers, during the last
twenty years, see e.g. [1],[4]-[13], [15], [21]-[23] and refer-
ences therein. Many various methods have been used to inves-
tigate stability of Volterra difference equations such as Lya-
punov functions, Z transform, comparison theorems, topologi-
cal methods, fixed point theorems, etc (see e.g. [7], [10], [15],
[23]).

In particular, the first significant result on exponential sta-
bility of Volterra difference equations is due to Elaydi and
Murakami, see [8]. Roughly speaking, Elaydi and Murakami
showed that even to the simplest Volterra difference equations
(namely, linear time-invariant Volterra difference equations of
convolution type), the exponential stability is “stronger” than
the uniform asymptotic stability. More precisely, a linear time-
invariant Volterra difference equation of convolution type is ex-
ponentially stable if and only if it is uniformly asymptotically
stable and its kernel exponentially decays, see [8]. For further
and updated information on stability of linear time-invariant
Volterra difference equations, we refer to the recent survey pa-
per [10].

In general, problems of global exponential stability of time-
varying Volterra difference equations are very hard even those
of linear time-varying Volterra equations. Most of existing re-
sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
ditions for exponential stability of linear time-varying Volterra
difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
nential stability of nonlinear time-varying Volterra difference
equations. Our approach is based on the celebrated Perron-
Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
nential stability of the zero solution of general nonlinear time-

varying Volterra difference equations. Furthermore, we derive
an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.

2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there

1

+, for some a 2 [0, 1). Thus, the 
zero solution of the scalar difference equation
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where K := M‖p‖. By the linearity of (9),

‖y(n,n0,
ϕ

‖ϕ‖n0

)‖= 1
‖ϕ‖n0

‖y(n,n0,ϕ)‖ ≤ Kλ n−n0 ,

for all n ≥ n0,ϕ ∈ Sn0 ,‖ϕ‖n0 �= 0.
Therefore,

‖y(n,n0,ϕ)‖ ≤ Kλ n−n0‖ϕ‖n0 , ∀n ≥ n0, ∀ϕ ∈ Sn0 . (12)

For given ϕ ∈ Sn0 , let x(·) := x(·,n0,ϕ) be the solution of
(2)-(3) and let y(·) := y(·,n0, |ϕ|), where |ϕ|(n) := |ϕ(n)|,n ∈
Z[0,n0]. Since A(n) ≥ 0,B(n,k) ≥ 0 for n,k ∈ Z+,n ≥ k, and
|ϕ| ≥ 0, it follows that y(n)≥ 0,∀n ∈ Z+,n ≥ n0.
Note that

|x(n0 +1)| ≤ |F(n0,x(n0))|+
n0

∑
k=0

|G(n0,k,x(k))|

(5)
≤ A(n0)|x(n0)|+

n0

∑
k=0

B(n0,k)|x(k)|

(3)
= A(n0)|ϕ(n0)|+

n0

∑
k=0

B(n0,k)|ϕ(k)|

(9)
= A(n0)y(n0)+

n0

∑
k=0

B(n0,k)y(k)

= y(n0 +1).

By induction, we have

|x(n)| ≤ y(n), ∀n ∈ Z+.

By the monotonicity of vector norms,

‖x(n)‖= ‖|x(n)|‖ ≤ ‖y(n)‖, ∀n ∈ Z+. (13)

Thus, (4) follows from (12) and (13). Hence, the zero solution
of (2) is GES.

Next, we show that (ii) implies (i). Since A ∈Rm×m
+ ,ρ(A)<

1, there is a vector p ∈ Rm, p � 0 such that Ap � p, by Theo-
rem 2.2. By continuity,

Ap � η−1 p, (14)

for some η > 1. Let β be as in (ii) and let α0 := min{β ,η}.
Clearly, α0 > 1 and
(

A(n)+
n

∑
k=0

B(n,k)αn−k
0

)
≤
(

A(n)+
n

∑
k=0

B(n,k)β n−k
)

(7)
≤ A.

Therefore,(
A(n)+

n

∑
k=0

B(n,k)αn−k
0

)
p ≤ Ap

(14)
≤ η−1 p ≤ α−1

0 p.

Thus, (i) holds.
Finally, it remains to show that the zero solution of (2) is
GES provided (iii) holds. From (8), it follows that ‖A(n)‖+
∑n

k=0 ‖B(n,k)‖γn−k < a, ∀n ∈ Z+, for some a ∈ [0,1). Thus,
the zero solution of the scalar difference equation

z(n+1) = ‖A(n)‖z(n)+
n

∑
k=0

‖B(n,k)‖z(k), n ∈ Z+, (15)

is GES, by (ii). Fix ϕ ∈ Sn0 . Let x(·) := x(·,n0,ϕ) be the
solution of (2)-(3) and let z(·) := z(·,n0,‖ϕ(·)‖) be the solution

of (15) with the initial value function ‖ϕ(·)‖. By a similar
argument as in Step II of the proof of (i), we get

‖x(n)‖ ≤ z(n), ∀n ∈ Z+. (16)

Therefore, the zero solution of (2) is GES. This completes the
proof.

For given γ > 1, let us denote

lγ(Km×m) :=
{
(B(n))n : B(n) ∈Km×m,n ∈ Z+,

∞

∑
n=0

‖B(n)‖γn <+∞
}
,

K := R,C.

In particular, the following follows from Theorem 3.2.

THEOREM 3.4. Suppose there exist A ∈ Rm×m
+ and B(·) :

Z+ → Rm×m
+ such that

|F(n,x)| ≤ A|x| and |G(n,k,x)| ≤ B(n− k)|x|, (17)

for all n,k ∈Z+,n≥ k,x∈Rm. If (B(n))n ∈ lγ(Rm×m) for some
γ > 1 and ρ(A+∑+∞

n=0 B(n)) < 1 then the zero solution of (2)
is GES.

Proof. Since ρ(A+∑+∞
k=0 B(k)) < 1 and (B(k))k ∈ lγ(Rm×m)

with γ > 1, ρ(A + ∑+∞
k=0 B(k)β k) < 1, for some β ∈

(1,γ], by continuity of the spectral radius, see [3]. Note
that A + ∑n

k=0 B(n − k)β n−k = A + ∑n
k=0 B(k)β k ≤ A +

∑+∞
k=0 B(k)β k,∀n ∈ Z+. Therefore, (ii) of Theorem 3.4 holds

and the zero solution of (2) is GES.

We illustrate the obtained results by a couple of examples.

EXAMPLE 3.5. Consider a scalar nonlinear Volterra differ-
ence equation

x(n+1) =
ne−x2(n)x(n)

4n+1
+

n

∑
k=0

2k2 arctan
(
an−kx(k)

)

(k2 +1)
(
3(n− k)+1

)(
3(n− k)+4

) , (18)

where 0 < a < 1 and n ∈ Z+.
Let

F(n,x) =
ne−x2

x
4n+1

and

G(n,k,x) =
2k2 arctan

(
an−kx

)

(k2 +1)
(
3(n− k)+1

)(
3(n− k)+4

) , (19)

where n,k ∈ Z+,n ≥ k and x ∈ R. Since
∣∣∣∣
ne−x2

x
4n+1

∣∣∣∣≤
1
4
|x| and

∣∣∣∣
k2 arctan

(
an−kx

)
k2 +1

∣∣∣∣≤ an−k|x|,

for all x ∈ R,n,k ∈ Z+,n ≥ k, it follows that

|F(n,x)| ≤ A|x| and |G(n,k,x)| ≤ B(n− k)|x|, (20)

for all x ∈ R,n,k ∈ Z+,n ≥ k, where A = 1
4 and B(n) =

2an
(
3n+1

)(
3n+4

), n ∈ Z+.
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where K := M‖p‖. By the linearity of (9),

‖y(n,n0,
ϕ

‖ϕ‖n0

)‖= 1
‖ϕ‖n0

‖y(n,n0,ϕ)‖ ≤ Kλ n−n0 ,

for all n ≥ n0,ϕ ∈ Sn0 ,‖ϕ‖n0 �= 0.
Therefore,

‖y(n,n0,ϕ)‖ ≤ Kλ n−n0‖ϕ‖n0 , ∀n ≥ n0, ∀ϕ ∈ Sn0 . (12)

For given ϕ ∈ Sn0 , let x(·) := x(·,n0,ϕ) be the solution of
(2)-(3) and let y(·) := y(·,n0, |ϕ|), where |ϕ|(n) := |ϕ(n)|,n ∈
Z[0,n0]. Since A(n) ≥ 0,B(n,k) ≥ 0 for n,k ∈ Z+,n ≥ k, and
|ϕ| ≥ 0, it follows that y(n)≥ 0,∀n ∈ Z+,n ≥ n0.
Note that

|x(n0 +1)| ≤ |F(n0,x(n0))|+
n0

∑
k=0

|G(n0,k,x(k))|

(5)
≤ A(n0)|x(n0)|+

n0

∑
k=0

B(n0,k)|x(k)|

(3)
= A(n0)|ϕ(n0)|+

n0

∑
k=0

B(n0,k)|ϕ(k)|

(9)
= A(n0)y(n0)+

n0

∑
k=0

B(n0,k)y(k)

= y(n0 +1).

By induction, we have

|x(n)| ≤ y(n), ∀n ∈ Z+.

By the monotonicity of vector norms,

‖x(n)‖= ‖|x(n)|‖ ≤ ‖y(n)‖, ∀n ∈ Z+. (13)

Thus, (4) follows from (12) and (13). Hence, the zero solution
of (2) is GES.

Next, we show that (ii) implies (i). Since A ∈Rm×m
+ ,ρ(A)<

1, there is a vector p ∈ Rm, p � 0 such that Ap � p, by Theo-
rem 2.2. By continuity,

Ap � η−1 p, (14)

for some η > 1. Let β be as in (ii) and let α0 := min{β ,η}.
Clearly, α0 > 1 and
(

A(n)+
n

∑
k=0

B(n,k)αn−k
0

)
≤
(

A(n)+
n

∑
k=0

B(n,k)β n−k
)

(7)
≤ A.

Therefore,(
A(n)+

n

∑
k=0

B(n,k)αn−k
0

)
p ≤ Ap

(14)
≤ η−1 p ≤ α−1

0 p.

Thus, (i) holds.
Finally, it remains to show that the zero solution of (2) is
GES provided (iii) holds. From (8), it follows that ‖A(n)‖+
∑n

k=0 ‖B(n,k)‖γn−k < a, ∀n ∈ Z+, for some a ∈ [0,1). Thus,
the zero solution of the scalar difference equation

z(n+1) = ‖A(n)‖z(n)+
n

∑
k=0

‖B(n,k)‖z(k), n ∈ Z+, (15)

is GES, by (ii). Fix ϕ ∈ Sn0 . Let x(·) := x(·,n0,ϕ) be the
solution of (2)-(3) and let z(·) := z(·,n0,‖ϕ(·)‖) be the solution

of (15) with the initial value function ‖ϕ(·)‖. By a similar
argument as in Step II of the proof of (i), we get

‖x(n)‖ ≤ z(n), ∀n ∈ Z+. (16)

Therefore, the zero solution of (2) is GES. This completes the
proof.

For given γ > 1, let us denote

lγ(Km×m) :=
{
(B(n))n : B(n) ∈Km×m,n ∈ Z+,

∞

∑
n=0

‖B(n)‖γn <+∞
}
,

K := R,C.

In particular, the following follows from Theorem 3.2.

THEOREM 3.4. Suppose there exist A ∈ Rm×m
+ and B(·) :

Z+ → Rm×m
+ such that

|F(n,x)| ≤ A|x| and |G(n,k,x)| ≤ B(n− k)|x|, (17)

for all n,k ∈Z+,n≥ k,x∈Rm. If (B(n))n ∈ lγ(Rm×m) for some
γ > 1 and ρ(A+∑+∞

n=0 B(n)) < 1 then the zero solution of (2)
is GES.

Proof. Since ρ(A+∑+∞
k=0 B(k)) < 1 and (B(k))k ∈ lγ(Rm×m)

with γ > 1, ρ(A + ∑+∞
k=0 B(k)β k) < 1, for some β ∈

(1,γ], by continuity of the spectral radius, see [3]. Note
that A + ∑n

k=0 B(n − k)β n−k = A + ∑n
k=0 B(k)β k ≤ A +

∑+∞
k=0 B(k)β k,∀n ∈ Z+. Therefore, (ii) of Theorem 3.4 holds

and the zero solution of (2) is GES.

We illustrate the obtained results by a couple of examples.

EXAMPLE 3.5. Consider a scalar nonlinear Volterra differ-
ence equation

x(n+1) =
ne−x2(n)x(n)

4n+1
+

n

∑
k=0

2k2 arctan
(
an−kx(k)

)

(k2 +1)
(
3(n− k)+1

)(
3(n− k)+4

) , (18)

where 0 < a < 1 and n ∈ Z+.
Let

F(n,x) =
ne−x2

x
4n+1

and

G(n,k,x) =
2k2 arctan

(
an−kx

)

(k2 +1)
(
3(n− k)+1

)(
3(n− k)+4

) , (19)

where n,k ∈ Z+,n ≥ k and x ∈ R. Since
∣∣∣∣
ne−x2

x
4n+1

∣∣∣∣≤
1
4
|x| and

∣∣∣∣
k2 arctan

(
an−kx

)
k2 +1

∣∣∣∣≤ an−k|x|,

for all x ∈ R,n,k ∈ Z+,n ≥ k, it follows that

|F(n,x)| ≤ A|x| and |G(n,k,x)| ≤ B(n− k)|x|, (20)

for all x ∈ R,n,k ∈ Z+,n ≥ k, where A = 1
4 and B(n) =

2an
(
3n+1

)(
3n+4

), n ∈ Z+.
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is GES, by (ii). Fix φ 2 

exists a nonnegative eigenvector x ∈ Rm, x �= 0 such that
Mx = ρ(M)x.

(ii) (tIm − M)−1 exists and is nonnegative if and only if t >
ρ(M).

The following theorem follows from Theorem 2.1.

THEOREM 2.2 [20]. Let M ∈ Rm×m
+ . Then the following

statements are equivalent:

(i) ρ(M)< 1;
(ii) ∃p ∈ Rm, p � 0 : Mp � p;

(iii) (Im −M)−1 ≥ 0.

3. Explicit criteria for exponential stability
Consider a nonlinear Volterra difference equation of the form

x(n+1) = F
(
n,x(n)

)
+

n

∑
k=0

G
(
n,k,x(k)

)
, n ≥ n0, (2)

where F(·, ·) : Z+×Rm →Rm and G(·, ·, ·) : Z+×Z+×Rm →
Rm are given functions such that F(n,0) = 0 for all n ∈Z+ and
G(n,k,0) = 0 for n ≥ k, n,k ∈ Z+ (i.e. ξ = 0 is an equilibrium
point of the equation (2)).

For given n0 ∈ Z+, denote Sn0 the set of all functions ϕ(·) :
Z[0,n0] →Rm. Let ‖ϕ‖n0 = max{‖ϕ(n)‖ : n ∈Z[0,n0]}, for each
ϕ(·) ∈ Sn0 . Clearly, for fixed n0 ∈ Z+ and given ϕ ∈ Sn0 , (2)
has a unique solution satisfying the initial condition

x(n) = ϕ(n), for all n ∈ Z[0,n0]. (3)

This solution is denoted by x(·,n0,ϕ).

DEFINITION 3.1. The zero solution of (2) is said to be glob-
ally exponentially stable (shortly, GES) if there exist K > 0 and
λ ∈ (0,1) such that

‖x(n,n0,ϕ)‖ ≤ Kλ n−n0‖ϕ‖n0 , (4)

for all n,n0 ∈ Z+,n ≥ n0,ϕ(·) ∈ Sn0 .

We are now in the position to prove the main result of this
paper.

THEOREM 3.2. Suppose there exist A(·) : Z+ → Rm×m
+ and

B(·, ·) : Z+×Z+ → Rm×m
+ such that

|F(n,x)| ≤ A(n)|x| and |G(n,k,x)| ≤ B(n,k)|x|, (5)

for all n,k ∈ Z+,n ≥ k,x ∈Rm. Then the zero solution of (2) is
GES provided one of the following conditions holds:
(i) There exist α > 1 and p ∈ Rm

+, p � 0 so that
(

A(n)+
n

∑
k=0

B(n,k)αn−k
)

p ≤ α−1 p, ∀n ∈ Z+. (6)

(ii) There exist β > 1 and A ∈ Rm×m
+ , ρ(A)< 1 so that

(
A(n)+

n

∑
k=0

B(n,k)β n−k
)
≤ A, ∀n ∈ Z+. (7)

(iii) There exist γ > 1 so that

sup
n∈Z+

(
‖A(n)‖+

n

∑
k=0

‖B(n,k)‖γn−k
)
< 1. (8)

REMARK 3.3. Roughly speaking, (5) means that (2) is
“bounded above” by the linear equation

y(n+1) = A(n)y(n)+
n

∑
k=0

B(n,k)y(k), n ∈ Z+. (9)

On the other hand, as shown in the proof of Theorem 3.2, any
one of conditions (6), (7) (8), ensures that (9) is GES. There-
fore, Theorem 3.2 says that if (2) is “bounded above" by the
linear Volterra equation (9) and (9) is GES (one of conditions
(6), (7), (8) holds) then the zero solution of (2) is GES too.

Proof. We first prove that the zero solution of (2) is GES pro-
vided (i) holds. The proof consists of two steps.

Step I: We show that

‖x(n,n0,ϕ)‖ ≤ Kλ n−n0 ,

for all n,n0 ∈ Z+,n ≥ n0,ϕ ∈ Sn0 ,‖ϕ‖n0 ≤ 1, for some K >
0,λ ∈ (0,1).

Since p � 0, there exists M > 1 (M is independent of n0)
such that

Mp � |ϕ(n)|, ∀n ∈ Z[0,n0],∀ϕ ∈ Sn0 ,‖ϕ‖n0 ≤ 1. (10)

Let us define λ := α−1 and u(n) := Mλ n−n0 p, n ∈Z. From (3)
and (10), it follows that

u(n)� |x(n)|, ∀n ∈ Z[0,n0]. (11)

It is worth noticing that

|x(n0 +1)| (2)
=

∣∣F(n0,x(n0))+
n0

∑
k=0

G(n0,k,x(k))
∣∣

≤ |F(n0,x(n0))|+
n0

∑
k=0

|G(n0,k,x(k))|

(5)
≤ A(n0)|x(n0)|+

n0

∑
k=0

B(n0,k)|x(k)|

(11)
≤ A(n0)Mp+

n0

∑
k=0

B(n0,k)Mλ k−n0 p

= M
(
A(n0)+

n0

∑
k=0

B(n0,k)αn0−k)p

(6)
≤ Mα−1 p

= u(n0 +1).

By induction, we can show that

|x(n)|= |x(n,n0,ϕ)| ≤Mλ n−n0 p,∀n≥ n0,∀ϕ ∈Sn0 ,‖ϕ‖n0 ≤ 1.

By the monotonicity of vector norms, it follows that

‖x(n,n0,ϕ)‖ ≤ M‖p‖λ n−n0 = Kλ n−n0 ,

for all n ≥ n0,ϕ ∈ Sn0 ,‖ϕ‖n0 ≤ 1, where K := M‖p‖.
Step II: We show that (4) holds.

Consider the linear Volterra equation (9). By Step I, we have
for any ϕ ∈ Sn0 ,‖ϕ‖n0 ≤ 1,

‖y(n,n0,ϕ)‖ ≤ Kλ n−n0 , ∀n ≥ n0,
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n0. Let x(¢) := x(¢, n0, φ) be the solution 
of (2–3) and let z(¢) := z(¢, n0, kφ(¢)k) be the solution of (15) 
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with the initial value function kφ(¢)k. By a similar argument as 
in Step 2 of the proof of (i), we get

	

Stability of nonlinear Volterra equations

where K := M‖p‖. By the linearity of (9),

‖y(n,n0,
ϕ

‖ϕ‖n0

)‖= 1
‖ϕ‖n0

‖y(n,n0,ϕ)‖ ≤ Kλ n−n0 ,

for all n ≥ n0,ϕ ∈ Sn0 ,‖ϕ‖n0 �= 0.
Therefore,

‖y(n,n0,ϕ)‖ ≤ Kλ n−n0‖ϕ‖n0 , ∀n ≥ n0, ∀ϕ ∈ Sn0 . (12)

For given ϕ ∈ Sn0 , let x(·) := x(·,n0,ϕ) be the solution of
(2)-(3) and let y(·) := y(·,n0, |ϕ|), where |ϕ|(n) := |ϕ(n)|,n ∈
Z[0,n0]. Since A(n) ≥ 0,B(n,k) ≥ 0 for n,k ∈ Z+,n ≥ k, and
|ϕ| ≥ 0, it follows that y(n)≥ 0,∀n ∈ Z+,n ≥ n0.
Note that

|x(n0 +1)| ≤ |F(n0,x(n0))|+
n0

∑
k=0

|G(n0,k,x(k))|

(5)
≤ A(n0)|x(n0)|+

n0

∑
k=0

B(n0,k)|x(k)|

(3)
= A(n0)|ϕ(n0)|+

n0

∑
k=0

B(n0,k)|ϕ(k)|

(9)
= A(n0)y(n0)+

n0

∑
k=0

B(n0,k)y(k)

= y(n0 +1).

By induction, we have

|x(n)| ≤ y(n), ∀n ∈ Z+.

By the monotonicity of vector norms,

‖x(n)‖= ‖|x(n)|‖ ≤ ‖y(n)‖, ∀n ∈ Z+. (13)

Thus, (4) follows from (12) and (13). Hence, the zero solution
of (2) is GES.

Next, we show that (ii) implies (i). Since A ∈Rm×m
+ ,ρ(A)<

1, there is a vector p ∈ Rm, p � 0 such that Ap � p, by Theo-
rem 2.2. By continuity,

Ap � η−1 p, (14)

for some η > 1. Let β be as in (ii) and let α0 := min{β ,η}.
Clearly, α0 > 1 and
(

A(n)+
n

∑
k=0

B(n,k)αn−k
0

)
≤
(

A(n)+
n

∑
k=0

B(n,k)β n−k
)

(7)
≤ A.

Therefore,(
A(n)+

n

∑
k=0

B(n,k)αn−k
0

)
p ≤ Ap

(14)
≤ η−1 p ≤ α−1

0 p.

Thus, (i) holds.
Finally, it remains to show that the zero solution of (2) is
GES provided (iii) holds. From (8), it follows that ‖A(n)‖+
∑n

k=0 ‖B(n,k)‖γn−k < a, ∀n ∈ Z+, for some a ∈ [0,1). Thus,
the zero solution of the scalar difference equation

z(n+1) = ‖A(n)‖z(n)+
n

∑
k=0

‖B(n,k)‖z(k), n ∈ Z+, (15)

is GES, by (ii). Fix ϕ ∈ Sn0 . Let x(·) := x(·,n0,ϕ) be the
solution of (2)-(3) and let z(·) := z(·,n0,‖ϕ(·)‖) be the solution

of (15) with the initial value function ‖ϕ(·)‖. By a similar
argument as in Step II of the proof of (i), we get

‖x(n)‖ ≤ z(n), ∀n ∈ Z+. (16)

Therefore, the zero solution of (2) is GES. This completes the
proof.

For given γ > 1, let us denote

lγ(Km×m) :=
{
(B(n))n : B(n) ∈Km×m,n ∈ Z+,

∞

∑
n=0

‖B(n)‖γn <+∞
}
,

K := R,C.

In particular, the following follows from Theorem 3.2.

THEOREM 3.4. Suppose there exist A ∈ Rm×m
+ and B(·) :

Z+ → Rm×m
+ such that

|F(n,x)| ≤ A|x| and |G(n,k,x)| ≤ B(n− k)|x|, (17)

for all n,k ∈Z+,n≥ k,x∈Rm. If (B(n))n ∈ lγ(Rm×m) for some
γ > 1 and ρ(A+∑+∞

n=0 B(n)) < 1 then the zero solution of (2)
is GES.

Proof. Since ρ(A+∑+∞
k=0 B(k)) < 1 and (B(k))k ∈ lγ(Rm×m)

with γ > 1, ρ(A + ∑+∞
k=0 B(k)β k) < 1, for some β ∈

(1,γ], by continuity of the spectral radius, see [3]. Note
that A + ∑n

k=0 B(n − k)β n−k = A + ∑n
k=0 B(k)β k ≤ A +

∑+∞
k=0 B(k)β k,∀n ∈ Z+. Therefore, (ii) of Theorem 3.4 holds

and the zero solution of (2) is GES.

We illustrate the obtained results by a couple of examples.

EXAMPLE 3.5. Consider a scalar nonlinear Volterra differ-
ence equation

x(n+1) =
ne−x2(n)x(n)

4n+1
+

n

∑
k=0

2k2 arctan
(
an−kx(k)

)

(k2 +1)
(
3(n− k)+1

)(
3(n− k)+4

) , (18)

where 0 < a < 1 and n ∈ Z+.
Let

F(n,x) =
ne−x2

x
4n+1

and

G(n,k,x) =
2k2 arctan

(
an−kx

)

(k2 +1)
(
3(n− k)+1

)(
3(n− k)+4

) , (19)

where n,k ∈ Z+,n ≥ k and x ∈ R. Since
∣∣∣∣
ne−x2

x
4n+1

∣∣∣∣≤
1
4
|x| and

∣∣∣∣
k2 arctan

(
an−kx

)
k2 +1

∣∣∣∣≤ an−k|x|,

for all x ∈ R,n,k ∈ Z+,n ≥ k, it follows that

|F(n,x)| ≤ A|x| and |G(n,k,x)| ≤ B(n− k)|x|, (20)

for all x ∈ R,n,k ∈ Z+,n ≥ k, where A = 1
4 and B(n) =

2an
(
3n+1

)(
3n+4

), n ∈ Z+.
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Therefore, the zero solution of (2) is GES. This completes the 
proof.� □

For given γ > 1, let us denote
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where K := M‖p‖. By the linearity of (9),

‖y(n,n0,
ϕ

‖ϕ‖n0

)‖= 1
‖ϕ‖n0

‖y(n,n0,ϕ)‖ ≤ Kλ n−n0 ,

for all n ≥ n0,ϕ ∈ Sn0 ,‖ϕ‖n0 �= 0.
Therefore,

‖y(n,n0,ϕ)‖ ≤ Kλ n−n0‖ϕ‖n0 , ∀n ≥ n0, ∀ϕ ∈ Sn0 . (12)

For given ϕ ∈ Sn0 , let x(·) := x(·,n0,ϕ) be the solution of
(2)-(3) and let y(·) := y(·,n0, |ϕ|), where |ϕ|(n) := |ϕ(n)|,n ∈
Z[0,n0]. Since A(n) ≥ 0,B(n,k) ≥ 0 for n,k ∈ Z+,n ≥ k, and
|ϕ| ≥ 0, it follows that y(n)≥ 0,∀n ∈ Z+,n ≥ n0.
Note that

|x(n0 +1)| ≤ |F(n0,x(n0))|+
n0

∑
k=0

|G(n0,k,x(k))|

(5)
≤ A(n0)|x(n0)|+

n0

∑
k=0

B(n0,k)|x(k)|

(3)
= A(n0)|ϕ(n0)|+

n0

∑
k=0

B(n0,k)|ϕ(k)|

(9)
= A(n0)y(n0)+

n0

∑
k=0

B(n0,k)y(k)

= y(n0 +1).

By induction, we have

|x(n)| ≤ y(n), ∀n ∈ Z+.

By the monotonicity of vector norms,

‖x(n)‖= ‖|x(n)|‖ ≤ ‖y(n)‖, ∀n ∈ Z+. (13)

Thus, (4) follows from (12) and (13). Hence, the zero solution
of (2) is GES.

Next, we show that (ii) implies (i). Since A ∈Rm×m
+ ,ρ(A)<

1, there is a vector p ∈ Rm, p � 0 such that Ap � p, by Theo-
rem 2.2. By continuity,

Ap � η−1 p, (14)

for some η > 1. Let β be as in (ii) and let α0 := min{β ,η}.
Clearly, α0 > 1 and
(

A(n)+
n

∑
k=0

B(n,k)αn−k
0

)
≤
(

A(n)+
n

∑
k=0

B(n,k)β n−k
)

(7)
≤ A.

Therefore,(
A(n)+

n

∑
k=0

B(n,k)αn−k
0

)
p ≤ Ap

(14)
≤ η−1 p ≤ α−1

0 p.

Thus, (i) holds.
Finally, it remains to show that the zero solution of (2) is
GES provided (iii) holds. From (8), it follows that ‖A(n)‖+
∑n

k=0 ‖B(n,k)‖γn−k < a, ∀n ∈ Z+, for some a ∈ [0,1). Thus,
the zero solution of the scalar difference equation

z(n+1) = ‖A(n)‖z(n)+
n

∑
k=0

‖B(n,k)‖z(k), n ∈ Z+, (15)

is GES, by (ii). Fix ϕ ∈ Sn0 . Let x(·) := x(·,n0,ϕ) be the
solution of (2)-(3) and let z(·) := z(·,n0,‖ϕ(·)‖) be the solution

of (15) with the initial value function ‖ϕ(·)‖. By a similar
argument as in Step II of the proof of (i), we get

‖x(n)‖ ≤ z(n), ∀n ∈ Z+. (16)

Therefore, the zero solution of (2) is GES. This completes the
proof.

For given γ > 1, let us denote
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,
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In particular, the following follows from Theorem 3.2.
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rem 2.2. By continuity,

Ap � η−1 p, (14)

for some η > 1. Let β be as in (ii) and let α0 := min{β ,η}.
Clearly, α0 > 1 and
(

A(n)+
n

∑
k=0

B(n,k)αn−k
0

)
≤
(

A(n)+
n

∑
k=0

B(n,k)β n−k
)

(7)
≤ A.

Therefore,(
A(n)+

n

∑
k=0

B(n,k)αn−k
0

)
p ≤ Ap

(14)
≤ η−1 p ≤ α−1

0 p.

Thus, (i) holds.
Finally, it remains to show that the zero solution of (2) is
GES provided (iii) holds. From (8), it follows that ‖A(n)‖+
∑n

k=0 ‖B(n,k)‖γn−k < a, ∀n ∈ Z+, for some a ∈ [0,1). Thus,
the zero solution of the scalar difference equation

z(n+1) = ‖A(n)‖z(n)+
n

∑
k=0

‖B(n,k)‖z(k), n ∈ Z+, (15)

is GES, by (ii). Fix ϕ ∈ Sn0 . Let x(·) := x(·,n0,ϕ) be the
solution of (2)-(3) and let z(·) := z(·,n0,‖ϕ(·)‖) be the solution

of (15) with the initial value function ‖ϕ(·)‖. By a similar
argument as in Step II of the proof of (i), we get

‖x(n)‖ ≤ z(n), ∀n ∈ Z+. (16)

Therefore, the zero solution of (2) is GES. This completes the
proof.

For given γ > 1, let us denote

lγ(Km×m) :=
{
(B(n))n : B(n) ∈Km×m,n ∈ Z+,

∞

∑
n=0

‖B(n)‖γn <+∞
}
,

K := R,C.

In particular, the following follows from Theorem 3.2.

THEOREM 3.4. Suppose there exist A ∈ Rm×m
+ and B(·) :

Z+ → Rm×m
+ such that

|F(n,x)| ≤ A|x| and |G(n,k,x)| ≤ B(n− k)|x|, (17)

for all n,k ∈Z+,n≥ k,x∈Rm. If (B(n))n ∈ lγ(Rm×m) for some
γ > 1 and ρ(A+∑+∞

n=0 B(n)) < 1 then the zero solution of (2)
is GES.

Proof. Since ρ(A+∑+∞
k=0 B(k)) < 1 and (B(k))k ∈ lγ(Rm×m)

with γ > 1, ρ(A + ∑+∞
k=0 B(k)β k) < 1, for some β ∈

(1,γ], by continuity of the spectral radius, see [3]. Note
that A + ∑n

k=0 B(n − k)β n−k = A + ∑n
k=0 B(k)β k ≤ A +

∑+∞
k=0 B(k)β k,∀n ∈ Z+. Therefore, (ii) of Theorem 3.4 holds

and the zero solution of (2) is GES.

We illustrate the obtained results by a couple of examples.

EXAMPLE 3.5. Consider a scalar nonlinear Volterra differ-
ence equation

x(n+1) =
ne−x2(n)x(n)

4n+1
+

n

∑
k=0

2k2 arctan
(
an−kx(k)

)

(k2 +1)
(
3(n− k)+1

)(
3(n− k)+4

) , (18)

where 0 < a < 1 and n ∈ Z+.
Let

F(n,x) =
ne−x2

x
4n+1

and

G(n,k,x) =
2k2 arctan

(
an−kx

)

(k2 +1)
(
3(n− k)+1

)(
3(n− k)+4

) , (19)

where n,k ∈ Z+,n ≥ k and x ∈ R. Since
∣∣∣∣
ne−x2

x
4n+1

∣∣∣∣≤
1
4
|x| and

∣∣∣∣
k2 arctan

(
an−kx

)
k2 +1

∣∣∣∣≤ an−k|x|,

for all x ∈ R,n,k ∈ Z+,n ≥ k, it follows that

|F(n,x)| ≤ A|x| and |G(n,k,x)| ≤ B(n− k)|x|, (20)

for all x ∈ R,n,k ∈ Z+,n ≥ k, where A = 1
4 and B(n) =

2an
(
3n+1

)(
3n+4

), n ∈ Z+.
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where K := M‖p‖. By the linearity of (9),
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ϕ

‖ϕ‖n0

)‖= 1
‖ϕ‖n0
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n0

∑
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(5)
≤ A(n0)|x(n0)|+

n0

∑
k=0

B(n0,k)|x(k)|

(3)
= A(n0)|ϕ(n0)|+

n0

∑
k=0

B(n0,k)|ϕ(k)|

(9)
= A(n0)y(n0)+

n0

∑
k=0

B(n0,k)y(k)

= y(n0 +1).
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Thus, (4) follows from (12) and (13). Hence, the zero solution
of (2) is GES.

Next, we show that (ii) implies (i). Since A ∈Rm×m
+ ,ρ(A)<

1, there is a vector p ∈ Rm, p � 0 such that Ap � p, by Theo-
rem 2.2. By continuity,

Ap � η−1 p, (14)

for some η > 1. Let β be as in (ii) and let α0 := min{β ,η}.
Clearly, α0 > 1 and
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A(n)+
n
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k=0

B(n,k)αn−k
0

)
≤
(

A(n)+
n

∑
k=0

B(n,k)β n−k
)

(7)
≤ A.

Therefore,(
A(n)+

n

∑
k=0

B(n,k)αn−k
0

)
p ≤ Ap

(14)
≤ η−1 p ≤ α−1

0 p.

Thus, (i) holds.
Finally, it remains to show that the zero solution of (2) is
GES provided (iii) holds. From (8), it follows that ‖A(n)‖+
∑n

k=0 ‖B(n,k)‖γn−k < a, ∀n ∈ Z+, for some a ∈ [0,1). Thus,
the zero solution of the scalar difference equation

z(n+1) = ‖A(n)‖z(n)+
n

∑
k=0

‖B(n,k)‖z(k), n ∈ Z+, (15)

is GES, by (ii). Fix ϕ ∈ Sn0 . Let x(·) := x(·,n0,ϕ) be the
solution of (2)-(3) and let z(·) := z(·,n0,‖ϕ(·)‖) be the solution

of (15) with the initial value function ‖ϕ(·)‖. By a similar
argument as in Step II of the proof of (i), we get

‖x(n)‖ ≤ z(n), ∀n ∈ Z+. (16)

Therefore, the zero solution of (2) is GES. This completes the
proof.

For given γ > 1, let us denote

lγ(Km×m) :=
{
(B(n))n : B(n) ∈Km×m,n ∈ Z+,

∞

∑
n=0

‖B(n)‖γn <+∞
}
,

K := R,C.

In particular, the following follows from Theorem 3.2.

THEOREM 3.4. Suppose there exist A ∈ Rm×m
+ and B(·) :

Z+ → Rm×m
+ such that

|F(n,x)| ≤ A|x| and |G(n,k,x)| ≤ B(n− k)|x|, (17)
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n=0 B(n)) < 1 then the zero solution of (2)
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with γ > 1, ρ(A + ∑+∞
k=0 B(k)β k) < 1, for some β ∈
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that A + ∑n
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∑+∞
k=0 B(k)β k,∀n ∈ Z+. Therefore, (ii) of Theorem 3.4 holds

and the zero solution of (2) is GES.

We illustrate the obtained results by a couple of examples.

EXAMPLE 3.5. Consider a scalar nonlinear Volterra differ-
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x(n+1) =
ne−x2(n)x(n)

4n+1
+
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∑
k=0

2k2 arctan
(
an−kx(k)

)

(k2 +1)
(
3(n− k)+1

)(
3(n− k)+4

) , (18)

where 0 < a < 1 and n ∈ Z+.
Let

F(n,x) =
ne−x2

x
4n+1

and

G(n,k,x) =
2k2 arctan

(
an−kx

)

(k2 +1)
(
3(n− k)+1

)(
3(n− k)+4

) , (19)

where n,k ∈ Z+,n ≥ k and x ∈ R. Since
∣∣∣∣
ne−x2

x
4n+1

∣∣∣∣≤
1
4
|x| and

∣∣∣∣
k2 arctan

(
an−kx

)
k2 +1

∣∣∣∣≤ an−k|x|,

for all x ∈ R,n,k ∈ Z+,n ≥ k, it follows that

|F(n,x)| ≤ A|x| and |G(n,k,x)| ≤ B(n− k)|x|, (20)

for all x ∈ R,n,k ∈ Z+,n ≥ k, where A = 1
4 and B(n) =
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(
3n+1
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), n ∈ Z+.

Bull. Pol. Ac.: Tech. XX(Y) 2016 3

,

In particular, the following follows  from Theorem 3.2.

Theorem 3.4. Suppose there exist A 2 

BULLETIN OF THE POLISH ACADEMY OF SCIENCES
TECHNICAL SCIENCES, Vol. XX, No. Y, 2016
DOI: 10.1515/bpasts-2016-00ZZ

Stability of nonlinear Volterra equations

Abstract. Using a novel approach, we present some new explicit criteria for global exponential stability of the zero solution of general
nonlinear time-varying Volterra difference equations. Furthermore, an explicit stability bound for equations subject to nonlinear time-varying
perturbations is given. Finally, the obtained results are used to study uniform attraction of equilibrium of discrete-time bidirectional associative
memory (BAM) neural networks. Some illustrative examples are given.

Key words: Global exponential stability, Volterra equations

1. Introduction
Volterra difference equations have been widely used in the
modeling of processes in continuous mechanics and biome-
chanics, problems of control and estimations and some
schemes of numerical solutions of integral and integro-
differential equations, see e.g. [2], [7], [12], [16]-[19].

Problems of stability of Volterra difference equations have
attracted much attention from researchers, during the last
twenty years, see e.g. [1],[4]-[13], [15], [21]-[23] and refer-
ences therein. Many various methods have been used to inves-
tigate stability of Volterra difference equations such as Lya-
punov functions, Z transform, comparison theorems, topologi-
cal methods, fixed point theorems, etc (see e.g. [7], [10], [15],
[23]).

In particular, the first significant result on exponential sta-
bility of Volterra difference equations is due to Elaydi and
Murakami, see [8]. Roughly speaking, Elaydi and Murakami
showed that even to the simplest Volterra difference equations
(namely, linear time-invariant Volterra difference equations of
convolution type), the exponential stability is “stronger” than
the uniform asymptotic stability. More precisely, a linear time-
invariant Volterra difference equation of convolution type is ex-
ponentially stable if and only if it is uniformly asymptotically
stable and its kernel exponentially decays, see [8]. For further
and updated information on stability of linear time-invariant
Volterra difference equations, we refer to the recent survey pa-
per [10].

In general, problems of global exponential stability of time-
varying Volterra difference equations are very hard even those
of linear time-varying Volterra equations. Most of existing re-
sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
ditions for exponential stability of linear time-varying Volterra
difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
nential stability of nonlinear time-varying Volterra difference
equations. Our approach is based on the celebrated Perron-
Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
nential stability of the zero solution of general nonlinear time-

varying Volterra difference equations. Furthermore, we derive
an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.

2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there

1

+
m£m and B(¢) : 
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Volterra difference equations have been widely used in the
modeling of processes in continuous mechanics and biome-
chanics, problems of control and estimations and some
schemes of numerical solutions of integral and integro-
differential equations, see e.g. [2], [7], [12], [16]-[19].

Problems of stability of Volterra difference equations have
attracted much attention from researchers, during the last
twenty years, see e.g. [1],[4]-[13], [15], [21]-[23] and refer-
ences therein. Many various methods have been used to inves-
tigate stability of Volterra difference equations such as Lya-
punov functions, Z transform, comparison theorems, topologi-
cal methods, fixed point theorems, etc (see e.g. [7], [10], [15],
[23]).

In particular, the first significant result on exponential sta-
bility of Volterra difference equations is due to Elaydi and
Murakami, see [8]. Roughly speaking, Elaydi and Murakami
showed that even to the simplest Volterra difference equations
(namely, linear time-invariant Volterra difference equations of
convolution type), the exponential stability is “stronger” than
the uniform asymptotic stability. More precisely, a linear time-
invariant Volterra difference equation of convolution type is ex-
ponentially stable if and only if it is uniformly asymptotically
stable and its kernel exponentially decays, see [8]. For further
and updated information on stability of linear time-invariant
Volterra difference equations, we refer to the recent survey pa-
per [10].

In general, problems of global exponential stability of time-
varying Volterra difference equations are very hard even those
of linear time-varying Volterra equations. Most of existing re-
sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
ditions for exponential stability of linear time-varying Volterra
difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
nential stability of nonlinear time-varying Volterra difference
equations. Our approach is based on the celebrated Perron-
Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
nential stability of the zero solution of general nonlinear time-

varying Volterra difference equations. Furthermore, we derive
an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.

2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there

1

+  
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showed that even to the simplest Volterra difference equations
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stable and its kernel exponentially decays, see [8]. For further
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Volterra difference equations, we refer to the recent survey pa-
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varying Volterra difference equations. Furthermore, we derive
an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.

2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there

1

+
m£m such that
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where K := M‖p‖. By the linearity of (9),

‖y(n,n0,
ϕ

‖ϕ‖n0

)‖= 1
‖ϕ‖n0

‖y(n,n0,ϕ)‖ ≤ Kλ n−n0 ,

for all n ≥ n0,ϕ ∈ Sn0 ,‖ϕ‖n0 �= 0.
Therefore,

‖y(n,n0,ϕ)‖ ≤ Kλ n−n0‖ϕ‖n0 , ∀n ≥ n0, ∀ϕ ∈ Sn0 . (12)

For given ϕ ∈ Sn0 , let x(·) := x(·,n0,ϕ) be the solution of
(2)-(3) and let y(·) := y(·,n0, |ϕ|), where |ϕ|(n) := |ϕ(n)|,n ∈
Z[0,n0]. Since A(n) ≥ 0,B(n,k) ≥ 0 for n,k ∈ Z+,n ≥ k, and
|ϕ| ≥ 0, it follows that y(n)≥ 0,∀n ∈ Z+,n ≥ n0.
Note that

|x(n0 +1)| ≤ |F(n0,x(n0))|+
n0

∑
k=0

|G(n0,k,x(k))|

(5)
≤ A(n0)|x(n0)|+

n0

∑
k=0

B(n0,k)|x(k)|

(3)
= A(n0)|ϕ(n0)|+

n0

∑
k=0

B(n0,k)|ϕ(k)|

(9)
= A(n0)y(n0)+

n0

∑
k=0

B(n0,k)y(k)

= y(n0 +1).

By induction, we have

|x(n)| ≤ y(n), ∀n ∈ Z+.

By the monotonicity of vector norms,

‖x(n)‖= ‖|x(n)|‖ ≤ ‖y(n)‖, ∀n ∈ Z+. (13)

Thus, (4) follows from (12) and (13). Hence, the zero solution
of (2) is GES.

Next, we show that (ii) implies (i). Since A ∈Rm×m
+ ,ρ(A)<

1, there is a vector p ∈ Rm, p � 0 such that Ap � p, by Theo-
rem 2.2. By continuity,

Ap � η−1 p, (14)

for some η > 1. Let β be as in (ii) and let α0 := min{β ,η}.
Clearly, α0 > 1 and
(

A(n)+
n

∑
k=0

B(n,k)αn−k
0

)
≤
(

A(n)+
n

∑
k=0

B(n,k)β n−k
)

(7)
≤ A.

Therefore,(
A(n)+

n

∑
k=0

B(n,k)αn−k
0

)
p ≤ Ap

(14)
≤ η−1 p ≤ α−1

0 p.

Thus, (i) holds.
Finally, it remains to show that the zero solution of (2) is
GES provided (iii) holds. From (8), it follows that ‖A(n)‖+
∑n

k=0 ‖B(n,k)‖γn−k < a, ∀n ∈ Z+, for some a ∈ [0,1). Thus,
the zero solution of the scalar difference equation

z(n+1) = ‖A(n)‖z(n)+
n

∑
k=0

‖B(n,k)‖z(k), n ∈ Z+, (15)

is GES, by (ii). Fix ϕ ∈ Sn0 . Let x(·) := x(·,n0,ϕ) be the
solution of (2)-(3) and let z(·) := z(·,n0,‖ϕ(·)‖) be the solution

of (15) with the initial value function ‖ϕ(·)‖. By a similar
argument as in Step II of the proof of (i), we get

‖x(n)‖ ≤ z(n), ∀n ∈ Z+. (16)

Therefore, the zero solution of (2) is GES. This completes the
proof.

For given γ > 1, let us denote

lγ(Km×m) :=
{
(B(n))n : B(n) ∈Km×m,n ∈ Z+,

∞

∑
n=0

‖B(n)‖γn <+∞
}
,

K := R,C.

In particular, the following follows from Theorem 3.2.

THEOREM 3.4. Suppose there exist A ∈ Rm×m
+ and B(·) :

Z+ → Rm×m
+ such that

|F(n,x)| ≤ A|x| and |G(n,k,x)| ≤ B(n− k)|x|, (17)

for all n,k ∈Z+,n≥ k,x∈Rm. If (B(n))n ∈ lγ(Rm×m) for some
γ > 1 and ρ(A+∑+∞

n=0 B(n)) < 1 then the zero solution of (2)
is GES.

Proof. Since ρ(A+∑+∞
k=0 B(k)) < 1 and (B(k))k ∈ lγ(Rm×m)

with γ > 1, ρ(A + ∑+∞
k=0 B(k)β k) < 1, for some β ∈

(1,γ], by continuity of the spectral radius, see [3]. Note
that A + ∑n

k=0 B(n − k)β n−k = A + ∑n
k=0 B(k)β k ≤ A +

∑+∞
k=0 B(k)β k,∀n ∈ Z+. Therefore, (ii) of Theorem 3.4 holds

and the zero solution of (2) is GES.

We illustrate the obtained results by a couple of examples.

EXAMPLE 3.5. Consider a scalar nonlinear Volterra differ-
ence equation

x(n+1) =
ne−x2(n)x(n)

4n+1
+

n

∑
k=0

2k2 arctan
(
an−kx(k)

)

(k2 +1)
(
3(n− k)+1

)(
3(n− k)+4

) , (18)

where 0 < a < 1 and n ∈ Z+.
Let

F(n,x) =
ne−x2

x
4n+1

and

G(n,k,x) =
2k2 arctan

(
an−kx

)

(k2 +1)
(
3(n− k)+1

)(
3(n− k)+4

) , (19)

where n,k ∈ Z+,n ≥ k and x ∈ R. Since
∣∣∣∣
ne−x2

x
4n+1

∣∣∣∣≤
1
4
|x| and

∣∣∣∣
k2 arctan

(
an−kx

)
k2 +1

∣∣∣∣≤ an−k|x|,

for all x ∈ R,n,k ∈ Z+,n ≥ k, it follows that

|F(n,x)| ≤ A|x| and |G(n,k,x)| ≤ B(n− k)|x|, (20)

for all x ∈ R,n,k ∈ Z+,n ≥ k, where A = 1
4 and B(n) =

2an
(
3n+1

)(
3n+4

), n ∈ Z+.
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1. Introduction
Volterra difference equations have been widely used in the
modeling of processes in continuous mechanics and biome-
chanics, problems of control and estimations and some
schemes of numerical solutions of integral and integro-
differential equations, see e.g. [2], [7], [12], [16]-[19].

Problems of stability of Volterra difference equations have
attracted much attention from researchers, during the last
twenty years, see e.g. [1],[4]-[13], [15], [21]-[23] and refer-
ences therein. Many various methods have been used to inves-
tigate stability of Volterra difference equations such as Lya-
punov functions, Z transform, comparison theorems, topologi-
cal methods, fixed point theorems, etc (see e.g. [7], [10], [15],
[23]).

In particular, the first significant result on exponential sta-
bility of Volterra difference equations is due to Elaydi and
Murakami, see [8]. Roughly speaking, Elaydi and Murakami
showed that even to the simplest Volterra difference equations
(namely, linear time-invariant Volterra difference equations of
convolution type), the exponential stability is “stronger” than
the uniform asymptotic stability. More precisely, a linear time-
invariant Volterra difference equation of convolution type is ex-
ponentially stable if and only if it is uniformly asymptotically
stable and its kernel exponentially decays, see [8]. For further
and updated information on stability of linear time-invariant
Volterra difference equations, we refer to the recent survey pa-
per [10].

In general, problems of global exponential stability of time-
varying Volterra difference equations are very hard even those
of linear time-varying Volterra equations. Most of existing re-
sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
ditions for exponential stability of linear time-varying Volterra
difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
nential stability of nonlinear time-varying Volterra difference
equations. Our approach is based on the celebrated Perron-
Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
nential stability of the zero solution of general nonlinear time-

varying Volterra difference equations. Furthermore, we derive
an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.

2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there

1
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Volterra difference equations have been widely used in the
modeling of processes in continuous mechanics and biome-
chanics, problems of control and estimations and some
schemes of numerical solutions of integral and integro-
differential equations, see e.g. [2], [7], [12], [16]-[19].

Problems of stability of Volterra difference equations have
attracted much attention from researchers, during the last
twenty years, see e.g. [1],[4]-[13], [15], [21]-[23] and refer-
ences therein. Many various methods have been used to inves-
tigate stability of Volterra difference equations such as Lya-
punov functions, Z transform, comparison theorems, topologi-
cal methods, fixed point theorems, etc (see e.g. [7], [10], [15],
[23]).

In particular, the first significant result on exponential sta-
bility of Volterra difference equations is due to Elaydi and
Murakami, see [8]. Roughly speaking, Elaydi and Murakami
showed that even to the simplest Volterra difference equations
(namely, linear time-invariant Volterra difference equations of
convolution type), the exponential stability is “stronger” than
the uniform asymptotic stability. More precisely, a linear time-
invariant Volterra difference equation of convolution type is ex-
ponentially stable if and only if it is uniformly asymptotically
stable and its kernel exponentially decays, see [8]. For further
and updated information on stability of linear time-invariant
Volterra difference equations, we refer to the recent survey pa-
per [10].

In general, problems of global exponential stability of time-
varying Volterra difference equations are very hard even those
of linear time-varying Volterra equations. Most of existing re-
sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
ditions for exponential stability of linear time-varying Volterra
difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
nential stability of nonlinear time-varying Volterra difference
equations. Our approach is based on the celebrated Perron-
Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
nential stability of the zero solution of general nonlinear time-

varying Volterra difference equations. Furthermore, we derive
an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.

2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there

1
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chanics, problems of control and estimations and some
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punov functions, Z transform, comparison theorems, topologi-
cal methods, fixed point theorems, etc (see e.g. [7], [10], [15],
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In particular, the first significant result on exponential sta-
bility of Volterra difference equations is due to Elaydi and
Murakami, see [8]. Roughly speaking, Elaydi and Murakami
showed that even to the simplest Volterra difference equations
(namely, linear time-invariant Volterra difference equations of
convolution type), the exponential stability is “stronger” than
the uniform asymptotic stability. More precisely, a linear time-
invariant Volterra difference equation of convolution type is ex-
ponentially stable if and only if it is uniformly asymptotically
stable and its kernel exponentially decays, see [8]. For further
and updated information on stability of linear time-invariant
Volterra difference equations, we refer to the recent survey pa-
per [10].

In general, problems of global exponential stability of time-
varying Volterra difference equations are very hard even those
of linear time-varying Volterra equations. Most of existing re-
sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
ditions for exponential stability of linear time-varying Volterra
difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
nential stability of nonlinear time-varying Volterra difference
equations. Our approach is based on the celebrated Perron-
Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
nential stability of the zero solution of general nonlinear time-

varying Volterra difference equations. Furthermore, we derive
an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.

2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there

1

m×m) for 
some γ > 1 and ρ(A + ∑+

n=
1
0 B(n)), then the zero solution of (2)  

is GES.

Proof. Since ρ(A + ∑+
k=
1
0 B(k)) < 1 and (B(n))n 2 lγ(
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1. Introduction
Volterra difference equations have been widely used in the
modeling of processes in continuous mechanics and biome-
chanics, problems of control and estimations and some
schemes of numerical solutions of integral and integro-
differential equations, see e.g. [2], [7], [12], [16]-[19].

Problems of stability of Volterra difference equations have
attracted much attention from researchers, during the last
twenty years, see e.g. [1],[4]-[13], [15], [21]-[23] and refer-
ences therein. Many various methods have been used to inves-
tigate stability of Volterra difference equations such as Lya-
punov functions, Z transform, comparison theorems, topologi-
cal methods, fixed point theorems, etc (see e.g. [7], [10], [15],
[23]).

In particular, the first significant result on exponential sta-
bility of Volterra difference equations is due to Elaydi and
Murakami, see [8]. Roughly speaking, Elaydi and Murakami
showed that even to the simplest Volterra difference equations
(namely, linear time-invariant Volterra difference equations of
convolution type), the exponential stability is “stronger” than
the uniform asymptotic stability. More precisely, a linear time-
invariant Volterra difference equation of convolution type is ex-
ponentially stable if and only if it is uniformly asymptotically
stable and its kernel exponentially decays, see [8]. For further
and updated information on stability of linear time-invariant
Volterra difference equations, we refer to the recent survey pa-
per [10].

In general, problems of global exponential stability of time-
varying Volterra difference equations are very hard even those
of linear time-varying Volterra equations. Most of existing re-
sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
ditions for exponential stability of linear time-varying Volterra
difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
nential stability of nonlinear time-varying Volterra difference
equations. Our approach is based on the celebrated Perron-
Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
nential stability of the zero solution of general nonlinear time-

varying Volterra difference equations. Furthermore, we derive
an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.

2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there

1

m×m) with 
γ > 1, ρ(A + ∑+

k=
1
0 B(k)βk) < 1, for some β 2 (1, γ], by conti-

nuity of the spectral radius, see [3]. Note that A + ∑n
k=0B(n ¡ k)

βn–k = A + ∑n
k=0B(k)βk ∙ A + ∑+

k=
1
0 B(k)βk, 8n 2 
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p , 1 ≤ p < ∞
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be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
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monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
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The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there

1

+. There-
fore, (ii) of Theorem 3.4 holds and the zero solution of (2)  
is GES.� □

We illustrate the obtained results by a couple of examples.

Example 3.5. Consider a scalar nonlinear Volterra difference 
equation
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where K := M‖p‖. By the linearity of (9),

‖y(n,n0,
ϕ

‖ϕ‖n0

)‖= 1
‖ϕ‖n0

‖y(n,n0,ϕ)‖ ≤ Kλ n−n0 ,

for all n ≥ n0,ϕ ∈ Sn0 ,‖ϕ‖n0 �= 0.
Therefore,

‖y(n,n0,ϕ)‖ ≤ Kλ n−n0‖ϕ‖n0 , ∀n ≥ n0, ∀ϕ ∈ Sn0 . (12)

For given ϕ ∈ Sn0 , let x(·) := x(·,n0,ϕ) be the solution of
(2)-(3) and let y(·) := y(·,n0, |ϕ|), where |ϕ|(n) := |ϕ(n)|,n ∈
Z[0,n0]. Since A(n) ≥ 0,B(n,k) ≥ 0 for n,k ∈ Z+,n ≥ k, and
|ϕ| ≥ 0, it follows that y(n)≥ 0,∀n ∈ Z+,n ≥ n0.
Note that

|x(n0 +1)| ≤ |F(n0,x(n0))|+
n0

∑
k=0

|G(n0,k,x(k))|

(5)
≤ A(n0)|x(n0)|+

n0

∑
k=0

B(n0,k)|x(k)|

(3)
= A(n0)|ϕ(n0)|+

n0

∑
k=0

B(n0,k)|ϕ(k)|

(9)
= A(n0)y(n0)+

n0

∑
k=0

B(n0,k)y(k)

= y(n0 +1).

By induction, we have

|x(n)| ≤ y(n), ∀n ∈ Z+.

By the monotonicity of vector norms,

‖x(n)‖= ‖|x(n)|‖ ≤ ‖y(n)‖, ∀n ∈ Z+. (13)

Thus, (4) follows from (12) and (13). Hence, the zero solution
of (2) is GES.

Next, we show that (ii) implies (i). Since A ∈Rm×m
+ ,ρ(A)<

1, there is a vector p ∈ Rm, p � 0 such that Ap � p, by Theo-
rem 2.2. By continuity,

Ap � η−1 p, (14)

for some η > 1. Let β be as in (ii) and let α0 := min{β ,η}.
Clearly, α0 > 1 and
(

A(n)+
n

∑
k=0

B(n,k)αn−k
0

)
≤
(

A(n)+
n

∑
k=0

B(n,k)β n−k
)

(7)
≤ A.

Therefore,(
A(n)+

n

∑
k=0

B(n,k)αn−k
0

)
p ≤ Ap

(14)
≤ η−1 p ≤ α−1

0 p.

Thus, (i) holds.
Finally, it remains to show that the zero solution of (2) is
GES provided (iii) holds. From (8), it follows that ‖A(n)‖+
∑n

k=0 ‖B(n,k)‖γn−k < a, ∀n ∈ Z+, for some a ∈ [0,1). Thus,
the zero solution of the scalar difference equation

z(n+1) = ‖A(n)‖z(n)+
n

∑
k=0

‖B(n,k)‖z(k), n ∈ Z+, (15)

is GES, by (ii). Fix ϕ ∈ Sn0 . Let x(·) := x(·,n0,ϕ) be the
solution of (2)-(3) and let z(·) := z(·,n0,‖ϕ(·)‖) be the solution

of (15) with the initial value function ‖ϕ(·)‖. By a similar
argument as in Step II of the proof of (i), we get

‖x(n)‖ ≤ z(n), ∀n ∈ Z+. (16)

Therefore, the zero solution of (2) is GES. This completes the
proof.

For given γ > 1, let us denote

lγ(Km×m) :=
{
(B(n))n : B(n) ∈Km×m,n ∈ Z+,

∞

∑
n=0

‖B(n)‖γn <+∞
}
,

K := R,C.

In particular, the following follows from Theorem 3.2.

THEOREM 3.4. Suppose there exist A ∈ Rm×m
+ and B(·) :

Z+ → Rm×m
+ such that

|F(n,x)| ≤ A|x| and |G(n,k,x)| ≤ B(n− k)|x|, (17)

for all n,k ∈Z+,n≥ k,x∈Rm. If (B(n))n ∈ lγ(Rm×m) for some
γ > 1 and ρ(A+∑+∞

n=0 B(n)) < 1 then the zero solution of (2)
is GES.

Proof. Since ρ(A+∑+∞
k=0 B(k)) < 1 and (B(k))k ∈ lγ(Rm×m)

with γ > 1, ρ(A + ∑+∞
k=0 B(k)β k) < 1, for some β ∈

(1,γ], by continuity of the spectral radius, see [3]. Note
that A + ∑n

k=0 B(n − k)β n−k = A + ∑n
k=0 B(k)β k ≤ A +

∑+∞
k=0 B(k)β k,∀n ∈ Z+. Therefore, (ii) of Theorem 3.4 holds

and the zero solution of (2) is GES.

We illustrate the obtained results by a couple of examples.

EXAMPLE 3.5. Consider a scalar nonlinear Volterra differ-
ence equation

x(n+1) =
ne−x2(n)x(n)

4n+1
+

n

∑
k=0

2k2 arctan
(
an−kx(k)

)

(k2 +1)
(
3(n− k)+1

)(
3(n− k)+4

) , (18)

where 0 < a < 1 and n ∈ Z+.
Let

F(n,x) =
ne−x2

x
4n+1

and

G(n,k,x) =
2k2 arctan

(
an−kx

)

(k2 +1)
(
3(n− k)+1

)(
3(n− k)+4

) , (19)

where n,k ∈ Z+,n ≥ k and x ∈ R. Since
∣∣∣∣
ne−x2

x
4n+1

∣∣∣∣≤
1
4
|x| and

∣∣∣∣
k2 arctan

(
an−kx

)
k2 +1

∣∣∣∣≤ an−k|x|,

for all x ∈ R,n,k ∈ Z+,n ≥ k, it follows that

|F(n,x)| ≤ A|x| and |G(n,k,x)| ≤ B(n− k)|x|, (20)

for all x ∈ R,n,k ∈ Z+,n ≥ k, where A = 1
4 and B(n) =

2an
(
3n+1

)(
3n+4

), n ∈ Z+.
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where K := M‖p‖. By the linearity of (9),
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for all n ≥ n0,ϕ ∈ Sn0 ,‖ϕ‖n0 �= 0.
Therefore,
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ne−x2(n)x(n)

4n+1
+

n

∑
k=0

2k2 arctan
(
an−kx(k)

)

(k2 +1)
(
3(n− k)+1

)(
3(n− k)+4

) , (18)

where 0 < a < 1 and n ∈ Z+.
Let

F(n,x) =
ne−x2

x
4n+1

and

G(n,k,x) =
2k2 arctan

(
an−kx

)

(k2 +1)
(
3(n− k)+1

)(
3(n− k)+4

) , (19)

where n,k ∈ Z+,n ≥ k and x ∈ R. Since
∣∣∣∣
ne−x2

x
4n+1

∣∣∣∣≤
1
4
|x| and

∣∣∣∣
k2 arctan

(
an−kx

)
k2 +1

∣∣∣∣≤ an−k|x|,

for all x ∈ R,n,k ∈ Z+,n ≥ k, it follows that

|F(n,x)| ≤ A|x| and |G(n,k,x)| ≤ B(n− k)|x|, (20)

for all x ∈ R,n,k ∈ Z+,n ≥ k, where A = 1
4 and B(n) =

2an
(
3n+1

)(
3n+4

), n ∈ Z+.
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where K := M‖p‖. By the linearity of (9),

‖y(n,n0,
ϕ

‖ϕ‖n0

)‖= 1
‖ϕ‖n0

‖y(n,n0,ϕ)‖ ≤ Kλ n−n0 ,

for all n ≥ n0,ϕ ∈ Sn0 ,‖ϕ‖n0 �= 0.
Therefore,

‖y(n,n0,ϕ)‖ ≤ Kλ n−n0‖ϕ‖n0 , ∀n ≥ n0, ∀ϕ ∈ Sn0 . (12)

For given ϕ ∈ Sn0 , let x(·) := x(·,n0,ϕ) be the solution of
(2)-(3) and let y(·) := y(·,n0, |ϕ|), where |ϕ|(n) := |ϕ(n)|,n ∈
Z[0,n0]. Since A(n) ≥ 0,B(n,k) ≥ 0 for n,k ∈ Z+,n ≥ k, and
|ϕ| ≥ 0, it follows that y(n)≥ 0,∀n ∈ Z+,n ≥ n0.
Note that

|x(n0 +1)| ≤ |F(n0,x(n0))|+
n0

∑
k=0

|G(n0,k,x(k))|

(5)
≤ A(n0)|x(n0)|+

n0

∑
k=0

B(n0,k)|x(k)|

(3)
= A(n0)|ϕ(n0)|+

n0

∑
k=0

B(n0,k)|ϕ(k)|

(9)
= A(n0)y(n0)+

n0

∑
k=0

B(n0,k)y(k)

= y(n0 +1).

By induction, we have

|x(n)| ≤ y(n), ∀n ∈ Z+.

By the monotonicity of vector norms,

‖x(n)‖= ‖|x(n)|‖ ≤ ‖y(n)‖, ∀n ∈ Z+. (13)

Thus, (4) follows from (12) and (13). Hence, the zero solution
of (2) is GES.

Next, we show that (ii) implies (i). Since A ∈Rm×m
+ ,ρ(A)<

1, there is a vector p ∈ Rm, p � 0 such that Ap � p, by Theo-
rem 2.2. By continuity,

Ap � η−1 p, (14)

for some η > 1. Let β be as in (ii) and let α0 := min{β ,η}.
Clearly, α0 > 1 and
(

A(n)+
n

∑
k=0

B(n,k)αn−k
0

)
≤
(

A(n)+
n

∑
k=0

B(n,k)β n−k
)

(7)
≤ A.

Therefore,(
A(n)+

n

∑
k=0

B(n,k)αn−k
0

)
p ≤ Ap

(14)
≤ η−1 p ≤ α−1

0 p.

Thus, (i) holds.
Finally, it remains to show that the zero solution of (2) is
GES provided (iii) holds. From (8), it follows that ‖A(n)‖+
∑n

k=0 ‖B(n,k)‖γn−k < a, ∀n ∈ Z+, for some a ∈ [0,1). Thus,
the zero solution of the scalar difference equation

z(n+1) = ‖A(n)‖z(n)+
n

∑
k=0

‖B(n,k)‖z(k), n ∈ Z+, (15)

is GES, by (ii). Fix ϕ ∈ Sn0 . Let x(·) := x(·,n0,ϕ) be the
solution of (2)-(3) and let z(·) := z(·,n0,‖ϕ(·)‖) be the solution

of (15) with the initial value function ‖ϕ(·)‖. By a similar
argument as in Step II of the proof of (i), we get

‖x(n)‖ ≤ z(n), ∀n ∈ Z+. (16)

Therefore, the zero solution of (2) is GES. This completes the
proof.

For given γ > 1, let us denote

lγ(Km×m) :=
{
(B(n))n : B(n) ∈Km×m,n ∈ Z+,

∞

∑
n=0

‖B(n)‖γn <+∞
}
,

K := R,C.

In particular, the following follows from Theorem 3.2.

THEOREM 3.4. Suppose there exist A ∈ Rm×m
+ and B(·) :

Z+ → Rm×m
+ such that

|F(n,x)| ≤ A|x| and |G(n,k,x)| ≤ B(n− k)|x|, (17)

for all n,k ∈Z+,n≥ k,x∈Rm. If (B(n))n ∈ lγ(Rm×m) for some
γ > 1 and ρ(A+∑+∞

n=0 B(n)) < 1 then the zero solution of (2)
is GES.

Proof. Since ρ(A+∑+∞
k=0 B(k)) < 1 and (B(k))k ∈ lγ(Rm×m)

with γ > 1, ρ(A + ∑+∞
k=0 B(k)β k) < 1, for some β ∈

(1,γ], by continuity of the spectral radius, see [3]. Note
that A + ∑n

k=0 B(n − k)β n−k = A + ∑n
k=0 B(k)β k ≤ A +

∑+∞
k=0 B(k)β k,∀n ∈ Z+. Therefore, (ii) of Theorem 3.4 holds

and the zero solution of (2) is GES.

We illustrate the obtained results by a couple of examples.

EXAMPLE 3.5. Consider a scalar nonlinear Volterra differ-
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and
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∣∣∣∣≤
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4
|x| and

∣∣∣∣
k2 arctan

(
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)
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∣∣∣∣≤ an−k|x|,

for all x ∈ R,n,k ∈ Z+,n ≥ k, it follows that

|F(n,x)| ≤ A|x| and |G(n,k,x)| ≤ B(n− k)|x|, (20)

for all x ∈ R,n,k ∈ Z+,n ≥ k, where A = 1
4 and B(n) =
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(
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1. Introduction
Volterra difference equations have been widely used in the
modeling of processes in continuous mechanics and biome-
chanics, problems of control and estimations and some
schemes of numerical solutions of integral and integro-
differential equations, see e.g. [2], [7], [12], [16]-[19].

Problems of stability of Volterra difference equations have
attracted much attention from researchers, during the last
twenty years, see e.g. [1],[4]-[13], [15], [21]-[23] and refer-
ences therein. Many various methods have been used to inves-
tigate stability of Volterra difference equations such as Lya-
punov functions, Z transform, comparison theorems, topologi-
cal methods, fixed point theorems, etc (see e.g. [7], [10], [15],
[23]).

In particular, the first significant result on exponential sta-
bility of Volterra difference equations is due to Elaydi and
Murakami, see [8]. Roughly speaking, Elaydi and Murakami
showed that even to the simplest Volterra difference equations
(namely, linear time-invariant Volterra difference equations of
convolution type), the exponential stability is “stronger” than
the uniform asymptotic stability. More precisely, a linear time-
invariant Volterra difference equation of convolution type is ex-
ponentially stable if and only if it is uniformly asymptotically
stable and its kernel exponentially decays, see [8]. For further
and updated information on stability of linear time-invariant
Volterra difference equations, we refer to the recent survey pa-
per [10].

In general, problems of global exponential stability of time-
varying Volterra difference equations are very hard even those
of linear time-varying Volterra equations. Most of existing re-
sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
ditions for exponential stability of linear time-varying Volterra
difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
nential stability of nonlinear time-varying Volterra difference
equations. Our approach is based on the celebrated Perron-
Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
nential stability of the zero solution of general nonlinear time-

varying Volterra difference equations. Furthermore, we derive
an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.

2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there

1

+.
Let
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where K := M‖p‖. By the linearity of (9),

‖y(n,n0,
ϕ

‖ϕ‖n0

)‖= 1
‖ϕ‖n0

‖y(n,n0,ϕ)‖ ≤ Kλ n−n0 ,

for all n ≥ n0,ϕ ∈ Sn0 ,‖ϕ‖n0 �= 0.
Therefore,

‖y(n,n0,ϕ)‖ ≤ Kλ n−n0‖ϕ‖n0 , ∀n ≥ n0, ∀ϕ ∈ Sn0 . (12)

For given ϕ ∈ Sn0 , let x(·) := x(·,n0,ϕ) be the solution of
(2)-(3) and let y(·) := y(·,n0, |ϕ|), where |ϕ|(n) := |ϕ(n)|,n ∈
Z[0,n0]. Since A(n) ≥ 0,B(n,k) ≥ 0 for n,k ∈ Z+,n ≥ k, and
|ϕ| ≥ 0, it follows that y(n)≥ 0,∀n ∈ Z+,n ≥ n0.
Note that

|x(n0 +1)| ≤ |F(n0,x(n0))|+
n0

∑
k=0

|G(n0,k,x(k))|

(5)
≤ A(n0)|x(n0)|+

n0

∑
k=0

B(n0,k)|x(k)|

(3)
= A(n0)|ϕ(n0)|+

n0

∑
k=0

B(n0,k)|ϕ(k)|

(9)
= A(n0)y(n0)+

n0

∑
k=0

B(n0,k)y(k)

= y(n0 +1).

By induction, we have

|x(n)| ≤ y(n), ∀n ∈ Z+.

By the monotonicity of vector norms,

‖x(n)‖= ‖|x(n)|‖ ≤ ‖y(n)‖, ∀n ∈ Z+. (13)

Thus, (4) follows from (12) and (13). Hence, the zero solution
of (2) is GES.

Next, we show that (ii) implies (i). Since A ∈Rm×m
+ ,ρ(A)<

1, there is a vector p ∈ Rm, p � 0 such that Ap � p, by Theo-
rem 2.2. By continuity,

Ap � η−1 p, (14)

for some η > 1. Let β be as in (ii) and let α0 := min{β ,η}.
Clearly, α0 > 1 and
(

A(n)+
n

∑
k=0

B(n,k)αn−k
0

)
≤
(

A(n)+
n

∑
k=0

B(n,k)β n−k
)

(7)
≤ A.

Therefore,(
A(n)+

n

∑
k=0

B(n,k)αn−k
0

)
p ≤ Ap

(14)
≤ η−1 p ≤ α−1

0 p.

Thus, (i) holds.
Finally, it remains to show that the zero solution of (2) is
GES provided (iii) holds. From (8), it follows that ‖A(n)‖+
∑n

k=0 ‖B(n,k)‖γn−k < a, ∀n ∈ Z+, for some a ∈ [0,1). Thus,
the zero solution of the scalar difference equation

z(n+1) = ‖A(n)‖z(n)+
n

∑
k=0

‖B(n,k)‖z(k), n ∈ Z+, (15)

is GES, by (ii). Fix ϕ ∈ Sn0 . Let x(·) := x(·,n0,ϕ) be the
solution of (2)-(3) and let z(·) := z(·,n0,‖ϕ(·)‖) be the solution

of (15) with the initial value function ‖ϕ(·)‖. By a similar
argument as in Step II of the proof of (i), we get

‖x(n)‖ ≤ z(n), ∀n ∈ Z+. (16)

Therefore, the zero solution of (2) is GES. This completes the
proof.

For given γ > 1, let us denote

lγ(Km×m) :=
{
(B(n))n : B(n) ∈Km×m,n ∈ Z+,

∞

∑
n=0

‖B(n)‖γn <+∞
}
,

K := R,C.

In particular, the following follows from Theorem 3.2.

THEOREM 3.4. Suppose there exist A ∈ Rm×m
+ and B(·) :

Z+ → Rm×m
+ such that

|F(n,x)| ≤ A|x| and |G(n,k,x)| ≤ B(n− k)|x|, (17)

for all n,k ∈Z+,n≥ k,x∈Rm. If (B(n))n ∈ lγ(Rm×m) for some
γ > 1 and ρ(A+∑+∞

n=0 B(n)) < 1 then the zero solution of (2)
is GES.

Proof. Since ρ(A+∑+∞
k=0 B(k)) < 1 and (B(k))k ∈ lγ(Rm×m)

with γ > 1, ρ(A + ∑+∞
k=0 B(k)β k) < 1, for some β ∈

(1,γ], by continuity of the spectral radius, see [3]. Note
that A + ∑n

k=0 B(n − k)β n−k = A + ∑n
k=0 B(k)β k ≤ A +

∑+∞
k=0 B(k)β k,∀n ∈ Z+. Therefore, (ii) of Theorem 3.4 holds

and the zero solution of (2) is GES.

We illustrate the obtained results by a couple of examples.

EXAMPLE 3.5. Consider a scalar nonlinear Volterra differ-
ence equation

x(n+1) =
ne−x2(n)x(n)

4n+1
+

n

∑
k=0

2k2 arctan
(
an−kx(k)

)

(k2 +1)
(
3(n− k)+1

)(
3(n− k)+4

) , (18)

where 0 < a < 1 and n ∈ Z+.
Let

F(n,x) =
ne−x2

x
4n+1

and

G(n,k,x) =
2k2 arctan

(
an−kx

)

(k2 +1)
(
3(n− k)+1

)(
3(n− k)+4

) , (19)

where n,k ∈ Z+,n ≥ k and x ∈ R. Since
∣∣∣∣
ne−x2

x
4n+1

∣∣∣∣≤
1
4
|x| and

∣∣∣∣
k2 arctan

(
an−kx

)
k2 +1

∣∣∣∣≤ an−k|x|,

for all x ∈ R,n,k ∈ Z+,n ≥ k, it follows that

|F(n,x)| ≤ A|x| and |G(n,k,x)| ≤ B(n− k)|x|, (20)

for all x ∈ R,n,k ∈ Z+,n ≥ k, where A = 1
4 and B(n) =

2an
(
3n+1

)(
3n+4

), n ∈ Z+.
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where K := M‖p‖. By the linearity of (9),

‖y(n,n0,
ϕ

‖ϕ‖n0

)‖= 1
‖ϕ‖n0

‖y(n,n0,ϕ)‖ ≤ Kλ n−n0 ,

for all n ≥ n0,ϕ ∈ Sn0 ,‖ϕ‖n0 �= 0.
Therefore,

‖y(n,n0,ϕ)‖ ≤ Kλ n−n0‖ϕ‖n0 , ∀n ≥ n0, ∀ϕ ∈ Sn0 . (12)

For given ϕ ∈ Sn0 , let x(·) := x(·,n0,ϕ) be the solution of
(2)-(3) and let y(·) := y(·,n0, |ϕ|), where |ϕ|(n) := |ϕ(n)|,n ∈
Z[0,n0]. Since A(n) ≥ 0,B(n,k) ≥ 0 for n,k ∈ Z+,n ≥ k, and
|ϕ| ≥ 0, it follows that y(n)≥ 0,∀n ∈ Z+,n ≥ n0.
Note that

|x(n0 +1)| ≤ |F(n0,x(n0))|+
n0

∑
k=0

|G(n0,k,x(k))|

(5)
≤ A(n0)|x(n0)|+

n0

∑
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B(n0,k)|x(k)|

(3)
= A(n0)|ϕ(n0)|+

n0

∑
k=0

B(n0,k)|ϕ(k)|

(9)
= A(n0)y(n0)+

n0

∑
k=0

B(n0,k)y(k)

= y(n0 +1).

By induction, we have

|x(n)| ≤ y(n), ∀n ∈ Z+.

By the monotonicity of vector norms,

‖x(n)‖= ‖|x(n)|‖ ≤ ‖y(n)‖, ∀n ∈ Z+. (13)

Thus, (4) follows from (12) and (13). Hence, the zero solution
of (2) is GES.

Next, we show that (ii) implies (i). Since A ∈Rm×m
+ ,ρ(A)<

1, there is a vector p ∈ Rm, p � 0 such that Ap � p, by Theo-
rem 2.2. By continuity,

Ap � η−1 p, (14)

for some η > 1. Let β be as in (ii) and let α0 := min{β ,η}.
Clearly, α0 > 1 and
(

A(n)+
n

∑
k=0

B(n,k)αn−k
0

)
≤
(

A(n)+
n

∑
k=0

B(n,k)β n−k
)

(7)
≤ A.

Therefore,(
A(n)+

n

∑
k=0

B(n,k)αn−k
0

)
p ≤ Ap

(14)
≤ η−1 p ≤ α−1

0 p.

Thus, (i) holds.
Finally, it remains to show that the zero solution of (2) is
GES provided (iii) holds. From (8), it follows that ‖A(n)‖+
∑n

k=0 ‖B(n,k)‖γn−k < a, ∀n ∈ Z+, for some a ∈ [0,1). Thus,
the zero solution of the scalar difference equation

z(n+1) = ‖A(n)‖z(n)+
n

∑
k=0

‖B(n,k)‖z(k), n ∈ Z+, (15)

is GES, by (ii). Fix ϕ ∈ Sn0 . Let x(·) := x(·,n0,ϕ) be the
solution of (2)-(3) and let z(·) := z(·,n0,‖ϕ(·)‖) be the solution

of (15) with the initial value function ‖ϕ(·)‖. By a similar
argument as in Step II of the proof of (i), we get

‖x(n)‖ ≤ z(n), ∀n ∈ Z+. (16)

Therefore, the zero solution of (2) is GES. This completes the
proof.

For given γ > 1, let us denote

lγ(Km×m) :=
{
(B(n))n : B(n) ∈Km×m,n ∈ Z+,

∞

∑
n=0

‖B(n)‖γn <+∞
}
,

K := R,C.

In particular, the following follows from Theorem 3.2.

THEOREM 3.4. Suppose there exist A ∈ Rm×m
+ and B(·) :

Z+ → Rm×m
+ such that

|F(n,x)| ≤ A|x| and |G(n,k,x)| ≤ B(n− k)|x|, (17)

for all n,k ∈Z+,n≥ k,x∈Rm. If (B(n))n ∈ lγ(Rm×m) for some
γ > 1 and ρ(A+∑+∞

n=0 B(n)) < 1 then the zero solution of (2)
is GES.

Proof. Since ρ(A+∑+∞
k=0 B(k)) < 1 and (B(k))k ∈ lγ(Rm×m)

with γ > 1, ρ(A + ∑+∞
k=0 B(k)β k) < 1, for some β ∈

(1,γ], by continuity of the spectral radius, see [3]. Note
that A + ∑n

k=0 B(n − k)β n−k = A + ∑n
k=0 B(k)β k ≤ A +

∑+∞
k=0 B(k)β k,∀n ∈ Z+. Therefore, (ii) of Theorem 3.4 holds

and the zero solution of (2) is GES.

We illustrate the obtained results by a couple of examples.

EXAMPLE 3.5. Consider a scalar nonlinear Volterra differ-
ence equation

x(n+1) =
ne−x2(n)x(n)

4n+1
+

n

∑
k=0

2k2 arctan
(
an−kx(k)

)

(k2 +1)
(
3(n− k)+1

)(
3(n− k)+4

) , (18)

where 0 < a < 1 and n ∈ Z+.
Let

F(n,x) =
ne−x2

x
4n+1

and

G(n,k,x) =
2k2 arctan

(
an−kx

)

(k2 +1)
(
3(n− k)+1

)(
3(n− k)+4

) , (19)

where n,k ∈ Z+,n ≥ k and x ∈ R. Since
∣∣∣∣
ne−x2

x
4n+1

∣∣∣∣≤
1
4
|x| and

∣∣∣∣
k2 arctan

(
an−kx

)
k2 +1

∣∣∣∣≤ an−k|x|,

for all x ∈ R,n,k ∈ Z+,n ≥ k, it follows that

|F(n,x)| ≤ A|x| and |G(n,k,x)| ≤ B(n− k)|x|, (20)

for all x ∈ R,n,k ∈ Z+,n ≥ k, where A = 1
4 and B(n) =

2an
(
3n+1

)(
3n+4

), n ∈ Z+.
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1. Introduction
Volterra difference equations have been widely used in the
modeling of processes in continuous mechanics and biome-
chanics, problems of control and estimations and some
schemes of numerical solutions of integral and integro-
differential equations, see e.g. [2], [7], [12], [16]-[19].

Problems of stability of Volterra difference equations have
attracted much attention from researchers, during the last
twenty years, see e.g. [1],[4]-[13], [15], [21]-[23] and refer-
ences therein. Many various methods have been used to inves-
tigate stability of Volterra difference equations such as Lya-
punov functions, Z transform, comparison theorems, topologi-
cal methods, fixed point theorems, etc (see e.g. [7], [10], [15],
[23]).

In particular, the first significant result on exponential sta-
bility of Volterra difference equations is due to Elaydi and
Murakami, see [8]. Roughly speaking, Elaydi and Murakami
showed that even to the simplest Volterra difference equations
(namely, linear time-invariant Volterra difference equations of
convolution type), the exponential stability is “stronger” than
the uniform asymptotic stability. More precisely, a linear time-
invariant Volterra difference equation of convolution type is ex-
ponentially stable if and only if it is uniformly asymptotically
stable and its kernel exponentially decays, see [8]. For further
and updated information on stability of linear time-invariant
Volterra difference equations, we refer to the recent survey pa-
per [10].

In general, problems of global exponential stability of time-
varying Volterra difference equations are very hard even those
of linear time-varying Volterra equations. Most of existing re-
sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
ditions for exponential stability of linear time-varying Volterra
difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
nential stability of nonlinear time-varying Volterra difference
equations. Our approach is based on the celebrated Perron-
Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
nential stability of the zero solution of general nonlinear time-

varying Volterra difference equations. Furthermore, we derive
an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.

2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there

1
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schemes of numerical solutions of integral and integro-
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[23]).

In particular, the first significant result on exponential sta-
bility of Volterra difference equations is due to Elaydi and
Murakami, see [8]. Roughly speaking, Elaydi and Murakami
showed that even to the simplest Volterra difference equations
(namely, linear time-invariant Volterra difference equations of
convolution type), the exponential stability is “stronger” than
the uniform asymptotic stability. More precisely, a linear time-
invariant Volterra difference equation of convolution type is ex-
ponentially stable if and only if it is uniformly asymptotically
stable and its kernel exponentially decays, see [8]. For further
and updated information on stability of linear time-invariant
Volterra difference equations, we refer to the recent survey pa-
per [10].

In general, problems of global exponential stability of time-
varying Volterra difference equations are very hard even those
of linear time-varying Volterra equations. Most of existing re-
sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
ditions for exponential stability of linear time-varying Volterra
difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
nential stability of nonlinear time-varying Volterra difference
equations. Our approach is based on the celebrated Perron-
Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
nential stability of the zero solution of general nonlinear time-

varying Volterra difference equations. Furthermore, we derive
an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.

2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there

1

. Since
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where K := M‖p‖. By the linearity of (9),

‖y(n,n0,
ϕ

‖ϕ‖n0

)‖= 1
‖ϕ‖n0

‖y(n,n0,ϕ)‖ ≤ Kλ n−n0 ,

for all n ≥ n0,ϕ ∈ Sn0 ,‖ϕ‖n0 �= 0.
Therefore,

‖y(n,n0,ϕ)‖ ≤ Kλ n−n0‖ϕ‖n0 , ∀n ≥ n0, ∀ϕ ∈ Sn0 . (12)

For given ϕ ∈ Sn0 , let x(·) := x(·,n0,ϕ) be the solution of
(2)-(3) and let y(·) := y(·,n0, |ϕ|), where |ϕ|(n) := |ϕ(n)|,n ∈
Z[0,n0]. Since A(n) ≥ 0,B(n,k) ≥ 0 for n,k ∈ Z+,n ≥ k, and
|ϕ| ≥ 0, it follows that y(n)≥ 0,∀n ∈ Z+,n ≥ n0.
Note that

|x(n0 +1)| ≤ |F(n0,x(n0))|+
n0

∑
k=0

|G(n0,k,x(k))|

(5)
≤ A(n0)|x(n0)|+

n0

∑
k=0

B(n0,k)|x(k)|

(3)
= A(n0)|ϕ(n0)|+

n0

∑
k=0

B(n0,k)|ϕ(k)|

(9)
= A(n0)y(n0)+

n0

∑
k=0

B(n0,k)y(k)

= y(n0 +1).

By induction, we have

|x(n)| ≤ y(n), ∀n ∈ Z+.

By the monotonicity of vector norms,

‖x(n)‖= ‖|x(n)|‖ ≤ ‖y(n)‖, ∀n ∈ Z+. (13)

Thus, (4) follows from (12) and (13). Hence, the zero solution
of (2) is GES.

Next, we show that (ii) implies (i). Since A ∈Rm×m
+ ,ρ(A)<

1, there is a vector p ∈ Rm, p � 0 such that Ap � p, by Theo-
rem 2.2. By continuity,

Ap � η−1 p, (14)

for some η > 1. Let β be as in (ii) and let α0 := min{β ,η}.
Clearly, α0 > 1 and
(

A(n)+
n

∑
k=0

B(n,k)αn−k
0

)
≤
(

A(n)+
n

∑
k=0

B(n,k)β n−k
)

(7)
≤ A.

Therefore,(
A(n)+

n

∑
k=0

B(n,k)αn−k
0

)
p ≤ Ap

(14)
≤ η−1 p ≤ α−1

0 p.

Thus, (i) holds.
Finally, it remains to show that the zero solution of (2) is
GES provided (iii) holds. From (8), it follows that ‖A(n)‖+
∑n

k=0 ‖B(n,k)‖γn−k < a, ∀n ∈ Z+, for some a ∈ [0,1). Thus,
the zero solution of the scalar difference equation

z(n+1) = ‖A(n)‖z(n)+
n

∑
k=0

‖B(n,k)‖z(k), n ∈ Z+, (15)

is GES, by (ii). Fix ϕ ∈ Sn0 . Let x(·) := x(·,n0,ϕ) be the
solution of (2)-(3) and let z(·) := z(·,n0,‖ϕ(·)‖) be the solution

of (15) with the initial value function ‖ϕ(·)‖. By a similar
argument as in Step II of the proof of (i), we get

‖x(n)‖ ≤ z(n), ∀n ∈ Z+. (16)

Therefore, the zero solution of (2) is GES. This completes the
proof.

For given γ > 1, let us denote

lγ(Km×m) :=
{
(B(n))n : B(n) ∈Km×m,n ∈ Z+,

∞

∑
n=0

‖B(n)‖γn <+∞
}
,

K := R,C.

In particular, the following follows from Theorem 3.2.

THEOREM 3.4. Suppose there exist A ∈ Rm×m
+ and B(·) :

Z+ → Rm×m
+ such that

|F(n,x)| ≤ A|x| and |G(n,k,x)| ≤ B(n− k)|x|, (17)

for all n,k ∈Z+,n≥ k,x∈Rm. If (B(n))n ∈ lγ(Rm×m) for some
γ > 1 and ρ(A+∑+∞

n=0 B(n)) < 1 then the zero solution of (2)
is GES.

Proof. Since ρ(A+∑+∞
k=0 B(k)) < 1 and (B(k))k ∈ lγ(Rm×m)

with γ > 1, ρ(A + ∑+∞
k=0 B(k)β k) < 1, for some β ∈

(1,γ], by continuity of the spectral radius, see [3]. Note
that A + ∑n

k=0 B(n − k)β n−k = A + ∑n
k=0 B(k)β k ≤ A +

∑+∞
k=0 B(k)β k,∀n ∈ Z+. Therefore, (ii) of Theorem 3.4 holds

and the zero solution of (2) is GES.

We illustrate the obtained results by a couple of examples.

EXAMPLE 3.5. Consider a scalar nonlinear Volterra differ-
ence equation

x(n+1) =
ne−x2(n)x(n)

4n+1
+

n

∑
k=0

2k2 arctan
(
an−kx(k)

)

(k2 +1)
(
3(n− k)+1

)(
3(n− k)+4

) , (18)

where 0 < a < 1 and n ∈ Z+.
Let

F(n,x) =
ne−x2

x
4n+1

and

G(n,k,x) =
2k2 arctan

(
an−kx

)

(k2 +1)
(
3(n− k)+1

)(
3(n− k)+4

) , (19)

where n,k ∈ Z+,n ≥ k and x ∈ R. Since
∣∣∣∣
ne−x2

x
4n+1

∣∣∣∣≤
1
4
|x| and

∣∣∣∣
k2 arctan

(
an−kx

)
k2 +1

∣∣∣∣≤ an−k|x|,

for all x ∈ R,n,k ∈ Z+,n ≥ k, it follows that

|F(n,x)| ≤ A|x| and |G(n,k,x)| ≤ B(n− k)|x|, (20)

for all x ∈ R,n,k ∈ Z+,n ≥ k, where A = 1
4 and B(n) =

2an
(
3n+1

)(
3n+4

), n ∈ Z+.
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where K := M‖p‖. By the linearity of (9),

‖y(n,n0,
ϕ

‖ϕ‖n0

)‖= 1
‖ϕ‖n0

‖y(n,n0,ϕ)‖ ≤ Kλ n−n0 ,

for all n ≥ n0,ϕ ∈ Sn0 ,‖ϕ‖n0 �= 0.
Therefore,

‖y(n,n0,ϕ)‖ ≤ Kλ n−n0‖ϕ‖n0 , ∀n ≥ n0, ∀ϕ ∈ Sn0 . (12)

For given ϕ ∈ Sn0 , let x(·) := x(·,n0,ϕ) be the solution of
(2)-(3) and let y(·) := y(·,n0, |ϕ|), where |ϕ|(n) := |ϕ(n)|,n ∈
Z[0,n0]. Since A(n) ≥ 0,B(n,k) ≥ 0 for n,k ∈ Z+,n ≥ k, and
|ϕ| ≥ 0, it follows that y(n)≥ 0,∀n ∈ Z+,n ≥ n0.
Note that

|x(n0 +1)| ≤ |F(n0,x(n0))|+
n0

∑
k=0

|G(n0,k,x(k))|

(5)
≤ A(n0)|x(n0)|+

n0

∑
k=0

B(n0,k)|x(k)|

(3)
= A(n0)|ϕ(n0)|+

n0

∑
k=0

B(n0,k)|ϕ(k)|

(9)
= A(n0)y(n0)+

n0

∑
k=0

B(n0,k)y(k)

= y(n0 +1).

By induction, we have

|x(n)| ≤ y(n), ∀n ∈ Z+.

By the monotonicity of vector norms,

‖x(n)‖= ‖|x(n)|‖ ≤ ‖y(n)‖, ∀n ∈ Z+. (13)

Thus, (4) follows from (12) and (13). Hence, the zero solution
of (2) is GES.

Next, we show that (ii) implies (i). Since A ∈Rm×m
+ ,ρ(A)<

1, there is a vector p ∈ Rm, p � 0 such that Ap � p, by Theo-
rem 2.2. By continuity,

Ap � η−1 p, (14)

for some η > 1. Let β be as in (ii) and let α0 := min{β ,η}.
Clearly, α0 > 1 and
(

A(n)+
n

∑
k=0

B(n,k)αn−k
0

)
≤
(

A(n)+
n

∑
k=0

B(n,k)β n−k
)

(7)
≤ A.

Therefore,(
A(n)+

n

∑
k=0

B(n,k)αn−k
0

)
p ≤ Ap

(14)
≤ η−1 p ≤ α−1

0 p.

Thus, (i) holds.
Finally, it remains to show that the zero solution of (2) is
GES provided (iii) holds. From (8), it follows that ‖A(n)‖+
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k=0 B(k)) < 1 and (B(k))k ∈ lγ(Rm×m)
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(
an−kx

)

(k2 +1)
(
3(n− k)+1

)(
3(n− k)+4

) , (19)

where n,k ∈ Z+,n ≥ k and x ∈ R. Since
∣∣∣∣
ne−x2

x
4n+1

∣∣∣∣≤
1
4
|x| and

∣∣∣∣
k2 arctan

(
an−kx

)
k2 +1

∣∣∣∣≤ an−k|x|,

for all x ∈ R,n,k ∈ Z+,n ≥ k, it follows that

|F(n,x)| ≤ A|x| and |G(n,k,x)| ≤ B(n− k)|x|, (20)

for all x ∈ R,n,k ∈ Z+,n ≥ k, where A = 1
4 and B(n) =

2an
(
3n+1

)(
3n+4

), n ∈ Z+.
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where K := M‖p‖. By the linearity of (9),

‖y(n,n0,
ϕ

‖ϕ‖n0

)‖= 1
‖ϕ‖n0

‖y(n,n0,ϕ)‖ ≤ Kλ n−n0 ,

for all n ≥ n0,ϕ ∈ Sn0 ,‖ϕ‖n0 �= 0.
Therefore,

‖y(n,n0,ϕ)‖ ≤ Kλ n−n0‖ϕ‖n0 , ∀n ≥ n0, ∀ϕ ∈ Sn0 . (12)

For given ϕ ∈ Sn0 , let x(·) := x(·,n0,ϕ) be the solution of
(2)-(3) and let y(·) := y(·,n0, |ϕ|), where |ϕ|(n) := |ϕ(n)|,n ∈
Z[0,n0]. Since A(n) ≥ 0,B(n,k) ≥ 0 for n,k ∈ Z+,n ≥ k, and
|ϕ| ≥ 0, it follows that y(n)≥ 0,∀n ∈ Z+,n ≥ n0.
Note that

|x(n0 +1)| ≤ |F(n0,x(n0))|+
n0

∑
k=0

|G(n0,k,x(k))|

(5)
≤ A(n0)|x(n0)|+

n0

∑
k=0

B(n0,k)|x(k)|

(3)
= A(n0)|ϕ(n0)|+

n0

∑
k=0

B(n0,k)|ϕ(k)|

(9)
= A(n0)y(n0)+

n0

∑
k=0

B(n0,k)y(k)

= y(n0 +1).

By induction, we have

|x(n)| ≤ y(n), ∀n ∈ Z+.

By the monotonicity of vector norms,

‖x(n)‖= ‖|x(n)|‖ ≤ ‖y(n)‖, ∀n ∈ Z+. (13)

Thus, (4) follows from (12) and (13). Hence, the zero solution
of (2) is GES.

Next, we show that (ii) implies (i). Since A ∈Rm×m
+ ,ρ(A)<

1, there is a vector p ∈ Rm, p � 0 such that Ap � p, by Theo-
rem 2.2. By continuity,

Ap � η−1 p, (14)

for some η > 1. Let β be as in (ii) and let α0 := min{β ,η}.
Clearly, α0 > 1 and
(

A(n)+
n

∑
k=0

B(n,k)αn−k
0

)
≤
(

A(n)+
n

∑
k=0

B(n,k)β n−k
)

(7)
≤ A.

Therefore,(
A(n)+

n

∑
k=0

B(n,k)αn−k
0

)
p ≤ Ap

(14)
≤ η−1 p ≤ α−1

0 p.

Thus, (i) holds.
Finally, it remains to show that the zero solution of (2) is
GES provided (iii) holds. From (8), it follows that ‖A(n)‖+
∑n

k=0 ‖B(n,k)‖γn−k < a, ∀n ∈ Z+, for some a ∈ [0,1). Thus,
the zero solution of the scalar difference equation

z(n+1) = ‖A(n)‖z(n)+
n

∑
k=0

‖B(n,k)‖z(k), n ∈ Z+, (15)

is GES, by (ii). Fix ϕ ∈ Sn0 . Let x(·) := x(·,n0,ϕ) be the
solution of (2)-(3) and let z(·) := z(·,n0,‖ϕ(·)‖) be the solution

of (15) with the initial value function ‖ϕ(·)‖. By a similar
argument as in Step II of the proof of (i), we get

‖x(n)‖ ≤ z(n), ∀n ∈ Z+. (16)

Therefore, the zero solution of (2) is GES. This completes the
proof.

For given γ > 1, let us denote

lγ(Km×m) :=
{
(B(n))n : B(n) ∈Km×m,n ∈ Z+,

∞

∑
n=0

‖B(n)‖γn <+∞
}
,

K := R,C.

In particular, the following follows from Theorem 3.2.

THEOREM 3.4. Suppose there exist A ∈ Rm×m
+ and B(·) :

Z+ → Rm×m
+ such that

|F(n,x)| ≤ A|x| and |G(n,k,x)| ≤ B(n− k)|x|, (17)

for all n,k ∈Z+,n≥ k,x∈Rm. If (B(n))n ∈ lγ(Rm×m) for some
γ > 1 and ρ(A+∑+∞

n=0 B(n)) < 1 then the zero solution of (2)
is GES.

Proof. Since ρ(A+∑+∞
k=0 B(k)) < 1 and (B(k))k ∈ lγ(Rm×m)

with γ > 1, ρ(A + ∑+∞
k=0 B(k)β k) < 1, for some β ∈

(1,γ], by continuity of the spectral radius, see [3]. Note
that A + ∑n

k=0 B(n − k)β n−k = A + ∑n
k=0 B(k)β k ≤ A +

∑+∞
k=0 B(k)β k,∀n ∈ Z+. Therefore, (ii) of Theorem 3.4 holds

and the zero solution of (2) is GES.

We illustrate the obtained results by a couple of examples.

EXAMPLE 3.5. Consider a scalar nonlinear Volterra differ-
ence equation

x(n+1) =
ne−x2(n)x(n)

4n+1
+

n

∑
k=0

2k2 arctan
(
an−kx(k)

)

(k2 +1)
(
3(n− k)+1

)(
3(n− k)+4

) , (18)

where 0 < a < 1 and n ∈ Z+.
Let

F(n,x) =
ne−x2

x
4n+1

and

G(n,k,x) =
2k2 arctan

(
an−kx

)

(k2 +1)
(
3(n− k)+1

)(
3(n− k)+4

) , (19)

where n,k ∈ Z+,n ≥ k and x ∈ R. Since
∣∣∣∣
ne−x2

x
4n+1

∣∣∣∣≤
1
4
|x| and

∣∣∣∣
k2 arctan

(
an−kx

)
k2 +1

∣∣∣∣≤ an−k|x|,

for all x ∈ R,n,k ∈ Z+,n ≥ k, it follows that

|F(n,x)| ≤ A|x| and |G(n,k,x)| ≤ B(n− k)|x|, (20)

for all x ∈ R,n,k ∈ Z+,n ≥ k, where A = 1
4 and B(n) =

2an
(
3n+1

)(
3n+4

), n ∈ Z+.
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1. Introduction
Volterra difference equations have been widely used in the
modeling of processes in continuous mechanics and biome-
chanics, problems of control and estimations and some
schemes of numerical solutions of integral and integro-
differential equations, see e.g. [2], [7], [12], [16]-[19].

Problems of stability of Volterra difference equations have
attracted much attention from researchers, during the last
twenty years, see e.g. [1],[4]-[13], [15], [21]-[23] and refer-
ences therein. Many various methods have been used to inves-
tigate stability of Volterra difference equations such as Lya-
punov functions, Z transform, comparison theorems, topologi-
cal methods, fixed point theorems, etc (see e.g. [7], [10], [15],
[23]).

In particular, the first significant result on exponential sta-
bility of Volterra difference equations is due to Elaydi and
Murakami, see [8]. Roughly speaking, Elaydi and Murakami
showed that even to the simplest Volterra difference equations
(namely, linear time-invariant Volterra difference equations of
convolution type), the exponential stability is “stronger” than
the uniform asymptotic stability. More precisely, a linear time-
invariant Volterra difference equation of convolution type is ex-
ponentially stable if and only if it is uniformly asymptotically
stable and its kernel exponentially decays, see [8]. For further
and updated information on stability of linear time-invariant
Volterra difference equations, we refer to the recent survey pa-
per [10].

In general, problems of global exponential stability of time-
varying Volterra difference equations are very hard even those
of linear time-varying Volterra equations. Most of existing re-
sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
ditions for exponential stability of linear time-varying Volterra
difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
nential stability of nonlinear time-varying Volterra difference
equations. Our approach is based on the celebrated Perron-
Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
nential stability of the zero solution of general nonlinear time-

varying Volterra difference equations. Furthermore, we derive
an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.

2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there

1
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1. Introduction
Volterra difference equations have been widely used in the
modeling of processes in continuous mechanics and biome-
chanics, problems of control and estimations and some
schemes of numerical solutions of integral and integro-
differential equations, see e.g. [2], [7], [12], [16]-[19].

Problems of stability of Volterra difference equations have
attracted much attention from researchers, during the last
twenty years, see e.g. [1],[4]-[13], [15], [21]-[23] and refer-
ences therein. Many various methods have been used to inves-
tigate stability of Volterra difference equations such as Lya-
punov functions, Z transform, comparison theorems, topologi-
cal methods, fixed point theorems, etc (see e.g. [7], [10], [15],
[23]).

In particular, the first significant result on exponential sta-
bility of Volterra difference equations is due to Elaydi and
Murakami, see [8]. Roughly speaking, Elaydi and Murakami
showed that even to the simplest Volterra difference equations
(namely, linear time-invariant Volterra difference equations of
convolution type), the exponential stability is “stronger” than
the uniform asymptotic stability. More precisely, a linear time-
invariant Volterra difference equation of convolution type is ex-
ponentially stable if and only if it is uniformly asymptotically
stable and its kernel exponentially decays, see [8]. For further
and updated information on stability of linear time-invariant
Volterra difference equations, we refer to the recent survey pa-
per [10].

In general, problems of global exponential stability of time-
varying Volterra difference equations are very hard even those
of linear time-varying Volterra equations. Most of existing re-
sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
ditions for exponential stability of linear time-varying Volterra
difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
nential stability of nonlinear time-varying Volterra difference
equations. Our approach is based on the celebrated Perron-
Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
nential stability of the zero solution of general nonlinear time-

varying Volterra difference equations. Furthermore, we derive
an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.

2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there

1

+, n ¸ k, it follows that
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where K := M‖p‖. By the linearity of (9),

‖y(n,n0,
ϕ

‖ϕ‖n0

)‖= 1
‖ϕ‖n0

‖y(n,n0,ϕ)‖ ≤ Kλ n−n0 ,

for all n ≥ n0,ϕ ∈ Sn0 ,‖ϕ‖n0 �= 0.
Therefore,

‖y(n,n0,ϕ)‖ ≤ Kλ n−n0‖ϕ‖n0 , ∀n ≥ n0, ∀ϕ ∈ Sn0 . (12)

For given ϕ ∈ Sn0 , let x(·) := x(·,n0,ϕ) be the solution of
(2)-(3) and let y(·) := y(·,n0, |ϕ|), where |ϕ|(n) := |ϕ(n)|,n ∈
Z[0,n0]. Since A(n) ≥ 0,B(n,k) ≥ 0 for n,k ∈ Z+,n ≥ k, and
|ϕ| ≥ 0, it follows that y(n)≥ 0,∀n ∈ Z+,n ≥ n0.
Note that

|x(n0 +1)| ≤ |F(n0,x(n0))|+
n0

∑
k=0

|G(n0,k,x(k))|

(5)
≤ A(n0)|x(n0)|+

n0

∑
k=0

B(n0,k)|x(k)|

(3)
= A(n0)|ϕ(n0)|+

n0

∑
k=0

B(n0,k)|ϕ(k)|

(9)
= A(n0)y(n0)+

n0

∑
k=0

B(n0,k)y(k)

= y(n0 +1).

By induction, we have

|x(n)| ≤ y(n), ∀n ∈ Z+.

By the monotonicity of vector norms,

‖x(n)‖= ‖|x(n)|‖ ≤ ‖y(n)‖, ∀n ∈ Z+. (13)

Thus, (4) follows from (12) and (13). Hence, the zero solution
of (2) is GES.

Next, we show that (ii) implies (i). Since A ∈Rm×m
+ ,ρ(A)<

1, there is a vector p ∈ Rm, p � 0 such that Ap � p, by Theo-
rem 2.2. By continuity,

Ap � η−1 p, (14)

for some η > 1. Let β be as in (ii) and let α0 := min{β ,η}.
Clearly, α0 > 1 and
(

A(n)+
n

∑
k=0

B(n,k)αn−k
0

)
≤
(

A(n)+
n

∑
k=0

B(n,k)β n−k
)

(7)
≤ A.

Therefore,(
A(n)+

n

∑
k=0

B(n,k)αn−k
0

)
p ≤ Ap

(14)
≤ η−1 p ≤ α−1

0 p.

Thus, (i) holds.
Finally, it remains to show that the zero solution of (2) is
GES provided (iii) holds. From (8), it follows that ‖A(n)‖+
∑n

k=0 ‖B(n,k)‖γn−k < a, ∀n ∈ Z+, for some a ∈ [0,1). Thus,
the zero solution of the scalar difference equation

z(n+1) = ‖A(n)‖z(n)+
n

∑
k=0

‖B(n,k)‖z(k), n ∈ Z+, (15)

is GES, by (ii). Fix ϕ ∈ Sn0 . Let x(·) := x(·,n0,ϕ) be the
solution of (2)-(3) and let z(·) := z(·,n0,‖ϕ(·)‖) be the solution

of (15) with the initial value function ‖ϕ(·)‖. By a similar
argument as in Step II of the proof of (i), we get

‖x(n)‖ ≤ z(n), ∀n ∈ Z+. (16)

Therefore, the zero solution of (2) is GES. This completes the
proof.

For given γ > 1, let us denote

lγ(Km×m) :=
{
(B(n))n : B(n) ∈Km×m,n ∈ Z+,

∞

∑
n=0

‖B(n)‖γn <+∞
}
,

K := R,C.

In particular, the following follows from Theorem 3.2.

THEOREM 3.4. Suppose there exist A ∈ Rm×m
+ and B(·) :

Z+ → Rm×m
+ such that

|F(n,x)| ≤ A|x| and |G(n,k,x)| ≤ B(n− k)|x|, (17)

for all n,k ∈Z+,n≥ k,x∈Rm. If (B(n))n ∈ lγ(Rm×m) for some
γ > 1 and ρ(A+∑+∞

n=0 B(n)) < 1 then the zero solution of (2)
is GES.

Proof. Since ρ(A+∑+∞
k=0 B(k)) < 1 and (B(k))k ∈ lγ(Rm×m)

with γ > 1, ρ(A + ∑+∞
k=0 B(k)β k) < 1, for some β ∈

(1,γ], by continuity of the spectral radius, see [3]. Note
that A + ∑n

k=0 B(n − k)β n−k = A + ∑n
k=0 B(k)β k ≤ A +

∑+∞
k=0 B(k)β k,∀n ∈ Z+. Therefore, (ii) of Theorem 3.4 holds

and the zero solution of (2) is GES.

We illustrate the obtained results by a couple of examples.

EXAMPLE 3.5. Consider a scalar nonlinear Volterra differ-
ence equation

x(n+1) =
ne−x2(n)x(n)

4n+1
+

n

∑
k=0

2k2 arctan
(
an−kx(k)

)

(k2 +1)
(
3(n− k)+1

)(
3(n− k)+4

) , (18)

where 0 < a < 1 and n ∈ Z+.
Let

F(n,x) =
ne−x2

x
4n+1

and

G(n,k,x) =
2k2 arctan

(
an−kx

)

(k2 +1)
(
3(n− k)+1

)(
3(n− k)+4

) , (19)

where n,k ∈ Z+,n ≥ k and x ∈ R. Since
∣∣∣∣
ne−x2

x
4n+1

∣∣∣∣≤
1
4
|x| and

∣∣∣∣
k2 arctan

(
an−kx

)
k2 +1

∣∣∣∣≤ an−k|x|,

for all x ∈ R,n,k ∈ Z+,n ≥ k, it follows that

|F(n,x)| ≤ A|x| and |G(n,k,x)| ≤ B(n− k)|x|, (20)

for all x ∈ R,n,k ∈ Z+,n ≥ k, where A = 1
4 and B(n) =

2an
(
3n+1

)(
3n+4

), n ∈ Z+.
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1. Introduction
Volterra difference equations have been widely used in the
modeling of processes in continuous mechanics and biome-
chanics, problems of control and estimations and some
schemes of numerical solutions of integral and integro-
differential equations, see e.g. [2], [7], [12], [16]-[19].

Problems of stability of Volterra difference equations have
attracted much attention from researchers, during the last
twenty years, see e.g. [1],[4]-[13], [15], [21]-[23] and refer-
ences therein. Many various methods have been used to inves-
tigate stability of Volterra difference equations such as Lya-
punov functions, Z transform, comparison theorems, topologi-
cal methods, fixed point theorems, etc (see e.g. [7], [10], [15],
[23]).

In particular, the first significant result on exponential sta-
bility of Volterra difference equations is due to Elaydi and
Murakami, see [8]. Roughly speaking, Elaydi and Murakami
showed that even to the simplest Volterra difference equations
(namely, linear time-invariant Volterra difference equations of
convolution type), the exponential stability is “stronger” than
the uniform asymptotic stability. More precisely, a linear time-
invariant Volterra difference equation of convolution type is ex-
ponentially stable if and only if it is uniformly asymptotically
stable and its kernel exponentially decays, see [8]. For further
and updated information on stability of linear time-invariant
Volterra difference equations, we refer to the recent survey pa-
per [10].

In general, problems of global exponential stability of time-
varying Volterra difference equations are very hard even those
of linear time-varying Volterra equations. Most of existing re-
sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
ditions for exponential stability of linear time-varying Volterra
difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
nential stability of nonlinear time-varying Volterra difference
equations. Our approach is based on the celebrated Perron-
Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
nential stability of the zero solution of general nonlinear time-

varying Volterra difference equations. Furthermore, we derive
an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.

2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there

1

, n, k 2 
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1. Introduction
Volterra difference equations have been widely used in the
modeling of processes in continuous mechanics and biome-
chanics, problems of control and estimations and some
schemes of numerical solutions of integral and integro-
differential equations, see e.g. [2], [7], [12], [16]-[19].

Problems of stability of Volterra difference equations have
attracted much attention from researchers, during the last
twenty years, see e.g. [1],[4]-[13], [15], [21]-[23] and refer-
ences therein. Many various methods have been used to inves-
tigate stability of Volterra difference equations such as Lya-
punov functions, Z transform, comparison theorems, topologi-
cal methods, fixed point theorems, etc (see e.g. [7], [10], [15],
[23]).

In particular, the first significant result on exponential sta-
bility of Volterra difference equations is due to Elaydi and
Murakami, see [8]. Roughly speaking, Elaydi and Murakami
showed that even to the simplest Volterra difference equations
(namely, linear time-invariant Volterra difference equations of
convolution type), the exponential stability is “stronger” than
the uniform asymptotic stability. More precisely, a linear time-
invariant Volterra difference equation of convolution type is ex-
ponentially stable if and only if it is uniformly asymptotically
stable and its kernel exponentially decays, see [8]. For further
and updated information on stability of linear time-invariant
Volterra difference equations, we refer to the recent survey pa-
per [10].

In general, problems of global exponential stability of time-
varying Volterra difference equations are very hard even those
of linear time-varying Volterra equations. Most of existing re-
sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
ditions for exponential stability of linear time-varying Volterra
difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
nential stability of nonlinear time-varying Volterra difference
equations. Our approach is based on the celebrated Perron-
Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
nential stability of the zero solution of general nonlinear time-

varying Volterra difference equations. Furthermore, we derive
an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.

2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there

1

+, n ¸ k, where A = 1
4 and 

B(n) =  2an

(3n + 1)(3n + 4), n 2 
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1. Introduction
Volterra difference equations have been widely used in the
modeling of processes in continuous mechanics and biome-
chanics, problems of control and estimations and some
schemes of numerical solutions of integral and integro-
differential equations, see e.g. [2], [7], [12], [16]-[19].

Problems of stability of Volterra difference equations have
attracted much attention from researchers, during the last
twenty years, see e.g. [1],[4]-[13], [15], [21]-[23] and refer-
ences therein. Many various methods have been used to inves-
tigate stability of Volterra difference equations such as Lya-
punov functions, Z transform, comparison theorems, topologi-
cal methods, fixed point theorems, etc (see e.g. [7], [10], [15],
[23]).

In particular, the first significant result on exponential sta-
bility of Volterra difference equations is due to Elaydi and
Murakami, see [8]. Roughly speaking, Elaydi and Murakami
showed that even to the simplest Volterra difference equations
(namely, linear time-invariant Volterra difference equations of
convolution type), the exponential stability is “stronger” than
the uniform asymptotic stability. More precisely, a linear time-
invariant Volterra difference equation of convolution type is ex-
ponentially stable if and only if it is uniformly asymptotically
stable and its kernel exponentially decays, see [8]. For further
and updated information on stability of linear time-invariant
Volterra difference equations, we refer to the recent survey pa-
per [10].

In general, problems of global exponential stability of time-
varying Volterra difference equations are very hard even those
of linear time-varying Volterra equations. Most of existing re-
sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
ditions for exponential stability of linear time-varying Volterra
difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
nential stability of nonlinear time-varying Volterra difference
equations. Our approach is based on the celebrated Perron-
Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
nential stability of the zero solution of general nonlinear time-

varying Volterra difference equations. Furthermore, we derive
an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.

2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there

1

+.

Clearly,  
Clearly,

|A+
+∞

∑
n=0

B(n)| ≤ 1
4
+

+∞

∑
n=0

2(
3n+1

)(
3n+4

)= 1
4
+

2
3
< 1

and |B(n)| ≤ 1
2 an for all n ∈ Z+. Choosing γ ∈ (1,a−1), we

have aγ ∈ (0,1) and ∑+∞
n=0 |B(n)|γn <+∞. Thus, the zero solu-

tion of (18) is GES, by Theorem 3.4.

EXAMPLE 3.6. Consider a nonlinear Volterra difference
equation in R3 given by

x(n+1) = F
(
n,x(n)

)
+

n

∑
k=0

G
(
n,k,x(k)

)
, (21)

where

F(n,x) =




ln
(

1+ 0.1n
n+1 |x1|+0.3e−n|x2|

)

0.25x2 sin(nx3)

√( 0.6n
n2+1 x1

)2
+(0.2x3)2




and

G(n,k,x) =




arctan
(

2k−n

(k+5)(k+6)x1 +4k−n−2x2

)

ln
(

1+0.2×3k−n|x1|
)

4k−n−2x1 +
2k−n

(5k+1)(5k+6)x3




,

with n,k ∈ Z+,n ≥ k and x := (x1,x2,x3)
T ∈ R3.

Define

A(n) :=




0.1 n
n+1 0.3e−n 0
0 0.25 0

0.6n
n2+1 0 0.2


 ;

B(n,k) :=




2k−n

(k+5)(k+6) 4k−n−2 0

0.2×3k−n 0 0

4k−n−2 0 2k−n

(5k+1)(5k+6)


 ,

with n,k ∈ Z+,n ≥ k. It is easy to check that

|F(n,x)| ≤ A(n)|x| and |G(n,k,x)| ≤ B(n,k)|x|,

for all n,k ∈ Z+,n ≥ k,x ∈ R3. Thus, (5) holds. Furthermore,
we have for β = 2 that

A(n)+
n

∑
k=0

B(n,k)β n−k =




0.1 n
n+1+ 0.3e−n +0.25× 0

∑n
k=0

1
(k+5)(k+6) ∑n

k=0(
1
2 )

n−k

0.2∑n
k=0(

2
3 )

n−k 0.25 0

0.6 n
n2+1 +0.25× 0 0.2+

∑n
k=0(

1
2 )

n−k ∑n
k=0

1
(5k+1)(5k+6)




≤




0.1+ 0.3+0.25× 0
( 1

5 −
1

n+6 ) 2
(
1− ( 1

2 )
n+1

)

0.2×3
(
1− ( 2

3 )
n+1

)
0.25 0

0.3+0.25× 0 0.2+0.2×
2
(
1− ( 1

2 )
n+1

)
(1− 1

(5n+6) )




,

for all n,k ∈ Z+,n ≥ k.
Furthermore,

A(n)+
n

∑
k=0

B(n,k)β n−k ≤ A :=




0.3 0.8 0
0.6 0.25 0
0.8 0 0.4


 ,

for all n,k ∈ Z+,n ≥ k and ρ(A) < 1. Therefore, the zero so-
lution of (21) is GES, by (ii) of Theorem 3.2.

4. Stability of perturbed equations
Suppose (17) holds and (B(n))n ∈ lγ(Km×m) for some γ > 1
and ρ(A+∑+∞

n=0 B(n)) < 1. Thus, the zero solution of (2) is
GES, by Theorem 3.4. Consider a perturbed equation of the
form

x(n+1) =
(

F
(
n,x(n)

)
+ F̃

(
n,x(n)

))
+

n

∑
k=0

(
G
(
n,k,x(k)

)
+ G̃

(
n,k,x(k)

))
. (22)

Here F(·, ·) and G(·, ·, ·) are as in (2) whereas F̃(·, ·) : Z+ ×
Rm →Rm and G̃(·, ·, ·) :Z2

+×Rm →Rm are perturbations. Fur-
thermore, we assume that{

|F̃(n,x)| ≤ D0∆F E0|x|;
|G̃(n,k,x)| ≤ D(n− k)∆G(n− k)E(n− k)|x|,

(23)

for all n,k ∈ Z+,n ≥ k, x ∈ Rm, where D0 ∈ Rm×l
+ ,E0 ∈

Rq×m
+ ,D(·) : Z+ → Rm×r

+ ,E(·) : Z+ → Rs×m
+ are known and

∆F ∈ Rl×q
+ ,∆G(·) : Z+ → Rr×s

+ are unknown.

The main problem here is to seek a positive number, say η ,
such that the zero solution of an arbitrary perturbed equation
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1. Introduction
Volterra difference equations have been widely used in the
modeling of processes in continuous mechanics and biome-
chanics, problems of control and estimations and some
schemes of numerical solutions of integral and integro-
differential equations, see e.g. [2], [7], [12], [16]-[19].

Problems of stability of Volterra difference equations have
attracted much attention from researchers, during the last
twenty years, see e.g. [1],[4]-[13], [15], [21]-[23] and refer-
ences therein. Many various methods have been used to inves-
tigate stability of Volterra difference equations such as Lya-
punov functions, Z transform, comparison theorems, topologi-
cal methods, fixed point theorems, etc (see e.g. [7], [10], [15],
[23]).

In particular, the first significant result on exponential sta-
bility of Volterra difference equations is due to Elaydi and
Murakami, see [8]. Roughly speaking, Elaydi and Murakami
showed that even to the simplest Volterra difference equations
(namely, linear time-invariant Volterra difference equations of
convolution type), the exponential stability is “stronger” than
the uniform asymptotic stability. More precisely, a linear time-
invariant Volterra difference equation of convolution type is ex-
ponentially stable if and only if it is uniformly asymptotically
stable and its kernel exponentially decays, see [8]. For further
and updated information on stability of linear time-invariant
Volterra difference equations, we refer to the recent survey pa-
per [10].

In general, problems of global exponential stability of time-
varying Volterra difference equations are very hard even those
of linear time-varying Volterra equations. Most of existing re-
sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
ditions for exponential stability of linear time-varying Volterra
difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
nential stability of nonlinear time-varying Volterra difference
equations. Our approach is based on the celebrated Perron-
Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
nential stability of the zero solution of general nonlinear time-

varying Volterra difference equations. Furthermore, we derive
an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.

2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there

1

+. Choosing γ 2 (1, a–1), we have 
aγ 2 (0, 1) and ∑+

n=
1
0jB(n)jγn < +1. Thus, the zero solution of 

(18) is GES, by Theorem 3.4.
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varying Volterra difference equations. Furthermore, we derive
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time-varying perturbations. Finally, the obtained results are
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time bidirectional associative memory neural networks. Some
illustrative examples are given.

2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there

1

3 given by

	

Clearly,

|A+
+∞

∑
n=0

B(n)| ≤ 1
4
+

+∞

∑
n=0

2(
3n+1

)(
3n+4

)= 1
4
+

2
3
< 1

and |B(n)| ≤ 1
2 an for all n ∈ Z+. Choosing γ ∈ (1,a−1), we

have aγ ∈ (0,1) and ∑+∞
n=0 |B(n)|γn <+∞. Thus, the zero solu-

tion of (18) is GES, by Theorem 3.4.

EXAMPLE 3.6. Consider a nonlinear Volterra difference
equation in R3 given by

x(n+1) = F
(
n,x(n)

)
+

n

∑
k=0

G
(
n,k,x(k)

)
, (21)

where

F(n,x) =




ln
(

1+ 0.1n
n+1 |x1|+0.3e−n|x2|

)

0.25x2 sin(nx3)

√( 0.6n
n2+1 x1

)2
+(0.2x3)2




and

G(n,k,x) =




arctan
(

2k−n

(k+5)(k+6)x1 +4k−n−2x2

)

ln
(

1+0.2×3k−n|x1|
)

4k−n−2x1 +
2k−n

(5k+1)(5k+6)x3




,

with n,k ∈ Z+,n ≥ k and x := (x1,x2,x3)
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with n,k ∈ Z+,n ≥ k. It is easy to check that
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for all n,k ∈ Z+,n ≥ k.
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for all n,k ∈ Z+,n ≥ k and ρ(A) < 1. Therefore, the zero so-
lution of (21) is GES, by (ii) of Theorem 3.2.

4. Stability of perturbed equations
Suppose (17) holds and (B(n))n ∈ lγ(Km×m) for some γ > 1
and ρ(A+∑+∞

n=0 B(n)) < 1. Thus, the zero solution of (2) is
GES, by Theorem 3.4. Consider a perturbed equation of the
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Here F(·, ·) and G(·, ·, ·) are as in (2) whereas F̃(·, ·) : Z+ ×
Rm →Rm and G̃(·, ·, ·) :Z2

+×Rm →Rm are perturbations. Fur-
thermore, we assume that{

|F̃(n,x)| ≤ D0∆F E0|x|;
|G̃(n,k,x)| ≤ D(n− k)∆G(n− k)E(n− k)|x|,

(23)

for all n,k ∈ Z+,n ≥ k, x ∈ Rm, where D0 ∈ Rm×l
+ ,E0 ∈

Rq×m
+ ,D(·) : Z+ → Rm×r

+ ,E(·) : Z+ → Rs×m
+ are known and

∆F ∈ Rl×q
+ ,∆G(·) : Z+ → Rr×s

+ are unknown.

The main problem here is to seek a positive number, say η ,
such that the zero solution of an arbitrary perturbed equation
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|F(n,x)| ≤ A(n)|x| and |G(n,k,x)| ≤ B(n,k)|x|,

for all n,k ∈ Z+,n ≥ k,x ∈ R3. Thus, (5) holds. Furthermore,
we have for β = 2 that

A(n)+
n

∑
k=0

B(n,k)β n−k =




0.1 n
n+1+ 0.3e−n +0.25× 0

∑n
k=0

1
(k+5)(k+6) ∑n

k=0(
1
2 )

n−k

0.2∑n
k=0(

2
3 )

n−k 0.25 0

0.6 n
n2+1 +0.25× 0 0.2+

∑n
k=0(

1
2 )

n−k ∑n
k=0

1
(5k+1)(5k+6)




≤




0.1+ 0.3+0.25× 0
( 1

5 −
1

n+6 ) 2
(
1− ( 1

2 )
n+1

)

0.2×3
(
1− ( 2

3 )
n+1

)
0.25 0

0.3+0.25× 0 0.2+0.2×
2
(
1− ( 1

2 )
n+1

)
(1− 1

(5n+6) )




,

for all n,k ∈ Z+,n ≥ k.
Furthermore,

A(n)+
n

∑
k=0

B(n,k)β n−k ≤ A :=




0.3 0.8 0
0.6 0.25 0
0.8 0 0.4


 ,

for all n,k ∈ Z+,n ≥ k and ρ(A) < 1. Therefore, the zero so-
lution of (21) is GES, by (ii) of Theorem 3.2.

4. Stability of perturbed equations
Suppose (17) holds and (B(n))n ∈ lγ(Km×m) for some γ > 1
and ρ(A+∑+∞

n=0 B(n)) < 1. Thus, the zero solution of (2) is
GES, by Theorem 3.4. Consider a perturbed equation of the
form

x(n+1) =
(

F
(
n,x(n)

)
+ F̃

(
n,x(n)

))
+

n

∑
k=0

(
G
(
n,k,x(k)

)
+ G̃

(
n,k,x(k)

))
. (22)

Here F(·, ·) and G(·, ·, ·) are as in (2) whereas F̃(·, ·) : Z+ ×
Rm →Rm and G̃(·, ·, ·) :Z2

+×Rm →Rm are perturbations. Fur-
thermore, we assume that{

|F̃(n,x)| ≤ D0∆F E0|x|;
|G̃(n,k,x)| ≤ D(n− k)∆G(n− k)E(n− k)|x|,

(23)

for all n,k ∈ Z+,n ≥ k, x ∈ Rm, where D0 ∈ Rm×l
+ ,E0 ∈

Rq×m
+ ,D(·) : Z+ → Rm×r

+ ,E(·) : Z+ → Rs×m
+ are known and

∆F ∈ Rl×q
+ ,∆G(·) : Z+ → Rr×s

+ are unknown.

The main problem here is to seek a positive number, say η ,
such that the zero solution of an arbitrary perturbed equation

4 Bull. Pol. Ac.: Tech. XX(Y) 2016

,

with n, k 2 

BULLETIN OF THE POLISH ACADEMY OF SCIENCES
TECHNICAL SCIENCES, Vol. XX, No. Y, 2016
DOI: 10.1515/bpasts-2016-00ZZ

Stability of nonlinear Volterra equations

Abstract. Using a novel approach, we present some new explicit criteria for global exponential stability of the zero solution of general
nonlinear time-varying Volterra difference equations. Furthermore, an explicit stability bound for equations subject to nonlinear time-varying
perturbations is given. Finally, the obtained results are used to study uniform attraction of equilibrium of discrete-time bidirectional associative
memory (BAM) neural networks. Some illustrative examples are given.

Key words: Global exponential stability, Volterra equations

1. Introduction
Volterra difference equations have been widely used in the
modeling of processes in continuous mechanics and biome-
chanics, problems of control and estimations and some
schemes of numerical solutions of integral and integro-
differential equations, see e.g. [2], [7], [12], [16]-[19].

Problems of stability of Volterra difference equations have
attracted much attention from researchers, during the last
twenty years, see e.g. [1],[4]-[13], [15], [21]-[23] and refer-
ences therein. Many various methods have been used to inves-
tigate stability of Volterra difference equations such as Lya-
punov functions, Z transform, comparison theorems, topologi-
cal methods, fixed point theorems, etc (see e.g. [7], [10], [15],
[23]).

In particular, the first significant result on exponential sta-
bility of Volterra difference equations is due to Elaydi and
Murakami, see [8]. Roughly speaking, Elaydi and Murakami
showed that even to the simplest Volterra difference equations
(namely, linear time-invariant Volterra difference equations of
convolution type), the exponential stability is “stronger” than
the uniform asymptotic stability. More precisely, a linear time-
invariant Volterra difference equation of convolution type is ex-
ponentially stable if and only if it is uniformly asymptotically
stable and its kernel exponentially decays, see [8]. For further
and updated information on stability of linear time-invariant
Volterra difference equations, we refer to the recent survey pa-
per [10].

In general, problems of global exponential stability of time-
varying Volterra difference equations are very hard even those
of linear time-varying Volterra equations. Most of existing re-
sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
ditions for exponential stability of linear time-varying Volterra
difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
nential stability of nonlinear time-varying Volterra difference
equations. Our approach is based on the celebrated Perron-
Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
nential stability of the zero solution of general nonlinear time-

varying Volterra difference equations. Furthermore, we derive
an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.

2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there

1
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1. Introduction
Volterra difference equations have been widely used in the
modeling of processes in continuous mechanics and biome-
chanics, problems of control and estimations and some
schemes of numerical solutions of integral and integro-
differential equations, see e.g. [2], [7], [12], [16]-[19].

Problems of stability of Volterra difference equations have
attracted much attention from researchers, during the last
twenty years, see e.g. [1],[4]-[13], [15], [21]-[23] and refer-
ences therein. Many various methods have been used to inves-
tigate stability of Volterra difference equations such as Lya-
punov functions, Z transform, comparison theorems, topologi-
cal methods, fixed point theorems, etc (see e.g. [7], [10], [15],
[23]).

In particular, the first significant result on exponential sta-
bility of Volterra difference equations is due to Elaydi and
Murakami, see [8]. Roughly speaking, Elaydi and Murakami
showed that even to the simplest Volterra difference equations
(namely, linear time-invariant Volterra difference equations of
convolution type), the exponential stability is “stronger” than
the uniform asymptotic stability. More precisely, a linear time-
invariant Volterra difference equation of convolution type is ex-
ponentially stable if and only if it is uniformly asymptotically
stable and its kernel exponentially decays, see [8]. For further
and updated information on stability of linear time-invariant
Volterra difference equations, we refer to the recent survey pa-
per [10].

In general, problems of global exponential stability of time-
varying Volterra difference equations are very hard even those
of linear time-varying Volterra equations. Most of existing re-
sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
ditions for exponential stability of linear time-varying Volterra
difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
nential stability of nonlinear time-varying Volterra difference
equations. Our approach is based on the celebrated Perron-
Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
nential stability of the zero solution of general nonlinear time-

varying Volterra difference equations. Furthermore, we derive
an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.

2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there

1

3.
Define

Clearly,

|A+
+∞

∑
n=0

B(n)| ≤ 1
4
+

+∞

∑
n=0

2(
3n+1

)(
3n+4

)= 1
4
+

2
3
< 1

and |B(n)| ≤ 1
2 an for all n ∈ Z+. Choosing γ ∈ (1,a−1), we

have aγ ∈ (0,1) and ∑+∞
n=0 |B(n)|γn <+∞. Thus, the zero solu-

tion of (18) is GES, by Theorem 3.4.

EXAMPLE 3.6. Consider a nonlinear Volterra difference
equation in R3 given by

x(n+1) = F
(
n,x(n)

)
+

n

∑
k=0

G
(
n,k,x(k)

)
, (21)

where

F(n,x) =




ln
(

1+ 0.1n
n+1 |x1|+0.3e−n|x2|

)

0.25x2 sin(nx3)

√( 0.6n
n2+1 x1

)2
+(0.2x3)2




and

G(n,k,x) =




arctan
(

2k−n

(k+5)(k+6)x1 +4k−n−2x2

)

ln
(

1+0.2×3k−n|x1|
)

4k−n−2x1 +
2k−n

(5k+1)(5k+6)x3




,

with n,k ∈ Z+,n ≥ k and x := (x1,x2,x3)
T ∈ R3.

Define

A(n) :=




0.1 n
n+1 0.3e−n 0
0 0.25 0

0.6n
n2+1 0 0.2


 ;

B(n,k) :=




2k−n

(k+5)(k+6) 4k−n−2 0

0.2×3k−n 0 0

4k−n−2 0 2k−n

(5k+1)(5k+6)


 ,

with n,k ∈ Z+,n ≥ k. It is easy to check that

|F(n,x)| ≤ A(n)|x| and |G(n,k,x)| ≤ B(n,k)|x|,

for all n,k ∈ Z+,n ≥ k,x ∈ R3. Thus, (5) holds. Furthermore,
we have for β = 2 that

A(n)+
n

∑
k=0

B(n,k)β n−k =




0.1 n
n+1+ 0.3e−n +0.25× 0

∑n
k=0

1
(k+5)(k+6) ∑n

k=0(
1
2 )

n−k

0.2∑n
k=0(

2
3 )

n−k 0.25 0

0.6 n
n2+1 +0.25× 0 0.2+

∑n
k=0(

1
2 )

n−k ∑n
k=0

1
(5k+1)(5k+6)




≤




0.1+ 0.3+0.25× 0
( 1

5 −
1

n+6 ) 2
(
1− ( 1

2 )
n+1

)

0.2×3
(
1− ( 2

3 )
n+1

)
0.25 0

0.3+0.25× 0 0.2+0.2×
2
(
1− ( 1

2 )
n+1

)
(1− 1

(5n+6) )




,

for all n,k ∈ Z+,n ≥ k.
Furthermore,

A(n)+
n

∑
k=0

B(n,k)β n−k ≤ A :=




0.3 0.8 0
0.6 0.25 0
0.8 0 0.4


 ,

for all n,k ∈ Z+,n ≥ k and ρ(A) < 1. Therefore, the zero so-
lution of (21) is GES, by (ii) of Theorem 3.2.

4. Stability of perturbed equations
Suppose (17) holds and (B(n))n ∈ lγ(Km×m) for some γ > 1
and ρ(A+∑+∞

n=0 B(n)) < 1. Thus, the zero solution of (2) is
GES, by Theorem 3.4. Consider a perturbed equation of the
form

x(n+1) =
(

F
(
n,x(n)

)
+ F̃

(
n,x(n)

))
+

n

∑
k=0

(
G
(
n,k,x(k)

)
+ G̃

(
n,k,x(k)

))
. (22)

Here F(·, ·) and G(·, ·, ·) are as in (2) whereas F̃(·, ·) : Z+ ×
Rm →Rm and G̃(·, ·, ·) :Z2

+×Rm →Rm are perturbations. Fur-
thermore, we assume that{

|F̃(n,x)| ≤ D0∆F E0|x|;
|G̃(n,k,x)| ≤ D(n− k)∆G(n− k)E(n− k)|x|,

(23)

for all n,k ∈ Z+,n ≥ k, x ∈ Rm, where D0 ∈ Rm×l
+ ,E0 ∈

Rq×m
+ ,D(·) : Z+ → Rm×r

+ ,E(·) : Z+ → Rs×m
+ are known and

∆F ∈ Rl×q
+ ,∆G(·) : Z+ → Rr×s

+ are unknown.

The main problem here is to seek a positive number, say η ,
such that the zero solution of an arbitrary perturbed equation
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1. Introduction
Volterra difference equations have been widely used in the
modeling of processes in continuous mechanics and biome-
chanics, problems of control and estimations and some
schemes of numerical solutions of integral and integro-
differential equations, see e.g. [2], [7], [12], [16]-[19].

Problems of stability of Volterra difference equations have
attracted much attention from researchers, during the last
twenty years, see e.g. [1],[4]-[13], [15], [21]-[23] and refer-
ences therein. Many various methods have been used to inves-
tigate stability of Volterra difference equations such as Lya-
punov functions, Z transform, comparison theorems, topologi-
cal methods, fixed point theorems, etc (see e.g. [7], [10], [15],
[23]).

In particular, the first significant result on exponential sta-
bility of Volterra difference equations is due to Elaydi and
Murakami, see [8]. Roughly speaking, Elaydi and Murakami
showed that even to the simplest Volterra difference equations
(namely, linear time-invariant Volterra difference equations of
convolution type), the exponential stability is “stronger” than
the uniform asymptotic stability. More precisely, a linear time-
invariant Volterra difference equation of convolution type is ex-
ponentially stable if and only if it is uniformly asymptotically
stable and its kernel exponentially decays, see [8]. For further
and updated information on stability of linear time-invariant
Volterra difference equations, we refer to the recent survey pa-
per [10].

In general, problems of global exponential stability of time-
varying Volterra difference equations are very hard even those
of linear time-varying Volterra equations. Most of existing re-
sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
ditions for exponential stability of linear time-varying Volterra
difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
nential stability of nonlinear time-varying Volterra difference
equations. Our approach is based on the celebrated Perron-
Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
nential stability of the zero solution of general nonlinear time-

varying Volterra difference equations. Furthermore, we derive
an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.

2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there

1

+, n ¸ k. It is easy to check that

Clearly,

|A+
+∞

∑
n=0

B(n)| ≤ 1
4
+

+∞

∑
n=0

2(
3n+1

)(
3n+4

)= 1
4
+

2
3
< 1

and |B(n)| ≤ 1
2 an for all n ∈ Z+. Choosing γ ∈ (1,a−1), we

have aγ ∈ (0,1) and ∑+∞
n=0 |B(n)|γn <+∞. Thus, the zero solu-

tion of (18) is GES, by Theorem 3.4.

EXAMPLE 3.6. Consider a nonlinear Volterra difference
equation in R3 given by

x(n+1) = F
(
n,x(n)

)
+

n

∑
k=0

G
(
n,k,x(k)

)
, (21)

where

F(n,x) =




ln
(

1+ 0.1n
n+1 |x1|+0.3e−n|x2|

)

0.25x2 sin(nx3)

√( 0.6n
n2+1 x1

)2
+(0.2x3)2




and

G(n,k,x) =




arctan
(

2k−n

(k+5)(k+6)x1 +4k−n−2x2

)

ln
(

1+0.2×3k−n|x1|
)

4k−n−2x1 +
2k−n

(5k+1)(5k+6)x3




,

with n,k ∈ Z+,n ≥ k and x := (x1,x2,x3)
T ∈ R3.

Define

A(n) :=




0.1 n
n+1 0.3e−n 0
0 0.25 0

0.6n
n2+1 0 0.2


 ;

B(n,k) :=




2k−n

(k+5)(k+6) 4k−n−2 0

0.2×3k−n 0 0

4k−n−2 0 2k−n

(5k+1)(5k+6)


 ,

with n,k ∈ Z+,n ≥ k. It is easy to check that

|F(n,x)| ≤ A(n)|x| and |G(n,k,x)| ≤ B(n,k)|x|,

for all n,k ∈ Z+,n ≥ k,x ∈ R3. Thus, (5) holds. Furthermore,
we have for β = 2 that

A(n)+
n

∑
k=0

B(n,k)β n−k =




0.1 n
n+1+ 0.3e−n +0.25× 0

∑n
k=0

1
(k+5)(k+6) ∑n

k=0(
1
2 )

n−k

0.2∑n
k=0(

2
3 )

n−k 0.25 0

0.6 n
n2+1 +0.25× 0 0.2+

∑n
k=0(

1
2 )

n−k ∑n
k=0

1
(5k+1)(5k+6)




≤




0.1+ 0.3+0.25× 0
( 1

5 −
1

n+6 ) 2
(
1− ( 1

2 )
n+1

)

0.2×3
(
1− ( 2

3 )
n+1

)
0.25 0

0.3+0.25× 0 0.2+0.2×
2
(
1− ( 1

2 )
n+1

)
(1− 1

(5n+6) )




,

for all n,k ∈ Z+,n ≥ k.
Furthermore,

A(n)+
n

∑
k=0

B(n,k)β n−k ≤ A :=




0.3 0.8 0
0.6 0.25 0
0.8 0 0.4


 ,

for all n,k ∈ Z+,n ≥ k and ρ(A) < 1. Therefore, the zero so-
lution of (21) is GES, by (ii) of Theorem 3.2.

4. Stability of perturbed equations
Suppose (17) holds and (B(n))n ∈ lγ(Km×m) for some γ > 1
and ρ(A+∑+∞

n=0 B(n)) < 1. Thus, the zero solution of (2) is
GES, by Theorem 3.4. Consider a perturbed equation of the
form

x(n+1) =
(

F
(
n,x(n)

)
+ F̃

(
n,x(n)

))
+

n

∑
k=0

(
G
(
n,k,x(k)

)
+ G̃

(
n,k,x(k)

))
. (22)

Here F(·, ·) and G(·, ·, ·) are as in (2) whereas F̃(·, ·) : Z+ ×
Rm →Rm and G̃(·, ·, ·) :Z2

+×Rm →Rm are perturbations. Fur-
thermore, we assume that{

|F̃(n,x)| ≤ D0∆F E0|x|;
|G̃(n,k,x)| ≤ D(n− k)∆G(n− k)E(n− k)|x|,

(23)

for all n,k ∈ Z+,n ≥ k, x ∈ Rm, where D0 ∈ Rm×l
+ ,E0 ∈

Rq×m
+ ,D(·) : Z+ → Rm×r

+ ,E(·) : Z+ → Rs×m
+ are known and

∆F ∈ Rl×q
+ ,∆G(·) : Z+ → Rr×s

+ are unknown.

The main problem here is to seek a positive number, say η ,
such that the zero solution of an arbitrary perturbed equation
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1. Introduction
Volterra difference equations have been widely used in the
modeling of processes in continuous mechanics and biome-
chanics, problems of control and estimations and some
schemes of numerical solutions of integral and integro-
differential equations, see e.g. [2], [7], [12], [16]-[19].

Problems of stability of Volterra difference equations have
attracted much attention from researchers, during the last
twenty years, see e.g. [1],[4]-[13], [15], [21]-[23] and refer-
ences therein. Many various methods have been used to inves-
tigate stability of Volterra difference equations such as Lya-
punov functions, Z transform, comparison theorems, topologi-
cal methods, fixed point theorems, etc (see e.g. [7], [10], [15],
[23]).

In particular, the first significant result on exponential sta-
bility of Volterra difference equations is due to Elaydi and
Murakami, see [8]. Roughly speaking, Elaydi and Murakami
showed that even to the simplest Volterra difference equations
(namely, linear time-invariant Volterra difference equations of
convolution type), the exponential stability is “stronger” than
the uniform asymptotic stability. More precisely, a linear time-
invariant Volterra difference equation of convolution type is ex-
ponentially stable if and only if it is uniformly asymptotically
stable and its kernel exponentially decays, see [8]. For further
and updated information on stability of linear time-invariant
Volterra difference equations, we refer to the recent survey pa-
per [10].

In general, problems of global exponential stability of time-
varying Volterra difference equations are very hard even those
of linear time-varying Volterra equations. Most of existing re-
sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
ditions for exponential stability of linear time-varying Volterra
difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
nential stability of nonlinear time-varying Volterra difference
equations. Our approach is based on the celebrated Perron-
Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
nential stability of the zero solution of general nonlinear time-

varying Volterra difference equations. Furthermore, we derive
an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.

2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there

1

+, n ¸ k, x = 
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modeling of processes in continuous mechanics and biome-
chanics, problems of control and estimations and some
schemes of numerical solutions of integral and integro-
differential equations, see e.g. [2], [7], [12], [16]-[19].

Problems of stability of Volterra difference equations have
attracted much attention from researchers, during the last
twenty years, see e.g. [1],[4]-[13], [15], [21]-[23] and refer-
ences therein. Many various methods have been used to inves-
tigate stability of Volterra difference equations such as Lya-
punov functions, Z transform, comparison theorems, topologi-
cal methods, fixed point theorems, etc (see e.g. [7], [10], [15],
[23]).

In particular, the first significant result on exponential sta-
bility of Volterra difference equations is due to Elaydi and
Murakami, see [8]. Roughly speaking, Elaydi and Murakami
showed that even to the simplest Volterra difference equations
(namely, linear time-invariant Volterra difference equations of
convolution type), the exponential stability is “stronger” than
the uniform asymptotic stability. More precisely, a linear time-
invariant Volterra difference equation of convolution type is ex-
ponentially stable if and only if it is uniformly asymptotically
stable and its kernel exponentially decays, see [8]. For further
and updated information on stability of linear time-invariant
Volterra difference equations, we refer to the recent survey pa-
per [10].

In general, problems of global exponential stability of time-
varying Volterra difference equations are very hard even those
of linear time-varying Volterra equations. Most of existing re-
sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
ditions for exponential stability of linear time-varying Volterra
difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
nential stability of nonlinear time-varying Volterra difference
equations. Our approach is based on the celebrated Perron-
Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
nential stability of the zero solution of general nonlinear time-

varying Volterra difference equations. Furthermore, we derive
an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.

2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there

1

3. Thus, (5) holds. Furthermore, 
we have for β = 2 thatClearly,

|A+
+∞

∑
n=0

B(n)| ≤ 1
4
+

+∞

∑
n=0

2(
3n+1

)(
3n+4

)= 1
4
+

2
3
< 1

and |B(n)| ≤ 1
2 an for all n ∈ Z+. Choosing γ ∈ (1,a−1), we

have aγ ∈ (0,1) and ∑+∞
n=0 |B(n)|γn <+∞. Thus, the zero solu-

tion of (18) is GES, by Theorem 3.4.

EXAMPLE 3.6. Consider a nonlinear Volterra difference
equation in R3 given by

x(n+1) = F
(
n,x(n)

)
+

n

∑
k=0

G
(
n,k,x(k)

)
, (21)

where

F(n,x) =




ln
(

1+ 0.1n
n+1 |x1|+0.3e−n|x2|

)

0.25x2 sin(nx3)

√( 0.6n
n2+1 x1

)2
+(0.2x3)2




and

G(n,k,x) =




arctan
(

2k−n

(k+5)(k+6)x1 +4k−n−2x2

)

ln
(

1+0.2×3k−n|x1|
)

4k−n−2x1 +
2k−n

(5k+1)(5k+6)x3




,

with n,k ∈ Z+,n ≥ k and x := (x1,x2,x3)
T ∈ R3.

Define

A(n) :=




0.1 n
n+1 0.3e−n 0
0 0.25 0

0.6n
n2+1 0 0.2


 ;

B(n,k) :=




2k−n

(k+5)(k+6) 4k−n−2 0

0.2×3k−n 0 0

4k−n−2 0 2k−n

(5k+1)(5k+6)


 ,

with n,k ∈ Z+,n ≥ k. It is easy to check that

|F(n,x)| ≤ A(n)|x| and |G(n,k,x)| ≤ B(n,k)|x|,

for all n,k ∈ Z+,n ≥ k,x ∈ R3. Thus, (5) holds. Furthermore,
we have for β = 2 that

A(n)+
n

∑
k=0

B(n,k)β n−k =




0.1 n
n+1+ 0.3e−n +0.25× 0

∑n
k=0

1
(k+5)(k+6) ∑n

k=0(
1
2 )

n−k

0.2∑n
k=0(

2
3 )

n−k 0.25 0

0.6 n
n2+1 +0.25× 0 0.2+

∑n
k=0(

1
2 )

n−k ∑n
k=0

1
(5k+1)(5k+6)




≤




0.1+ 0.3+0.25× 0
( 1

5 −
1

n+6 ) 2
(
1− ( 1

2 )
n+1

)

0.2×3
(
1− ( 2

3 )
n+1

)
0.25 0

0.3+0.25× 0 0.2+0.2×
2
(
1− ( 1

2 )
n+1

)
(1− 1

(5n+6) )




,

for all n,k ∈ Z+,n ≥ k.
Furthermore,

A(n)+
n

∑
k=0

B(n,k)β n−k ≤ A :=




0.3 0.8 0
0.6 0.25 0
0.8 0 0.4


 ,

for all n,k ∈ Z+,n ≥ k and ρ(A) < 1. Therefore, the zero so-
lution of (21) is GES, by (ii) of Theorem 3.2.

4. Stability of perturbed equations
Suppose (17) holds and (B(n))n ∈ lγ(Km×m) for some γ > 1
and ρ(A+∑+∞

n=0 B(n)) < 1. Thus, the zero solution of (2) is
GES, by Theorem 3.4. Consider a perturbed equation of the
form

x(n+1) =
(

F
(
n,x(n)

)
+ F̃

(
n,x(n)

))
+

n

∑
k=0

(
G
(
n,k,x(k)

)
+ G̃

(
n,k,x(k)

))
. (22)

Here F(·, ·) and G(·, ·, ·) are as in (2) whereas F̃(·, ·) : Z+ ×
Rm →Rm and G̃(·, ·, ·) :Z2
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+ are unknown.

The main problem here is to seek a positive number, say η ,
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and ρ(A+∑+∞
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for all n,k ∈ Z+,n ≥ k, x ∈ Rm, where D0 ∈ Rm×l
+ ,E0 ∈

Rq×m
+ ,D(·) : Z+ → Rm×r

+ ,E(·) : Z+ → Rs×m
+ are known and

∆F ∈ Rl×q
+ ,∆G(·) : Z+ → Rr×s

+ are unknown.

The main problem here is to seek a positive number, say η ,
such that the zero solution of an arbitrary perturbed equation
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1. Introduction
Volterra difference equations have been widely used in the
modeling of processes in continuous mechanics and biome-
chanics, problems of control and estimations and some
schemes of numerical solutions of integral and integro-
differential equations, see e.g. [2], [7], [12], [16]-[19].

Problems of stability of Volterra difference equations have
attracted much attention from researchers, during the last
twenty years, see e.g. [1],[4]-[13], [15], [21]-[23] and refer-
ences therein. Many various methods have been used to inves-
tigate stability of Volterra difference equations such as Lya-
punov functions, Z transform, comparison theorems, topologi-
cal methods, fixed point theorems, etc (see e.g. [7], [10], [15],
[23]).

In particular, the first significant result on exponential sta-
bility of Volterra difference equations is due to Elaydi and
Murakami, see [8]. Roughly speaking, Elaydi and Murakami
showed that even to the simplest Volterra difference equations
(namely, linear time-invariant Volterra difference equations of
convolution type), the exponential stability is “stronger” than
the uniform asymptotic stability. More precisely, a linear time-
invariant Volterra difference equation of convolution type is ex-
ponentially stable if and only if it is uniformly asymptotically
stable and its kernel exponentially decays, see [8]. For further
and updated information on stability of linear time-invariant
Volterra difference equations, we refer to the recent survey pa-
per [10].

In general, problems of global exponential stability of time-
varying Volterra difference equations are very hard even those
of linear time-varying Volterra equations. Most of existing re-
sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
ditions for exponential stability of linear time-varying Volterra
difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
nential stability of nonlinear time-varying Volterra difference
equations. Our approach is based on the celebrated Perron-
Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
nential stability of the zero solution of general nonlinear time-

varying Volterra difference equations. Furthermore, we derive
an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.

2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there

1

+, n ¸ k.
Thus,

Clearly,

|A+
+∞

∑
n=0

B(n)| ≤ 1
4
+

+∞

∑
n=0

2(
3n+1

)(
3n+4

)= 1
4
+

2
3
< 1

and |B(n)| ≤ 1
2 an for all n ∈ Z+. Choosing γ ∈ (1,a−1), we

have aγ ∈ (0,1) and ∑+∞
n=0 |B(n)|γn <+∞. Thus, the zero solu-

tion of (18) is GES, by Theorem 3.4.

EXAMPLE 3.6. Consider a nonlinear Volterra difference
equation in R3 given by

x(n+1) = F
(
n,x(n)

)
+

n

∑
k=0

G
(
n,k,x(k)

)
, (21)

where

F(n,x) =




ln
(

1+ 0.1n
n+1 |x1|+0.3e−n|x2|

)

0.25x2 sin(nx3)

√( 0.6n
n2+1 x1

)2
+(0.2x3)2




and

G(n,k,x) =




arctan
(

2k−n

(k+5)(k+6)x1 +4k−n−2x2

)

ln
(

1+0.2×3k−n|x1|
)

4k−n−2x1 +
2k−n

(5k+1)(5k+6)x3




,

with n,k ∈ Z+,n ≥ k and x := (x1,x2,x3)
T ∈ R3.

Define

A(n) :=




0.1 n
n+1 0.3e−n 0
0 0.25 0

0.6n
n2+1 0 0.2


 ;

B(n,k) :=




2k−n

(k+5)(k+6) 4k−n−2 0

0.2×3k−n 0 0

4k−n−2 0 2k−n

(5k+1)(5k+6)


 ,

with n,k ∈ Z+,n ≥ k. It is easy to check that

|F(n,x)| ≤ A(n)|x| and |G(n,k,x)| ≤ B(n,k)|x|,

for all n,k ∈ Z+,n ≥ k,x ∈ R3. Thus, (5) holds. Furthermore,
we have for β = 2 that

A(n)+
n

∑
k=0

B(n,k)β n−k =




0.1 n
n+1+ 0.3e−n +0.25× 0

∑n
k=0

1
(k+5)(k+6) ∑n

k=0(
1
2 )

n−k

0.2∑n
k=0(

2
3 )

n−k 0.25 0

0.6 n
n2+1 +0.25× 0 0.2+

∑n
k=0(

1
2 )

n−k ∑n
k=0

1
(5k+1)(5k+6)




≤




0.1+ 0.3+0.25× 0
( 1

5 −
1

n+6 ) 2
(
1− ( 1

2 )
n+1

)

0.2×3
(
1− ( 2

3 )
n+1

)
0.25 0

0.3+0.25× 0 0.2+0.2×
2
(
1− ( 1

2 )
n+1

)
(1− 1

(5n+6) )




,

for all n,k ∈ Z+,n ≥ k.
Furthermore,

A(n)+
n

∑
k=0

B(n,k)β n−k ≤ A :=




0.3 0.8 0
0.6 0.25 0
0.8 0 0.4


 ,

for all n,k ∈ Z+,n ≥ k and ρ(A) < 1. Therefore, the zero so-
lution of (21) is GES, by (ii) of Theorem 3.2.

4. Stability of perturbed equations
Suppose (17) holds and (B(n))n ∈ lγ(Km×m) for some γ > 1
and ρ(A+∑+∞

n=0 B(n)) < 1. Thus, the zero solution of (2) is
GES, by Theorem 3.4. Consider a perturbed equation of the
form

x(n+1) =
(

F
(
n,x(n)

)
+ F̃

(
n,x(n)

))
+

n

∑
k=0

(
G
(
n,k,x(k)

)
+ G̃

(
n,k,x(k)

))
. (22)

Here F(·, ·) and G(·, ·, ·) are as in (2) whereas F̃(·, ·) : Z+ ×
Rm →Rm and G̃(·, ·, ·) :Z2

+×Rm →Rm are perturbations. Fur-
thermore, we assume that{

|F̃(n,x)| ≤ D0∆F E0|x|;
|G̃(n,k,x)| ≤ D(n− k)∆G(n− k)E(n− k)|x|,

(23)

for all n,k ∈ Z+,n ≥ k, x ∈ Rm, where D0 ∈ Rm×l
+ ,E0 ∈

Rq×m
+ ,D(·) : Z+ → Rm×r

+ ,E(·) : Z+ → Rs×m
+ are known and

∆F ∈ Rl×q
+ ,∆G(·) : Z+ → Rr×s

+ are unknown.

The main problem here is to seek a positive number, say η ,
such that the zero solution of an arbitrary perturbed equation
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1. Introduction
Volterra difference equations have been widely used in the
modeling of processes in continuous mechanics and biome-
chanics, problems of control and estimations and some
schemes of numerical solutions of integral and integro-
differential equations, see e.g. [2], [7], [12], [16]-[19].

Problems of stability of Volterra difference equations have
attracted much attention from researchers, during the last
twenty years, see e.g. [1],[4]-[13], [15], [21]-[23] and refer-
ences therein. Many various methods have been used to inves-
tigate stability of Volterra difference equations such as Lya-
punov functions, Z transform, comparison theorems, topologi-
cal methods, fixed point theorems, etc (see e.g. [7], [10], [15],
[23]).

In particular, the first significant result on exponential sta-
bility of Volterra difference equations is due to Elaydi and
Murakami, see [8]. Roughly speaking, Elaydi and Murakami
showed that even to the simplest Volterra difference equations
(namely, linear time-invariant Volterra difference equations of
convolution type), the exponential stability is “stronger” than
the uniform asymptotic stability. More precisely, a linear time-
invariant Volterra difference equation of convolution type is ex-
ponentially stable if and only if it is uniformly asymptotically
stable and its kernel exponentially decays, see [8]. For further
and updated information on stability of linear time-invariant
Volterra difference equations, we refer to the recent survey pa-
per [10].

In general, problems of global exponential stability of time-
varying Volterra difference equations are very hard even those
of linear time-varying Volterra equations. Most of existing re-
sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
ditions for exponential stability of linear time-varying Volterra
difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
nential stability of nonlinear time-varying Volterra difference
equations. Our approach is based on the celebrated Perron-
Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
nential stability of the zero solution of general nonlinear time-

varying Volterra difference equations. Furthermore, we derive
an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.

2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there

1

+, n ¸ k and ρ(A) < 1. Therefore, the zero solu-
tion of (21) is GES, by (ii) of Theorem 3.2.

4.	 Stability of perturbed equations

Suppose (17) holds and (B(n))n 2 lγ(
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1. Introduction
Volterra difference equations have been widely used in the
modeling of processes in continuous mechanics and biome-
chanics, problems of control and estimations and some
schemes of numerical solutions of integral and integro-
differential equations, see e.g. [2], [7], [12], [16]-[19].

Problems of stability of Volterra difference equations have
attracted much attention from researchers, during the last
twenty years, see e.g. [1],[4]-[13], [15], [21]-[23] and refer-
ences therein. Many various methods have been used to inves-
tigate stability of Volterra difference equations such as Lya-
punov functions, Z transform, comparison theorems, topologi-
cal methods, fixed point theorems, etc (see e.g. [7], [10], [15],
[23]).

In particular, the first significant result on exponential sta-
bility of Volterra difference equations is due to Elaydi and
Murakami, see [8]. Roughly speaking, Elaydi and Murakami
showed that even to the simplest Volterra difference equations
(namely, linear time-invariant Volterra difference equations of
convolution type), the exponential stability is “stronger” than
the uniform asymptotic stability. More precisely, a linear time-
invariant Volterra difference equation of convolution type is ex-
ponentially stable if and only if it is uniformly asymptotically
stable and its kernel exponentially decays, see [8]. For further
and updated information on stability of linear time-invariant
Volterra difference equations, we refer to the recent survey pa-
per [10].

In general, problems of global exponential stability of time-
varying Volterra difference equations are very hard even those
of linear time-varying Volterra equations. Most of existing re-
sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
ditions for exponential stability of linear time-varying Volterra
difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
nential stability of nonlinear time-varying Volterra difference
equations. Our approach is based on the celebrated Perron-
Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
nential stability of the zero solution of general nonlinear time-

varying Volterra difference equations. Furthermore, we derive
an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.

2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there

1

m×m) for some γ > 1 and 
ρ(A + ∑+

n=
1
0 B(n)) < 1. Thus, the zero solution of (2) is GES, by 

Theorem 3.4. Consider a perturbed equation of the form

	

Clearly,

|A+
+∞

∑
n=0

B(n)| ≤ 1
4
+

+∞

∑
n=0

2(
3n+1

)(
3n+4

)= 1
4
+

2
3
< 1

and |B(n)| ≤ 1
2 an for all n ∈ Z+. Choosing γ ∈ (1,a−1), we

have aγ ∈ (0,1) and ∑+∞
n=0 |B(n)|γn <+∞. Thus, the zero solu-

tion of (18) is GES, by Theorem 3.4.

EXAMPLE 3.6. Consider a nonlinear Volterra difference
equation in R3 given by

x(n+1) = F
(
n,x(n)

)
+

n

∑
k=0

G
(
n,k,x(k)

)
, (21)

where

F(n,x) =




ln
(

1+ 0.1n
n+1 |x1|+0.3e−n|x2|

)

0.25x2 sin(nx3)

√( 0.6n
n2+1 x1

)2
+(0.2x3)2




and

G(n,k,x) =




arctan
(

2k−n

(k+5)(k+6)x1 +4k−n−2x2

)

ln
(

1+0.2×3k−n|x1|
)

4k−n−2x1 +
2k−n

(5k+1)(5k+6)x3




,

with n,k ∈ Z+,n ≥ k and x := (x1,x2,x3)
T ∈ R3.

Define

A(n) :=




0.1 n
n+1 0.3e−n 0
0 0.25 0

0.6n
n2+1 0 0.2


 ;

B(n,k) :=




2k−n

(k+5)(k+6) 4k−n−2 0

0.2×3k−n 0 0

4k−n−2 0 2k−n

(5k+1)(5k+6)


 ,

with n,k ∈ Z+,n ≥ k. It is easy to check that

|F(n,x)| ≤ A(n)|x| and |G(n,k,x)| ≤ B(n,k)|x|,

for all n,k ∈ Z+,n ≥ k,x ∈ R3. Thus, (5) holds. Furthermore,
we have for β = 2 that

A(n)+
n

∑
k=0

B(n,k)β n−k =




0.1 n
n+1+ 0.3e−n +0.25× 0

∑n
k=0

1
(k+5)(k+6) ∑n

k=0(
1
2 )

n−k

0.2∑n
k=0(

2
3 )

n−k 0.25 0

0.6 n
n2+1 +0.25× 0 0.2+

∑n
k=0(

1
2 )

n−k ∑n
k=0

1
(5k+1)(5k+6)




≤




0.1+ 0.3+0.25× 0
( 1

5 −
1

n+6 ) 2
(
1− ( 1

2 )
n+1

)

0.2×3
(
1− ( 2

3 )
n+1

)
0.25 0

0.3+0.25× 0 0.2+0.2×
2
(
1− ( 1

2 )
n+1

)
(1− 1

(5n+6) )




,

for all n,k ∈ Z+,n ≥ k.
Furthermore,

A(n)+
n

∑
k=0

B(n,k)β n−k ≤ A :=




0.3 0.8 0
0.6 0.25 0
0.8 0 0.4


 ,

for all n,k ∈ Z+,n ≥ k and ρ(A) < 1. Therefore, the zero so-
lution of (21) is GES, by (ii) of Theorem 3.2.

4. Stability of perturbed equations
Suppose (17) holds and (B(n))n ∈ lγ(Km×m) for some γ > 1
and ρ(A+∑+∞

n=0 B(n)) < 1. Thus, the zero solution of (2) is
GES, by Theorem 3.4. Consider a perturbed equation of the
form

x(n+1) =
(

F
(
n,x(n)

)
+ F̃

(
n,x(n)

))
+

n

∑
k=0

(
G
(
n,k,x(k)

)
+ G̃

(
n,k,x(k)

))
. (22)

Here F(·, ·) and G(·, ·, ·) are as in (2) whereas F̃(·, ·) : Z+ ×
Rm →Rm and G̃(·, ·, ·) :Z2

+×Rm →Rm are perturbations. Fur-
thermore, we assume that{

|F̃(n,x)| ≤ D0∆F E0|x|;
|G̃(n,k,x)| ≤ D(n− k)∆G(n− k)E(n− k)|x|,

(23)

for all n,k ∈ Z+,n ≥ k, x ∈ Rm, where D0 ∈ Rm×l
+ ,E0 ∈

Rq×m
+ ,D(·) : Z+ → Rm×r

+ ,E(·) : Z+ → Rs×m
+ are known and

∆F ∈ Rl×q
+ ,∆G(·) : Z+ → Rr×s

+ are unknown.

The main problem here is to seek a positive number, say η ,
such that the zero solution of an arbitrary perturbed equation
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4
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2
3
< 1

and |B(n)| ≤ 1
2 an for all n ∈ Z+. Choosing γ ∈ (1,a−1), we

have aγ ∈ (0,1) and ∑+∞
n=0 |B(n)|γn <+∞. Thus, the zero solu-

tion of (18) is GES, by Theorem 3.4.

EXAMPLE 3.6. Consider a nonlinear Volterra difference
equation in R3 given by

x(n+1) = F
(
n,x(n)

)
+

n

∑
k=0

G
(
n,k,x(k)

)
, (21)

where
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and
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,

with n,k ∈ Z+,n ≥ k and x := (x1,x2,x3)
T ∈ R3.
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with n,k ∈ Z+,n ≥ k. It is easy to check that

|F(n,x)| ≤ A(n)|x| and |G(n,k,x)| ≤ B(n,k)|x|,

for all n,k ∈ Z+,n ≥ k,x ∈ R3. Thus, (5) holds. Furthermore,
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for all n,k ∈ Z+,n ≥ k.
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
 ,

for all n,k ∈ Z+,n ≥ k and ρ(A) < 1. Therefore, the zero so-
lution of (21) is GES, by (ii) of Theorem 3.2.
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form
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Here F(·, ·) and G(·, ·, ·) are as in (2) whereas F̃(·, ·) : Z+ ×
Rm →Rm and G̃(·, ·, ·) :Z2

+×Rm →Rm are perturbations. Fur-
thermore, we assume that{

|F̃(n,x)| ≤ D0∆F E0|x|;
|G̃(n,k,x)| ≤ D(n− k)∆G(n− k)E(n− k)|x|,

(23)

for all n,k ∈ Z+,n ≥ k, x ∈ Rm, where D0 ∈ Rm×l
+ ,E0 ∈

Rq×m
+ ,D(·) : Z+ → Rm×r

+ ,E(·) : Z+ → Rs×m
+ are known and
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The main problem here is to seek a positive number, say η ,
such that the zero solution of an arbitrary perturbed equation
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Here F(¢, ¢) and G(¢, ¢, ¢) are as in (2) whereas F̃(¢, ¢) : 
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1. Introduction
Volterra difference equations have been widely used in the
modeling of processes in continuous mechanics and biome-
chanics, problems of control and estimations and some
schemes of numerical solutions of integral and integro-
differential equations, see e.g. [2], [7], [12], [16]-[19].

Problems of stability of Volterra difference equations have
attracted much attention from researchers, during the last
twenty years, see e.g. [1],[4]-[13], [15], [21]-[23] and refer-
ences therein. Many various methods have been used to inves-
tigate stability of Volterra difference equations such as Lya-
punov functions, Z transform, comparison theorems, topologi-
cal methods, fixed point theorems, etc (see e.g. [7], [10], [15],
[23]).

In particular, the first significant result on exponential sta-
bility of Volterra difference equations is due to Elaydi and
Murakami, see [8]. Roughly speaking, Elaydi and Murakami
showed that even to the simplest Volterra difference equations
(namely, linear time-invariant Volterra difference equations of
convolution type), the exponential stability is “stronger” than
the uniform asymptotic stability. More precisely, a linear time-
invariant Volterra difference equation of convolution type is ex-
ponentially stable if and only if it is uniformly asymptotically
stable and its kernel exponentially decays, see [8]. For further
and updated information on stability of linear time-invariant
Volterra difference equations, we refer to the recent survey pa-
per [10].

In general, problems of global exponential stability of time-
varying Volterra difference equations are very hard even those
of linear time-varying Volterra equations. Most of existing re-
sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
ditions for exponential stability of linear time-varying Volterra
difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
nential stability of nonlinear time-varying Volterra difference
equations. Our approach is based on the celebrated Perron-
Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
nential stability of the zero solution of general nonlinear time-

varying Volterra difference equations. Furthermore, we derive
an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.

2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there

1

+£
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cal methods, fixed point theorems, etc (see e.g. [7], [10], [15],
[23]).

In particular, the first significant result on exponential sta-
bility of Volterra difference equations is due to Elaydi and
Murakami, see [8]. Roughly speaking, Elaydi and Murakami
showed that even to the simplest Volterra difference equations
(namely, linear time-invariant Volterra difference equations of
convolution type), the exponential stability is “stronger” than
the uniform asymptotic stability. More precisely, a linear time-
invariant Volterra difference equation of convolution type is ex-
ponentially stable if and only if it is uniformly asymptotically
stable and its kernel exponentially decays, see [8]. For further
and updated information on stability of linear time-invariant
Volterra difference equations, we refer to the recent survey pa-
per [10].

In general, problems of global exponential stability of time-
varying Volterra difference equations are very hard even those
of linear time-varying Volterra equations. Most of existing re-
sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
ditions for exponential stability of linear time-varying Volterra
difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
nential stability of nonlinear time-varying Volterra difference
equations. Our approach is based on the celebrated Perron-
Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
nential stability of the zero solution of general nonlinear time-

varying Volterra difference equations. Furthermore, we derive
an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.

2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there

1

m ! 
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differential equations, see e.g. [2], [7], [12], [16]-[19].

Problems of stability of Volterra difference equations have
attracted much attention from researchers, during the last
twenty years, see e.g. [1],[4]-[13], [15], [21]-[23] and refer-
ences therein. Many various methods have been used to inves-
tigate stability of Volterra difference equations such as Lya-
punov functions, Z transform, comparison theorems, topologi-
cal methods, fixed point theorems, etc (see e.g. [7], [10], [15],
[23]).

In particular, the first significant result on exponential sta-
bility of Volterra difference equations is due to Elaydi and
Murakami, see [8]. Roughly speaking, Elaydi and Murakami
showed that even to the simplest Volterra difference equations
(namely, linear time-invariant Volterra difference equations of
convolution type), the exponential stability is “stronger” than
the uniform asymptotic stability. More precisely, a linear time-
invariant Volterra difference equation of convolution type is ex-
ponentially stable if and only if it is uniformly asymptotically
stable and its kernel exponentially decays, see [8]. For further
and updated information on stability of linear time-invariant
Volterra difference equations, we refer to the recent survey pa-
per [10].

In general, problems of global exponential stability of time-
varying Volterra difference equations are very hard even those
of linear time-varying Volterra equations. Most of existing re-
sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
ditions for exponential stability of linear time-varying Volterra
difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
nential stability of nonlinear time-varying Volterra difference
equations. Our approach is based on the celebrated Perron-
Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
nential stability of the zero solution of general nonlinear time-

varying Volterra difference equations. Furthermore, we derive
an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.

2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there

1

m  
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ponentially stable if and only if it is uniformly asymptotically
stable and its kernel exponentially decays, see [8]. For further
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sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
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of our knowledge, there are not many explicit criteria for global
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ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
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an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.

2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there
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twenty years, see e.g. [1],[4]-[13], [15], [21]-[23] and refer-
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punov functions, Z transform, comparison theorems, topologi-
cal methods, fixed point theorems, etc (see e.g. [7], [10], [15],
[23]).

In particular, the first significant result on exponential sta-
bility of Volterra difference equations is due to Elaydi and
Murakami, see [8]. Roughly speaking, Elaydi and Murakami
showed that even to the simplest Volterra difference equations
(namely, linear time-invariant Volterra difference equations of
convolution type), the exponential stability is “stronger” than
the uniform asymptotic stability. More precisely, a linear time-
invariant Volterra difference equation of convolution type is ex-
ponentially stable if and only if it is uniformly asymptotically
stable and its kernel exponentially decays, see [8]. For further
and updated information on stability of linear time-invariant
Volterra difference equations, we refer to the recent survey pa-
per [10].

In general, problems of global exponential stability of time-
varying Volterra difference equations are very hard even those
of linear time-varying Volterra equations. Most of existing re-
sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
ditions for exponential stability of linear time-varying Volterra
difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
nential stability of nonlinear time-varying Volterra difference
equations. Our approach is based on the celebrated Perron-
Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
nential stability of the zero solution of general nonlinear time-

varying Volterra difference equations. Furthermore, we derive
an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.

2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there
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time bidirectional associative memory neural networks. Some
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of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there

1

m are perturbations. Furthermore, we 
assume that

	

Clearly,

|A+
+∞

∑
n=0

B(n)| ≤ 1
4
+

+∞

∑
n=0

2(
3n+1

)(
3n+4

)= 1
4
+

2
3
< 1

and |B(n)| ≤ 1
2 an for all n ∈ Z+. Choosing γ ∈ (1,a−1), we

have aγ ∈ (0,1) and ∑+∞
n=0 |B(n)|γn <+∞. Thus, the zero solu-

tion of (18) is GES, by Theorem 3.4.

EXAMPLE 3.6. Consider a nonlinear Volterra difference
equation in R3 given by

x(n+1) = F
(
n,x(n)

)
+

n

∑
k=0

G
(
n,k,x(k)

)
, (21)

where

F(n,x) =




ln
(

1+ 0.1n
n+1 |x1|+0.3e−n|x2|

)

0.25x2 sin(nx3)

√( 0.6n
n2+1 x1

)2
+(0.2x3)2




and

G(n,k,x) =




arctan
(

2k−n

(k+5)(k+6)x1 +4k−n−2x2

)

ln
(

1+0.2×3k−n|x1|
)

4k−n−2x1 +
2k−n

(5k+1)(5k+6)x3




,

with n,k ∈ Z+,n ≥ k and x := (x1,x2,x3)
T ∈ R3.

Define

A(n) :=




0.1 n
n+1 0.3e−n 0
0 0.25 0

0.6n
n2+1 0 0.2


 ;

B(n,k) :=




2k−n

(k+5)(k+6) 4k−n−2 0

0.2×3k−n 0 0

4k−n−2 0 2k−n

(5k+1)(5k+6)


 ,

with n,k ∈ Z+,n ≥ k. It is easy to check that

|F(n,x)| ≤ A(n)|x| and |G(n,k,x)| ≤ B(n,k)|x|,

for all n,k ∈ Z+,n ≥ k,x ∈ R3. Thus, (5) holds. Furthermore,
we have for β = 2 that

A(n)+
n

∑
k=0

B(n,k)β n−k =



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1
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1
2 )

n−k

0.2∑n
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2
3 )
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0.6 n
n2+1 +0.25× 0 0.2+

∑n
k=0(

1
2 )

n−k ∑n
k=0

1
(5k+1)(5k+6)




≤




0.1+ 0.3+0.25× 0
( 1

5 −
1

n+6 ) 2
(
1− ( 1

2 )
n+1

)

0.2×3
(
1− ( 2

3 )
n+1

)
0.25 0

0.3+0.25× 0 0.2+0.2×
2
(
1− ( 1

2 )
n+1

)
(1− 1

(5n+6) )




,

for all n,k ∈ Z+,n ≥ k.
Furthermore,

A(n)+
n

∑
k=0

B(n,k)β n−k ≤ A :=




0.3 0.8 0
0.6 0.25 0
0.8 0 0.4


 ,

for all n,k ∈ Z+,n ≥ k and ρ(A) < 1. Therefore, the zero so-
lution of (21) is GES, by (ii) of Theorem 3.2.

4. Stability of perturbed equations
Suppose (17) holds and (B(n))n ∈ lγ(Km×m) for some γ > 1
and ρ(A+∑+∞

n=0 B(n)) < 1. Thus, the zero solution of (2) is
GES, by Theorem 3.4. Consider a perturbed equation of the
form

x(n+1) =
(

F
(
n,x(n)

)
+ F̃

(
n,x(n)

))
+

n

∑
k=0

(
G
(
n,k,x(k)

)
+ G̃

(
n,k,x(k)

))
. (22)

Here F(·, ·) and G(·, ·, ·) are as in (2) whereas F̃(·, ·) : Z+ ×
Rm →Rm and G̃(·, ·, ·) :Z2

+×Rm →Rm are perturbations. Fur-
thermore, we assume that{

|F̃(n,x)| ≤ D0∆F E0|x|;
|G̃(n,k,x)| ≤ D(n− k)∆G(n− k)E(n− k)|x|,

(23)

for all n,k ∈ Z+,n ≥ k, x ∈ Rm, where D0 ∈ Rm×l
+ ,E0 ∈

Rq×m
+ ,D(·) : Z+ → Rm×r

+ ,E(·) : Z+ → Rs×m
+ are known and

∆F ∈ Rl×q
+ ,∆G(·) : Z+ → Rr×s

+ are unknown.

The main problem here is to seek a positive number, say η ,
such that the zero solution of an arbitrary perturbed equation

4 Bull. Pol. Ac.: Tech. XX(Y) 2016

� (23)

for all n, k 2 
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1. Introduction
Volterra difference equations have been widely used in the
modeling of processes in continuous mechanics and biome-
chanics, problems of control and estimations and some
schemes of numerical solutions of integral and integro-
differential equations, see e.g. [2], [7], [12], [16]-[19].

Problems of stability of Volterra difference equations have
attracted much attention from researchers, during the last
twenty years, see e.g. [1],[4]-[13], [15], [21]-[23] and refer-
ences therein. Many various methods have been used to inves-
tigate stability of Volterra difference equations such as Lya-
punov functions, Z transform, comparison theorems, topologi-
cal methods, fixed point theorems, etc (see e.g. [7], [10], [15],
[23]).

In particular, the first significant result on exponential sta-
bility of Volterra difference equations is due to Elaydi and
Murakami, see [8]. Roughly speaking, Elaydi and Murakami
showed that even to the simplest Volterra difference equations
(namely, linear time-invariant Volterra difference equations of
convolution type), the exponential stability is “stronger” than
the uniform asymptotic stability. More precisely, a linear time-
invariant Volterra difference equation of convolution type is ex-
ponentially stable if and only if it is uniformly asymptotically
stable and its kernel exponentially decays, see [8]. For further
and updated information on stability of linear time-invariant
Volterra difference equations, we refer to the recent survey pa-
per [10].

In general, problems of global exponential stability of time-
varying Volterra difference equations are very hard even those
of linear time-varying Volterra equations. Most of existing re-
sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
ditions for exponential stability of linear time-varying Volterra
difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
nential stability of nonlinear time-varying Volterra difference
equations. Our approach is based on the celebrated Perron-
Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
nential stability of the zero solution of general nonlinear time-

varying Volterra difference equations. Furthermore, we derive
an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.

2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there

1

+, n ¸ k, x 2 
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1. Introduction
Volterra difference equations have been widely used in the
modeling of processes in continuous mechanics and biome-
chanics, problems of control and estimations and some
schemes of numerical solutions of integral and integro-
differential equations, see e.g. [2], [7], [12], [16]-[19].

Problems of stability of Volterra difference equations have
attracted much attention from researchers, during the last
twenty years, see e.g. [1],[4]-[13], [15], [21]-[23] and refer-
ences therein. Many various methods have been used to inves-
tigate stability of Volterra difference equations such as Lya-
punov functions, Z transform, comparison theorems, topologi-
cal methods, fixed point theorems, etc (see e.g. [7], [10], [15],
[23]).

In particular, the first significant result on exponential sta-
bility of Volterra difference equations is due to Elaydi and
Murakami, see [8]. Roughly speaking, Elaydi and Murakami
showed that even to the simplest Volterra difference equations
(namely, linear time-invariant Volterra difference equations of
convolution type), the exponential stability is “stronger” than
the uniform asymptotic stability. More precisely, a linear time-
invariant Volterra difference equation of convolution type is ex-
ponentially stable if and only if it is uniformly asymptotically
stable and its kernel exponentially decays, see [8]. For further
and updated information on stability of linear time-invariant
Volterra difference equations, we refer to the recent survey pa-
per [10].

In general, problems of global exponential stability of time-
varying Volterra difference equations are very hard even those
of linear time-varying Volterra equations. Most of existing re-
sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
ditions for exponential stability of linear time-varying Volterra
difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
nential stability of nonlinear time-varying Volterra difference
equations. Our approach is based on the celebrated Perron-
Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
nential stability of the zero solution of general nonlinear time-

varying Volterra difference equations. Furthermore, we derive
an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.

2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there

1

m, where D0 2 
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1. Introduction
Volterra difference equations have been widely used in the
modeling of processes in continuous mechanics and biome-
chanics, problems of control and estimations and some
schemes of numerical solutions of integral and integro-
differential equations, see e.g. [2], [7], [12], [16]-[19].

Problems of stability of Volterra difference equations have
attracted much attention from researchers, during the last
twenty years, see e.g. [1],[4]-[13], [15], [21]-[23] and refer-
ences therein. Many various methods have been used to inves-
tigate stability of Volterra difference equations such as Lya-
punov functions, Z transform, comparison theorems, topologi-
cal methods, fixed point theorems, etc (see e.g. [7], [10], [15],
[23]).

In particular, the first significant result on exponential sta-
bility of Volterra difference equations is due to Elaydi and
Murakami, see [8]. Roughly speaking, Elaydi and Murakami
showed that even to the simplest Volterra difference equations
(namely, linear time-invariant Volterra difference equations of
convolution type), the exponential stability is “stronger” than
the uniform asymptotic stability. More precisely, a linear time-
invariant Volterra difference equation of convolution type is ex-
ponentially stable if and only if it is uniformly asymptotically
stable and its kernel exponentially decays, see [8]. For further
and updated information on stability of linear time-invariant
Volterra difference equations, we refer to the recent survey pa-
per [10].

In general, problems of global exponential stability of time-
varying Volterra difference equations are very hard even those
of linear time-varying Volterra equations. Most of existing re-
sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
ditions for exponential stability of linear time-varying Volterra
difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
nential stability of nonlinear time-varying Volterra difference
equations. Our approach is based on the celebrated Perron-
Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
nential stability of the zero solution of general nonlinear time-

varying Volterra difference equations. Furthermore, we derive
an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.

2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there

1

+
m£l, E0 2 
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1. Introduction
Volterra difference equations have been widely used in the
modeling of processes in continuous mechanics and biome-
chanics, problems of control and estimations and some
schemes of numerical solutions of integral and integro-
differential equations, see e.g. [2], [7], [12], [16]-[19].

Problems of stability of Volterra difference equations have
attracted much attention from researchers, during the last
twenty years, see e.g. [1],[4]-[13], [15], [21]-[23] and refer-
ences therein. Many various methods have been used to inves-
tigate stability of Volterra difference equations such as Lya-
punov functions, Z transform, comparison theorems, topologi-
cal methods, fixed point theorems, etc (see e.g. [7], [10], [15],
[23]).

In particular, the first significant result on exponential sta-
bility of Volterra difference equations is due to Elaydi and
Murakami, see [8]. Roughly speaking, Elaydi and Murakami
showed that even to the simplest Volterra difference equations
(namely, linear time-invariant Volterra difference equations of
convolution type), the exponential stability is “stronger” than
the uniform asymptotic stability. More precisely, a linear time-
invariant Volterra difference equation of convolution type is ex-
ponentially stable if and only if it is uniformly asymptotically
stable and its kernel exponentially decays, see [8]. For further
and updated information on stability of linear time-invariant
Volterra difference equations, we refer to the recent survey pa-
per [10].

In general, problems of global exponential stability of time-
varying Volterra difference equations are very hard even those
of linear time-varying Volterra equations. Most of existing re-
sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
ditions for exponential stability of linear time-varying Volterra
difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
nential stability of nonlinear time-varying Volterra difference
equations. Our approach is based on the celebrated Perron-
Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
nential stability of the zero solution of general nonlinear time-

varying Volterra difference equations. Furthermore, we derive
an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.

2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there

1

+
q£m, 
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1. Introduction
Volterra difference equations have been widely used in the
modeling of processes in continuous mechanics and biome-
chanics, problems of control and estimations and some
schemes of numerical solutions of integral and integro-
differential equations, see e.g. [2], [7], [12], [16]-[19].

Problems of stability of Volterra difference equations have
attracted much attention from researchers, during the last
twenty years, see e.g. [1],[4]-[13], [15], [21]-[23] and refer-
ences therein. Many various methods have been used to inves-
tigate stability of Volterra difference equations such as Lya-
punov functions, Z transform, comparison theorems, topologi-
cal methods, fixed point theorems, etc (see e.g. [7], [10], [15],
[23]).

In particular, the first significant result on exponential sta-
bility of Volterra difference equations is due to Elaydi and
Murakami, see [8]. Roughly speaking, Elaydi and Murakami
showed that even to the simplest Volterra difference equations
(namely, linear time-invariant Volterra difference equations of
convolution type), the exponential stability is “stronger” than
the uniform asymptotic stability. More precisely, a linear time-
invariant Volterra difference equation of convolution type is ex-
ponentially stable if and only if it is uniformly asymptotically
stable and its kernel exponentially decays, see [8]. For further
and updated information on stability of linear time-invariant
Volterra difference equations, we refer to the recent survey pa-
per [10].

In general, problems of global exponential stability of time-
varying Volterra difference equations are very hard even those
of linear time-varying Volterra equations. Most of existing re-
sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
ditions for exponential stability of linear time-varying Volterra
difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
nential stability of nonlinear time-varying Volterra difference
equations. Our approach is based on the celebrated Perron-
Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
nential stability of the zero solution of general nonlinear time-

varying Volterra difference equations. Furthermore, we derive
an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.

2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there
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Volterra difference equations have been widely used in the
modeling of processes in continuous mechanics and biome-
chanics, problems of control and estimations and some
schemes of numerical solutions of integral and integro-
differential equations, see e.g. [2], [7], [12], [16]-[19].

Problems of stability of Volterra difference equations have
attracted much attention from researchers, during the last
twenty years, see e.g. [1],[4]-[13], [15], [21]-[23] and refer-
ences therein. Many various methods have been used to inves-
tigate stability of Volterra difference equations such as Lya-
punov functions, Z transform, comparison theorems, topologi-
cal methods, fixed point theorems, etc (see e.g. [7], [10], [15],
[23]).

In particular, the first significant result on exponential sta-
bility of Volterra difference equations is due to Elaydi and
Murakami, see [8]. Roughly speaking, Elaydi and Murakami
showed that even to the simplest Volterra difference equations
(namely, linear time-invariant Volterra difference equations of
convolution type), the exponential stability is “stronger” than
the uniform asymptotic stability. More precisely, a linear time-
invariant Volterra difference equation of convolution type is ex-
ponentially stable if and only if it is uniformly asymptotically
stable and its kernel exponentially decays, see [8]. For further
and updated information on stability of linear time-invariant
Volterra difference equations, we refer to the recent survey pa-
per [10].

In general, problems of global exponential stability of time-
varying Volterra difference equations are very hard even those
of linear time-varying Volterra equations. Most of existing re-
sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
ditions for exponential stability of linear time-varying Volterra
difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
nential stability of nonlinear time-varying Volterra difference
equations. Our approach is based on the celebrated Perron-
Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
nential stability of the zero solution of general nonlinear time-

varying Volterra difference equations. Furthermore, we derive
an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.

2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there
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1. Introduction
Volterra difference equations have been widely used in the
modeling of processes in continuous mechanics and biome-
chanics, problems of control and estimations and some
schemes of numerical solutions of integral and integro-
differential equations, see e.g. [2], [7], [12], [16]-[19].

Problems of stability of Volterra difference equations have
attracted much attention from researchers, during the last
twenty years, see e.g. [1],[4]-[13], [15], [21]-[23] and refer-
ences therein. Many various methods have been used to inves-
tigate stability of Volterra difference equations such as Lya-
punov functions, Z transform, comparison theorems, topologi-
cal methods, fixed point theorems, etc (see e.g. [7], [10], [15],
[23]).

In particular, the first significant result on exponential sta-
bility of Volterra difference equations is due to Elaydi and
Murakami, see [8]. Roughly speaking, Elaydi and Murakami
showed that even to the simplest Volterra difference equations
(namely, linear time-invariant Volterra difference equations of
convolution type), the exponential stability is “stronger” than
the uniform asymptotic stability. More precisely, a linear time-
invariant Volterra difference equation of convolution type is ex-
ponentially stable if and only if it is uniformly asymptotically
stable and its kernel exponentially decays, see [8]. For further
and updated information on stability of linear time-invariant
Volterra difference equations, we refer to the recent survey pa-
per [10].

In general, problems of global exponential stability of time-
varying Volterra difference equations are very hard even those
of linear time-varying Volterra equations. Most of existing re-
sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
ditions for exponential stability of linear time-varying Volterra
difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
nential stability of nonlinear time-varying Volterra difference
equations. Our approach is based on the celebrated Perron-
Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
nential stability of the zero solution of general nonlinear time-

varying Volterra difference equations. Furthermore, we derive
an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.

2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there
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Volterra difference equations have been widely used in the
modeling of processes in continuous mechanics and biome-
chanics, problems of control and estimations and some
schemes of numerical solutions of integral and integro-
differential equations, see e.g. [2], [7], [12], [16]-[19].

Problems of stability of Volterra difference equations have
attracted much attention from researchers, during the last
twenty years, see e.g. [1],[4]-[13], [15], [21]-[23] and refer-
ences therein. Many various methods have been used to inves-
tigate stability of Volterra difference equations such as Lya-
punov functions, Z transform, comparison theorems, topologi-
cal methods, fixed point theorems, etc (see e.g. [7], [10], [15],
[23]).

In particular, the first significant result on exponential sta-
bility of Volterra difference equations is due to Elaydi and
Murakami, see [8]. Roughly speaking, Elaydi and Murakami
showed that even to the simplest Volterra difference equations
(namely, linear time-invariant Volterra difference equations of
convolution type), the exponential stability is “stronger” than
the uniform asymptotic stability. More precisely, a linear time-
invariant Volterra difference equation of convolution type is ex-
ponentially stable if and only if it is uniformly asymptotically
stable and its kernel exponentially decays, see [8]. For further
and updated information on stability of linear time-invariant
Volterra difference equations, we refer to the recent survey pa-
per [10].

In general, problems of global exponential stability of time-
varying Volterra difference equations are very hard even those
of linear time-varying Volterra equations. Most of existing re-
sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
ditions for exponential stability of linear time-varying Volterra
difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
nential stability of nonlinear time-varying Volterra difference
equations. Our approach is based on the celebrated Perron-
Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
nential stability of the zero solution of general nonlinear time-

varying Volterra difference equations. Furthermore, we derive
an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.

2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there
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Volterra difference equations have been widely used in the
modeling of processes in continuous mechanics and biome-
chanics, problems of control and estimations and some
schemes of numerical solutions of integral and integro-
differential equations, see e.g. [2], [7], [12], [16]-[19].

Problems of stability of Volterra difference equations have
attracted much attention from researchers, during the last
twenty years, see e.g. [1],[4]-[13], [15], [21]-[23] and refer-
ences therein. Many various methods have been used to inves-
tigate stability of Volterra difference equations such as Lya-
punov functions, Z transform, comparison theorems, topologi-
cal methods, fixed point theorems, etc (see e.g. [7], [10], [15],
[23]).

In particular, the first significant result on exponential sta-
bility of Volterra difference equations is due to Elaydi and
Murakami, see [8]. Roughly speaking, Elaydi and Murakami
showed that even to the simplest Volterra difference equations
(namely, linear time-invariant Volterra difference equations of
convolution type), the exponential stability is “stronger” than
the uniform asymptotic stability. More precisely, a linear time-
invariant Volterra difference equation of convolution type is ex-
ponentially stable if and only if it is uniformly asymptotically
stable and its kernel exponentially decays, see [8]. For further
and updated information on stability of linear time-invariant
Volterra difference equations, we refer to the recent survey pa-
per [10].

In general, problems of global exponential stability of time-
varying Volterra difference equations are very hard even those
of linear time-varying Volterra equations. Most of existing re-
sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
ditions for exponential stability of linear time-varying Volterra
difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
nential stability of nonlinear time-varying Volterra difference
equations. Our approach is based on the celebrated Perron-
Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
nential stability of the zero solution of general nonlinear time-

varying Volterra difference equations. Furthermore, we derive
an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.

2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there

1

+
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1. Introduction
Volterra difference equations have been widely used in the
modeling of processes in continuous mechanics and biome-
chanics, problems of control and estimations and some
schemes of numerical solutions of integral and integro-
differential equations, see e.g. [2], [7], [12], [16]-[19].

Problems of stability of Volterra difference equations have
attracted much attention from researchers, during the last
twenty years, see e.g. [1],[4]-[13], [15], [21]-[23] and refer-
ences therein. Many various methods have been used to inves-
tigate stability of Volterra difference equations such as Lya-
punov functions, Z transform, comparison theorems, topologi-
cal methods, fixed point theorems, etc (see e.g. [7], [10], [15],
[23]).

In particular, the first significant result on exponential sta-
bility of Volterra difference equations is due to Elaydi and
Murakami, see [8]. Roughly speaking, Elaydi and Murakami
showed that even to the simplest Volterra difference equations
(namely, linear time-invariant Volterra difference equations of
convolution type), the exponential stability is “stronger” than
the uniform asymptotic stability. More precisely, a linear time-
invariant Volterra difference equation of convolution type is ex-
ponentially stable if and only if it is uniformly asymptotically
stable and its kernel exponentially decays, see [8]. For further
and updated information on stability of linear time-invariant
Volterra difference equations, we refer to the recent survey pa-
per [10].

In general, problems of global exponential stability of time-
varying Volterra difference equations are very hard even those
of linear time-varying Volterra equations. Most of existing re-
sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
ditions for exponential stability of linear time-varying Volterra
difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
nential stability of nonlinear time-varying Volterra difference
equations. Our approach is based on the celebrated Perron-
Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
nential stability of the zero solution of general nonlinear time-

varying Volterra difference equations. Furthermore, we derive
an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.
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we write A � B instead of A ≥ B. The set of all nonnega-
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spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
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and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.
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of linear time-varying Volterra equations. Most of existing re-
sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
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difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
nential stability of nonlinear time-varying Volterra difference
equations. Our approach is based on the celebrated Perron-
Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
nential stability of the zero solution of general nonlinear time-

varying Volterra difference equations. Furthermore, we derive
an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.
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In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there

1

+
r£s are unknown.

The main problem here is to seek a positive number, say η, 
such that the zero solution of an arbitrary perturbed equation 
of the form (22) remains GES whenever the size of (∆F, ∆G) is 
strictly less than η.

Theorem 4.1. Assume that (∆G(n))n 2 l γ0(

BULLETIN OF THE POLISH ACADEMY OF SCIENCES
TECHNICAL SCIENCES, Vol. XX, No. Y, 2016
DOI: 10.1515/bpasts-2016-00ZZ

Stability of nonlinear Volterra equations

Abstract. Using a novel approach, we present some new explicit criteria for global exponential stability of the zero solution of general
nonlinear time-varying Volterra difference equations. Furthermore, an explicit stability bound for equations subject to nonlinear time-varying
perturbations is given. Finally, the obtained results are used to study uniform attraction of equilibrium of discrete-time bidirectional associative
memory (BAM) neural networks. Some illustrative examples are given.

Key words: Global exponential stability, Volterra equations

1. Introduction
Volterra difference equations have been widely used in the
modeling of processes in continuous mechanics and biome-
chanics, problems of control and estimations and some
schemes of numerical solutions of integral and integro-
differential equations, see e.g. [2], [7], [12], [16]-[19].

Problems of stability of Volterra difference equations have
attracted much attention from researchers, during the last
twenty years, see e.g. [1],[4]-[13], [15], [21]-[23] and refer-
ences therein. Many various methods have been used to inves-
tigate stability of Volterra difference equations such as Lya-
punov functions, Z transform, comparison theorems, topologi-
cal methods, fixed point theorems, etc (see e.g. [7], [10], [15],
[23]).

In particular, the first significant result on exponential sta-
bility of Volterra difference equations is due to Elaydi and
Murakami, see [8]. Roughly speaking, Elaydi and Murakami
showed that even to the simplest Volterra difference equations
(namely, linear time-invariant Volterra difference equations of
convolution type), the exponential stability is “stronger” than
the uniform asymptotic stability. More precisely, a linear time-
invariant Volterra difference equation of convolution type is ex-
ponentially stable if and only if it is uniformly asymptotically
stable and its kernel exponentially decays, see [8]. For further
and updated information on stability of linear time-invariant
Volterra difference equations, we refer to the recent survey pa-
per [10].

In general, problems of global exponential stability of time-
varying Volterra difference equations are very hard even those
of linear time-varying Volterra equations. Most of existing re-
sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
ditions for exponential stability of linear time-varying Volterra
difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
nential stability of nonlinear time-varying Volterra difference
equations. Our approach is based on the celebrated Perron-
Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
nential stability of the zero solution of general nonlinear time-

varying Volterra difference equations. Furthermore, we derive
an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.

2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
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P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
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eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
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norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
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and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =
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be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there

1

m×m) for some 
γ0 > 1 and
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of the form (22) remains GES whenever the size of (∆F ,∆G) is
strictly less than η .

THEOREM 4.1. Assume that (∆G(n))n ∈ lγ0(Rm×m) for
some γ0 > 1 and

max
{

sup
n∈Z+

‖D(n)‖, sup
n∈Z+

‖E(n)‖
}
<+∞. (24)

If

‖(∆F ,∆G)‖<
1

supP∈Ξ,Q∈Ω
{
‖P

(
Im −A−∑+∞

k=0 B(k)
)−1Q‖

},

(25)

where ‖(∆F ,∆G)‖ := ‖∆F‖ + ∑+∞
k=0 ‖∆G(k)‖,

Ξ := {E0,E(0),E(1),E(2), ...} and Ω :=
{D0,D(0),D(1),D(2), ...}, then the zero solution of (22)
remains GES.

Proof. By (17) and (23), it follows that
∣∣F(n,x)+ F̃(n,x)

∣∣≤ (
A+D0∆F E0

)
|x|

and ∣∣(G(n,k,x)+ G̃(n,k,x)
)∣∣

≤
(
B(n− k)+D(n− k)∆G(n− k)E(n− k)

)
|x|,

for all n,k ∈ Z+,n ≥ k,x ∈ Rm. Invoking (24) and
(B(n))n ∈ lγ(Rm×m),(∆G(n))n ∈ lγ0(Rm×m), we have

(
B(n)+

D(n)∆G(n)E(n)
)

n ∈ lγ1(Rm×m), with γ1 := min{γ,γ0}.
We show that ρ

(
A + D0∆F E0 + ∑+∞

k=0

(
B(k) +

D(k)∆G(k)E(k)
))

< 1 and then the zero solution of the
perturbed equation (22) is GES by Theorem 3.4.

Let M := A + ∑+∞
k=0 B(k). Since

M,D0,∆F ,E0,D(k),∆G(k),E(k),k ∈ Z+, are nonnegative, so
is M +D0∆F E0 +∑+∞

k=0 D(k)∆G(k)E(k). Assume on the con-
trary that ρ0 := ρ

(
M +D0∆F E0 +∑+∞

k=0 D(k)∆G(k)E(k)
)
≥ 1.

By the Perron-Frobenius Theorem (Theorem 2.1 (i)), there
exists x ∈ Rm

+,x �= 0, such that

(
M+D0∆F E0 +

+∞

∑
k=0

D(k)∆G(k)E(k)
)
x = ρ0x,

or equivalently,

(ρ0Im −M)x =
(
D0∆F E0 +

+∞

∑
k=0

D(k)∆G(k)E(k)
)
x. (26)

Let H(t) := (tIm −M), t ∈ R. Since ρ(M)< 1 ≤ ρ0, H(ρ0)
−1

and H(1)−1 exist and are nonnegative, by Theorem 1.1 (ii).
From (26), it follows that

H(ρ0)
−1(D0∆F E0 +

+∞

∑
k=0

D(k)∆G(k)E(k)
)
x = x. (27)

Since x �= 0 and supn∈Z+
‖E(n)‖<+∞, (27) implies

0 < max
{
‖E0x‖, sup

n∈Z+

‖E(n)x‖
}
<+∞.

If max
{
‖E0x‖,supn∈Z+

‖E(n)x‖
}
= ‖E0x‖, multiplying both

sides of (27) from the left by E0, we get

(
E0H(ρ0)

−1D0∆F E0
)
x+

( +∞

∑
k=0

E0H(ρ0)
−1D(k)∆G(k)E(k)

)
x = E0x.

Taking norms both sides of the last equation, we have

‖E0H(ρ0)
−1D0‖.‖∆F‖.‖E0x‖+

+∞

∑
k=0

‖E0H(ρ0)
−1D(k)‖.‖∆G(k)‖.‖E(k)x‖ ≥ ‖E0x‖.

This implies

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖

(
‖∆F‖+

+∞

∑
k=0

‖∆G(k)‖
)
‖E0x‖≥‖E0x‖,

or equivalently,

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖.‖(∆F ,∆G)‖ ≥ 1. (28)

On the other hand, the resolvent identity gives

H(1)−1 −H(ρ0)
−1 = (ρ0 −1)H(ρ0)

−1H(1)−1 ≥ 0.

This yields H(1)−1 ≥ H(ρ0)
−1 ≥ 0. Therefore, PH(1)−1Q ≥

PH(ρ0)
−1Q≥ 0, for any P∈Ξ,Q∈Ω. By (1), ‖PH(1)−1Q‖≥

‖PH(ρ0)
−1Q‖ ≥ 0, for any P ∈ Ξ,Q ∈ Ω. It follows from (28)

that

‖(∆F ,∆G)‖ ≥
1

supP∈Ξ,Q∈Ω ‖PH(1)−1Q‖

=
1

supP∈Ξ,Q∈Ω
{
‖P

(
Im −A−∑+∞

k=0 B(k)
)−1Q‖

}.

(29)

However, this conflicts with (25).
If supn∈Z+

‖E(n)x‖ > ‖E0x‖, then for given ε > 0, there is
n0 ∈ Z+ such that ‖E(n0)x‖> supn∈Z+

‖E(n)x‖−ε > 0. Mul-
tiplying both sides of (27) from the left by E(n0), we get

(
E(n0)H(ρ0)

−1D0∆F E0
)
x+

( +∞

∑
k=0

E(n0)H(ρ0)
−1D(k)∆G(k)E(k)

)
x = E(n0)x.

Taking norms, we get

‖E(n0)H(ρ0)
−1D0‖.‖∆F‖.‖E0x‖+

+∞

∑
k=0

‖E(n0)H(ρ0)
−1D(k)‖.‖∆G(k)‖‖E(k)x‖ ≥ ‖E(n0)x‖.

It follows that

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖

(
‖∆F‖+

+∞

∑
k=0

‖∆G(k)‖
)
(‖E(n0)x‖+ ε)

≥ ‖E(n0)x‖.

Since ε > 0 is arbitrary, we derive

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖

(
‖∆F‖+

+∞

∑
k=0

‖∆G(k)‖
)
≥ 1.

Bull. Pol. Ac.: Tech. XX(Y) 2016 5

.� (24)

If

	 ,

Stability of nonlinear Volterra equations

of the form (22) remains GES whenever the size of (∆F ,∆G) is
strictly less than η .

THEOREM 4.1. Assume that (∆G(n))n ∈ lγ0(Rm×m) for
some γ0 > 1 and

max
{

sup
n∈Z+

‖D(n)‖, sup
n∈Z+

‖E(n)‖
}
<+∞. (24)

If

‖(∆F ,∆G)‖<
1

supP∈Ξ,Q∈Ω
{
‖P

(
Im −A−∑+∞

k=0 B(k)
)−1Q‖

},

(25)

where ‖(∆F ,∆G)‖ := ‖∆F‖ + ∑+∞
k=0 ‖∆G(k)‖,

Ξ := {E0,E(0),E(1),E(2), ...} and Ω :=
{D0,D(0),D(1),D(2), ...}, then the zero solution of (22)
remains GES.

Proof. By (17) and (23), it follows that
∣∣F(n,x)+ F̃(n,x)

∣∣≤ (
A+D0∆F E0

)
|x|

and ∣∣(G(n,k,x)+ G̃(n,k,x)
)∣∣

≤
(
B(n− k)+D(n− k)∆G(n− k)E(n− k)

)
|x|,

for all n,k ∈ Z+,n ≥ k,x ∈ Rm. Invoking (24) and
(B(n))n ∈ lγ(Rm×m),(∆G(n))n ∈ lγ0(Rm×m), we have

(
B(n)+

D(n)∆G(n)E(n)
)

n ∈ lγ1(Rm×m), with γ1 := min{γ,γ0}.
We show that ρ

(
A + D0∆F E0 + ∑+∞

k=0

(
B(k) +

D(k)∆G(k)E(k)
))

< 1 and then the zero solution of the
perturbed equation (22) is GES by Theorem 3.4.

Let M := A + ∑+∞
k=0 B(k). Since

M,D0,∆F ,E0,D(k),∆G(k),E(k),k ∈ Z+, are nonnegative, so
is M +D0∆F E0 +∑+∞

k=0 D(k)∆G(k)E(k). Assume on the con-
trary that ρ0 := ρ

(
M +D0∆F E0 +∑+∞

k=0 D(k)∆G(k)E(k)
)
≥ 1.

By the Perron-Frobenius Theorem (Theorem 2.1 (i)), there
exists x ∈ Rm

+,x �= 0, such that

(
M+D0∆F E0 +

+∞

∑
k=0

D(k)∆G(k)E(k)
)
x = ρ0x,

or equivalently,

(ρ0Im −M)x =
(
D0∆F E0 +

+∞

∑
k=0

D(k)∆G(k)E(k)
)
x. (26)

Let H(t) := (tIm −M), t ∈ R. Since ρ(M)< 1 ≤ ρ0, H(ρ0)
−1

and H(1)−1 exist and are nonnegative, by Theorem 1.1 (ii).
From (26), it follows that

H(ρ0)
−1(D0∆F E0 +

+∞

∑
k=0

D(k)∆G(k)E(k)
)
x = x. (27)

Since x �= 0 and supn∈Z+
‖E(n)‖<+∞, (27) implies

0 < max
{
‖E0x‖, sup

n∈Z+

‖E(n)x‖
}
<+∞.

If max
{
‖E0x‖,supn∈Z+

‖E(n)x‖
}
= ‖E0x‖, multiplying both

sides of (27) from the left by E0, we get

(
E0H(ρ0)

−1D0∆F E0
)
x+

( +∞

∑
k=0

E0H(ρ0)
−1D(k)∆G(k)E(k)

)
x = E0x.

Taking norms both sides of the last equation, we have

‖E0H(ρ0)
−1D0‖.‖∆F‖.‖E0x‖+

+∞

∑
k=0

‖E0H(ρ0)
−1D(k)‖.‖∆G(k)‖.‖E(k)x‖ ≥ ‖E0x‖.

This implies

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖

(
‖∆F‖+

+∞

∑
k=0

‖∆G(k)‖
)
‖E0x‖≥‖E0x‖,

or equivalently,

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖.‖(∆F ,∆G)‖ ≥ 1. (28)

On the other hand, the resolvent identity gives

H(1)−1 −H(ρ0)
−1 = (ρ0 −1)H(ρ0)

−1H(1)−1 ≥ 0.

This yields H(1)−1 ≥ H(ρ0)
−1 ≥ 0. Therefore, PH(1)−1Q ≥

PH(ρ0)
−1Q≥ 0, for any P∈Ξ,Q∈Ω. By (1), ‖PH(1)−1Q‖≥

‖PH(ρ0)
−1Q‖ ≥ 0, for any P ∈ Ξ,Q ∈ Ω. It follows from (28)

that

‖(∆F ,∆G)‖ ≥
1

supP∈Ξ,Q∈Ω ‖PH(1)−1Q‖

=
1

supP∈Ξ,Q∈Ω
{
‖P

(
Im −A−∑+∞

k=0 B(k)
)−1Q‖

}.

(29)

However, this conflicts with (25).
If supn∈Z+

‖E(n)x‖ > ‖E0x‖, then for given ε > 0, there is
n0 ∈ Z+ such that ‖E(n0)x‖> supn∈Z+

‖E(n)x‖−ε > 0. Mul-
tiplying both sides of (27) from the left by E(n0), we get

(
E(n0)H(ρ0)

−1D0∆F E0
)
x+

( +∞

∑
k=0

E(n0)H(ρ0)
−1D(k)∆G(k)E(k)

)
x = E(n0)x.

Taking norms, we get

‖E(n0)H(ρ0)
−1D0‖.‖∆F‖.‖E0x‖+

+∞

∑
k=0

‖E(n0)H(ρ0)
−1D(k)‖.‖∆G(k)‖‖E(k)x‖ ≥ ‖E(n0)x‖.

It follows that

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖

(
‖∆F‖+

+∞

∑
k=0

‖∆G(k)‖
)
(‖E(n0)x‖+ ε)

≥ ‖E(n0)x‖.

Since ε > 0 is arbitrary, we derive

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖

(
‖∆F‖+

+∞

∑
k=0

‖∆G(k)‖
)
≥ 1.
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Stability of nonlinear Volterra equations

of the form (22) remains GES whenever the size of (∆F ,∆G) is
strictly less than η .

THEOREM 4.1. Assume that (∆G(n))n ∈ lγ0(Rm×m) for
some γ0 > 1 and

max
{

sup
n∈Z+

‖D(n)‖, sup
n∈Z+

‖E(n)‖
}
<+∞. (24)

If

‖(∆F ,∆G)‖<
1

supP∈Ξ,Q∈Ω
{
‖P

(
Im −A−∑+∞

k=0 B(k)
)−1Q‖

},

(25)

where ‖(∆F ,∆G)‖ := ‖∆F‖ + ∑+∞
k=0 ‖∆G(k)‖,

Ξ := {E0,E(0),E(1),E(2), ...} and Ω :=
{D0,D(0),D(1),D(2), ...}, then the zero solution of (22)
remains GES.

Proof. By (17) and (23), it follows that
∣∣F(n,x)+ F̃(n,x)

∣∣≤ (
A+D0∆F E0

)
|x|

and ∣∣(G(n,k,x)+ G̃(n,k,x)
)∣∣

≤
(
B(n− k)+D(n− k)∆G(n− k)E(n− k)

)
|x|,

for all n,k ∈ Z+,n ≥ k,x ∈ Rm. Invoking (24) and
(B(n))n ∈ lγ(Rm×m),(∆G(n))n ∈ lγ0(Rm×m), we have

(
B(n)+

D(n)∆G(n)E(n)
)

n ∈ lγ1(Rm×m), with γ1 := min{γ,γ0}.
We show that ρ

(
A + D0∆F E0 + ∑+∞

k=0

(
B(k) +

D(k)∆G(k)E(k)
))

< 1 and then the zero solution of the
perturbed equation (22) is GES by Theorem 3.4.

Let M := A + ∑+∞
k=0 B(k). Since

M,D0,∆F ,E0,D(k),∆G(k),E(k),k ∈ Z+, are nonnegative, so
is M +D0∆F E0 +∑+∞

k=0 D(k)∆G(k)E(k). Assume on the con-
trary that ρ0 := ρ

(
M +D0∆F E0 +∑+∞

k=0 D(k)∆G(k)E(k)
)
≥ 1.

By the Perron-Frobenius Theorem (Theorem 2.1 (i)), there
exists x ∈ Rm

+,x �= 0, such that

(
M+D0∆F E0 +

+∞

∑
k=0

D(k)∆G(k)E(k)
)
x = ρ0x,

or equivalently,

(ρ0Im −M)x =
(
D0∆F E0 +

+∞

∑
k=0

D(k)∆G(k)E(k)
)
x. (26)

Let H(t) := (tIm −M), t ∈ R. Since ρ(M)< 1 ≤ ρ0, H(ρ0)
−1

and H(1)−1 exist and are nonnegative, by Theorem 1.1 (ii).
From (26), it follows that

H(ρ0)
−1(D0∆F E0 +

+∞

∑
k=0

D(k)∆G(k)E(k)
)
x = x. (27)

Since x �= 0 and supn∈Z+
‖E(n)‖<+∞, (27) implies

0 < max
{
‖E0x‖, sup

n∈Z+

‖E(n)x‖
}
<+∞.

If max
{
‖E0x‖,supn∈Z+

‖E(n)x‖
}
= ‖E0x‖, multiplying both

sides of (27) from the left by E0, we get

(
E0H(ρ0)

−1D0∆F E0
)
x+

( +∞

∑
k=0

E0H(ρ0)
−1D(k)∆G(k)E(k)

)
x = E0x.

Taking norms both sides of the last equation, we have

‖E0H(ρ0)
−1D0‖.‖∆F‖.‖E0x‖+

+∞

∑
k=0

‖E0H(ρ0)
−1D(k)‖.‖∆G(k)‖.‖E(k)x‖ ≥ ‖E0x‖.

This implies

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖

(
‖∆F‖+

+∞

∑
k=0

‖∆G(k)‖
)
‖E0x‖≥‖E0x‖,

or equivalently,

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖.‖(∆F ,∆G)‖ ≥ 1. (28)

On the other hand, the resolvent identity gives

H(1)−1 −H(ρ0)
−1 = (ρ0 −1)H(ρ0)

−1H(1)−1 ≥ 0.

This yields H(1)−1 ≥ H(ρ0)
−1 ≥ 0. Therefore, PH(1)−1Q ≥

PH(ρ0)
−1Q≥ 0, for any P∈Ξ,Q∈Ω. By (1), ‖PH(1)−1Q‖≥

‖PH(ρ0)
−1Q‖ ≥ 0, for any P ∈ Ξ,Q ∈ Ω. It follows from (28)

that

‖(∆F ,∆G)‖ ≥
1

supP∈Ξ,Q∈Ω ‖PH(1)−1Q‖

=
1

supP∈Ξ,Q∈Ω
{
‖P

(
Im −A−∑+∞

k=0 B(k)
)−1Q‖

}.

(29)

However, this conflicts with (25).
If supn∈Z+

‖E(n)x‖ > ‖E0x‖, then for given ε > 0, there is
n0 ∈ Z+ such that ‖E(n0)x‖> supn∈Z+

‖E(n)x‖−ε > 0. Mul-
tiplying both sides of (27) from the left by E(n0), we get

(
E(n0)H(ρ0)

−1D0∆F E0
)
x+

( +∞

∑
k=0

E(n0)H(ρ0)
−1D(k)∆G(k)E(k)

)
x = E(n0)x.

Taking norms, we get

‖E(n0)H(ρ0)
−1D0‖.‖∆F‖.‖E0x‖+

+∞

∑
k=0

‖E(n0)H(ρ0)
−1D(k)‖.‖∆G(k)‖‖E(k)x‖ ≥ ‖E(n0)x‖.

It follows that

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖

(
‖∆F‖+

+∞

∑
k=0

‖∆G(k)‖
)
(‖E(n0)x‖+ ε)

≥ ‖E(n0)x‖.

Since ε > 0 is arbitrary, we derive

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖

(
‖∆F‖+

+∞

∑
k=0

‖∆G(k)‖
)
≥ 1.
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� (25)

where k(∆F, ∆G)k := k∆Fk + ∑+
k=
1
0k∆G(k)k, Ξ := {E0, E(0), E(1), 

E(2), …} and Ω := {D0, D(0), D(1), D(2), …}, then the zero 
solution of (22) remains GES.

Proof. By (17) and (23), it follows that

Stability of nonlinear Volterra equations

of the form (22) remains GES whenever the size of (∆F ,∆G) is
strictly less than η .

THEOREM 4.1. Assume that (∆G(n))n ∈ lγ0(Rm×m) for
some γ0 > 1 and

max
{

sup
n∈Z+

‖D(n)‖, sup
n∈Z+

‖E(n)‖
}
<+∞. (24)

If

‖(∆F ,∆G)‖<
1

supP∈Ξ,Q∈Ω
{
‖P

(
Im −A−∑+∞

k=0 B(k)
)−1Q‖

},

(25)

where ‖(∆F ,∆G)‖ := ‖∆F‖ + ∑+∞
k=0 ‖∆G(k)‖,

Ξ := {E0,E(0),E(1),E(2), ...} and Ω :=
{D0,D(0),D(1),D(2), ...}, then the zero solution of (22)
remains GES.

Proof. By (17) and (23), it follows that
∣∣F(n,x)+ F̃(n,x)

∣∣≤ (
A+D0∆F E0

)
|x|

and ∣∣(G(n,k,x)+ G̃(n,k,x)
)∣∣

≤
(
B(n− k)+D(n− k)∆G(n− k)E(n− k)

)
|x|,

for all n,k ∈ Z+,n ≥ k,x ∈ Rm. Invoking (24) and
(B(n))n ∈ lγ(Rm×m),(∆G(n))n ∈ lγ0(Rm×m), we have

(
B(n)+

D(n)∆G(n)E(n)
)

n ∈ lγ1(Rm×m), with γ1 := min{γ,γ0}.
We show that ρ

(
A + D0∆F E0 + ∑+∞

k=0

(
B(k) +

D(k)∆G(k)E(k)
))

< 1 and then the zero solution of the
perturbed equation (22) is GES by Theorem 3.4.

Let M := A + ∑+∞
k=0 B(k). Since

M,D0,∆F ,E0,D(k),∆G(k),E(k),k ∈ Z+, are nonnegative, so
is M +D0∆F E0 +∑+∞

k=0 D(k)∆G(k)E(k). Assume on the con-
trary that ρ0 := ρ

(
M +D0∆F E0 +∑+∞

k=0 D(k)∆G(k)E(k)
)
≥ 1.

By the Perron-Frobenius Theorem (Theorem 2.1 (i)), there
exists x ∈ Rm

+,x �= 0, such that

(
M+D0∆F E0 +

+∞

∑
k=0

D(k)∆G(k)E(k)
)
x = ρ0x,

or equivalently,

(ρ0Im −M)x =
(
D0∆F E0 +

+∞

∑
k=0

D(k)∆G(k)E(k)
)
x. (26)

Let H(t) := (tIm −M), t ∈ R. Since ρ(M)< 1 ≤ ρ0, H(ρ0)
−1

and H(1)−1 exist and are nonnegative, by Theorem 1.1 (ii).
From (26), it follows that

H(ρ0)
−1(D0∆F E0 +

+∞

∑
k=0

D(k)∆G(k)E(k)
)
x = x. (27)

Since x �= 0 and supn∈Z+
‖E(n)‖<+∞, (27) implies

0 < max
{
‖E0x‖, sup

n∈Z+

‖E(n)x‖
}
<+∞.

If max
{
‖E0x‖,supn∈Z+

‖E(n)x‖
}
= ‖E0x‖, multiplying both

sides of (27) from the left by E0, we get

(
E0H(ρ0)

−1D0∆F E0
)
x+

( +∞

∑
k=0

E0H(ρ0)
−1D(k)∆G(k)E(k)

)
x = E0x.

Taking norms both sides of the last equation, we have

‖E0H(ρ0)
−1D0‖.‖∆F‖.‖E0x‖+

+∞

∑
k=0

‖E0H(ρ0)
−1D(k)‖.‖∆G(k)‖.‖E(k)x‖ ≥ ‖E0x‖.

This implies

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖

(
‖∆F‖+

+∞

∑
k=0

‖∆G(k)‖
)
‖E0x‖≥‖E0x‖,

or equivalently,

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖.‖(∆F ,∆G)‖ ≥ 1. (28)

On the other hand, the resolvent identity gives

H(1)−1 −H(ρ0)
−1 = (ρ0 −1)H(ρ0)

−1H(1)−1 ≥ 0.

This yields H(1)−1 ≥ H(ρ0)
−1 ≥ 0. Therefore, PH(1)−1Q ≥

PH(ρ0)
−1Q≥ 0, for any P∈Ξ,Q∈Ω. By (1), ‖PH(1)−1Q‖≥

‖PH(ρ0)
−1Q‖ ≥ 0, for any P ∈ Ξ,Q ∈ Ω. It follows from (28)

that

‖(∆F ,∆G)‖ ≥
1

supP∈Ξ,Q∈Ω ‖PH(1)−1Q‖

=
1

supP∈Ξ,Q∈Ω
{
‖P

(
Im −A−∑+∞

k=0 B(k)
)−1Q‖

}.

(29)

However, this conflicts with (25).
If supn∈Z+

‖E(n)x‖ > ‖E0x‖, then for given ε > 0, there is
n0 ∈ Z+ such that ‖E(n0)x‖> supn∈Z+

‖E(n)x‖−ε > 0. Mul-
tiplying both sides of (27) from the left by E(n0), we get

(
E(n0)H(ρ0)

−1D0∆F E0
)
x+

( +∞

∑
k=0

E(n0)H(ρ0)
−1D(k)∆G(k)E(k)

)
x = E(n0)x.

Taking norms, we get

‖E(n0)H(ρ0)
−1D0‖.‖∆F‖.‖E0x‖+

+∞

∑
k=0

‖E(n0)H(ρ0)
−1D(k)‖.‖∆G(k)‖‖E(k)x‖ ≥ ‖E(n0)x‖.

It follows that

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖

(
‖∆F‖+

+∞

∑
k=0

‖∆G(k)‖
)
(‖E(n0)x‖+ ε)

≥ ‖E(n0)x‖.

Since ε > 0 is arbitrary, we derive

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖

(
‖∆F‖+

+∞

∑
k=0

‖∆G(k)‖
)
≥ 1.
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and

Stability of nonlinear Volterra equations

of the form (22) remains GES whenever the size of (∆F ,∆G) is
strictly less than η .

THEOREM 4.1. Assume that (∆G(n))n ∈ lγ0(Rm×m) for
some γ0 > 1 and

max
{

sup
n∈Z+

‖D(n)‖, sup
n∈Z+

‖E(n)‖
}
<+∞. (24)

If

‖(∆F ,∆G)‖<
1

supP∈Ξ,Q∈Ω
{
‖P

(
Im −A−∑+∞

k=0 B(k)
)−1Q‖

},

(25)

where ‖(∆F ,∆G)‖ := ‖∆F‖ + ∑+∞
k=0 ‖∆G(k)‖,

Ξ := {E0,E(0),E(1),E(2), ...} and Ω :=
{D0,D(0),D(1),D(2), ...}, then the zero solution of (22)
remains GES.

Proof. By (17) and (23), it follows that
∣∣F(n,x)+ F̃(n,x)

∣∣≤ (
A+D0∆F E0

)
|x|

and ∣∣(G(n,k,x)+ G̃(n,k,x)
)∣∣

≤
(
B(n− k)+D(n− k)∆G(n− k)E(n− k)

)
|x|,

for all n,k ∈ Z+,n ≥ k,x ∈ Rm. Invoking (24) and
(B(n))n ∈ lγ(Rm×m),(∆G(n))n ∈ lγ0(Rm×m), we have

(
B(n)+

D(n)∆G(n)E(n)
)

n ∈ lγ1(Rm×m), with γ1 := min{γ,γ0}.
We show that ρ

(
A + D0∆F E0 + ∑+∞

k=0

(
B(k) +

D(k)∆G(k)E(k)
))

< 1 and then the zero solution of the
perturbed equation (22) is GES by Theorem 3.4.

Let M := A + ∑+∞
k=0 B(k). Since

M,D0,∆F ,E0,D(k),∆G(k),E(k),k ∈ Z+, are nonnegative, so
is M +D0∆F E0 +∑+∞

k=0 D(k)∆G(k)E(k). Assume on the con-
trary that ρ0 := ρ

(
M +D0∆F E0 +∑+∞

k=0 D(k)∆G(k)E(k)
)
≥ 1.

By the Perron-Frobenius Theorem (Theorem 2.1 (i)), there
exists x ∈ Rm

+,x �= 0, such that

(
M+D0∆F E0 +

+∞

∑
k=0

D(k)∆G(k)E(k)
)
x = ρ0x,

or equivalently,

(ρ0Im −M)x =
(
D0∆F E0 +

+∞

∑
k=0

D(k)∆G(k)E(k)
)
x. (26)

Let H(t) := (tIm −M), t ∈ R. Since ρ(M)< 1 ≤ ρ0, H(ρ0)
−1

and H(1)−1 exist and are nonnegative, by Theorem 1.1 (ii).
From (26), it follows that

H(ρ0)
−1(D0∆F E0 +

+∞

∑
k=0

D(k)∆G(k)E(k)
)
x = x. (27)

Since x �= 0 and supn∈Z+
‖E(n)‖<+∞, (27) implies

0 < max
{
‖E0x‖, sup

n∈Z+

‖E(n)x‖
}
<+∞.

If max
{
‖E0x‖,supn∈Z+

‖E(n)x‖
}
= ‖E0x‖, multiplying both

sides of (27) from the left by E0, we get

(
E0H(ρ0)

−1D0∆F E0
)
x+

( +∞

∑
k=0

E0H(ρ0)
−1D(k)∆G(k)E(k)

)
x = E0x.

Taking norms both sides of the last equation, we have

‖E0H(ρ0)
−1D0‖.‖∆F‖.‖E0x‖+

+∞

∑
k=0

‖E0H(ρ0)
−1D(k)‖.‖∆G(k)‖.‖E(k)x‖ ≥ ‖E0x‖.

This implies

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖

(
‖∆F‖+

+∞

∑
k=0

‖∆G(k)‖
)
‖E0x‖≥‖E0x‖,

or equivalently,

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖.‖(∆F ,∆G)‖ ≥ 1. (28)

On the other hand, the resolvent identity gives

H(1)−1 −H(ρ0)
−1 = (ρ0 −1)H(ρ0)

−1H(1)−1 ≥ 0.

This yields H(1)−1 ≥ H(ρ0)
−1 ≥ 0. Therefore, PH(1)−1Q ≥

PH(ρ0)
−1Q≥ 0, for any P∈Ξ,Q∈Ω. By (1), ‖PH(1)−1Q‖≥

‖PH(ρ0)
−1Q‖ ≥ 0, for any P ∈ Ξ,Q ∈ Ω. It follows from (28)

that

‖(∆F ,∆G)‖ ≥
1

supP∈Ξ,Q∈Ω ‖PH(1)−1Q‖

=
1

supP∈Ξ,Q∈Ω
{
‖P

(
Im −A−∑+∞

k=0 B(k)
)−1Q‖

}.

(29)

However, this conflicts with (25).
If supn∈Z+

‖E(n)x‖ > ‖E0x‖, then for given ε > 0, there is
n0 ∈ Z+ such that ‖E(n0)x‖> supn∈Z+

‖E(n)x‖−ε > 0. Mul-
tiplying both sides of (27) from the left by E(n0), we get

(
E(n0)H(ρ0)

−1D0∆F E0
)
x+

( +∞

∑
k=0

E(n0)H(ρ0)
−1D(k)∆G(k)E(k)

)
x = E(n0)x.

Taking norms, we get

‖E(n0)H(ρ0)
−1D0‖.‖∆F‖.‖E0x‖+

+∞

∑
k=0

‖E(n0)H(ρ0)
−1D(k)‖.‖∆G(k)‖‖E(k)x‖ ≥ ‖E(n0)x‖.

It follows that

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖

(
‖∆F‖+

+∞

∑
k=0

‖∆G(k)‖
)
(‖E(n0)x‖+ ε)

≥ ‖E(n0)x‖.

Since ε > 0 is arbitrary, we derive

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖

(
‖∆F‖+

+∞

∑
k=0

‖∆G(k)‖
)
≥ 1.
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of the form (22) remains GES whenever the size of (∆F ,∆G) is
strictly less than η .
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or equivalently,

(ρ0Im −M)x =
(
D0∆F E0 +

+∞

∑
k=0
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)
x. (26)

Let H(t) := (tIm −M), t ∈ R. Since ρ(M)< 1 ≤ ρ0, H(ρ0)
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and H(1)−1 exist and are nonnegative, by Theorem 1.1 (ii).
From (26), it follows that

H(ρ0)
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+∞

∑
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)
x = x. (27)

Since x �= 0 and supn∈Z+
‖E(n)‖<+∞, (27) implies
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{
‖E0x‖, sup
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‖E(n)x‖
}
<+∞.
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{
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‖E(n)x‖
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∑
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‖E0H(ρ0)
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This implies

sup
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‖PH(ρ0)
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‖∆F‖+

+∞

∑
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‖∆G(k)‖
)
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or equivalently,

sup
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‖PH(ρ0)
−1Q‖.‖(∆F ,∆G)‖ ≥ 1. (28)

On the other hand, the resolvent identity gives

H(1)−1 −H(ρ0)
−1 = (ρ0 −1)H(ρ0)

−1H(1)−1 ≥ 0.

This yields H(1)−1 ≥ H(ρ0)
−1 ≥ 0. Therefore, PH(1)−1Q ≥

PH(ρ0)
−1Q≥ 0, for any P∈Ξ,Q∈Ω. By (1), ‖PH(1)−1Q‖≥

‖PH(ρ0)
−1Q‖ ≥ 0, for any P ∈ Ξ,Q ∈ Ω. It follows from (28)

that

‖(∆F ,∆G)‖ ≥
1

supP∈Ξ,Q∈Ω ‖PH(1)−1Q‖

=
1

supP∈Ξ,Q∈Ω
{
‖P

(
Im −A−∑+∞

k=0 B(k)
)−1Q‖

}.

(29)

However, this conflicts with (25).
If supn∈Z+

‖E(n)x‖ > ‖E0x‖, then for given ε > 0, there is
n0 ∈ Z+ such that ‖E(n0)x‖> supn∈Z+

‖E(n)x‖−ε > 0. Mul-
tiplying both sides of (27) from the left by E(n0), we get

(
E(n0)H(ρ0)

−1D0∆F E0
)
x+

( +∞

∑
k=0

E(n0)H(ρ0)
−1D(k)∆G(k)E(k)

)
x = E(n0)x.

Taking norms, we get

‖E(n0)H(ρ0)
−1D0‖.‖∆F‖.‖E0x‖+

+∞

∑
k=0

‖E(n0)H(ρ0)
−1D(k)‖.‖∆G(k)‖‖E(k)x‖ ≥ ‖E(n0)x‖.

It follows that

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖

(
‖∆F‖+

+∞

∑
k=0

‖∆G(k)‖
)
(‖E(n0)x‖+ ε)

≥ ‖E(n0)x‖.

Since ε > 0 is arbitrary, we derive

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖

(
‖∆F‖+

+∞

∑
k=0

‖∆G(k)‖
)
≥ 1.
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1. Introduction
Volterra difference equations have been widely used in the
modeling of processes in continuous mechanics and biome-
chanics, problems of control and estimations and some
schemes of numerical solutions of integral and integro-
differential equations, see e.g. [2], [7], [12], [16]-[19].

Problems of stability of Volterra difference equations have
attracted much attention from researchers, during the last
twenty years, see e.g. [1],[4]-[13], [15], [21]-[23] and refer-
ences therein. Many various methods have been used to inves-
tigate stability of Volterra difference equations such as Lya-
punov functions, Z transform, comparison theorems, topologi-
cal methods, fixed point theorems, etc (see e.g. [7], [10], [15],
[23]).

In particular, the first significant result on exponential sta-
bility of Volterra difference equations is due to Elaydi and
Murakami, see [8]. Roughly speaking, Elaydi and Murakami
showed that even to the simplest Volterra difference equations
(namely, linear time-invariant Volterra difference equations of
convolution type), the exponential stability is “stronger” than
the uniform asymptotic stability. More precisely, a linear time-
invariant Volterra difference equation of convolution type is ex-
ponentially stable if and only if it is uniformly asymptotically
stable and its kernel exponentially decays, see [8]. For further
and updated information on stability of linear time-invariant
Volterra difference equations, we refer to the recent survey pa-
per [10].

In general, problems of global exponential stability of time-
varying Volterra difference equations are very hard even those
of linear time-varying Volterra equations. Most of existing re-
sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
ditions for exponential stability of linear time-varying Volterra
difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
nential stability of nonlinear time-varying Volterra difference
equations. Our approach is based on the celebrated Perron-
Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
nential stability of the zero solution of general nonlinear time-

varying Volterra difference equations. Furthermore, we derive
an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.

2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there

1

+, n ¸ k, x 2 
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chanics, problems of control and estimations and some
schemes of numerical solutions of integral and integro-
differential equations, see e.g. [2], [7], [12], [16]-[19].

Problems of stability of Volterra difference equations have
attracted much attention from researchers, during the last
twenty years, see e.g. [1],[4]-[13], [15], [21]-[23] and refer-
ences therein. Many various methods have been used to inves-
tigate stability of Volterra difference equations such as Lya-
punov functions, Z transform, comparison theorems, topologi-
cal methods, fixed point theorems, etc (see e.g. [7], [10], [15],
[23]).

In particular, the first significant result on exponential sta-
bility of Volterra difference equations is due to Elaydi and
Murakami, see [8]. Roughly speaking, Elaydi and Murakami
showed that even to the simplest Volterra difference equations
(namely, linear time-invariant Volterra difference equations of
convolution type), the exponential stability is “stronger” than
the uniform asymptotic stability. More precisely, a linear time-
invariant Volterra difference equation of convolution type is ex-
ponentially stable if and only if it is uniformly asymptotically
stable and its kernel exponentially decays, see [8]. For further
and updated information on stability of linear time-invariant
Volterra difference equations, we refer to the recent survey pa-
per [10].

In general, problems of global exponential stability of time-
varying Volterra difference equations are very hard even those
of linear time-varying Volterra equations. Most of existing re-
sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
ditions for exponential stability of linear time-varying Volterra
difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
nential stability of nonlinear time-varying Volterra difference
equations. Our approach is based on the celebrated Perron-
Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
nential stability of the zero solution of general nonlinear time-

varying Volterra difference equations. Furthermore, we derive
an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.

2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there

1

m. Invoking (24) and (B(n))n 2  
lγ(

BULLETIN OF THE POLISH ACADEMY OF SCIENCES
TECHNICAL SCIENCES, Vol. XX, No. Y, 2016
DOI: 10.1515/bpasts-2016-00ZZ

Stability of nonlinear Volterra equations

Abstract. Using a novel approach, we present some new explicit criteria for global exponential stability of the zero solution of general
nonlinear time-varying Volterra difference equations. Furthermore, an explicit stability bound for equations subject to nonlinear time-varying
perturbations is given. Finally, the obtained results are used to study uniform attraction of equilibrium of discrete-time bidirectional associative
memory (BAM) neural networks. Some illustrative examples are given.

Key words: Global exponential stability, Volterra equations

1. Introduction
Volterra difference equations have been widely used in the
modeling of processes in continuous mechanics and biome-
chanics, problems of control and estimations and some
schemes of numerical solutions of integral and integro-
differential equations, see e.g. [2], [7], [12], [16]-[19].

Problems of stability of Volterra difference equations have
attracted much attention from researchers, during the last
twenty years, see e.g. [1],[4]-[13], [15], [21]-[23] and refer-
ences therein. Many various methods have been used to inves-
tigate stability of Volterra difference equations such as Lya-
punov functions, Z transform, comparison theorems, topologi-
cal methods, fixed point theorems, etc (see e.g. [7], [10], [15],
[23]).

In particular, the first significant result on exponential sta-
bility of Volterra difference equations is due to Elaydi and
Murakami, see [8]. Roughly speaking, Elaydi and Murakami
showed that even to the simplest Volterra difference equations
(namely, linear time-invariant Volterra difference equations of
convolution type), the exponential stability is “stronger” than
the uniform asymptotic stability. More precisely, a linear time-
invariant Volterra difference equation of convolution type is ex-
ponentially stable if and only if it is uniformly asymptotically
stable and its kernel exponentially decays, see [8]. For further
and updated information on stability of linear time-invariant
Volterra difference equations, we refer to the recent survey pa-
per [10].

In general, problems of global exponential stability of time-
varying Volterra difference equations are very hard even those
of linear time-varying Volterra equations. Most of existing re-
sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
ditions for exponential stability of linear time-varying Volterra
difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
nential stability of nonlinear time-varying Volterra difference
equations. Our approach is based on the celebrated Perron-
Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
nential stability of the zero solution of general nonlinear time-

varying Volterra difference equations. Furthermore, we derive
an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.

2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there

1

m×m), (∆G(n))n 2 lγ0(
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Volterra difference equations have been widely used in the
modeling of processes in continuous mechanics and biome-
chanics, problems of control and estimations and some
schemes of numerical solutions of integral and integro-
differential equations, see e.g. [2], [7], [12], [16]-[19].

Problems of stability of Volterra difference equations have
attracted much attention from researchers, during the last
twenty years, see e.g. [1],[4]-[13], [15], [21]-[23] and refer-
ences therein. Many various methods have been used to inves-
tigate stability of Volterra difference equations such as Lya-
punov functions, Z transform, comparison theorems, topologi-
cal methods, fixed point theorems, etc (see e.g. [7], [10], [15],
[23]).

In particular, the first significant result on exponential sta-
bility of Volterra difference equations is due to Elaydi and
Murakami, see [8]. Roughly speaking, Elaydi and Murakami
showed that even to the simplest Volterra difference equations
(namely, linear time-invariant Volterra difference equations of
convolution type), the exponential stability is “stronger” than
the uniform asymptotic stability. More precisely, a linear time-
invariant Volterra difference equation of convolution type is ex-
ponentially stable if and only if it is uniformly asymptotically
stable and its kernel exponentially decays, see [8]. For further
and updated information on stability of linear time-invariant
Volterra difference equations, we refer to the recent survey pa-
per [10].

In general, problems of global exponential stability of time-
varying Volterra difference equations are very hard even those
of linear time-varying Volterra equations. Most of existing re-
sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
ditions for exponential stability of linear time-varying Volterra
difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
nential stability of nonlinear time-varying Volterra difference
equations. Our approach is based on the celebrated Perron-
Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
nential stability of the zero solution of general nonlinear time-

varying Volterra difference equations. Furthermore, we derive
an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.

2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there

1

m×m), we have (B(n) + D(n)∆G(n)E(n))n  
2 lγ1(
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1. Introduction
Volterra difference equations have been widely used in the
modeling of processes in continuous mechanics and biome-
chanics, problems of control and estimations and some
schemes of numerical solutions of integral and integro-
differential equations, see e.g. [2], [7], [12], [16]-[19].

Problems of stability of Volterra difference equations have
attracted much attention from researchers, during the last
twenty years, see e.g. [1],[4]-[13], [15], [21]-[23] and refer-
ences therein. Many various methods have been used to inves-
tigate stability of Volterra difference equations such as Lya-
punov functions, Z transform, comparison theorems, topologi-
cal methods, fixed point theorems, etc (see e.g. [7], [10], [15],
[23]).

In particular, the first significant result on exponential sta-
bility of Volterra difference equations is due to Elaydi and
Murakami, see [8]. Roughly speaking, Elaydi and Murakami
showed that even to the simplest Volterra difference equations
(namely, linear time-invariant Volterra difference equations of
convolution type), the exponential stability is “stronger” than
the uniform asymptotic stability. More precisely, a linear time-
invariant Volterra difference equation of convolution type is ex-
ponentially stable if and only if it is uniformly asymptotically
stable and its kernel exponentially decays, see [8]. For further
and updated information on stability of linear time-invariant
Volterra difference equations, we refer to the recent survey pa-
per [10].

In general, problems of global exponential stability of time-
varying Volterra difference equations are very hard even those
of linear time-varying Volterra equations. Most of existing re-
sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
ditions for exponential stability of linear time-varying Volterra
difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
nential stability of nonlinear time-varying Volterra difference
equations. Our approach is based on the celebrated Perron-
Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
nential stability of the zero solution of general nonlinear time-

varying Volterra difference equations. Furthermore, we derive
an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.

2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there

1

m×m), with γ1 := min{γ, γ0}.
We show that ρ(A + D0∆FE0 + ∑+

k=
1
0(B(k) + D(k)∆G(k)

E(k))) < 1 and then the zero solution of the perturbed equation 
(22) is GES by Theorem 3.4.

Let M := A + ∑+
k=
1
0 B(k). Since M, D0, ∆F, E0, D(k), ∆G(k), 

E(k), k 2 
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chanics, problems of control and estimations and some
schemes of numerical solutions of integral and integro-
differential equations, see e.g. [2], [7], [12], [16]-[19].

Problems of stability of Volterra difference equations have
attracted much attention from researchers, during the last
twenty years, see e.g. [1],[4]-[13], [15], [21]-[23] and refer-
ences therein. Many various methods have been used to inves-
tigate stability of Volterra difference equations such as Lya-
punov functions, Z transform, comparison theorems, topologi-
cal methods, fixed point theorems, etc (see e.g. [7], [10], [15],
[23]).

In particular, the first significant result on exponential sta-
bility of Volterra difference equations is due to Elaydi and
Murakami, see [8]. Roughly speaking, Elaydi and Murakami
showed that even to the simplest Volterra difference equations
(namely, linear time-invariant Volterra difference equations of
convolution type), the exponential stability is “stronger” than
the uniform asymptotic stability. More precisely, a linear time-
invariant Volterra difference equation of convolution type is ex-
ponentially stable if and only if it is uniformly asymptotically
stable and its kernel exponentially decays, see [8]. For further
and updated information on stability of linear time-invariant
Volterra difference equations, we refer to the recent survey pa-
per [10].

In general, problems of global exponential stability of time-
varying Volterra difference equations are very hard even those
of linear time-varying Volterra equations. Most of existing re-
sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
ditions for exponential stability of linear time-varying Volterra
difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
nential stability of nonlinear time-varying Volterra difference
equations. Our approach is based on the celebrated Perron-
Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
nential stability of the zero solution of general nonlinear time-

varying Volterra difference equations. Furthermore, we derive
an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.

2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there

1

+, are nonnegative, so is M + D0∆FE0 + ∑+
k=
1
0D(k) 

∆G(k)E(k). Assume on the contrary that ρ0 := ρ(M + D0∆FE0 +  
∑+

k=
1
0D(k)∆G(k)E(k)) ¸ 1. By the Perron-Frobenius Theorem 

(Theorem 2.1 (i)), there exists x 2 
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chanics, problems of control and estimations and some
schemes of numerical solutions of integral and integro-
differential equations, see e.g. [2], [7], [12], [16]-[19].

Problems of stability of Volterra difference equations have
attracted much attention from researchers, during the last
twenty years, see e.g. [1],[4]-[13], [15], [21]-[23] and refer-
ences therein. Many various methods have been used to inves-
tigate stability of Volterra difference equations such as Lya-
punov functions, Z transform, comparison theorems, topologi-
cal methods, fixed point theorems, etc (see e.g. [7], [10], [15],
[23]).

In particular, the first significant result on exponential sta-
bility of Volterra difference equations is due to Elaydi and
Murakami, see [8]. Roughly speaking, Elaydi and Murakami
showed that even to the simplest Volterra difference equations
(namely, linear time-invariant Volterra difference equations of
convolution type), the exponential stability is “stronger” than
the uniform asymptotic stability. More precisely, a linear time-
invariant Volterra difference equation of convolution type is ex-
ponentially stable if and only if it is uniformly asymptotically
stable and its kernel exponentially decays, see [8]. For further
and updated information on stability of linear time-invariant
Volterra difference equations, we refer to the recent survey pa-
per [10].

In general, problems of global exponential stability of time-
varying Volterra difference equations are very hard even those
of linear time-varying Volterra equations. Most of existing re-
sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
ditions for exponential stability of linear time-varying Volterra
difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
nential stability of nonlinear time-varying Volterra difference
equations. Our approach is based on the celebrated Perron-
Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
nential stability of the zero solution of general nonlinear time-

varying Volterra difference equations. Furthermore, we derive
an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.

2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there

1

+
m, x  6= 0, such that

Stability of nonlinear Volterra equations

of the form (22) remains GES whenever the size of (∆F ,∆G) is
strictly less than η .

THEOREM 4.1. Assume that (∆G(n))n ∈ lγ0(Rm×m) for
some γ0 > 1 and

max
{

sup
n∈Z+

‖D(n)‖, sup
n∈Z+

‖E(n)‖
}
<+∞. (24)

If

‖(∆F ,∆G)‖<
1

supP∈Ξ,Q∈Ω
{
‖P

(
Im −A−∑+∞

k=0 B(k)
)−1Q‖

},

(25)

where ‖(∆F ,∆G)‖ := ‖∆F‖ + ∑+∞
k=0 ‖∆G(k)‖,

Ξ := {E0,E(0),E(1),E(2), ...} and Ω :=
{D0,D(0),D(1),D(2), ...}, then the zero solution of (22)
remains GES.

Proof. By (17) and (23), it follows that
∣∣F(n,x)+ F̃(n,x)

∣∣≤ (
A+D0∆F E0

)
|x|

and ∣∣(G(n,k,x)+ G̃(n,k,x)
)∣∣

≤
(
B(n− k)+D(n− k)∆G(n− k)E(n− k)

)
|x|,

for all n,k ∈ Z+,n ≥ k,x ∈ Rm. Invoking (24) and
(B(n))n ∈ lγ(Rm×m),(∆G(n))n ∈ lγ0(Rm×m), we have

(
B(n)+

D(n)∆G(n)E(n)
)

n ∈ lγ1(Rm×m), with γ1 := min{γ,γ0}.
We show that ρ

(
A + D0∆F E0 + ∑+∞

k=0

(
B(k) +

D(k)∆G(k)E(k)
))

< 1 and then the zero solution of the
perturbed equation (22) is GES by Theorem 3.4.

Let M := A + ∑+∞
k=0 B(k). Since

M,D0,∆F ,E0,D(k),∆G(k),E(k),k ∈ Z+, are nonnegative, so
is M +D0∆F E0 +∑+∞

k=0 D(k)∆G(k)E(k). Assume on the con-
trary that ρ0 := ρ

(
M +D0∆F E0 +∑+∞

k=0 D(k)∆G(k)E(k)
)
≥ 1.

By the Perron-Frobenius Theorem (Theorem 2.1 (i)), there
exists x ∈ Rm

+,x �= 0, such that

(
M+D0∆F E0 +

+∞

∑
k=0

D(k)∆G(k)E(k)
)
x = ρ0x,

or equivalently,

(ρ0Im −M)x =
(
D0∆F E0 +

+∞

∑
k=0

D(k)∆G(k)E(k)
)
x. (26)

Let H(t) := (tIm −M), t ∈ R. Since ρ(M)< 1 ≤ ρ0, H(ρ0)
−1

and H(1)−1 exist and are nonnegative, by Theorem 1.1 (ii).
From (26), it follows that

H(ρ0)
−1(D0∆F E0 +

+∞

∑
k=0

D(k)∆G(k)E(k)
)
x = x. (27)

Since x �= 0 and supn∈Z+
‖E(n)‖<+∞, (27) implies

0 < max
{
‖E0x‖, sup

n∈Z+

‖E(n)x‖
}
<+∞.

If max
{
‖E0x‖,supn∈Z+

‖E(n)x‖
}
= ‖E0x‖, multiplying both

sides of (27) from the left by E0, we get

(
E0H(ρ0)

−1D0∆F E0
)
x+

( +∞

∑
k=0

E0H(ρ0)
−1D(k)∆G(k)E(k)

)
x = E0x.

Taking norms both sides of the last equation, we have

‖E0H(ρ0)
−1D0‖.‖∆F‖.‖E0x‖+

+∞

∑
k=0

‖E0H(ρ0)
−1D(k)‖.‖∆G(k)‖.‖E(k)x‖ ≥ ‖E0x‖.

This implies

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖

(
‖∆F‖+

+∞

∑
k=0

‖∆G(k)‖
)
‖E0x‖≥‖E0x‖,

or equivalently,

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖.‖(∆F ,∆G)‖ ≥ 1. (28)

On the other hand, the resolvent identity gives

H(1)−1 −H(ρ0)
−1 = (ρ0 −1)H(ρ0)

−1H(1)−1 ≥ 0.

This yields H(1)−1 ≥ H(ρ0)
−1 ≥ 0. Therefore, PH(1)−1Q ≥

PH(ρ0)
−1Q≥ 0, for any P∈Ξ,Q∈Ω. By (1), ‖PH(1)−1Q‖≥

‖PH(ρ0)
−1Q‖ ≥ 0, for any P ∈ Ξ,Q ∈ Ω. It follows from (28)

that

‖(∆F ,∆G)‖ ≥
1

supP∈Ξ,Q∈Ω ‖PH(1)−1Q‖

=
1

supP∈Ξ,Q∈Ω
{
‖P

(
Im −A−∑+∞

k=0 B(k)
)−1Q‖

}.

(29)

However, this conflicts with (25).
If supn∈Z+

‖E(n)x‖ > ‖E0x‖, then for given ε > 0, there is
n0 ∈ Z+ such that ‖E(n0)x‖> supn∈Z+

‖E(n)x‖−ε > 0. Mul-
tiplying both sides of (27) from the left by E(n0), we get

(
E(n0)H(ρ0)

−1D0∆F E0
)
x+

( +∞

∑
k=0

E(n0)H(ρ0)
−1D(k)∆G(k)E(k)

)
x = E(n0)x.

Taking norms, we get

‖E(n0)H(ρ0)
−1D0‖.‖∆F‖.‖E0x‖+

+∞

∑
k=0

‖E(n0)H(ρ0)
−1D(k)‖.‖∆G(k)‖‖E(k)x‖ ≥ ‖E(n0)x‖.

It follows that

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖

(
‖∆F‖+

+∞

∑
k=0

‖∆G(k)‖
)
(‖E(n0)x‖+ ε)

≥ ‖E(n0)x‖.

Since ε > 0 is arbitrary, we derive

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖

(
‖∆F‖+

+∞

∑
k=0

‖∆G(k)‖
)
≥ 1.
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of the form (22) remains GES whenever the size of (∆F ,∆G) is
strictly less than η .

THEOREM 4.1. Assume that (∆G(n))n ∈ lγ0(Rm×m) for
some γ0 > 1 and

max
{

sup
n∈Z+

‖D(n)‖, sup
n∈Z+

‖E(n)‖
}
<+∞. (24)

If

‖(∆F ,∆G)‖<
1

supP∈Ξ,Q∈Ω
{
‖P

(
Im −A−∑+∞

k=0 B(k)
)−1Q‖

},

(25)

where ‖(∆F ,∆G)‖ := ‖∆F‖ + ∑+∞
k=0 ‖∆G(k)‖,

Ξ := {E0,E(0),E(1),E(2), ...} and Ω :=
{D0,D(0),D(1),D(2), ...}, then the zero solution of (22)
remains GES.

Proof. By (17) and (23), it follows that
∣∣F(n,x)+ F̃(n,x)

∣∣≤ (
A+D0∆F E0

)
|x|

and ∣∣(G(n,k,x)+ G̃(n,k,x)
)∣∣

≤
(
B(n− k)+D(n− k)∆G(n− k)E(n− k)

)
|x|,

for all n,k ∈ Z+,n ≥ k,x ∈ Rm. Invoking (24) and
(B(n))n ∈ lγ(Rm×m),(∆G(n))n ∈ lγ0(Rm×m), we have

(
B(n)+

D(n)∆G(n)E(n)
)

n ∈ lγ1(Rm×m), with γ1 := min{γ,γ0}.
We show that ρ

(
A + D0∆F E0 + ∑+∞

k=0

(
B(k) +

D(k)∆G(k)E(k)
))

< 1 and then the zero solution of the
perturbed equation (22) is GES by Theorem 3.4.

Let M := A + ∑+∞
k=0 B(k). Since

M,D0,∆F ,E0,D(k),∆G(k),E(k),k ∈ Z+, are nonnegative, so
is M +D0∆F E0 +∑+∞

k=0 D(k)∆G(k)E(k). Assume on the con-
trary that ρ0 := ρ

(
M +D0∆F E0 +∑+∞

k=0 D(k)∆G(k)E(k)
)
≥ 1.

By the Perron-Frobenius Theorem (Theorem 2.1 (i)), there
exists x ∈ Rm

+,x �= 0, such that

(
M+D0∆F E0 +

+∞

∑
k=0

D(k)∆G(k)E(k)
)
x = ρ0x,

or equivalently,

(ρ0Im −M)x =
(
D0∆F E0 +

+∞

∑
k=0

D(k)∆G(k)E(k)
)
x. (26)

Let H(t) := (tIm −M), t ∈ R. Since ρ(M)< 1 ≤ ρ0, H(ρ0)
−1

and H(1)−1 exist and are nonnegative, by Theorem 1.1 (ii).
From (26), it follows that

H(ρ0)
−1(D0∆F E0 +

+∞

∑
k=0

D(k)∆G(k)E(k)
)
x = x. (27)

Since x �= 0 and supn∈Z+
‖E(n)‖<+∞, (27) implies

0 < max
{
‖E0x‖, sup

n∈Z+

‖E(n)x‖
}
<+∞.

If max
{
‖E0x‖,supn∈Z+

‖E(n)x‖
}
= ‖E0x‖, multiplying both

sides of (27) from the left by E0, we get

(
E0H(ρ0)

−1D0∆F E0
)
x+

( +∞

∑
k=0

E0H(ρ0)
−1D(k)∆G(k)E(k)

)
x = E0x.

Taking norms both sides of the last equation, we have

‖E0H(ρ0)
−1D0‖.‖∆F‖.‖E0x‖+

+∞

∑
k=0

‖E0H(ρ0)
−1D(k)‖.‖∆G(k)‖.‖E(k)x‖ ≥ ‖E0x‖.

This implies

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖

(
‖∆F‖+

+∞

∑
k=0

‖∆G(k)‖
)
‖E0x‖≥‖E0x‖,

or equivalently,

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖.‖(∆F ,∆G)‖ ≥ 1. (28)

On the other hand, the resolvent identity gives

H(1)−1 −H(ρ0)
−1 = (ρ0 −1)H(ρ0)

−1H(1)−1 ≥ 0.

This yields H(1)−1 ≥ H(ρ0)
−1 ≥ 0. Therefore, PH(1)−1Q ≥

PH(ρ0)
−1Q≥ 0, for any P∈Ξ,Q∈Ω. By (1), ‖PH(1)−1Q‖≥

‖PH(ρ0)
−1Q‖ ≥ 0, for any P ∈ Ξ,Q ∈ Ω. It follows from (28)

that

‖(∆F ,∆G)‖ ≥
1

supP∈Ξ,Q∈Ω ‖PH(1)−1Q‖

=
1

supP∈Ξ,Q∈Ω
{
‖P

(
Im −A−∑+∞

k=0 B(k)
)−1Q‖

}.

(29)

However, this conflicts with (25).
If supn∈Z+

‖E(n)x‖ > ‖E0x‖, then for given ε > 0, there is
n0 ∈ Z+ such that ‖E(n0)x‖> supn∈Z+

‖E(n)x‖−ε > 0. Mul-
tiplying both sides of (27) from the left by E(n0), we get

(
E(n0)H(ρ0)

−1D0∆F E0
)
x+

( +∞

∑
k=0

E(n0)H(ρ0)
−1D(k)∆G(k)E(k)

)
x = E(n0)x.

Taking norms, we get

‖E(n0)H(ρ0)
−1D0‖.‖∆F‖.‖E0x‖+

+∞

∑
k=0

‖E(n0)H(ρ0)
−1D(k)‖.‖∆G(k)‖‖E(k)x‖ ≥ ‖E(n0)x‖.

It follows that

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖

(
‖∆F‖+

+∞

∑
k=0

‖∆G(k)‖
)
(‖E(n0)x‖+ ε)

≥ ‖E(n0)x‖.

Since ε > 0 is arbitrary, we derive

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖

(
‖∆F‖+

+∞

∑
k=0

‖∆G(k)‖
)
≥ 1.
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Abstract. Using a novel approach, we present some new explicit criteria for global exponential stability of the zero solution of general
nonlinear time-varying Volterra difference equations. Furthermore, an explicit stability bound for equations subject to nonlinear time-varying
perturbations is given. Finally, the obtained results are used to study uniform attraction of equilibrium of discrete-time bidirectional associative
memory (BAM) neural networks. Some illustrative examples are given.

Key words: Global exponential stability, Volterra equations

1. Introduction
Volterra difference equations have been widely used in the
modeling of processes in continuous mechanics and biome-
chanics, problems of control and estimations and some
schemes of numerical solutions of integral and integro-
differential equations, see e.g. [2], [7], [12], [16]-[19].

Problems of stability of Volterra difference equations have
attracted much attention from researchers, during the last
twenty years, see e.g. [1],[4]-[13], [15], [21]-[23] and refer-
ences therein. Many various methods have been used to inves-
tigate stability of Volterra difference equations such as Lya-
punov functions, Z transform, comparison theorems, topologi-
cal methods, fixed point theorems, etc (see e.g. [7], [10], [15],
[23]).

In particular, the first significant result on exponential sta-
bility of Volterra difference equations is due to Elaydi and
Murakami, see [8]. Roughly speaking, Elaydi and Murakami
showed that even to the simplest Volterra difference equations
(namely, linear time-invariant Volterra difference equations of
convolution type), the exponential stability is “stronger” than
the uniform asymptotic stability. More precisely, a linear time-
invariant Volterra difference equation of convolution type is ex-
ponentially stable if and only if it is uniformly asymptotically
stable and its kernel exponentially decays, see [8]. For further
and updated information on stability of linear time-invariant
Volterra difference equations, we refer to the recent survey pa-
per [10].

In general, problems of global exponential stability of time-
varying Volterra difference equations are very hard even those
of linear time-varying Volterra equations. Most of existing re-
sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
ditions for exponential stability of linear time-varying Volterra
difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
nential stability of nonlinear time-varying Volterra difference
equations. Our approach is based on the celebrated Perron-
Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
nential stability of the zero solution of general nonlinear time-

varying Volterra difference equations. Furthermore, we derive
an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.

2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there

1

. Since ρ(M) < 1 ∙ ρ0, H(ρ0)
–1 and 

H(1)–1 exist and are nonnegative, by Theorem 1.1 (ii). From 
(26), it follows that

	

Stability of nonlinear Volterra equations

of the form (22) remains GES whenever the size of (∆F ,∆G) is
strictly less than η .

THEOREM 4.1. Assume that (∆G(n))n ∈ lγ0(Rm×m) for
some γ0 > 1 and

max
{

sup
n∈Z+

‖D(n)‖, sup
n∈Z+

‖E(n)‖
}
<+∞. (24)

If

‖(∆F ,∆G)‖<
1

supP∈Ξ,Q∈Ω
{
‖P

(
Im −A−∑+∞

k=0 B(k)
)−1Q‖

},

(25)

where ‖(∆F ,∆G)‖ := ‖∆F‖ + ∑+∞
k=0 ‖∆G(k)‖,

Ξ := {E0,E(0),E(1),E(2), ...} and Ω :=
{D0,D(0),D(1),D(2), ...}, then the zero solution of (22)
remains GES.

Proof. By (17) and (23), it follows that
∣∣F(n,x)+ F̃(n,x)

∣∣≤ (
A+D0∆F E0

)
|x|

and ∣∣(G(n,k,x)+ G̃(n,k,x)
)∣∣

≤
(
B(n− k)+D(n− k)∆G(n− k)E(n− k)

)
|x|,

for all n,k ∈ Z+,n ≥ k,x ∈ Rm. Invoking (24) and
(B(n))n ∈ lγ(Rm×m),(∆G(n))n ∈ lγ0(Rm×m), we have

(
B(n)+

D(n)∆G(n)E(n)
)

n ∈ lγ1(Rm×m), with γ1 := min{γ,γ0}.
We show that ρ

(
A + D0∆F E0 + ∑+∞

k=0

(
B(k) +

D(k)∆G(k)E(k)
))

< 1 and then the zero solution of the
perturbed equation (22) is GES by Theorem 3.4.

Let M := A + ∑+∞
k=0 B(k). Since

M,D0,∆F ,E0,D(k),∆G(k),E(k),k ∈ Z+, are nonnegative, so
is M +D0∆F E0 +∑+∞

k=0 D(k)∆G(k)E(k). Assume on the con-
trary that ρ0 := ρ

(
M +D0∆F E0 +∑+∞

k=0 D(k)∆G(k)E(k)
)
≥ 1.

By the Perron-Frobenius Theorem (Theorem 2.1 (i)), there
exists x ∈ Rm

+,x �= 0, such that

(
M+D0∆F E0 +

+∞

∑
k=0

D(k)∆G(k)E(k)
)
x = ρ0x,

or equivalently,

(ρ0Im −M)x =
(
D0∆F E0 +

+∞

∑
k=0

D(k)∆G(k)E(k)
)
x. (26)

Let H(t) := (tIm −M), t ∈ R. Since ρ(M)< 1 ≤ ρ0, H(ρ0)
−1

and H(1)−1 exist and are nonnegative, by Theorem 1.1 (ii).
From (26), it follows that

H(ρ0)
−1(D0∆F E0 +

+∞

∑
k=0

D(k)∆G(k)E(k)
)
x = x. (27)

Since x �= 0 and supn∈Z+
‖E(n)‖<+∞, (27) implies

0 < max
{
‖E0x‖, sup

n∈Z+

‖E(n)x‖
}
<+∞.

If max
{
‖E0x‖,supn∈Z+

‖E(n)x‖
}
= ‖E0x‖, multiplying both

sides of (27) from the left by E0, we get

(
E0H(ρ0)

−1D0∆F E0
)
x+

( +∞

∑
k=0

E0H(ρ0)
−1D(k)∆G(k)E(k)

)
x = E0x.

Taking norms both sides of the last equation, we have

‖E0H(ρ0)
−1D0‖.‖∆F‖.‖E0x‖+

+∞

∑
k=0

‖E0H(ρ0)
−1D(k)‖.‖∆G(k)‖.‖E(k)x‖ ≥ ‖E0x‖.

This implies

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖

(
‖∆F‖+

+∞

∑
k=0

‖∆G(k)‖
)
‖E0x‖≥‖E0x‖,

or equivalently,

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖.‖(∆F ,∆G)‖ ≥ 1. (28)

On the other hand, the resolvent identity gives

H(1)−1 −H(ρ0)
−1 = (ρ0 −1)H(ρ0)

−1H(1)−1 ≥ 0.

This yields H(1)−1 ≥ H(ρ0)
−1 ≥ 0. Therefore, PH(1)−1Q ≥

PH(ρ0)
−1Q≥ 0, for any P∈Ξ,Q∈Ω. By (1), ‖PH(1)−1Q‖≥

‖PH(ρ0)
−1Q‖ ≥ 0, for any P ∈ Ξ,Q ∈ Ω. It follows from (28)

that

‖(∆F ,∆G)‖ ≥
1

supP∈Ξ,Q∈Ω ‖PH(1)−1Q‖

=
1

supP∈Ξ,Q∈Ω
{
‖P

(
Im −A−∑+∞

k=0 B(k)
)−1Q‖

}.

(29)

However, this conflicts with (25).
If supn∈Z+

‖E(n)x‖ > ‖E0x‖, then for given ε > 0, there is
n0 ∈ Z+ such that ‖E(n0)x‖> supn∈Z+

‖E(n)x‖−ε > 0. Mul-
tiplying both sides of (27) from the left by E(n0), we get

(
E(n0)H(ρ0)

−1D0∆F E0
)
x+

( +∞

∑
k=0

E(n0)H(ρ0)
−1D(k)∆G(k)E(k)

)
x = E(n0)x.

Taking norms, we get

‖E(n0)H(ρ0)
−1D0‖.‖∆F‖.‖E0x‖+

+∞

∑
k=0

‖E(n0)H(ρ0)
−1D(k)‖.‖∆G(k)‖‖E(k)x‖ ≥ ‖E(n0)x‖.

It follows that

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖

(
‖∆F‖+

+∞

∑
k=0

‖∆G(k)‖
)
(‖E(n0)x‖+ ε)

≥ ‖E(n0)x‖.

Since ε > 0 is arbitrary, we derive

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖

(
‖∆F‖+

+∞

∑
k=0

‖∆G(k)‖
)
≥ 1.
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1. Introduction
Volterra difference equations have been widely used in the
modeling of processes in continuous mechanics and biome-
chanics, problems of control and estimations and some
schemes of numerical solutions of integral and integro-
differential equations, see e.g. [2], [7], [12], [16]-[19].

Problems of stability of Volterra difference equations have
attracted much attention from researchers, during the last
twenty years, see e.g. [1],[4]-[13], [15], [21]-[23] and refer-
ences therein. Many various methods have been used to inves-
tigate stability of Volterra difference equations such as Lya-
punov functions, Z transform, comparison theorems, topologi-
cal methods, fixed point theorems, etc (see e.g. [7], [10], [15],
[23]).

In particular, the first significant result on exponential sta-
bility of Volterra difference equations is due to Elaydi and
Murakami, see [8]. Roughly speaking, Elaydi and Murakami
showed that even to the simplest Volterra difference equations
(namely, linear time-invariant Volterra difference equations of
convolution type), the exponential stability is “stronger” than
the uniform asymptotic stability. More precisely, a linear time-
invariant Volterra difference equation of convolution type is ex-
ponentially stable if and only if it is uniformly asymptotically
stable and its kernel exponentially decays, see [8]. For further
and updated information on stability of linear time-invariant
Volterra difference equations, we refer to the recent survey pa-
per [10].

In general, problems of global exponential stability of time-
varying Volterra difference equations are very hard even those
of linear time-varying Volterra equations. Most of existing re-
sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
ditions for exponential stability of linear time-varying Volterra
difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
nential stability of nonlinear time-varying Volterra difference
equations. Our approach is based on the celebrated Perron-
Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
nential stability of the zero solution of general nonlinear time-

varying Volterra difference equations. Furthermore, we derive
an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.

2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there

1

+
kE(n)k < +1, (27) implies
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of the form (22) remains GES whenever the size of (∆F ,∆G) is
strictly less than η .

THEOREM 4.1. Assume that (∆G(n))n ∈ lγ0(Rm×m) for
some γ0 > 1 and

max
{

sup
n∈Z+

‖D(n)‖, sup
n∈Z+

‖E(n)‖
}
<+∞. (24)

If

‖(∆F ,∆G)‖<
1

supP∈Ξ,Q∈Ω
{
‖P

(
Im −A−∑+∞

k=0 B(k)
)−1Q‖

},

(25)

where ‖(∆F ,∆G)‖ := ‖∆F‖ + ∑+∞
k=0 ‖∆G(k)‖,

Ξ := {E0,E(0),E(1),E(2), ...} and Ω :=
{D0,D(0),D(1),D(2), ...}, then the zero solution of (22)
remains GES.

Proof. By (17) and (23), it follows that
∣∣F(n,x)+ F̃(n,x)

∣∣≤ (
A+D0∆F E0

)
|x|

and ∣∣(G(n,k,x)+ G̃(n,k,x)
)∣∣

≤
(
B(n− k)+D(n− k)∆G(n− k)E(n− k)

)
|x|,

for all n,k ∈ Z+,n ≥ k,x ∈ Rm. Invoking (24) and
(B(n))n ∈ lγ(Rm×m),(∆G(n))n ∈ lγ0(Rm×m), we have

(
B(n)+

D(n)∆G(n)E(n)
)

n ∈ lγ1(Rm×m), with γ1 := min{γ,γ0}.
We show that ρ

(
A + D0∆F E0 + ∑+∞

k=0

(
B(k) +

D(k)∆G(k)E(k)
))

< 1 and then the zero solution of the
perturbed equation (22) is GES by Theorem 3.4.

Let M := A + ∑+∞
k=0 B(k). Since

M,D0,∆F ,E0,D(k),∆G(k),E(k),k ∈ Z+, are nonnegative, so
is M +D0∆F E0 +∑+∞

k=0 D(k)∆G(k)E(k). Assume on the con-
trary that ρ0 := ρ

(
M +D0∆F E0 +∑+∞

k=0 D(k)∆G(k)E(k)
)
≥ 1.

By the Perron-Frobenius Theorem (Theorem 2.1 (i)), there
exists x ∈ Rm

+,x �= 0, such that

(
M+D0∆F E0 +

+∞

∑
k=0

D(k)∆G(k)E(k)
)
x = ρ0x,

or equivalently,

(ρ0Im −M)x =
(
D0∆F E0 +

+∞

∑
k=0

D(k)∆G(k)E(k)
)
x. (26)

Let H(t) := (tIm −M), t ∈ R. Since ρ(M)< 1 ≤ ρ0, H(ρ0)
−1

and H(1)−1 exist and are nonnegative, by Theorem 1.1 (ii).
From (26), it follows that

H(ρ0)
−1(D0∆F E0 +

+∞

∑
k=0

D(k)∆G(k)E(k)
)
x = x. (27)

Since x �= 0 and supn∈Z+
‖E(n)‖<+∞, (27) implies

0 < max
{
‖E0x‖, sup

n∈Z+

‖E(n)x‖
}
<+∞.

If max
{
‖E0x‖,supn∈Z+

‖E(n)x‖
}
= ‖E0x‖, multiplying both

sides of (27) from the left by E0, we get

(
E0H(ρ0)

−1D0∆F E0
)
x+

( +∞

∑
k=0

E0H(ρ0)
−1D(k)∆G(k)E(k)

)
x = E0x.

Taking norms both sides of the last equation, we have

‖E0H(ρ0)
−1D0‖.‖∆F‖.‖E0x‖+

+∞

∑
k=0

‖E0H(ρ0)
−1D(k)‖.‖∆G(k)‖.‖E(k)x‖ ≥ ‖E0x‖.

This implies

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖

(
‖∆F‖+

+∞

∑
k=0

‖∆G(k)‖
)
‖E0x‖≥‖E0x‖,

or equivalently,

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖.‖(∆F ,∆G)‖ ≥ 1. (28)

On the other hand, the resolvent identity gives

H(1)−1 −H(ρ0)
−1 = (ρ0 −1)H(ρ0)

−1H(1)−1 ≥ 0.

This yields H(1)−1 ≥ H(ρ0)
−1 ≥ 0. Therefore, PH(1)−1Q ≥

PH(ρ0)
−1Q≥ 0, for any P∈Ξ,Q∈Ω. By (1), ‖PH(1)−1Q‖≥

‖PH(ρ0)
−1Q‖ ≥ 0, for any P ∈ Ξ,Q ∈ Ω. It follows from (28)

that

‖(∆F ,∆G)‖ ≥
1

supP∈Ξ,Q∈Ω ‖PH(1)−1Q‖

=
1

supP∈Ξ,Q∈Ω
{
‖P

(
Im −A−∑+∞

k=0 B(k)
)−1Q‖

}.

(29)

However, this conflicts with (25).
If supn∈Z+

‖E(n)x‖ > ‖E0x‖, then for given ε > 0, there is
n0 ∈ Z+ such that ‖E(n0)x‖> supn∈Z+

‖E(n)x‖−ε > 0. Mul-
tiplying both sides of (27) from the left by E(n0), we get

(
E(n0)H(ρ0)

−1D0∆F E0
)
x+

( +∞

∑
k=0

E(n0)H(ρ0)
−1D(k)∆G(k)E(k)

)
x = E(n0)x.

Taking norms, we get

‖E(n0)H(ρ0)
−1D0‖.‖∆F‖.‖E0x‖+

+∞

∑
k=0

‖E(n0)H(ρ0)
−1D(k)‖.‖∆G(k)‖‖E(k)x‖ ≥ ‖E(n0)x‖.

It follows that

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖

(
‖∆F‖+

+∞

∑
k=0

‖∆G(k)‖
)
(‖E(n0)x‖+ ε)

≥ ‖E(n0)x‖.

Since ε > 0 is arbitrary, we derive

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖

(
‖∆F‖+

+∞

∑
k=0

‖∆G(k)‖
)
≥ 1.
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1. Introduction
Volterra difference equations have been widely used in the
modeling of processes in continuous mechanics and biome-
chanics, problems of control and estimations and some
schemes of numerical solutions of integral and integro-
differential equations, see e.g. [2], [7], [12], [16]-[19].

Problems of stability of Volterra difference equations have
attracted much attention from researchers, during the last
twenty years, see e.g. [1],[4]-[13], [15], [21]-[23] and refer-
ences therein. Many various methods have been used to inves-
tigate stability of Volterra difference equations such as Lya-
punov functions, Z transform, comparison theorems, topologi-
cal methods, fixed point theorems, etc (see e.g. [7], [10], [15],
[23]).

In particular, the first significant result on exponential sta-
bility of Volterra difference equations is due to Elaydi and
Murakami, see [8]. Roughly speaking, Elaydi and Murakami
showed that even to the simplest Volterra difference equations
(namely, linear time-invariant Volterra difference equations of
convolution type), the exponential stability is “stronger” than
the uniform asymptotic stability. More precisely, a linear time-
invariant Volterra difference equation of convolution type is ex-
ponentially stable if and only if it is uniformly asymptotically
stable and its kernel exponentially decays, see [8]. For further
and updated information on stability of linear time-invariant
Volterra difference equations, we refer to the recent survey pa-
per [10].

In general, problems of global exponential stability of time-
varying Volterra difference equations are very hard even those
of linear time-varying Volterra equations. Most of existing re-
sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
ditions for exponential stability of linear time-varying Volterra
difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
nential stability of nonlinear time-varying Volterra difference
equations. Our approach is based on the celebrated Perron-
Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
nential stability of the zero solution of general nonlinear time-

varying Volterra difference equations. Furthermore, we derive
an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.

2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there

1

+
kE(n)xk} = kE0xk, multiplying both sides 

of (27) from the left by E0, we get
Stability of nonlinear Volterra equations

of the form (22) remains GES whenever the size of (∆F ,∆G) is
strictly less than η .

THEOREM 4.1. Assume that (∆G(n))n ∈ lγ0(Rm×m) for
some γ0 > 1 and

max
{

sup
n∈Z+

‖D(n)‖, sup
n∈Z+

‖E(n)‖
}
<+∞. (24)

If

‖(∆F ,∆G)‖<
1

supP∈Ξ,Q∈Ω
{
‖P

(
Im −A−∑+∞

k=0 B(k)
)−1Q‖

},

(25)

where ‖(∆F ,∆G)‖ := ‖∆F‖ + ∑+∞
k=0 ‖∆G(k)‖,

Ξ := {E0,E(0),E(1),E(2), ...} and Ω :=
{D0,D(0),D(1),D(2), ...}, then the zero solution of (22)
remains GES.

Proof. By (17) and (23), it follows that
∣∣F(n,x)+ F̃(n,x)

∣∣≤ (
A+D0∆F E0

)
|x|

and ∣∣(G(n,k,x)+ G̃(n,k,x)
)∣∣

≤
(
B(n− k)+D(n− k)∆G(n− k)E(n− k)

)
|x|,

for all n,k ∈ Z+,n ≥ k,x ∈ Rm. Invoking (24) and
(B(n))n ∈ lγ(Rm×m),(∆G(n))n ∈ lγ0(Rm×m), we have

(
B(n)+

D(n)∆G(n)E(n)
)

n ∈ lγ1(Rm×m), with γ1 := min{γ,γ0}.
We show that ρ

(
A + D0∆F E0 + ∑+∞

k=0

(
B(k) +

D(k)∆G(k)E(k)
))

< 1 and then the zero solution of the
perturbed equation (22) is GES by Theorem 3.4.

Let M := A + ∑+∞
k=0 B(k). Since

M,D0,∆F ,E0,D(k),∆G(k),E(k),k ∈ Z+, are nonnegative, so
is M +D0∆F E0 +∑+∞

k=0 D(k)∆G(k)E(k). Assume on the con-
trary that ρ0 := ρ

(
M +D0∆F E0 +∑+∞

k=0 D(k)∆G(k)E(k)
)
≥ 1.

By the Perron-Frobenius Theorem (Theorem 2.1 (i)), there
exists x ∈ Rm

+,x �= 0, such that

(
M+D0∆F E0 +

+∞

∑
k=0

D(k)∆G(k)E(k)
)
x = ρ0x,

or equivalently,

(ρ0Im −M)x =
(
D0∆F E0 +

+∞

∑
k=0

D(k)∆G(k)E(k)
)
x. (26)

Let H(t) := (tIm −M), t ∈ R. Since ρ(M)< 1 ≤ ρ0, H(ρ0)
−1

and H(1)−1 exist and are nonnegative, by Theorem 1.1 (ii).
From (26), it follows that

H(ρ0)
−1(D0∆F E0 +

+∞

∑
k=0

D(k)∆G(k)E(k)
)
x = x. (27)

Since x �= 0 and supn∈Z+
‖E(n)‖<+∞, (27) implies

0 < max
{
‖E0x‖, sup

n∈Z+

‖E(n)x‖
}
<+∞.

If max
{
‖E0x‖,supn∈Z+

‖E(n)x‖
}
= ‖E0x‖, multiplying both

sides of (27) from the left by E0, we get

(
E0H(ρ0)

−1D0∆F E0
)
x+

( +∞

∑
k=0

E0H(ρ0)
−1D(k)∆G(k)E(k)

)
x = E0x.

Taking norms both sides of the last equation, we have

‖E0H(ρ0)
−1D0‖.‖∆F‖.‖E0x‖+

+∞

∑
k=0

‖E0H(ρ0)
−1D(k)‖.‖∆G(k)‖.‖E(k)x‖ ≥ ‖E0x‖.

This implies

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖

(
‖∆F‖+

+∞

∑
k=0

‖∆G(k)‖
)
‖E0x‖≥‖E0x‖,

or equivalently,

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖.‖(∆F ,∆G)‖ ≥ 1. (28)

On the other hand, the resolvent identity gives

H(1)−1 −H(ρ0)
−1 = (ρ0 −1)H(ρ0)

−1H(1)−1 ≥ 0.

This yields H(1)−1 ≥ H(ρ0)
−1 ≥ 0. Therefore, PH(1)−1Q ≥

PH(ρ0)
−1Q≥ 0, for any P∈Ξ,Q∈Ω. By (1), ‖PH(1)−1Q‖≥

‖PH(ρ0)
−1Q‖ ≥ 0, for any P ∈ Ξ,Q ∈ Ω. It follows from (28)

that

‖(∆F ,∆G)‖ ≥
1

supP∈Ξ,Q∈Ω ‖PH(1)−1Q‖

=
1

supP∈Ξ,Q∈Ω
{
‖P

(
Im −A−∑+∞

k=0 B(k)
)−1Q‖

}.

(29)

However, this conflicts with (25).
If supn∈Z+

‖E(n)x‖ > ‖E0x‖, then for given ε > 0, there is
n0 ∈ Z+ such that ‖E(n0)x‖> supn∈Z+

‖E(n)x‖−ε > 0. Mul-
tiplying both sides of (27) from the left by E(n0), we get

(
E(n0)H(ρ0)

−1D0∆F E0
)
x+

( +∞

∑
k=0

E(n0)H(ρ0)
−1D(k)∆G(k)E(k)

)
x = E(n0)x.

Taking norms, we get

‖E(n0)H(ρ0)
−1D0‖.‖∆F‖.‖E0x‖+

+∞

∑
k=0

‖E(n0)H(ρ0)
−1D(k)‖.‖∆G(k)‖‖E(k)x‖ ≥ ‖E(n0)x‖.

It follows that

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖

(
‖∆F‖+

+∞

∑
k=0

‖∆G(k)‖
)
(‖E(n0)x‖+ ε)

≥ ‖E(n0)x‖.

Since ε > 0 is arbitrary, we derive

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖

(
‖∆F‖+

+∞

∑
k=0

‖∆G(k)‖
)
≥ 1.
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Stability of nonlinear Volterra equations

of the form (22) remains GES whenever the size of (∆F ,∆G) is
strictly less than η .

THEOREM 4.1. Assume that (∆G(n))n ∈ lγ0(Rm×m) for
some γ0 > 1 and

max
{

sup
n∈Z+

‖D(n)‖, sup
n∈Z+

‖E(n)‖
}
<+∞. (24)

If

‖(∆F ,∆G)‖<
1

supP∈Ξ,Q∈Ω
{
‖P

(
Im −A−∑+∞

k=0 B(k)
)−1Q‖

},

(25)

where ‖(∆F ,∆G)‖ := ‖∆F‖ + ∑+∞
k=0 ‖∆G(k)‖,

Ξ := {E0,E(0),E(1),E(2), ...} and Ω :=
{D0,D(0),D(1),D(2), ...}, then the zero solution of (22)
remains GES.

Proof. By (17) and (23), it follows that
∣∣F(n,x)+ F̃(n,x)

∣∣≤ (
A+D0∆F E0

)
|x|

and ∣∣(G(n,k,x)+ G̃(n,k,x)
)∣∣

≤
(
B(n− k)+D(n− k)∆G(n− k)E(n− k)

)
|x|,

for all n,k ∈ Z+,n ≥ k,x ∈ Rm. Invoking (24) and
(B(n))n ∈ lγ(Rm×m),(∆G(n))n ∈ lγ0(Rm×m), we have

(
B(n)+

D(n)∆G(n)E(n)
)

n ∈ lγ1(Rm×m), with γ1 := min{γ,γ0}.
We show that ρ

(
A + D0∆F E0 + ∑+∞

k=0

(
B(k) +

D(k)∆G(k)E(k)
))

< 1 and then the zero solution of the
perturbed equation (22) is GES by Theorem 3.4.

Let M := A + ∑+∞
k=0 B(k). Since

M,D0,∆F ,E0,D(k),∆G(k),E(k),k ∈ Z+, are nonnegative, so
is M +D0∆F E0 +∑+∞

k=0 D(k)∆G(k)E(k). Assume on the con-
trary that ρ0 := ρ

(
M +D0∆F E0 +∑+∞

k=0 D(k)∆G(k)E(k)
)
≥ 1.

By the Perron-Frobenius Theorem (Theorem 2.1 (i)), there
exists x ∈ Rm

+,x �= 0, such that

(
M+D0∆F E0 +

+∞

∑
k=0

D(k)∆G(k)E(k)
)
x = ρ0x,

or equivalently,

(ρ0Im −M)x =
(
D0∆F E0 +

+∞

∑
k=0

D(k)∆G(k)E(k)
)
x. (26)

Let H(t) := (tIm −M), t ∈ R. Since ρ(M)< 1 ≤ ρ0, H(ρ0)
−1

and H(1)−1 exist and are nonnegative, by Theorem 1.1 (ii).
From (26), it follows that

H(ρ0)
−1(D0∆F E0 +

+∞

∑
k=0

D(k)∆G(k)E(k)
)
x = x. (27)

Since x �= 0 and supn∈Z+
‖E(n)‖<+∞, (27) implies

0 < max
{
‖E0x‖, sup

n∈Z+

‖E(n)x‖
}
<+∞.

If max
{
‖E0x‖,supn∈Z+

‖E(n)x‖
}
= ‖E0x‖, multiplying both

sides of (27) from the left by E0, we get

(
E0H(ρ0)

−1D0∆F E0
)
x+

( +∞

∑
k=0

E0H(ρ0)
−1D(k)∆G(k)E(k)

)
x = E0x.

Taking norms both sides of the last equation, we have

‖E0H(ρ0)
−1D0‖.‖∆F‖.‖E0x‖+

+∞

∑
k=0

‖E0H(ρ0)
−1D(k)‖.‖∆G(k)‖.‖E(k)x‖ ≥ ‖E0x‖.

This implies

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖

(
‖∆F‖+

+∞

∑
k=0

‖∆G(k)‖
)
‖E0x‖≥‖E0x‖,

or equivalently,

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖.‖(∆F ,∆G)‖ ≥ 1. (28)

On the other hand, the resolvent identity gives

H(1)−1 −H(ρ0)
−1 = (ρ0 −1)H(ρ0)

−1H(1)−1 ≥ 0.

This yields H(1)−1 ≥ H(ρ0)
−1 ≥ 0. Therefore, PH(1)−1Q ≥

PH(ρ0)
−1Q≥ 0, for any P∈Ξ,Q∈Ω. By (1), ‖PH(1)−1Q‖≥

‖PH(ρ0)
−1Q‖ ≥ 0, for any P ∈ Ξ,Q ∈ Ω. It follows from (28)

that

‖(∆F ,∆G)‖ ≥
1

supP∈Ξ,Q∈Ω ‖PH(1)−1Q‖

=
1

supP∈Ξ,Q∈Ω
{
‖P

(
Im −A−∑+∞

k=0 B(k)
)−1Q‖

}.

(29)

However, this conflicts with (25).
If supn∈Z+

‖E(n)x‖ > ‖E0x‖, then for given ε > 0, there is
n0 ∈ Z+ such that ‖E(n0)x‖> supn∈Z+

‖E(n)x‖−ε > 0. Mul-
tiplying both sides of (27) from the left by E(n0), we get

(
E(n0)H(ρ0)

−1D0∆F E0
)
x+

( +∞

∑
k=0

E(n0)H(ρ0)
−1D(k)∆G(k)E(k)

)
x = E(n0)x.

Taking norms, we get

‖E(n0)H(ρ0)
−1D0‖.‖∆F‖.‖E0x‖+

+∞

∑
k=0

‖E(n0)H(ρ0)
−1D(k)‖.‖∆G(k)‖‖E(k)x‖ ≥ ‖E(n0)x‖.

It follows that

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖

(
‖∆F‖+

+∞

∑
k=0

‖∆G(k)‖
)
(‖E(n0)x‖+ ε)

≥ ‖E(n0)x‖.

Since ε > 0 is arbitrary, we derive

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖

(
‖∆F‖+

+∞

∑
k=0

‖∆G(k)‖
)
≥ 1.
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Stability of nonlinear Volterra equations

of the form (22) remains GES whenever the size of (∆F ,∆G) is
strictly less than η .

THEOREM 4.1. Assume that (∆G(n))n ∈ lγ0(Rm×m) for
some γ0 > 1 and

max
{

sup
n∈Z+

‖D(n)‖, sup
n∈Z+

‖E(n)‖
}
<+∞. (24)

If

‖(∆F ,∆G)‖<
1

supP∈Ξ,Q∈Ω
{
‖P

(
Im −A−∑+∞

k=0 B(k)
)−1Q‖

},

(25)

where ‖(∆F ,∆G)‖ := ‖∆F‖ + ∑+∞
k=0 ‖∆G(k)‖,

Ξ := {E0,E(0),E(1),E(2), ...} and Ω :=
{D0,D(0),D(1),D(2), ...}, then the zero solution of (22)
remains GES.

Proof. By (17) and (23), it follows that
∣∣F(n,x)+ F̃(n,x)

∣∣≤ (
A+D0∆F E0

)
|x|

and ∣∣(G(n,k,x)+ G̃(n,k,x)
)∣∣

≤
(
B(n− k)+D(n− k)∆G(n− k)E(n− k)

)
|x|,

for all n,k ∈ Z+,n ≥ k,x ∈ Rm. Invoking (24) and
(B(n))n ∈ lγ(Rm×m),(∆G(n))n ∈ lγ0(Rm×m), we have

(
B(n)+

D(n)∆G(n)E(n)
)

n ∈ lγ1(Rm×m), with γ1 := min{γ,γ0}.
We show that ρ

(
A + D0∆F E0 + ∑+∞

k=0

(
B(k) +

D(k)∆G(k)E(k)
))

< 1 and then the zero solution of the
perturbed equation (22) is GES by Theorem 3.4.

Let M := A + ∑+∞
k=0 B(k). Since

M,D0,∆F ,E0,D(k),∆G(k),E(k),k ∈ Z+, are nonnegative, so
is M +D0∆F E0 +∑+∞

k=0 D(k)∆G(k)E(k). Assume on the con-
trary that ρ0 := ρ

(
M +D0∆F E0 +∑+∞

k=0 D(k)∆G(k)E(k)
)
≥ 1.

By the Perron-Frobenius Theorem (Theorem 2.1 (i)), there
exists x ∈ Rm

+,x �= 0, such that

(
M+D0∆F E0 +

+∞

∑
k=0

D(k)∆G(k)E(k)
)
x = ρ0x,

or equivalently,

(ρ0Im −M)x =
(
D0∆F E0 +

+∞

∑
k=0

D(k)∆G(k)E(k)
)
x. (26)

Let H(t) := (tIm −M), t ∈ R. Since ρ(M)< 1 ≤ ρ0, H(ρ0)
−1

and H(1)−1 exist and are nonnegative, by Theorem 1.1 (ii).
From (26), it follows that

H(ρ0)
−1(D0∆F E0 +

+∞

∑
k=0

D(k)∆G(k)E(k)
)
x = x. (27)

Since x �= 0 and supn∈Z+
‖E(n)‖<+∞, (27) implies

0 < max
{
‖E0x‖, sup

n∈Z+

‖E(n)x‖
}
<+∞.

If max
{
‖E0x‖,supn∈Z+

‖E(n)x‖
}
= ‖E0x‖, multiplying both

sides of (27) from the left by E0, we get

(
E0H(ρ0)

−1D0∆F E0
)
x+

( +∞

∑
k=0

E0H(ρ0)
−1D(k)∆G(k)E(k)

)
x = E0x.

Taking norms both sides of the last equation, we have

‖E0H(ρ0)
−1D0‖.‖∆F‖.‖E0x‖+

+∞

∑
k=0

‖E0H(ρ0)
−1D(k)‖.‖∆G(k)‖.‖E(k)x‖ ≥ ‖E0x‖.

This implies

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖

(
‖∆F‖+

+∞

∑
k=0

‖∆G(k)‖
)
‖E0x‖≥‖E0x‖,

or equivalently,

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖.‖(∆F ,∆G)‖ ≥ 1. (28)

On the other hand, the resolvent identity gives

H(1)−1 −H(ρ0)
−1 = (ρ0 −1)H(ρ0)

−1H(1)−1 ≥ 0.

This yields H(1)−1 ≥ H(ρ0)
−1 ≥ 0. Therefore, PH(1)−1Q ≥

PH(ρ0)
−1Q≥ 0, for any P∈Ξ,Q∈Ω. By (1), ‖PH(1)−1Q‖≥

‖PH(ρ0)
−1Q‖ ≥ 0, for any P ∈ Ξ,Q ∈ Ω. It follows from (28)

that

‖(∆F ,∆G)‖ ≥
1

supP∈Ξ,Q∈Ω ‖PH(1)−1Q‖

=
1

supP∈Ξ,Q∈Ω
{
‖P

(
Im −A−∑+∞

k=0 B(k)
)−1Q‖

}.

(29)

However, this conflicts with (25).
If supn∈Z+

‖E(n)x‖ > ‖E0x‖, then for given ε > 0, there is
n0 ∈ Z+ such that ‖E(n0)x‖> supn∈Z+

‖E(n)x‖−ε > 0. Mul-
tiplying both sides of (27) from the left by E(n0), we get

(
E(n0)H(ρ0)

−1D0∆F E0
)
x+

( +∞

∑
k=0

E(n0)H(ρ0)
−1D(k)∆G(k)E(k)

)
x = E(n0)x.

Taking norms, we get

‖E(n0)H(ρ0)
−1D0‖.‖∆F‖.‖E0x‖+

+∞

∑
k=0

‖E(n0)H(ρ0)
−1D(k)‖.‖∆G(k)‖‖E(k)x‖ ≥ ‖E(n0)x‖.

It follows that

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖

(
‖∆F‖+

+∞

∑
k=0

‖∆G(k)‖
)
(‖E(n0)x‖+ ε)

≥ ‖E(n0)x‖.

Since ε > 0 is arbitrary, we derive

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖

(
‖∆F‖+

+∞

∑
k=0

‖∆G(k)‖
)
≥ 1.
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Taking norms both sides of the last equation, we have

Stability of nonlinear Volterra equations

of the form (22) remains GES whenever the size of (∆F ,∆G) is
strictly less than η .

THEOREM 4.1. Assume that (∆G(n))n ∈ lγ0(Rm×m) for
some γ0 > 1 and

max
{

sup
n∈Z+

‖D(n)‖, sup
n∈Z+

‖E(n)‖
}
<+∞. (24)

If

‖(∆F ,∆G)‖<
1

supP∈Ξ,Q∈Ω
{
‖P

(
Im −A−∑+∞

k=0 B(k)
)−1Q‖

},

(25)

where ‖(∆F ,∆G)‖ := ‖∆F‖ + ∑+∞
k=0 ‖∆G(k)‖,

Ξ := {E0,E(0),E(1),E(2), ...} and Ω :=
{D0,D(0),D(1),D(2), ...}, then the zero solution of (22)
remains GES.

Proof. By (17) and (23), it follows that
∣∣F(n,x)+ F̃(n,x)

∣∣≤ (
A+D0∆F E0

)
|x|

and ∣∣(G(n,k,x)+ G̃(n,k,x)
)∣∣

≤
(
B(n− k)+D(n− k)∆G(n− k)E(n− k)

)
|x|,

for all n,k ∈ Z+,n ≥ k,x ∈ Rm. Invoking (24) and
(B(n))n ∈ lγ(Rm×m),(∆G(n))n ∈ lγ0(Rm×m), we have

(
B(n)+

D(n)∆G(n)E(n)
)

n ∈ lγ1(Rm×m), with γ1 := min{γ,γ0}.
We show that ρ

(
A + D0∆F E0 + ∑+∞

k=0

(
B(k) +

D(k)∆G(k)E(k)
))

< 1 and then the zero solution of the
perturbed equation (22) is GES by Theorem 3.4.

Let M := A + ∑+∞
k=0 B(k). Since

M,D0,∆F ,E0,D(k),∆G(k),E(k),k ∈ Z+, are nonnegative, so
is M +D0∆F E0 +∑+∞

k=0 D(k)∆G(k)E(k). Assume on the con-
trary that ρ0 := ρ

(
M +D0∆F E0 +∑+∞

k=0 D(k)∆G(k)E(k)
)
≥ 1.

By the Perron-Frobenius Theorem (Theorem 2.1 (i)), there
exists x ∈ Rm

+,x �= 0, such that

(
M+D0∆F E0 +

+∞

∑
k=0

D(k)∆G(k)E(k)
)
x = ρ0x,

or equivalently,

(ρ0Im −M)x =
(
D0∆F E0 +

+∞

∑
k=0

D(k)∆G(k)E(k)
)
x. (26)

Let H(t) := (tIm −M), t ∈ R. Since ρ(M)< 1 ≤ ρ0, H(ρ0)
−1

and H(1)−1 exist and are nonnegative, by Theorem 1.1 (ii).
From (26), it follows that

H(ρ0)
−1(D0∆F E0 +

+∞

∑
k=0

D(k)∆G(k)E(k)
)
x = x. (27)

Since x �= 0 and supn∈Z+
‖E(n)‖<+∞, (27) implies

0 < max
{
‖E0x‖, sup

n∈Z+

‖E(n)x‖
}
<+∞.

If max
{
‖E0x‖,supn∈Z+

‖E(n)x‖
}
= ‖E0x‖, multiplying both

sides of (27) from the left by E0, we get

(
E0H(ρ0)

−1D0∆F E0
)
x+

( +∞

∑
k=0

E0H(ρ0)
−1D(k)∆G(k)E(k)

)
x = E0x.

Taking norms both sides of the last equation, we have

‖E0H(ρ0)
−1D0‖.‖∆F‖.‖E0x‖+

+∞

∑
k=0

‖E0H(ρ0)
−1D(k)‖.‖∆G(k)‖.‖E(k)x‖ ≥ ‖E0x‖.

This implies

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖

(
‖∆F‖+

+∞

∑
k=0

‖∆G(k)‖
)
‖E0x‖≥‖E0x‖,

or equivalently,

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖.‖(∆F ,∆G)‖ ≥ 1. (28)

On the other hand, the resolvent identity gives

H(1)−1 −H(ρ0)
−1 = (ρ0 −1)H(ρ0)

−1H(1)−1 ≥ 0.

This yields H(1)−1 ≥ H(ρ0)
−1 ≥ 0. Therefore, PH(1)−1Q ≥

PH(ρ0)
−1Q≥ 0, for any P∈Ξ,Q∈Ω. By (1), ‖PH(1)−1Q‖≥

‖PH(ρ0)
−1Q‖ ≥ 0, for any P ∈ Ξ,Q ∈ Ω. It follows from (28)

that

‖(∆F ,∆G)‖ ≥
1

supP∈Ξ,Q∈Ω ‖PH(1)−1Q‖

=
1

supP∈Ξ,Q∈Ω
{
‖P

(
Im −A−∑+∞

k=0 B(k)
)−1Q‖

}.

(29)

However, this conflicts with (25).
If supn∈Z+

‖E(n)x‖ > ‖E0x‖, then for given ε > 0, there is
n0 ∈ Z+ such that ‖E(n0)x‖> supn∈Z+

‖E(n)x‖−ε > 0. Mul-
tiplying both sides of (27) from the left by E(n0), we get

(
E(n0)H(ρ0)

−1D0∆F E0
)
x+

( +∞

∑
k=0

E(n0)H(ρ0)
−1D(k)∆G(k)E(k)

)
x = E(n0)x.

Taking norms, we get

‖E(n0)H(ρ0)
−1D0‖.‖∆F‖.‖E0x‖+

+∞

∑
k=0

‖E(n0)H(ρ0)
−1D(k)‖.‖∆G(k)‖‖E(k)x‖ ≥ ‖E(n0)x‖.

It follows that

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖

(
‖∆F‖+

+∞

∑
k=0

‖∆G(k)‖
)
(‖E(n0)x‖+ ε)

≥ ‖E(n0)x‖.

Since ε > 0 is arbitrary, we derive

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖

(
‖∆F‖+

+∞

∑
k=0

‖∆G(k)‖
)
≥ 1.
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Stability of nonlinear Volterra equations

of the form (22) remains GES whenever the size of (∆F ,∆G) is
strictly less than η .

THEOREM 4.1. Assume that (∆G(n))n ∈ lγ0(Rm×m) for
some γ0 > 1 and

max
{

sup
n∈Z+

‖D(n)‖, sup
n∈Z+

‖E(n)‖
}
<+∞. (24)

If

‖(∆F ,∆G)‖<
1

supP∈Ξ,Q∈Ω
{
‖P

(
Im −A−∑+∞

k=0 B(k)
)−1Q‖

},

(25)

where ‖(∆F ,∆G)‖ := ‖∆F‖ + ∑+∞
k=0 ‖∆G(k)‖,

Ξ := {E0,E(0),E(1),E(2), ...} and Ω :=
{D0,D(0),D(1),D(2), ...}, then the zero solution of (22)
remains GES.

Proof. By (17) and (23), it follows that
∣∣F(n,x)+ F̃(n,x)

∣∣≤ (
A+D0∆F E0

)
|x|

and ∣∣(G(n,k,x)+ G̃(n,k,x)
)∣∣

≤
(
B(n− k)+D(n− k)∆G(n− k)E(n− k)

)
|x|,

for all n,k ∈ Z+,n ≥ k,x ∈ Rm. Invoking (24) and
(B(n))n ∈ lγ(Rm×m),(∆G(n))n ∈ lγ0(Rm×m), we have

(
B(n)+

D(n)∆G(n)E(n)
)

n ∈ lγ1(Rm×m), with γ1 := min{γ,γ0}.
We show that ρ

(
A + D0∆F E0 + ∑+∞

k=0

(
B(k) +

D(k)∆G(k)E(k)
))

< 1 and then the zero solution of the
perturbed equation (22) is GES by Theorem 3.4.

Let M := A + ∑+∞
k=0 B(k). Since

M,D0,∆F ,E0,D(k),∆G(k),E(k),k ∈ Z+, are nonnegative, so
is M +D0∆F E0 +∑+∞

k=0 D(k)∆G(k)E(k). Assume on the con-
trary that ρ0 := ρ

(
M +D0∆F E0 +∑+∞

k=0 D(k)∆G(k)E(k)
)
≥ 1.

By the Perron-Frobenius Theorem (Theorem 2.1 (i)), there
exists x ∈ Rm

+,x �= 0, such that

(
M+D0∆F E0 +

+∞

∑
k=0

D(k)∆G(k)E(k)
)
x = ρ0x,

or equivalently,

(ρ0Im −M)x =
(
D0∆F E0 +

+∞

∑
k=0

D(k)∆G(k)E(k)
)
x. (26)

Let H(t) := (tIm −M), t ∈ R. Since ρ(M)< 1 ≤ ρ0, H(ρ0)
−1

and H(1)−1 exist and are nonnegative, by Theorem 1.1 (ii).
From (26), it follows that

H(ρ0)
−1(D0∆F E0 +

+∞

∑
k=0

D(k)∆G(k)E(k)
)
x = x. (27)

Since x �= 0 and supn∈Z+
‖E(n)‖<+∞, (27) implies

0 < max
{
‖E0x‖, sup

n∈Z+

‖E(n)x‖
}
<+∞.

If max
{
‖E0x‖,supn∈Z+

‖E(n)x‖
}
= ‖E0x‖, multiplying both

sides of (27) from the left by E0, we get

(
E0H(ρ0)

−1D0∆F E0
)
x+

( +∞

∑
k=0

E0H(ρ0)
−1D(k)∆G(k)E(k)

)
x = E0x.

Taking norms both sides of the last equation, we have

‖E0H(ρ0)
−1D0‖.‖∆F‖.‖E0x‖+

+∞

∑
k=0

‖E0H(ρ0)
−1D(k)‖.‖∆G(k)‖.‖E(k)x‖ ≥ ‖E0x‖.

This implies

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖

(
‖∆F‖+

+∞

∑
k=0

‖∆G(k)‖
)
‖E0x‖≥‖E0x‖,

or equivalently,

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖.‖(∆F ,∆G)‖ ≥ 1. (28)

On the other hand, the resolvent identity gives

H(1)−1 −H(ρ0)
−1 = (ρ0 −1)H(ρ0)

−1H(1)−1 ≥ 0.

This yields H(1)−1 ≥ H(ρ0)
−1 ≥ 0. Therefore, PH(1)−1Q ≥

PH(ρ0)
−1Q≥ 0, for any P∈Ξ,Q∈Ω. By (1), ‖PH(1)−1Q‖≥

‖PH(ρ0)
−1Q‖ ≥ 0, for any P ∈ Ξ,Q ∈ Ω. It follows from (28)

that

‖(∆F ,∆G)‖ ≥
1

supP∈Ξ,Q∈Ω ‖PH(1)−1Q‖

=
1

supP∈Ξ,Q∈Ω
{
‖P

(
Im −A−∑+∞

k=0 B(k)
)−1Q‖

}.

(29)

However, this conflicts with (25).
If supn∈Z+

‖E(n)x‖ > ‖E0x‖, then for given ε > 0, there is
n0 ∈ Z+ such that ‖E(n0)x‖> supn∈Z+

‖E(n)x‖−ε > 0. Mul-
tiplying both sides of (27) from the left by E(n0), we get

(
E(n0)H(ρ0)

−1D0∆F E0
)
x+

( +∞

∑
k=0

E(n0)H(ρ0)
−1D(k)∆G(k)E(k)

)
x = E(n0)x.

Taking norms, we get

‖E(n0)H(ρ0)
−1D0‖.‖∆F‖.‖E0x‖+

+∞

∑
k=0

‖E(n0)H(ρ0)
−1D(k)‖.‖∆G(k)‖‖E(k)x‖ ≥ ‖E(n0)x‖.

It follows that

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖

(
‖∆F‖+

+∞

∑
k=0

‖∆G(k)‖
)
(‖E(n0)x‖+ ε)

≥ ‖E(n0)x‖.

Since ε > 0 is arbitrary, we derive

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖

(
‖∆F‖+

+∞

∑
k=0

‖∆G(k)‖
)
≥ 1.
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Stability of nonlinear Volterra equations

of the form (22) remains GES whenever the size of (∆F ,∆G) is
strictly less than η .

THEOREM 4.1. Assume that (∆G(n))n ∈ lγ0(Rm×m) for
some γ0 > 1 and

max
{

sup
n∈Z+

‖D(n)‖, sup
n∈Z+

‖E(n)‖
}
<+∞. (24)

If

‖(∆F ,∆G)‖<
1

supP∈Ξ,Q∈Ω
{
‖P

(
Im −A−∑+∞

k=0 B(k)
)−1Q‖

},

(25)

where ‖(∆F ,∆G)‖ := ‖∆F‖ + ∑+∞
k=0 ‖∆G(k)‖,

Ξ := {E0,E(0),E(1),E(2), ...} and Ω :=
{D0,D(0),D(1),D(2), ...}, then the zero solution of (22)
remains GES.

Proof. By (17) and (23), it follows that
∣∣F(n,x)+ F̃(n,x)

∣∣≤ (
A+D0∆F E0

)
|x|

and ∣∣(G(n,k,x)+ G̃(n,k,x)
)∣∣

≤
(
B(n− k)+D(n− k)∆G(n− k)E(n− k)

)
|x|,

for all n,k ∈ Z+,n ≥ k,x ∈ Rm. Invoking (24) and
(B(n))n ∈ lγ(Rm×m),(∆G(n))n ∈ lγ0(Rm×m), we have

(
B(n)+

D(n)∆G(n)E(n)
)

n ∈ lγ1(Rm×m), with γ1 := min{γ,γ0}.
We show that ρ

(
A + D0∆F E0 + ∑+∞

k=0

(
B(k) +

D(k)∆G(k)E(k)
))

< 1 and then the zero solution of the
perturbed equation (22) is GES by Theorem 3.4.

Let M := A + ∑+∞
k=0 B(k). Since

M,D0,∆F ,E0,D(k),∆G(k),E(k),k ∈ Z+, are nonnegative, so
is M +D0∆F E0 +∑+∞

k=0 D(k)∆G(k)E(k). Assume on the con-
trary that ρ0 := ρ

(
M +D0∆F E0 +∑+∞

k=0 D(k)∆G(k)E(k)
)
≥ 1.

By the Perron-Frobenius Theorem (Theorem 2.1 (i)), there
exists x ∈ Rm

+,x �= 0, such that

(
M+D0∆F E0 +

+∞

∑
k=0

D(k)∆G(k)E(k)
)
x = ρ0x,

or equivalently,

(ρ0Im −M)x =
(
D0∆F E0 +

+∞

∑
k=0

D(k)∆G(k)E(k)
)
x. (26)

Let H(t) := (tIm −M), t ∈ R. Since ρ(M)< 1 ≤ ρ0, H(ρ0)
−1

and H(1)−1 exist and are nonnegative, by Theorem 1.1 (ii).
From (26), it follows that

H(ρ0)
−1(D0∆F E0 +

+∞

∑
k=0

D(k)∆G(k)E(k)
)
x = x. (27)

Since x �= 0 and supn∈Z+
‖E(n)‖<+∞, (27) implies

0 < max
{
‖E0x‖, sup

n∈Z+

‖E(n)x‖
}
<+∞.

If max
{
‖E0x‖,supn∈Z+

‖E(n)x‖
}
= ‖E0x‖, multiplying both

sides of (27) from the left by E0, we get

(
E0H(ρ0)

−1D0∆F E0
)
x+

( +∞

∑
k=0

E0H(ρ0)
−1D(k)∆G(k)E(k)

)
x = E0x.

Taking norms both sides of the last equation, we have

‖E0H(ρ0)
−1D0‖.‖∆F‖.‖E0x‖+

+∞

∑
k=0

‖E0H(ρ0)
−1D(k)‖.‖∆G(k)‖.‖E(k)x‖ ≥ ‖E0x‖.

This implies

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖

(
‖∆F‖+

+∞

∑
k=0

‖∆G(k)‖
)
‖E0x‖≥‖E0x‖,

or equivalently,

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖.‖(∆F ,∆G)‖ ≥ 1. (28)

On the other hand, the resolvent identity gives

H(1)−1 −H(ρ0)
−1 = (ρ0 −1)H(ρ0)

−1H(1)−1 ≥ 0.

This yields H(1)−1 ≥ H(ρ0)
−1 ≥ 0. Therefore, PH(1)−1Q ≥

PH(ρ0)
−1Q≥ 0, for any P∈Ξ,Q∈Ω. By (1), ‖PH(1)−1Q‖≥

‖PH(ρ0)
−1Q‖ ≥ 0, for any P ∈ Ξ,Q ∈ Ω. It follows from (28)

that

‖(∆F ,∆G)‖ ≥
1

supP∈Ξ,Q∈Ω ‖PH(1)−1Q‖

=
1

supP∈Ξ,Q∈Ω
{
‖P

(
Im −A−∑+∞

k=0 B(k)
)−1Q‖

}.

(29)

However, this conflicts with (25).
If supn∈Z+

‖E(n)x‖ > ‖E0x‖, then for given ε > 0, there is
n0 ∈ Z+ such that ‖E(n0)x‖> supn∈Z+

‖E(n)x‖−ε > 0. Mul-
tiplying both sides of (27) from the left by E(n0), we get

(
E(n0)H(ρ0)

−1D0∆F E0
)
x+

( +∞

∑
k=0

E(n0)H(ρ0)
−1D(k)∆G(k)E(k)

)
x = E(n0)x.

Taking norms, we get

‖E(n0)H(ρ0)
−1D0‖.‖∆F‖.‖E0x‖+

+∞

∑
k=0

‖E(n0)H(ρ0)
−1D(k)‖.‖∆G(k)‖‖E(k)x‖ ≥ ‖E(n0)x‖.

It follows that

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖

(
‖∆F‖+

+∞

∑
k=0

‖∆G(k)‖
)
(‖E(n0)x‖+ ε)

≥ ‖E(n0)x‖.

Since ε > 0 is arbitrary, we derive

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖

(
‖∆F‖+

+∞

∑
k=0

‖∆G(k)‖
)
≥ 1.
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This implies

Stability of nonlinear Volterra equations

of the form (22) remains GES whenever the size of (∆F ,∆G) is
strictly less than η .

THEOREM 4.1. Assume that (∆G(n))n ∈ lγ0(Rm×m) for
some γ0 > 1 and

max
{

sup
n∈Z+

‖D(n)‖, sup
n∈Z+

‖E(n)‖
}
<+∞. (24)

If

‖(∆F ,∆G)‖<
1

supP∈Ξ,Q∈Ω
{
‖P

(
Im −A−∑+∞

k=0 B(k)
)−1Q‖

},

(25)

where ‖(∆F ,∆G)‖ := ‖∆F‖ + ∑+∞
k=0 ‖∆G(k)‖,

Ξ := {E0,E(0),E(1),E(2), ...} and Ω :=
{D0,D(0),D(1),D(2), ...}, then the zero solution of (22)
remains GES.

Proof. By (17) and (23), it follows that
∣∣F(n,x)+ F̃(n,x)

∣∣≤ (
A+D0∆F E0

)
|x|

and ∣∣(G(n,k,x)+ G̃(n,k,x)
)∣∣

≤
(
B(n− k)+D(n− k)∆G(n− k)E(n− k)

)
|x|,

for all n,k ∈ Z+,n ≥ k,x ∈ Rm. Invoking (24) and
(B(n))n ∈ lγ(Rm×m),(∆G(n))n ∈ lγ0(Rm×m), we have

(
B(n)+

D(n)∆G(n)E(n)
)

n ∈ lγ1(Rm×m), with γ1 := min{γ,γ0}.
We show that ρ

(
A + D0∆F E0 + ∑+∞

k=0

(
B(k) +

D(k)∆G(k)E(k)
))

< 1 and then the zero solution of the
perturbed equation (22) is GES by Theorem 3.4.

Let M := A + ∑+∞
k=0 B(k). Since

M,D0,∆F ,E0,D(k),∆G(k),E(k),k ∈ Z+, are nonnegative, so
is M +D0∆F E0 +∑+∞

k=0 D(k)∆G(k)E(k). Assume on the con-
trary that ρ0 := ρ

(
M +D0∆F E0 +∑+∞

k=0 D(k)∆G(k)E(k)
)
≥ 1.

By the Perron-Frobenius Theorem (Theorem 2.1 (i)), there
exists x ∈ Rm

+,x �= 0, such that

(
M+D0∆F E0 +

+∞

∑
k=0

D(k)∆G(k)E(k)
)
x = ρ0x,

or equivalently,

(ρ0Im −M)x =
(
D0∆F E0 +

+∞

∑
k=0

D(k)∆G(k)E(k)
)
x. (26)

Let H(t) := (tIm −M), t ∈ R. Since ρ(M)< 1 ≤ ρ0, H(ρ0)
−1

and H(1)−1 exist and are nonnegative, by Theorem 1.1 (ii).
From (26), it follows that

H(ρ0)
−1(D0∆F E0 +

+∞

∑
k=0

D(k)∆G(k)E(k)
)
x = x. (27)

Since x �= 0 and supn∈Z+
‖E(n)‖<+∞, (27) implies

0 < max
{
‖E0x‖, sup

n∈Z+

‖E(n)x‖
}
<+∞.

If max
{
‖E0x‖,supn∈Z+

‖E(n)x‖
}
= ‖E0x‖, multiplying both

sides of (27) from the left by E0, we get

(
E0H(ρ0)

−1D0∆F E0
)
x+

( +∞

∑
k=0

E0H(ρ0)
−1D(k)∆G(k)E(k)

)
x = E0x.

Taking norms both sides of the last equation, we have

‖E0H(ρ0)
−1D0‖.‖∆F‖.‖E0x‖+

+∞

∑
k=0

‖E0H(ρ0)
−1D(k)‖.‖∆G(k)‖.‖E(k)x‖ ≥ ‖E0x‖.

This implies

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖

(
‖∆F‖+

+∞

∑
k=0

‖∆G(k)‖
)
‖E0x‖≥‖E0x‖,

or equivalently,

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖.‖(∆F ,∆G)‖ ≥ 1. (28)

On the other hand, the resolvent identity gives

H(1)−1 −H(ρ0)
−1 = (ρ0 −1)H(ρ0)

−1H(1)−1 ≥ 0.

This yields H(1)−1 ≥ H(ρ0)
−1 ≥ 0. Therefore, PH(1)−1Q ≥

PH(ρ0)
−1Q≥ 0, for any P∈Ξ,Q∈Ω. By (1), ‖PH(1)−1Q‖≥

‖PH(ρ0)
−1Q‖ ≥ 0, for any P ∈ Ξ,Q ∈ Ω. It follows from (28)

that

‖(∆F ,∆G)‖ ≥
1

supP∈Ξ,Q∈Ω ‖PH(1)−1Q‖

=
1

supP∈Ξ,Q∈Ω
{
‖P

(
Im −A−∑+∞

k=0 B(k)
)−1Q‖

}.

(29)

However, this conflicts with (25).
If supn∈Z+

‖E(n)x‖ > ‖E0x‖, then for given ε > 0, there is
n0 ∈ Z+ such that ‖E(n0)x‖> supn∈Z+

‖E(n)x‖−ε > 0. Mul-
tiplying both sides of (27) from the left by E(n0), we get

(
E(n0)H(ρ0)

−1D0∆F E0
)
x+

( +∞

∑
k=0

E(n0)H(ρ0)
−1D(k)∆G(k)E(k)

)
x = E(n0)x.

Taking norms, we get

‖E(n0)H(ρ0)
−1D0‖.‖∆F‖.‖E0x‖+

+∞

∑
k=0

‖E(n0)H(ρ0)
−1D(k)‖.‖∆G(k)‖‖E(k)x‖ ≥ ‖E(n0)x‖.

It follows that

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖

(
‖∆F‖+

+∞

∑
k=0

‖∆G(k)‖
)
(‖E(n0)x‖+ ε)

≥ ‖E(n0)x‖.

Since ε > 0 is arbitrary, we derive

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖

(
‖∆F‖+

+∞

∑
k=0

‖∆G(k)‖
)
≥ 1.
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Stability of nonlinear Volterra equations

of the form (22) remains GES whenever the size of (∆F ,∆G) is
strictly less than η .

THEOREM 4.1. Assume that (∆G(n))n ∈ lγ0(Rm×m) for
some γ0 > 1 and

max
{

sup
n∈Z+

‖D(n)‖, sup
n∈Z+

‖E(n)‖
}
<+∞. (24)

If

‖(∆F ,∆G)‖<
1

supP∈Ξ,Q∈Ω
{
‖P

(
Im −A−∑+∞

k=0 B(k)
)−1Q‖

},

(25)

where ‖(∆F ,∆G)‖ := ‖∆F‖ + ∑+∞
k=0 ‖∆G(k)‖,

Ξ := {E0,E(0),E(1),E(2), ...} and Ω :=
{D0,D(0),D(1),D(2), ...}, then the zero solution of (22)
remains GES.

Proof. By (17) and (23), it follows that
∣∣F(n,x)+ F̃(n,x)

∣∣≤ (
A+D0∆F E0

)
|x|

and ∣∣(G(n,k,x)+ G̃(n,k,x)
)∣∣

≤
(
B(n− k)+D(n− k)∆G(n− k)E(n− k)

)
|x|,

for all n,k ∈ Z+,n ≥ k,x ∈ Rm. Invoking (24) and
(B(n))n ∈ lγ(Rm×m),(∆G(n))n ∈ lγ0(Rm×m), we have

(
B(n)+

D(n)∆G(n)E(n)
)

n ∈ lγ1(Rm×m), with γ1 := min{γ,γ0}.
We show that ρ

(
A + D0∆F E0 + ∑+∞

k=0

(
B(k) +

D(k)∆G(k)E(k)
))

< 1 and then the zero solution of the
perturbed equation (22) is GES by Theorem 3.4.

Let M := A + ∑+∞
k=0 B(k). Since

M,D0,∆F ,E0,D(k),∆G(k),E(k),k ∈ Z+, are nonnegative, so
is M +D0∆F E0 +∑+∞

k=0 D(k)∆G(k)E(k). Assume on the con-
trary that ρ0 := ρ

(
M +D0∆F E0 +∑+∞

k=0 D(k)∆G(k)E(k)
)
≥ 1.

By the Perron-Frobenius Theorem (Theorem 2.1 (i)), there
exists x ∈ Rm

+,x �= 0, such that

(
M+D0∆F E0 +

+∞

∑
k=0

D(k)∆G(k)E(k)
)
x = ρ0x,

or equivalently,

(ρ0Im −M)x =
(
D0∆F E0 +

+∞

∑
k=0

D(k)∆G(k)E(k)
)
x. (26)

Let H(t) := (tIm −M), t ∈ R. Since ρ(M)< 1 ≤ ρ0, H(ρ0)
−1

and H(1)−1 exist and are nonnegative, by Theorem 1.1 (ii).
From (26), it follows that

H(ρ0)
−1(D0∆F E0 +

+∞

∑
k=0

D(k)∆G(k)E(k)
)
x = x. (27)

Since x �= 0 and supn∈Z+
‖E(n)‖<+∞, (27) implies

0 < max
{
‖E0x‖, sup

n∈Z+

‖E(n)x‖
}
<+∞.

If max
{
‖E0x‖,supn∈Z+

‖E(n)x‖
}
= ‖E0x‖, multiplying both

sides of (27) from the left by E0, we get

(
E0H(ρ0)

−1D0∆F E0
)
x+

( +∞

∑
k=0

E0H(ρ0)
−1D(k)∆G(k)E(k)

)
x = E0x.

Taking norms both sides of the last equation, we have

‖E0H(ρ0)
−1D0‖.‖∆F‖.‖E0x‖+

+∞

∑
k=0

‖E0H(ρ0)
−1D(k)‖.‖∆G(k)‖.‖E(k)x‖ ≥ ‖E0x‖.

This implies

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖

(
‖∆F‖+

+∞

∑
k=0

‖∆G(k)‖
)
‖E0x‖≥‖E0x‖,

or equivalently,

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖.‖(∆F ,∆G)‖ ≥ 1. (28)

On the other hand, the resolvent identity gives

H(1)−1 −H(ρ0)
−1 = (ρ0 −1)H(ρ0)

−1H(1)−1 ≥ 0.

This yields H(1)−1 ≥ H(ρ0)
−1 ≥ 0. Therefore, PH(1)−1Q ≥

PH(ρ0)
−1Q≥ 0, for any P∈Ξ,Q∈Ω. By (1), ‖PH(1)−1Q‖≥

‖PH(ρ0)
−1Q‖ ≥ 0, for any P ∈ Ξ,Q ∈ Ω. It follows from (28)

that

‖(∆F ,∆G)‖ ≥
1

supP∈Ξ,Q∈Ω ‖PH(1)−1Q‖

=
1

supP∈Ξ,Q∈Ω
{
‖P

(
Im −A−∑+∞

k=0 B(k)
)−1Q‖

}.

(29)

However, this conflicts with (25).
If supn∈Z+

‖E(n)x‖ > ‖E0x‖, then for given ε > 0, there is
n0 ∈ Z+ such that ‖E(n0)x‖> supn∈Z+

‖E(n)x‖−ε > 0. Mul-
tiplying both sides of (27) from the left by E(n0), we get

(
E(n0)H(ρ0)

−1D0∆F E0
)
x+

( +∞

∑
k=0

E(n0)H(ρ0)
−1D(k)∆G(k)E(k)

)
x = E(n0)x.

Taking norms, we get

‖E(n0)H(ρ0)
−1D0‖.‖∆F‖.‖E0x‖+

+∞

∑
k=0

‖E(n0)H(ρ0)
−1D(k)‖.‖∆G(k)‖‖E(k)x‖ ≥ ‖E(n0)x‖.

It follows that

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖

(
‖∆F‖+

+∞

∑
k=0

‖∆G(k)‖
)
(‖E(n0)x‖+ ε)

≥ ‖E(n0)x‖.

Since ε > 0 is arbitrary, we derive

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖

(
‖∆F‖+

+∞

∑
k=0

‖∆G(k)‖
)
≥ 1.
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Stability of nonlinear Volterra equations

of the form (22) remains GES whenever the size of (∆F ,∆G) is
strictly less than η .

THEOREM 4.1. Assume that (∆G(n))n ∈ lγ0(Rm×m) for
some γ0 > 1 and

max
{

sup
n∈Z+

‖D(n)‖, sup
n∈Z+

‖E(n)‖
}
<+∞. (24)

If

‖(∆F ,∆G)‖<
1

supP∈Ξ,Q∈Ω
{
‖P

(
Im −A−∑+∞

k=0 B(k)
)−1Q‖

},

(25)

where ‖(∆F ,∆G)‖ := ‖∆F‖ + ∑+∞
k=0 ‖∆G(k)‖,

Ξ := {E0,E(0),E(1),E(2), ...} and Ω :=
{D0,D(0),D(1),D(2), ...}, then the zero solution of (22)
remains GES.

Proof. By (17) and (23), it follows that
∣∣F(n,x)+ F̃(n,x)

∣∣≤ (
A+D0∆F E0

)
|x|

and ∣∣(G(n,k,x)+ G̃(n,k,x)
)∣∣

≤
(
B(n− k)+D(n− k)∆G(n− k)E(n− k)

)
|x|,

for all n,k ∈ Z+,n ≥ k,x ∈ Rm. Invoking (24) and
(B(n))n ∈ lγ(Rm×m),(∆G(n))n ∈ lγ0(Rm×m), we have

(
B(n)+

D(n)∆G(n)E(n)
)

n ∈ lγ1(Rm×m), with γ1 := min{γ,γ0}.
We show that ρ

(
A + D0∆F E0 + ∑+∞

k=0

(
B(k) +

D(k)∆G(k)E(k)
))

< 1 and then the zero solution of the
perturbed equation (22) is GES by Theorem 3.4.

Let M := A + ∑+∞
k=0 B(k). Since

M,D0,∆F ,E0,D(k),∆G(k),E(k),k ∈ Z+, are nonnegative, so
is M +D0∆F E0 +∑+∞

k=0 D(k)∆G(k)E(k). Assume on the con-
trary that ρ0 := ρ

(
M +D0∆F E0 +∑+∞

k=0 D(k)∆G(k)E(k)
)
≥ 1.

By the Perron-Frobenius Theorem (Theorem 2.1 (i)), there
exists x ∈ Rm

+,x �= 0, such that

(
M+D0∆F E0 +

+∞

∑
k=0

D(k)∆G(k)E(k)
)
x = ρ0x,

or equivalently,

(ρ0Im −M)x =
(
D0∆F E0 +

+∞

∑
k=0

D(k)∆G(k)E(k)
)
x. (26)

Let H(t) := (tIm −M), t ∈ R. Since ρ(M)< 1 ≤ ρ0, H(ρ0)
−1

and H(1)−1 exist and are nonnegative, by Theorem 1.1 (ii).
From (26), it follows that

H(ρ0)
−1(D0∆F E0 +

+∞

∑
k=0

D(k)∆G(k)E(k)
)
x = x. (27)

Since x �= 0 and supn∈Z+
‖E(n)‖<+∞, (27) implies

0 < max
{
‖E0x‖, sup

n∈Z+

‖E(n)x‖
}
<+∞.

If max
{
‖E0x‖,supn∈Z+

‖E(n)x‖
}
= ‖E0x‖, multiplying both

sides of (27) from the left by E0, we get

(
E0H(ρ0)

−1D0∆F E0
)
x+

( +∞

∑
k=0

E0H(ρ0)
−1D(k)∆G(k)E(k)

)
x = E0x.

Taking norms both sides of the last equation, we have

‖E0H(ρ0)
−1D0‖.‖∆F‖.‖E0x‖+

+∞

∑
k=0

‖E0H(ρ0)
−1D(k)‖.‖∆G(k)‖.‖E(k)x‖ ≥ ‖E0x‖.

This implies

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖

(
‖∆F‖+

+∞

∑
k=0

‖∆G(k)‖
)
‖E0x‖≥‖E0x‖,

or equivalently,

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖.‖(∆F ,∆G)‖ ≥ 1. (28)

On the other hand, the resolvent identity gives

H(1)−1 −H(ρ0)
−1 = (ρ0 −1)H(ρ0)

−1H(1)−1 ≥ 0.

This yields H(1)−1 ≥ H(ρ0)
−1 ≥ 0. Therefore, PH(1)−1Q ≥

PH(ρ0)
−1Q≥ 0, for any P∈Ξ,Q∈Ω. By (1), ‖PH(1)−1Q‖≥

‖PH(ρ0)
−1Q‖ ≥ 0, for any P ∈ Ξ,Q ∈ Ω. It follows from (28)

that

‖(∆F ,∆G)‖ ≥
1

supP∈Ξ,Q∈Ω ‖PH(1)−1Q‖

=
1

supP∈Ξ,Q∈Ω
{
‖P

(
Im −A−∑+∞

k=0 B(k)
)−1Q‖

}.

(29)

However, this conflicts with (25).
If supn∈Z+

‖E(n)x‖ > ‖E0x‖, then for given ε > 0, there is
n0 ∈ Z+ such that ‖E(n0)x‖> supn∈Z+

‖E(n)x‖−ε > 0. Mul-
tiplying both sides of (27) from the left by E(n0), we get

(
E(n0)H(ρ0)

−1D0∆F E0
)
x+

( +∞

∑
k=0

E(n0)H(ρ0)
−1D(k)∆G(k)E(k)

)
x = E(n0)x.

Taking norms, we get

‖E(n0)H(ρ0)
−1D0‖.‖∆F‖.‖E0x‖+

+∞

∑
k=0

‖E(n0)H(ρ0)
−1D(k)‖.‖∆G(k)‖‖E(k)x‖ ≥ ‖E(n0)x‖.

It follows that

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖

(
‖∆F‖+

+∞

∑
k=0

‖∆G(k)‖
)
(‖E(n0)x‖+ ε)

≥ ‖E(n0)x‖.

Since ε > 0 is arbitrary, we derive

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖

(
‖∆F‖+

+∞

∑
k=0

‖∆G(k)‖
)
≥ 1.
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Stability of nonlinear Volterra equations

of the form (22) remains GES whenever the size of (∆F ,∆G) is
strictly less than η .

THEOREM 4.1. Assume that (∆G(n))n ∈ lγ0(Rm×m) for
some γ0 > 1 and

max
{

sup
n∈Z+

‖D(n)‖, sup
n∈Z+

‖E(n)‖
}
<+∞. (24)

If

‖(∆F ,∆G)‖<
1

supP∈Ξ,Q∈Ω
{
‖P

(
Im −A−∑+∞

k=0 B(k)
)−1Q‖

},

(25)

where ‖(∆F ,∆G)‖ := ‖∆F‖ + ∑+∞
k=0 ‖∆G(k)‖,

Ξ := {E0,E(0),E(1),E(2), ...} and Ω :=
{D0,D(0),D(1),D(2), ...}, then the zero solution of (22)
remains GES.

Proof. By (17) and (23), it follows that
∣∣F(n,x)+ F̃(n,x)

∣∣≤ (
A+D0∆F E0

)
|x|

and ∣∣(G(n,k,x)+ G̃(n,k,x)
)∣∣

≤
(
B(n− k)+D(n− k)∆G(n− k)E(n− k)

)
|x|,

for all n,k ∈ Z+,n ≥ k,x ∈ Rm. Invoking (24) and
(B(n))n ∈ lγ(Rm×m),(∆G(n))n ∈ lγ0(Rm×m), we have

(
B(n)+

D(n)∆G(n)E(n)
)

n ∈ lγ1(Rm×m), with γ1 := min{γ,γ0}.
We show that ρ

(
A + D0∆F E0 + ∑+∞

k=0

(
B(k) +

D(k)∆G(k)E(k)
))

< 1 and then the zero solution of the
perturbed equation (22) is GES by Theorem 3.4.

Let M := A + ∑+∞
k=0 B(k). Since

M,D0,∆F ,E0,D(k),∆G(k),E(k),k ∈ Z+, are nonnegative, so
is M +D0∆F E0 +∑+∞

k=0 D(k)∆G(k)E(k). Assume on the con-
trary that ρ0 := ρ

(
M +D0∆F E0 +∑+∞

k=0 D(k)∆G(k)E(k)
)
≥ 1.

By the Perron-Frobenius Theorem (Theorem 2.1 (i)), there
exists x ∈ Rm

+,x �= 0, such that

(
M+D0∆F E0 +

+∞

∑
k=0

D(k)∆G(k)E(k)
)
x = ρ0x,

or equivalently,

(ρ0Im −M)x =
(
D0∆F E0 +

+∞

∑
k=0

D(k)∆G(k)E(k)
)
x. (26)

Let H(t) := (tIm −M), t ∈ R. Since ρ(M)< 1 ≤ ρ0, H(ρ0)
−1

and H(1)−1 exist and are nonnegative, by Theorem 1.1 (ii).
From (26), it follows that

H(ρ0)
−1(D0∆F E0 +

+∞

∑
k=0

D(k)∆G(k)E(k)
)
x = x. (27)

Since x �= 0 and supn∈Z+
‖E(n)‖<+∞, (27) implies

0 < max
{
‖E0x‖, sup

n∈Z+

‖E(n)x‖
}
<+∞.

If max
{
‖E0x‖,supn∈Z+

‖E(n)x‖
}
= ‖E0x‖, multiplying both

sides of (27) from the left by E0, we get

(
E0H(ρ0)

−1D0∆F E0
)
x+

( +∞

∑
k=0

E0H(ρ0)
−1D(k)∆G(k)E(k)

)
x = E0x.

Taking norms both sides of the last equation, we have

‖E0H(ρ0)
−1D0‖.‖∆F‖.‖E0x‖+

+∞

∑
k=0

‖E0H(ρ0)
−1D(k)‖.‖∆G(k)‖.‖E(k)x‖ ≥ ‖E0x‖.

This implies

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖

(
‖∆F‖+

+∞

∑
k=0

‖∆G(k)‖
)
‖E0x‖≥‖E0x‖,

or equivalently,

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖.‖(∆F ,∆G)‖ ≥ 1. (28)

On the other hand, the resolvent identity gives

H(1)−1 −H(ρ0)
−1 = (ρ0 −1)H(ρ0)

−1H(1)−1 ≥ 0.

This yields H(1)−1 ≥ H(ρ0)
−1 ≥ 0. Therefore, PH(1)−1Q ≥

PH(ρ0)
−1Q≥ 0, for any P∈Ξ,Q∈Ω. By (1), ‖PH(1)−1Q‖≥

‖PH(ρ0)
−1Q‖ ≥ 0, for any P ∈ Ξ,Q ∈ Ω. It follows from (28)

that

‖(∆F ,∆G)‖ ≥
1

supP∈Ξ,Q∈Ω ‖PH(1)−1Q‖

=
1

supP∈Ξ,Q∈Ω
{
‖P

(
Im −A−∑+∞

k=0 B(k)
)−1Q‖

}.

(29)

However, this conflicts with (25).
If supn∈Z+

‖E(n)x‖ > ‖E0x‖, then for given ε > 0, there is
n0 ∈ Z+ such that ‖E(n0)x‖> supn∈Z+

‖E(n)x‖−ε > 0. Mul-
tiplying both sides of (27) from the left by E(n0), we get

(
E(n0)H(ρ0)

−1D0∆F E0
)
x+

( +∞

∑
k=0

E(n0)H(ρ0)
−1D(k)∆G(k)E(k)

)
x = E(n0)x.

Taking norms, we get

‖E(n0)H(ρ0)
−1D0‖.‖∆F‖.‖E0x‖+

+∞

∑
k=0

‖E(n0)H(ρ0)
−1D(k)‖.‖∆G(k)‖‖E(k)x‖ ≥ ‖E(n0)x‖.

It follows that

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖

(
‖∆F‖+

+∞

∑
k=0

‖∆G(k)‖
)
(‖E(n0)x‖+ ε)

≥ ‖E(n0)x‖.

Since ε > 0 is arbitrary, we derive

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖

(
‖∆F‖+

+∞

∑
k=0

‖∆G(k)‖
)
≥ 1.
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,

or equivalently,

	

Stability of nonlinear Volterra equations

of the form (22) remains GES whenever the size of (∆F ,∆G) is
strictly less than η .

THEOREM 4.1. Assume that (∆G(n))n ∈ lγ0(Rm×m) for
some γ0 > 1 and

max
{

sup
n∈Z+

‖D(n)‖, sup
n∈Z+

‖E(n)‖
}
<+∞. (24)

If

‖(∆F ,∆G)‖<
1

supP∈Ξ,Q∈Ω
{
‖P

(
Im −A−∑+∞

k=0 B(k)
)−1Q‖

},

(25)

where ‖(∆F ,∆G)‖ := ‖∆F‖ + ∑+∞
k=0 ‖∆G(k)‖,

Ξ := {E0,E(0),E(1),E(2), ...} and Ω :=
{D0,D(0),D(1),D(2), ...}, then the zero solution of (22)
remains GES.

Proof. By (17) and (23), it follows that
∣∣F(n,x)+ F̃(n,x)

∣∣≤ (
A+D0∆F E0

)
|x|

and ∣∣(G(n,k,x)+ G̃(n,k,x)
)∣∣

≤
(
B(n− k)+D(n− k)∆G(n− k)E(n− k)

)
|x|,

for all n,k ∈ Z+,n ≥ k,x ∈ Rm. Invoking (24) and
(B(n))n ∈ lγ(Rm×m),(∆G(n))n ∈ lγ0(Rm×m), we have

(
B(n)+

D(n)∆G(n)E(n)
)

n ∈ lγ1(Rm×m), with γ1 := min{γ,γ0}.
We show that ρ

(
A + D0∆F E0 + ∑+∞

k=0

(
B(k) +

D(k)∆G(k)E(k)
))

< 1 and then the zero solution of the
perturbed equation (22) is GES by Theorem 3.4.

Let M := A + ∑+∞
k=0 B(k). Since

M,D0,∆F ,E0,D(k),∆G(k),E(k),k ∈ Z+, are nonnegative, so
is M +D0∆F E0 +∑+∞

k=0 D(k)∆G(k)E(k). Assume on the con-
trary that ρ0 := ρ

(
M +D0∆F E0 +∑+∞

k=0 D(k)∆G(k)E(k)
)
≥ 1.

By the Perron-Frobenius Theorem (Theorem 2.1 (i)), there
exists x ∈ Rm

+,x �= 0, such that

(
M+D0∆F E0 +

+∞

∑
k=0

D(k)∆G(k)E(k)
)
x = ρ0x,

or equivalently,

(ρ0Im −M)x =
(
D0∆F E0 +

+∞

∑
k=0

D(k)∆G(k)E(k)
)
x. (26)

Let H(t) := (tIm −M), t ∈ R. Since ρ(M)< 1 ≤ ρ0, H(ρ0)
−1

and H(1)−1 exist and are nonnegative, by Theorem 1.1 (ii).
From (26), it follows that

H(ρ0)
−1(D0∆F E0 +

+∞

∑
k=0

D(k)∆G(k)E(k)
)
x = x. (27)

Since x �= 0 and supn∈Z+
‖E(n)‖<+∞, (27) implies

0 < max
{
‖E0x‖, sup

n∈Z+

‖E(n)x‖
}
<+∞.

If max
{
‖E0x‖,supn∈Z+

‖E(n)x‖
}
= ‖E0x‖, multiplying both

sides of (27) from the left by E0, we get

(
E0H(ρ0)

−1D0∆F E0
)
x+

( +∞

∑
k=0

E0H(ρ0)
−1D(k)∆G(k)E(k)

)
x = E0x.

Taking norms both sides of the last equation, we have

‖E0H(ρ0)
−1D0‖.‖∆F‖.‖E0x‖+

+∞

∑
k=0

‖E0H(ρ0)
−1D(k)‖.‖∆G(k)‖.‖E(k)x‖ ≥ ‖E0x‖.

This implies

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖

(
‖∆F‖+

+∞

∑
k=0

‖∆G(k)‖
)
‖E0x‖≥‖E0x‖,

or equivalently,

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖.‖(∆F ,∆G)‖ ≥ 1. (28)

On the other hand, the resolvent identity gives

H(1)−1 −H(ρ0)
−1 = (ρ0 −1)H(ρ0)

−1H(1)−1 ≥ 0.

This yields H(1)−1 ≥ H(ρ0)
−1 ≥ 0. Therefore, PH(1)−1Q ≥

PH(ρ0)
−1Q≥ 0, for any P∈Ξ,Q∈Ω. By (1), ‖PH(1)−1Q‖≥

‖PH(ρ0)
−1Q‖ ≥ 0, for any P ∈ Ξ,Q ∈ Ω. It follows from (28)

that

‖(∆F ,∆G)‖ ≥
1

supP∈Ξ,Q∈Ω ‖PH(1)−1Q‖

=
1

supP∈Ξ,Q∈Ω
{
‖P

(
Im −A−∑+∞

k=0 B(k)
)−1Q‖

}.

(29)

However, this conflicts with (25).
If supn∈Z+

‖E(n)x‖ > ‖E0x‖, then for given ε > 0, there is
n0 ∈ Z+ such that ‖E(n0)x‖> supn∈Z+

‖E(n)x‖−ε > 0. Mul-
tiplying both sides of (27) from the left by E(n0), we get

(
E(n0)H(ρ0)

−1D0∆F E0
)
x+

( +∞

∑
k=0

E(n0)H(ρ0)
−1D(k)∆G(k)E(k)

)
x = E(n0)x.

Taking norms, we get

‖E(n0)H(ρ0)
−1D0‖.‖∆F‖.‖E0x‖+

+∞

∑
k=0

‖E(n0)H(ρ0)
−1D(k)‖.‖∆G(k)‖‖E(k)x‖ ≥ ‖E(n0)x‖.

It follows that

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖

(
‖∆F‖+

+∞

∑
k=0

‖∆G(k)‖
)
(‖E(n0)x‖+ ε)

≥ ‖E(n0)x‖.

Since ε > 0 is arbitrary, we derive

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖

(
‖∆F‖+

+∞

∑
k=0

‖∆G(k)‖
)
≥ 1.
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On the other hand, the resolvent identity gives

Stability of nonlinear Volterra equations

of the form (22) remains GES whenever the size of (∆F ,∆G) is
strictly less than η .

THEOREM 4.1. Assume that (∆G(n))n ∈ lγ0(Rm×m) for
some γ0 > 1 and

max
{

sup
n∈Z+

‖D(n)‖, sup
n∈Z+

‖E(n)‖
}
<+∞. (24)

If

‖(∆F ,∆G)‖<
1

supP∈Ξ,Q∈Ω
{
‖P

(
Im −A−∑+∞

k=0 B(k)
)−1Q‖

},

(25)

where ‖(∆F ,∆G)‖ := ‖∆F‖ + ∑+∞
k=0 ‖∆G(k)‖,

Ξ := {E0,E(0),E(1),E(2), ...} and Ω :=
{D0,D(0),D(1),D(2), ...}, then the zero solution of (22)
remains GES.

Proof. By (17) and (23), it follows that
∣∣F(n,x)+ F̃(n,x)

∣∣≤ (
A+D0∆F E0

)
|x|

and ∣∣(G(n,k,x)+ G̃(n,k,x)
)∣∣

≤
(
B(n− k)+D(n− k)∆G(n− k)E(n− k)

)
|x|,

for all n,k ∈ Z+,n ≥ k,x ∈ Rm. Invoking (24) and
(B(n))n ∈ lγ(Rm×m),(∆G(n))n ∈ lγ0(Rm×m), we have

(
B(n)+

D(n)∆G(n)E(n)
)

n ∈ lγ1(Rm×m), with γ1 := min{γ,γ0}.
We show that ρ

(
A + D0∆F E0 + ∑+∞

k=0

(
B(k) +

D(k)∆G(k)E(k)
))

< 1 and then the zero solution of the
perturbed equation (22) is GES by Theorem 3.4.

Let M := A + ∑+∞
k=0 B(k). Since

M,D0,∆F ,E0,D(k),∆G(k),E(k),k ∈ Z+, are nonnegative, so
is M +D0∆F E0 +∑+∞

k=0 D(k)∆G(k)E(k). Assume on the con-
trary that ρ0 := ρ

(
M +D0∆F E0 +∑+∞

k=0 D(k)∆G(k)E(k)
)
≥ 1.

By the Perron-Frobenius Theorem (Theorem 2.1 (i)), there
exists x ∈ Rm

+,x �= 0, such that

(
M+D0∆F E0 +

+∞

∑
k=0

D(k)∆G(k)E(k)
)
x = ρ0x,

or equivalently,

(ρ0Im −M)x =
(
D0∆F E0 +

+∞

∑
k=0

D(k)∆G(k)E(k)
)
x. (26)

Let H(t) := (tIm −M), t ∈ R. Since ρ(M)< 1 ≤ ρ0, H(ρ0)
−1

and H(1)−1 exist and are nonnegative, by Theorem 1.1 (ii).
From (26), it follows that

H(ρ0)
−1(D0∆F E0 +

+∞

∑
k=0

D(k)∆G(k)E(k)
)
x = x. (27)

Since x �= 0 and supn∈Z+
‖E(n)‖<+∞, (27) implies

0 < max
{
‖E0x‖, sup

n∈Z+

‖E(n)x‖
}
<+∞.

If max
{
‖E0x‖,supn∈Z+

‖E(n)x‖
}
= ‖E0x‖, multiplying both

sides of (27) from the left by E0, we get

(
E0H(ρ0)

−1D0∆F E0
)
x+

( +∞

∑
k=0

E0H(ρ0)
−1D(k)∆G(k)E(k)

)
x = E0x.

Taking norms both sides of the last equation, we have

‖E0H(ρ0)
−1D0‖.‖∆F‖.‖E0x‖+

+∞

∑
k=0

‖E0H(ρ0)
−1D(k)‖.‖∆G(k)‖.‖E(k)x‖ ≥ ‖E0x‖.

This implies

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖

(
‖∆F‖+

+∞

∑
k=0

‖∆G(k)‖
)
‖E0x‖≥‖E0x‖,

or equivalently,

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖.‖(∆F ,∆G)‖ ≥ 1. (28)

On the other hand, the resolvent identity gives

H(1)−1 −H(ρ0)
−1 = (ρ0 −1)H(ρ0)

−1H(1)−1 ≥ 0.

This yields H(1)−1 ≥ H(ρ0)
−1 ≥ 0. Therefore, PH(1)−1Q ≥

PH(ρ0)
−1Q≥ 0, for any P∈Ξ,Q∈Ω. By (1), ‖PH(1)−1Q‖≥

‖PH(ρ0)
−1Q‖ ≥ 0, for any P ∈ Ξ,Q ∈ Ω. It follows from (28)

that

‖(∆F ,∆G)‖ ≥
1

supP∈Ξ,Q∈Ω ‖PH(1)−1Q‖

=
1

supP∈Ξ,Q∈Ω
{
‖P

(
Im −A−∑+∞

k=0 B(k)
)−1Q‖

}.

(29)

However, this conflicts with (25).
If supn∈Z+

‖E(n)x‖ > ‖E0x‖, then for given ε > 0, there is
n0 ∈ Z+ such that ‖E(n0)x‖> supn∈Z+

‖E(n)x‖−ε > 0. Mul-
tiplying both sides of (27) from the left by E(n0), we get

(
E(n0)H(ρ0)

−1D0∆F E0
)
x+

( +∞

∑
k=0

E(n0)H(ρ0)
−1D(k)∆G(k)E(k)

)
x = E(n0)x.

Taking norms, we get

‖E(n0)H(ρ0)
−1D0‖.‖∆F‖.‖E0x‖+

+∞

∑
k=0

‖E(n0)H(ρ0)
−1D(k)‖.‖∆G(k)‖‖E(k)x‖ ≥ ‖E(n0)x‖.

It follows that

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖

(
‖∆F‖+

+∞

∑
k=0

‖∆G(k)‖
)
(‖E(n0)x‖+ ε)

≥ ‖E(n0)x‖.

Since ε > 0 is arbitrary, we derive

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖

(
‖∆F‖+

+∞

∑
k=0

‖∆G(k)‖
)
≥ 1.
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This yields H(1)–1 ¸ H(ρ0)
–1 ¸ 0. Therefore, PH(1)–1Q ¸ 

PH(ρ0)
–1Q ¸ 0, for any P 2 Ξ, Q 2 Ω. By (1), kPH(1)–1Qk ¸ 

kPH(ρ0)
–1Qk ¸ 0, for any P 2 Ξ, Q 2 Ω. It follows from (28) 

that

	

Stability of nonlinear Volterra equations

of the form (22) remains GES whenever the size of (∆F ,∆G) is
strictly less than η .

THEOREM 4.1. Assume that (∆G(n))n ∈ lγ0(Rm×m) for
some γ0 > 1 and

max
{

sup
n∈Z+

‖D(n)‖, sup
n∈Z+

‖E(n)‖
}
<+∞. (24)

If

‖(∆F ,∆G)‖<
1

supP∈Ξ,Q∈Ω
{
‖P

(
Im −A−∑+∞

k=0 B(k)
)−1Q‖

},

(25)

where ‖(∆F ,∆G)‖ := ‖∆F‖ + ∑+∞
k=0 ‖∆G(k)‖,

Ξ := {E0,E(0),E(1),E(2), ...} and Ω :=
{D0,D(0),D(1),D(2), ...}, then the zero solution of (22)
remains GES.

Proof. By (17) and (23), it follows that
∣∣F(n,x)+ F̃(n,x)

∣∣≤ (
A+D0∆F E0

)
|x|

and ∣∣(G(n,k,x)+ G̃(n,k,x)
)∣∣

≤
(
B(n− k)+D(n− k)∆G(n− k)E(n− k)

)
|x|,

for all n,k ∈ Z+,n ≥ k,x ∈ Rm. Invoking (24) and
(B(n))n ∈ lγ(Rm×m),(∆G(n))n ∈ lγ0(Rm×m), we have

(
B(n)+

D(n)∆G(n)E(n)
)

n ∈ lγ1(Rm×m), with γ1 := min{γ,γ0}.
We show that ρ

(
A + D0∆F E0 + ∑+∞

k=0

(
B(k) +

D(k)∆G(k)E(k)
))

< 1 and then the zero solution of the
perturbed equation (22) is GES by Theorem 3.4.

Let M := A + ∑+∞
k=0 B(k). Since

M,D0,∆F ,E0,D(k),∆G(k),E(k),k ∈ Z+, are nonnegative, so
is M +D0∆F E0 +∑+∞

k=0 D(k)∆G(k)E(k). Assume on the con-
trary that ρ0 := ρ

(
M +D0∆F E0 +∑+∞

k=0 D(k)∆G(k)E(k)
)
≥ 1.

By the Perron-Frobenius Theorem (Theorem 2.1 (i)), there
exists x ∈ Rm

+,x �= 0, such that

(
M+D0∆F E0 +

+∞

∑
k=0

D(k)∆G(k)E(k)
)
x = ρ0x,

or equivalently,

(ρ0Im −M)x =
(
D0∆F E0 +

+∞

∑
k=0

D(k)∆G(k)E(k)
)
x. (26)

Let H(t) := (tIm −M), t ∈ R. Since ρ(M)< 1 ≤ ρ0, H(ρ0)
−1

and H(1)−1 exist and are nonnegative, by Theorem 1.1 (ii).
From (26), it follows that

H(ρ0)
−1(D0∆F E0 +

+∞

∑
k=0

D(k)∆G(k)E(k)
)
x = x. (27)

Since x �= 0 and supn∈Z+
‖E(n)‖<+∞, (27) implies

0 < max
{
‖E0x‖, sup

n∈Z+

‖E(n)x‖
}
<+∞.

If max
{
‖E0x‖,supn∈Z+

‖E(n)x‖
}
= ‖E0x‖, multiplying both

sides of (27) from the left by E0, we get

(
E0H(ρ0)

−1D0∆F E0
)
x+

( +∞

∑
k=0

E0H(ρ0)
−1D(k)∆G(k)E(k)

)
x = E0x.

Taking norms both sides of the last equation, we have

‖E0H(ρ0)
−1D0‖.‖∆F‖.‖E0x‖+

+∞

∑
k=0

‖E0H(ρ0)
−1D(k)‖.‖∆G(k)‖.‖E(k)x‖ ≥ ‖E0x‖.

This implies

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖

(
‖∆F‖+

+∞

∑
k=0

‖∆G(k)‖
)
‖E0x‖≥‖E0x‖,

or equivalently,

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖.‖(∆F ,∆G)‖ ≥ 1. (28)

On the other hand, the resolvent identity gives

H(1)−1 −H(ρ0)
−1 = (ρ0 −1)H(ρ0)

−1H(1)−1 ≥ 0.

This yields H(1)−1 ≥ H(ρ0)
−1 ≥ 0. Therefore, PH(1)−1Q ≥

PH(ρ0)
−1Q≥ 0, for any P∈Ξ,Q∈Ω. By (1), ‖PH(1)−1Q‖≥

‖PH(ρ0)
−1Q‖ ≥ 0, for any P ∈ Ξ,Q ∈ Ω. It follows from (28)

that

‖(∆F ,∆G)‖ ≥
1

supP∈Ξ,Q∈Ω ‖PH(1)−1Q‖

=
1

supP∈Ξ,Q∈Ω
{
‖P

(
Im −A−∑+∞

k=0 B(k)
)−1Q‖

}.

(29)

However, this conflicts with (25).
If supn∈Z+

‖E(n)x‖ > ‖E0x‖, then for given ε > 0, there is
n0 ∈ Z+ such that ‖E(n0)x‖> supn∈Z+

‖E(n)x‖−ε > 0. Mul-
tiplying both sides of (27) from the left by E(n0), we get

(
E(n0)H(ρ0)

−1D0∆F E0
)
x+

( +∞

∑
k=0

E(n0)H(ρ0)
−1D(k)∆G(k)E(k)

)
x = E(n0)x.

Taking norms, we get

‖E(n0)H(ρ0)
−1D0‖.‖∆F‖.‖E0x‖+

+∞

∑
k=0

‖E(n0)H(ρ0)
−1D(k)‖.‖∆G(k)‖‖E(k)x‖ ≥ ‖E(n0)x‖.

It follows that

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖

(
‖∆F‖+

+∞

∑
k=0

‖∆G(k)‖
)
(‖E(n0)x‖+ ε)

≥ ‖E(n0)x‖.

Since ε > 0 is arbitrary, we derive

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖

(
‖∆F‖+

+∞

∑
k=0

‖∆G(k)‖
)
≥ 1.
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Stability of nonlinear Volterra equations

of the form (22) remains GES whenever the size of (∆F ,∆G) is
strictly less than η .

THEOREM 4.1. Assume that (∆G(n))n ∈ lγ0(Rm×m) for
some γ0 > 1 and

max
{

sup
n∈Z+

‖D(n)‖, sup
n∈Z+

‖E(n)‖
}
<+∞. (24)

If

‖(∆F ,∆G)‖<
1

supP∈Ξ,Q∈Ω
{
‖P

(
Im −A−∑+∞

k=0 B(k)
)−1Q‖

},

(25)

where ‖(∆F ,∆G)‖ := ‖∆F‖ + ∑+∞
k=0 ‖∆G(k)‖,

Ξ := {E0,E(0),E(1),E(2), ...} and Ω :=
{D0,D(0),D(1),D(2), ...}, then the zero solution of (22)
remains GES.

Proof. By (17) and (23), it follows that
∣∣F(n,x)+ F̃(n,x)

∣∣≤ (
A+D0∆F E0

)
|x|

and ∣∣(G(n,k,x)+ G̃(n,k,x)
)∣∣

≤
(
B(n− k)+D(n− k)∆G(n− k)E(n− k)

)
|x|,

for all n,k ∈ Z+,n ≥ k,x ∈ Rm. Invoking (24) and
(B(n))n ∈ lγ(Rm×m),(∆G(n))n ∈ lγ0(Rm×m), we have

(
B(n)+

D(n)∆G(n)E(n)
)

n ∈ lγ1(Rm×m), with γ1 := min{γ,γ0}.
We show that ρ

(
A + D0∆F E0 + ∑+∞

k=0

(
B(k) +

D(k)∆G(k)E(k)
))

< 1 and then the zero solution of the
perturbed equation (22) is GES by Theorem 3.4.

Let M := A + ∑+∞
k=0 B(k). Since

M,D0,∆F ,E0,D(k),∆G(k),E(k),k ∈ Z+, are nonnegative, so
is M +D0∆F E0 +∑+∞

k=0 D(k)∆G(k)E(k). Assume on the con-
trary that ρ0 := ρ

(
M +D0∆F E0 +∑+∞

k=0 D(k)∆G(k)E(k)
)
≥ 1.

By the Perron-Frobenius Theorem (Theorem 2.1 (i)), there
exists x ∈ Rm

+,x �= 0, such that

(
M+D0∆F E0 +

+∞

∑
k=0

D(k)∆G(k)E(k)
)
x = ρ0x,

or equivalently,

(ρ0Im −M)x =
(
D0∆F E0 +

+∞

∑
k=0

D(k)∆G(k)E(k)
)
x. (26)

Let H(t) := (tIm −M), t ∈ R. Since ρ(M)< 1 ≤ ρ0, H(ρ0)
−1

and H(1)−1 exist and are nonnegative, by Theorem 1.1 (ii).
From (26), it follows that

H(ρ0)
−1(D0∆F E0 +

+∞

∑
k=0

D(k)∆G(k)E(k)
)
x = x. (27)

Since x �= 0 and supn∈Z+
‖E(n)‖<+∞, (27) implies

0 < max
{
‖E0x‖, sup

n∈Z+

‖E(n)x‖
}
<+∞.

If max
{
‖E0x‖,supn∈Z+

‖E(n)x‖
}
= ‖E0x‖, multiplying both

sides of (27) from the left by E0, we get

(
E0H(ρ0)

−1D0∆F E0
)
x+

( +∞

∑
k=0

E0H(ρ0)
−1D(k)∆G(k)E(k)

)
x = E0x.

Taking norms both sides of the last equation, we have

‖E0H(ρ0)
−1D0‖.‖∆F‖.‖E0x‖+

+∞

∑
k=0

‖E0H(ρ0)
−1D(k)‖.‖∆G(k)‖.‖E(k)x‖ ≥ ‖E0x‖.

This implies

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖

(
‖∆F‖+

+∞

∑
k=0

‖∆G(k)‖
)
‖E0x‖≥‖E0x‖,

or equivalently,

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖.‖(∆F ,∆G)‖ ≥ 1. (28)

On the other hand, the resolvent identity gives

H(1)−1 −H(ρ0)
−1 = (ρ0 −1)H(ρ0)

−1H(1)−1 ≥ 0.

This yields H(1)−1 ≥ H(ρ0)
−1 ≥ 0. Therefore, PH(1)−1Q ≥

PH(ρ0)
−1Q≥ 0, for any P∈Ξ,Q∈Ω. By (1), ‖PH(1)−1Q‖≥

‖PH(ρ0)
−1Q‖ ≥ 0, for any P ∈ Ξ,Q ∈ Ω. It follows from (28)

that

‖(∆F ,∆G)‖ ≥
1

supP∈Ξ,Q∈Ω ‖PH(1)−1Q‖

=
1

supP∈Ξ,Q∈Ω
{
‖P

(
Im −A−∑+∞

k=0 B(k)
)−1Q‖

}.

(29)

However, this conflicts with (25).
If supn∈Z+

‖E(n)x‖ > ‖E0x‖, then for given ε > 0, there is
n0 ∈ Z+ such that ‖E(n0)x‖> supn∈Z+

‖E(n)x‖−ε > 0. Mul-
tiplying both sides of (27) from the left by E(n0), we get

(
E(n0)H(ρ0)

−1D0∆F E0
)
x+

( +∞

∑
k=0

E(n0)H(ρ0)
−1D(k)∆G(k)E(k)

)
x = E(n0)x.

Taking norms, we get

‖E(n0)H(ρ0)
−1D0‖.‖∆F‖.‖E0x‖+

+∞

∑
k=0

‖E(n0)H(ρ0)
−1D(k)‖.‖∆G(k)‖‖E(k)x‖ ≥ ‖E(n0)x‖.

It follows that

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖

(
‖∆F‖+

+∞

∑
k=0

‖∆G(k)‖
)
(‖E(n0)x‖+ ε)

≥ ‖E(n0)x‖.

Since ε > 0 is arbitrary, we derive

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖

(
‖∆F‖+

+∞

∑
k=0

‖∆G(k)‖
)
≥ 1.
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1. Introduction
Volterra difference equations have been widely used in the
modeling of processes in continuous mechanics and biome-
chanics, problems of control and estimations and some
schemes of numerical solutions of integral and integro-
differential equations, see e.g. [2], [7], [12], [16]-[19].

Problems of stability of Volterra difference equations have
attracted much attention from researchers, during the last
twenty years, see e.g. [1],[4]-[13], [15], [21]-[23] and refer-
ences therein. Many various methods have been used to inves-
tigate stability of Volterra difference equations such as Lya-
punov functions, Z transform, comparison theorems, topologi-
cal methods, fixed point theorems, etc (see e.g. [7], [10], [15],
[23]).

In particular, the first significant result on exponential sta-
bility of Volterra difference equations is due to Elaydi and
Murakami, see [8]. Roughly speaking, Elaydi and Murakami
showed that even to the simplest Volterra difference equations
(namely, linear time-invariant Volterra difference equations of
convolution type), the exponential stability is “stronger” than
the uniform asymptotic stability. More precisely, a linear time-
invariant Volterra difference equation of convolution type is ex-
ponentially stable if and only if it is uniformly asymptotically
stable and its kernel exponentially decays, see [8]. For further
and updated information on stability of linear time-invariant
Volterra difference equations, we refer to the recent survey pa-
per [10].

In general, problems of global exponential stability of time-
varying Volterra difference equations are very hard even those
of linear time-varying Volterra equations. Most of existing re-
sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
ditions for exponential stability of linear time-varying Volterra
difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
nential stability of nonlinear time-varying Volterra difference
equations. Our approach is based on the celebrated Perron-
Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
nential stability of the zero solution of general nonlinear time-

varying Volterra difference equations. Furthermore, we derive
an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.

2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there

1

+
kE(n)xk > kE0xk, then for given ε > 0, there is 

n0 2 
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ences therein. Many various methods have been used to inves-
tigate stability of Volterra difference equations such as Lya-
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bility of Volterra difference equations is due to Elaydi and
Murakami, see [8]. Roughly speaking, Elaydi and Murakami
showed that even to the simplest Volterra difference equations
(namely, linear time-invariant Volterra difference equations of
convolution type), the exponential stability is “stronger” than
the uniform asymptotic stability. More precisely, a linear time-
invariant Volterra difference equation of convolution type is ex-
ponentially stable if and only if it is uniformly asymptotically
stable and its kernel exponentially decays, see [8]. For further
and updated information on stability of linear time-invariant
Volterra difference equations, we refer to the recent survey pa-
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varying Volterra difference equations are very hard even those
of linear time-varying Volterra equations. Most of existing re-
sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
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ence equations in the literature. In particular, several abstract
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time-varying perturbations. Finally, the obtained results are
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sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there

1

+ such that kE(n0)xk > supn 2 
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norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
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be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
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P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there

1

+
kE(n)xk ¡ ε > 0. Multi-

plying both sides of (27) from the left by E(n0), we get
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of the form (22) remains GES whenever the size of (∆F ,∆G) is
strictly less than η .

THEOREM 4.1. Assume that (∆G(n))n ∈ lγ0(Rm×m) for
some γ0 > 1 and

max
{

sup
n∈Z+

‖D(n)‖, sup
n∈Z+

‖E(n)‖
}
<+∞. (24)

If

‖(∆F ,∆G)‖<
1

supP∈Ξ,Q∈Ω
{
‖P

(
Im −A−∑+∞

k=0 B(k)
)−1Q‖

},

(25)

where ‖(∆F ,∆G)‖ := ‖∆F‖ + ∑+∞
k=0 ‖∆G(k)‖,

Ξ := {E0,E(0),E(1),E(2), ...} and Ω :=
{D0,D(0),D(1),D(2), ...}, then the zero solution of (22)
remains GES.

Proof. By (17) and (23), it follows that
∣∣F(n,x)+ F̃(n,x)

∣∣≤ (
A+D0∆F E0

)
|x|

and ∣∣(G(n,k,x)+ G̃(n,k,x)
)∣∣

≤
(
B(n− k)+D(n− k)∆G(n− k)E(n− k)

)
|x|,

for all n,k ∈ Z+,n ≥ k,x ∈ Rm. Invoking (24) and
(B(n))n ∈ lγ(Rm×m),(∆G(n))n ∈ lγ0(Rm×m), we have

(
B(n)+

D(n)∆G(n)E(n)
)

n ∈ lγ1(Rm×m), with γ1 := min{γ,γ0}.
We show that ρ

(
A + D0∆F E0 + ∑+∞

k=0

(
B(k) +

D(k)∆G(k)E(k)
))

< 1 and then the zero solution of the
perturbed equation (22) is GES by Theorem 3.4.

Let M := A + ∑+∞
k=0 B(k). Since

M,D0,∆F ,E0,D(k),∆G(k),E(k),k ∈ Z+, are nonnegative, so
is M +D0∆F E0 +∑+∞

k=0 D(k)∆G(k)E(k). Assume on the con-
trary that ρ0 := ρ

(
M +D0∆F E0 +∑+∞

k=0 D(k)∆G(k)E(k)
)
≥ 1.

By the Perron-Frobenius Theorem (Theorem 2.1 (i)), there
exists x ∈ Rm

+,x �= 0, such that

(
M+D0∆F E0 +

+∞

∑
k=0

D(k)∆G(k)E(k)
)
x = ρ0x,

or equivalently,

(ρ0Im −M)x =
(
D0∆F E0 +

+∞

∑
k=0

D(k)∆G(k)E(k)
)
x. (26)

Let H(t) := (tIm −M), t ∈ R. Since ρ(M)< 1 ≤ ρ0, H(ρ0)
−1

and H(1)−1 exist and are nonnegative, by Theorem 1.1 (ii).
From (26), it follows that

H(ρ0)
−1(D0∆F E0 +

+∞

∑
k=0

D(k)∆G(k)E(k)
)
x = x. (27)

Since x �= 0 and supn∈Z+
‖E(n)‖<+∞, (27) implies

0 < max
{
‖E0x‖, sup

n∈Z+

‖E(n)x‖
}
<+∞.

If max
{
‖E0x‖,supn∈Z+

‖E(n)x‖
}
= ‖E0x‖, multiplying both

sides of (27) from the left by E0, we get

(
E0H(ρ0)

−1D0∆F E0
)
x+

( +∞

∑
k=0

E0H(ρ0)
−1D(k)∆G(k)E(k)

)
x = E0x.

Taking norms both sides of the last equation, we have

‖E0H(ρ0)
−1D0‖.‖∆F‖.‖E0x‖+

+∞

∑
k=0

‖E0H(ρ0)
−1D(k)‖.‖∆G(k)‖.‖E(k)x‖ ≥ ‖E0x‖.

This implies

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖

(
‖∆F‖+

+∞

∑
k=0

‖∆G(k)‖
)
‖E0x‖≥‖E0x‖,

or equivalently,

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖.‖(∆F ,∆G)‖ ≥ 1. (28)

On the other hand, the resolvent identity gives

H(1)−1 −H(ρ0)
−1 = (ρ0 −1)H(ρ0)

−1H(1)−1 ≥ 0.

This yields H(1)−1 ≥ H(ρ0)
−1 ≥ 0. Therefore, PH(1)−1Q ≥

PH(ρ0)
−1Q≥ 0, for any P∈Ξ,Q∈Ω. By (1), ‖PH(1)−1Q‖≥

‖PH(ρ0)
−1Q‖ ≥ 0, for any P ∈ Ξ,Q ∈ Ω. It follows from (28)

that

‖(∆F ,∆G)‖ ≥
1

supP∈Ξ,Q∈Ω ‖PH(1)−1Q‖

=
1

supP∈Ξ,Q∈Ω
{
‖P

(
Im −A−∑+∞

k=0 B(k)
)−1Q‖

}.

(29)

However, this conflicts with (25).
If supn∈Z+

‖E(n)x‖ > ‖E0x‖, then for given ε > 0, there is
n0 ∈ Z+ such that ‖E(n0)x‖> supn∈Z+

‖E(n)x‖−ε > 0. Mul-
tiplying both sides of (27) from the left by E(n0), we get

(
E(n0)H(ρ0)

−1D0∆F E0
)
x+

( +∞

∑
k=0

E(n0)H(ρ0)
−1D(k)∆G(k)E(k)

)
x = E(n0)x.

Taking norms, we get

‖E(n0)H(ρ0)
−1D0‖.‖∆F‖.‖E0x‖+

+∞

∑
k=0

‖E(n0)H(ρ0)
−1D(k)‖.‖∆G(k)‖‖E(k)x‖ ≥ ‖E(n0)x‖.

It follows that

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖

(
‖∆F‖+

+∞

∑
k=0

‖∆G(k)‖
)
(‖E(n0)x‖+ ε)

≥ ‖E(n0)x‖.

Since ε > 0 is arbitrary, we derive

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖

(
‖∆F‖+

+∞

∑
k=0

‖∆G(k)‖
)
≥ 1.
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Stability of nonlinear Volterra equations

of the form (22) remains GES whenever the size of (∆F ,∆G) is
strictly less than η .

THEOREM 4.1. Assume that (∆G(n))n ∈ lγ0(Rm×m) for
some γ0 > 1 and

max
{

sup
n∈Z+

‖D(n)‖, sup
n∈Z+

‖E(n)‖
}
<+∞. (24)

If

‖(∆F ,∆G)‖<
1

supP∈Ξ,Q∈Ω
{
‖P

(
Im −A−∑+∞

k=0 B(k)
)−1Q‖

},

(25)

where ‖(∆F ,∆G)‖ := ‖∆F‖ + ∑+∞
k=0 ‖∆G(k)‖,

Ξ := {E0,E(0),E(1),E(2), ...} and Ω :=
{D0,D(0),D(1),D(2), ...}, then the zero solution of (22)
remains GES.

Proof. By (17) and (23), it follows that
∣∣F(n,x)+ F̃(n,x)

∣∣≤ (
A+D0∆F E0

)
|x|

and ∣∣(G(n,k,x)+ G̃(n,k,x)
)∣∣

≤
(
B(n− k)+D(n− k)∆G(n− k)E(n− k)

)
|x|,

for all n,k ∈ Z+,n ≥ k,x ∈ Rm. Invoking (24) and
(B(n))n ∈ lγ(Rm×m),(∆G(n))n ∈ lγ0(Rm×m), we have

(
B(n)+

D(n)∆G(n)E(n)
)

n ∈ lγ1(Rm×m), with γ1 := min{γ,γ0}.
We show that ρ

(
A + D0∆F E0 + ∑+∞

k=0

(
B(k) +

D(k)∆G(k)E(k)
))

< 1 and then the zero solution of the
perturbed equation (22) is GES by Theorem 3.4.

Let M := A + ∑+∞
k=0 B(k). Since

M,D0,∆F ,E0,D(k),∆G(k),E(k),k ∈ Z+, are nonnegative, so
is M +D0∆F E0 +∑+∞

k=0 D(k)∆G(k)E(k). Assume on the con-
trary that ρ0 := ρ

(
M +D0∆F E0 +∑+∞

k=0 D(k)∆G(k)E(k)
)
≥ 1.

By the Perron-Frobenius Theorem (Theorem 2.1 (i)), there
exists x ∈ Rm

+,x �= 0, such that

(
M+D0∆F E0 +

+∞

∑
k=0

D(k)∆G(k)E(k)
)
x = ρ0x,

or equivalently,

(ρ0Im −M)x =
(
D0∆F E0 +

+∞

∑
k=0

D(k)∆G(k)E(k)
)
x. (26)

Let H(t) := (tIm −M), t ∈ R. Since ρ(M)< 1 ≤ ρ0, H(ρ0)
−1

and H(1)−1 exist and are nonnegative, by Theorem 1.1 (ii).
From (26), it follows that

H(ρ0)
−1(D0∆F E0 +

+∞

∑
k=0

D(k)∆G(k)E(k)
)
x = x. (27)

Since x �= 0 and supn∈Z+
‖E(n)‖<+∞, (27) implies

0 < max
{
‖E0x‖, sup

n∈Z+

‖E(n)x‖
}
<+∞.

If max
{
‖E0x‖,supn∈Z+

‖E(n)x‖
}
= ‖E0x‖, multiplying both

sides of (27) from the left by E0, we get

(
E0H(ρ0)

−1D0∆F E0
)
x+

( +∞

∑
k=0

E0H(ρ0)
−1D(k)∆G(k)E(k)

)
x = E0x.

Taking norms both sides of the last equation, we have

‖E0H(ρ0)
−1D0‖.‖∆F‖.‖E0x‖+

+∞

∑
k=0

‖E0H(ρ0)
−1D(k)‖.‖∆G(k)‖.‖E(k)x‖ ≥ ‖E0x‖.

This implies

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖

(
‖∆F‖+

+∞

∑
k=0

‖∆G(k)‖
)
‖E0x‖≥‖E0x‖,

or equivalently,

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖.‖(∆F ,∆G)‖ ≥ 1. (28)

On the other hand, the resolvent identity gives

H(1)−1 −H(ρ0)
−1 = (ρ0 −1)H(ρ0)

−1H(1)−1 ≥ 0.

This yields H(1)−1 ≥ H(ρ0)
−1 ≥ 0. Therefore, PH(1)−1Q ≥

PH(ρ0)
−1Q≥ 0, for any P∈Ξ,Q∈Ω. By (1), ‖PH(1)−1Q‖≥

‖PH(ρ0)
−1Q‖ ≥ 0, for any P ∈ Ξ,Q ∈ Ω. It follows from (28)

that

‖(∆F ,∆G)‖ ≥
1

supP∈Ξ,Q∈Ω ‖PH(1)−1Q‖

=
1

supP∈Ξ,Q∈Ω
{
‖P

(
Im −A−∑+∞

k=0 B(k)
)−1Q‖

}.

(29)

However, this conflicts with (25).
If supn∈Z+

‖E(n)x‖ > ‖E0x‖, then for given ε > 0, there is
n0 ∈ Z+ such that ‖E(n0)x‖> supn∈Z+

‖E(n)x‖−ε > 0. Mul-
tiplying both sides of (27) from the left by E(n0), we get

(
E(n0)H(ρ0)

−1D0∆F E0
)
x+

( +∞

∑
k=0

E(n0)H(ρ0)
−1D(k)∆G(k)E(k)

)
x = E(n0)x.

Taking norms, we get

‖E(n0)H(ρ0)
−1D0‖.‖∆F‖.‖E0x‖+

+∞

∑
k=0

‖E(n0)H(ρ0)
−1D(k)‖.‖∆G(k)‖‖E(k)x‖ ≥ ‖E(n0)x‖.

It follows that

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖

(
‖∆F‖+

+∞

∑
k=0

‖∆G(k)‖
)
(‖E(n0)x‖+ ε)

≥ ‖E(n0)x‖.

Since ε > 0 is arbitrary, we derive

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖

(
‖∆F‖+

+∞

∑
k=0

‖∆G(k)‖
)
≥ 1.
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Stability of nonlinear Volterra equations

of the form (22) remains GES whenever the size of (∆F ,∆G) is
strictly less than η .

THEOREM 4.1. Assume that (∆G(n))n ∈ lγ0(Rm×m) for
some γ0 > 1 and

max
{

sup
n∈Z+

‖D(n)‖, sup
n∈Z+

‖E(n)‖
}
<+∞. (24)

If

‖(∆F ,∆G)‖<
1

supP∈Ξ,Q∈Ω
{
‖P

(
Im −A−∑+∞

k=0 B(k)
)−1Q‖

},

(25)

where ‖(∆F ,∆G)‖ := ‖∆F‖ + ∑+∞
k=0 ‖∆G(k)‖,

Ξ := {E0,E(0),E(1),E(2), ...} and Ω :=
{D0,D(0),D(1),D(2), ...}, then the zero solution of (22)
remains GES.

Proof. By (17) and (23), it follows that
∣∣F(n,x)+ F̃(n,x)

∣∣≤ (
A+D0∆F E0

)
|x|

and ∣∣(G(n,k,x)+ G̃(n,k,x)
)∣∣

≤
(
B(n− k)+D(n− k)∆G(n− k)E(n− k)

)
|x|,

for all n,k ∈ Z+,n ≥ k,x ∈ Rm. Invoking (24) and
(B(n))n ∈ lγ(Rm×m),(∆G(n))n ∈ lγ0(Rm×m), we have

(
B(n)+

D(n)∆G(n)E(n)
)

n ∈ lγ1(Rm×m), with γ1 := min{γ,γ0}.
We show that ρ

(
A + D0∆F E0 + ∑+∞

k=0

(
B(k) +

D(k)∆G(k)E(k)
))

< 1 and then the zero solution of the
perturbed equation (22) is GES by Theorem 3.4.

Let M := A + ∑+∞
k=0 B(k). Since

M,D0,∆F ,E0,D(k),∆G(k),E(k),k ∈ Z+, are nonnegative, so
is M +D0∆F E0 +∑+∞

k=0 D(k)∆G(k)E(k). Assume on the con-
trary that ρ0 := ρ

(
M +D0∆F E0 +∑+∞

k=0 D(k)∆G(k)E(k)
)
≥ 1.

By the Perron-Frobenius Theorem (Theorem 2.1 (i)), there
exists x ∈ Rm

+,x �= 0, such that

(
M+D0∆F E0 +

+∞

∑
k=0

D(k)∆G(k)E(k)
)
x = ρ0x,

or equivalently,

(ρ0Im −M)x =
(
D0∆F E0 +

+∞

∑
k=0

D(k)∆G(k)E(k)
)
x. (26)

Let H(t) := (tIm −M), t ∈ R. Since ρ(M)< 1 ≤ ρ0, H(ρ0)
−1

and H(1)−1 exist and are nonnegative, by Theorem 1.1 (ii).
From (26), it follows that

H(ρ0)
−1(D0∆F E0 +

+∞

∑
k=0

D(k)∆G(k)E(k)
)
x = x. (27)

Since x �= 0 and supn∈Z+
‖E(n)‖<+∞, (27) implies

0 < max
{
‖E0x‖, sup

n∈Z+

‖E(n)x‖
}
<+∞.

If max
{
‖E0x‖,supn∈Z+

‖E(n)x‖
}
= ‖E0x‖, multiplying both

sides of (27) from the left by E0, we get

(
E0H(ρ0)

−1D0∆F E0
)
x+

( +∞

∑
k=0

E0H(ρ0)
−1D(k)∆G(k)E(k)

)
x = E0x.

Taking norms both sides of the last equation, we have

‖E0H(ρ0)
−1D0‖.‖∆F‖.‖E0x‖+

+∞

∑
k=0

‖E0H(ρ0)
−1D(k)‖.‖∆G(k)‖.‖E(k)x‖ ≥ ‖E0x‖.

This implies

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖

(
‖∆F‖+

+∞

∑
k=0

‖∆G(k)‖
)
‖E0x‖≥‖E0x‖,

or equivalently,

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖.‖(∆F ,∆G)‖ ≥ 1. (28)

On the other hand, the resolvent identity gives

H(1)−1 −H(ρ0)
−1 = (ρ0 −1)H(ρ0)

−1H(1)−1 ≥ 0.

This yields H(1)−1 ≥ H(ρ0)
−1 ≥ 0. Therefore, PH(1)−1Q ≥

PH(ρ0)
−1Q≥ 0, for any P∈Ξ,Q∈Ω. By (1), ‖PH(1)−1Q‖≥

‖PH(ρ0)
−1Q‖ ≥ 0, for any P ∈ Ξ,Q ∈ Ω. It follows from (28)

that

‖(∆F ,∆G)‖ ≥
1

supP∈Ξ,Q∈Ω ‖PH(1)−1Q‖

=
1

supP∈Ξ,Q∈Ω
{
‖P

(
Im −A−∑+∞

k=0 B(k)
)−1Q‖

}.

(29)

However, this conflicts with (25).
If supn∈Z+

‖E(n)x‖ > ‖E0x‖, then for given ε > 0, there is
n0 ∈ Z+ such that ‖E(n0)x‖> supn∈Z+

‖E(n)x‖−ε > 0. Mul-
tiplying both sides of (27) from the left by E(n0), we get

(
E(n0)H(ρ0)

−1D0∆F E0
)
x+

( +∞

∑
k=0

E(n0)H(ρ0)
−1D(k)∆G(k)E(k)

)
x = E(n0)x.

Taking norms, we get

‖E(n0)H(ρ0)
−1D0‖.‖∆F‖.‖E0x‖+

+∞

∑
k=0

‖E(n0)H(ρ0)
−1D(k)‖.‖∆G(k)‖‖E(k)x‖ ≥ ‖E(n0)x‖.

It follows that

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖

(
‖∆F‖+

+∞

∑
k=0

‖∆G(k)‖
)
(‖E(n0)x‖+ ε)

≥ ‖E(n0)x‖.

Since ε > 0 is arbitrary, we derive

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖

(
‖∆F‖+

+∞

∑
k=0

‖∆G(k)‖
)
≥ 1.
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Taking norms, we get

Stability of nonlinear Volterra equations

of the form (22) remains GES whenever the size of (∆F ,∆G) is
strictly less than η .

THEOREM 4.1. Assume that (∆G(n))n ∈ lγ0(Rm×m) for
some γ0 > 1 and

max
{

sup
n∈Z+

‖D(n)‖, sup
n∈Z+

‖E(n)‖
}
<+∞. (24)

If

‖(∆F ,∆G)‖<
1

supP∈Ξ,Q∈Ω
{
‖P

(
Im −A−∑+∞

k=0 B(k)
)−1Q‖

},

(25)

where ‖(∆F ,∆G)‖ := ‖∆F‖ + ∑+∞
k=0 ‖∆G(k)‖,

Ξ := {E0,E(0),E(1),E(2), ...} and Ω :=
{D0,D(0),D(1),D(2), ...}, then the zero solution of (22)
remains GES.

Proof. By (17) and (23), it follows that
∣∣F(n,x)+ F̃(n,x)

∣∣≤ (
A+D0∆F E0

)
|x|

and ∣∣(G(n,k,x)+ G̃(n,k,x)
)∣∣

≤
(
B(n− k)+D(n− k)∆G(n− k)E(n− k)

)
|x|,

for all n,k ∈ Z+,n ≥ k,x ∈ Rm. Invoking (24) and
(B(n))n ∈ lγ(Rm×m),(∆G(n))n ∈ lγ0(Rm×m), we have

(
B(n)+

D(n)∆G(n)E(n)
)

n ∈ lγ1(Rm×m), with γ1 := min{γ,γ0}.
We show that ρ

(
A + D0∆F E0 + ∑+∞

k=0

(
B(k) +

D(k)∆G(k)E(k)
))

< 1 and then the zero solution of the
perturbed equation (22) is GES by Theorem 3.4.

Let M := A + ∑+∞
k=0 B(k). Since

M,D0,∆F ,E0,D(k),∆G(k),E(k),k ∈ Z+, are nonnegative, so
is M +D0∆F E0 +∑+∞

k=0 D(k)∆G(k)E(k). Assume on the con-
trary that ρ0 := ρ

(
M +D0∆F E0 +∑+∞

k=0 D(k)∆G(k)E(k)
)
≥ 1.

By the Perron-Frobenius Theorem (Theorem 2.1 (i)), there
exists x ∈ Rm

+,x �= 0, such that

(
M+D0∆F E0 +

+∞

∑
k=0

D(k)∆G(k)E(k)
)
x = ρ0x,

or equivalently,

(ρ0Im −M)x =
(
D0∆F E0 +

+∞

∑
k=0

D(k)∆G(k)E(k)
)
x. (26)

Let H(t) := (tIm −M), t ∈ R. Since ρ(M)< 1 ≤ ρ0, H(ρ0)
−1

and H(1)−1 exist and are nonnegative, by Theorem 1.1 (ii).
From (26), it follows that

H(ρ0)
−1(D0∆F E0 +

+∞

∑
k=0

D(k)∆G(k)E(k)
)
x = x. (27)

Since x �= 0 and supn∈Z+
‖E(n)‖<+∞, (27) implies

0 < max
{
‖E0x‖, sup

n∈Z+

‖E(n)x‖
}
<+∞.

If max
{
‖E0x‖,supn∈Z+

‖E(n)x‖
}
= ‖E0x‖, multiplying both

sides of (27) from the left by E0, we get

(
E0H(ρ0)

−1D0∆F E0
)
x+

( +∞

∑
k=0

E0H(ρ0)
−1D(k)∆G(k)E(k)

)
x = E0x.

Taking norms both sides of the last equation, we have

‖E0H(ρ0)
−1D0‖.‖∆F‖.‖E0x‖+

+∞

∑
k=0

‖E0H(ρ0)
−1D(k)‖.‖∆G(k)‖.‖E(k)x‖ ≥ ‖E0x‖.

This implies

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖

(
‖∆F‖+

+∞

∑
k=0

‖∆G(k)‖
)
‖E0x‖≥‖E0x‖,

or equivalently,

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖.‖(∆F ,∆G)‖ ≥ 1. (28)

On the other hand, the resolvent identity gives

H(1)−1 −H(ρ0)
−1 = (ρ0 −1)H(ρ0)

−1H(1)−1 ≥ 0.

This yields H(1)−1 ≥ H(ρ0)
−1 ≥ 0. Therefore, PH(1)−1Q ≥

PH(ρ0)
−1Q≥ 0, for any P∈Ξ,Q∈Ω. By (1), ‖PH(1)−1Q‖≥

‖PH(ρ0)
−1Q‖ ≥ 0, for any P ∈ Ξ,Q ∈ Ω. It follows from (28)

that

‖(∆F ,∆G)‖ ≥
1

supP∈Ξ,Q∈Ω ‖PH(1)−1Q‖

=
1

supP∈Ξ,Q∈Ω
{
‖P

(
Im −A−∑+∞

k=0 B(k)
)−1Q‖

}.

(29)

However, this conflicts with (25).
If supn∈Z+

‖E(n)x‖ > ‖E0x‖, then for given ε > 0, there is
n0 ∈ Z+ such that ‖E(n0)x‖> supn∈Z+

‖E(n)x‖−ε > 0. Mul-
tiplying both sides of (27) from the left by E(n0), we get

(
E(n0)H(ρ0)

−1D0∆F E0
)
x+

( +∞

∑
k=0

E(n0)H(ρ0)
−1D(k)∆G(k)E(k)

)
x = E(n0)x.

Taking norms, we get

‖E(n0)H(ρ0)
−1D0‖.‖∆F‖.‖E0x‖+

+∞

∑
k=0

‖E(n0)H(ρ0)
−1D(k)‖.‖∆G(k)‖‖E(k)x‖ ≥ ‖E(n0)x‖.

It follows that

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖

(
‖∆F‖+

+∞

∑
k=0

‖∆G(k)‖
)
(‖E(n0)x‖+ ε)

≥ ‖E(n0)x‖.

Since ε > 0 is arbitrary, we derive

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖

(
‖∆F‖+

+∞

∑
k=0

‖∆G(k)‖
)
≥ 1.
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Stability of nonlinear Volterra equations

of the form (22) remains GES whenever the size of (∆F ,∆G) is
strictly less than η .

THEOREM 4.1. Assume that (∆G(n))n ∈ lγ0(Rm×m) for
some γ0 > 1 and

max
{

sup
n∈Z+

‖D(n)‖, sup
n∈Z+

‖E(n)‖
}
<+∞. (24)

If

‖(∆F ,∆G)‖<
1

supP∈Ξ,Q∈Ω
{
‖P

(
Im −A−∑+∞

k=0 B(k)
)−1Q‖

},

(25)

where ‖(∆F ,∆G)‖ := ‖∆F‖ + ∑+∞
k=0 ‖∆G(k)‖,

Ξ := {E0,E(0),E(1),E(2), ...} and Ω :=
{D0,D(0),D(1),D(2), ...}, then the zero solution of (22)
remains GES.

Proof. By (17) and (23), it follows that
∣∣F(n,x)+ F̃(n,x)

∣∣≤ (
A+D0∆F E0

)
|x|

and ∣∣(G(n,k,x)+ G̃(n,k,x)
)∣∣

≤
(
B(n− k)+D(n− k)∆G(n− k)E(n− k)

)
|x|,

for all n,k ∈ Z+,n ≥ k,x ∈ Rm. Invoking (24) and
(B(n))n ∈ lγ(Rm×m),(∆G(n))n ∈ lγ0(Rm×m), we have

(
B(n)+

D(n)∆G(n)E(n)
)

n ∈ lγ1(Rm×m), with γ1 := min{γ,γ0}.
We show that ρ

(
A + D0∆F E0 + ∑+∞

k=0

(
B(k) +

D(k)∆G(k)E(k)
))

< 1 and then the zero solution of the
perturbed equation (22) is GES by Theorem 3.4.

Let M := A + ∑+∞
k=0 B(k). Since

M,D0,∆F ,E0,D(k),∆G(k),E(k),k ∈ Z+, are nonnegative, so
is M +D0∆F E0 +∑+∞

k=0 D(k)∆G(k)E(k). Assume on the con-
trary that ρ0 := ρ

(
M +D0∆F E0 +∑+∞

k=0 D(k)∆G(k)E(k)
)
≥ 1.

By the Perron-Frobenius Theorem (Theorem 2.1 (i)), there
exists x ∈ Rm

+,x �= 0, such that

(
M+D0∆F E0 +

+∞

∑
k=0

D(k)∆G(k)E(k)
)
x = ρ0x,

or equivalently,

(ρ0Im −M)x =
(
D0∆F E0 +

+∞

∑
k=0

D(k)∆G(k)E(k)
)
x. (26)

Let H(t) := (tIm −M), t ∈ R. Since ρ(M)< 1 ≤ ρ0, H(ρ0)
−1

and H(1)−1 exist and are nonnegative, by Theorem 1.1 (ii).
From (26), it follows that

H(ρ0)
−1(D0∆F E0 +

+∞

∑
k=0

D(k)∆G(k)E(k)
)
x = x. (27)

Since x �= 0 and supn∈Z+
‖E(n)‖<+∞, (27) implies

0 < max
{
‖E0x‖, sup

n∈Z+

‖E(n)x‖
}
<+∞.

If max
{
‖E0x‖,supn∈Z+

‖E(n)x‖
}
= ‖E0x‖, multiplying both

sides of (27) from the left by E0, we get

(
E0H(ρ0)

−1D0∆F E0
)
x+

( +∞

∑
k=0

E0H(ρ0)
−1D(k)∆G(k)E(k)

)
x = E0x.

Taking norms both sides of the last equation, we have

‖E0H(ρ0)
−1D0‖.‖∆F‖.‖E0x‖+

+∞

∑
k=0

‖E0H(ρ0)
−1D(k)‖.‖∆G(k)‖.‖E(k)x‖ ≥ ‖E0x‖.

This implies

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖

(
‖∆F‖+

+∞

∑
k=0

‖∆G(k)‖
)
‖E0x‖≥‖E0x‖,

or equivalently,

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖.‖(∆F ,∆G)‖ ≥ 1. (28)

On the other hand, the resolvent identity gives

H(1)−1 −H(ρ0)
−1 = (ρ0 −1)H(ρ0)

−1H(1)−1 ≥ 0.

This yields H(1)−1 ≥ H(ρ0)
−1 ≥ 0. Therefore, PH(1)−1Q ≥

PH(ρ0)
−1Q≥ 0, for any P∈Ξ,Q∈Ω. By (1), ‖PH(1)−1Q‖≥

‖PH(ρ0)
−1Q‖ ≥ 0, for any P ∈ Ξ,Q ∈ Ω. It follows from (28)

that

‖(∆F ,∆G)‖ ≥
1

supP∈Ξ,Q∈Ω ‖PH(1)−1Q‖

=
1

supP∈Ξ,Q∈Ω
{
‖P

(
Im −A−∑+∞

k=0 B(k)
)−1Q‖

}.

(29)

However, this conflicts with (25).
If supn∈Z+

‖E(n)x‖ > ‖E0x‖, then for given ε > 0, there is
n0 ∈ Z+ such that ‖E(n0)x‖> supn∈Z+

‖E(n)x‖−ε > 0. Mul-
tiplying both sides of (27) from the left by E(n0), we get

(
E(n0)H(ρ0)

−1D0∆F E0
)
x+

( +∞

∑
k=0

E(n0)H(ρ0)
−1D(k)∆G(k)E(k)

)
x = E(n0)x.

Taking norms, we get

‖E(n0)H(ρ0)
−1D0‖.‖∆F‖.‖E0x‖+

+∞

∑
k=0

‖E(n0)H(ρ0)
−1D(k)‖.‖∆G(k)‖‖E(k)x‖ ≥ ‖E(n0)x‖.

It follows that

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖

(
‖∆F‖+

+∞

∑
k=0

‖∆G(k)‖
)
(‖E(n0)x‖+ ε)

≥ ‖E(n0)x‖.

Since ε > 0 is arbitrary, we derive

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖

(
‖∆F‖+

+∞

∑
k=0

‖∆G(k)‖
)
≥ 1.
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It follows that

Stability of nonlinear Volterra equations

of the form (22) remains GES whenever the size of (∆F ,∆G) is
strictly less than η .

THEOREM 4.1. Assume that (∆G(n))n ∈ lγ0(Rm×m) for
some γ0 > 1 and

max
{

sup
n∈Z+

‖D(n)‖, sup
n∈Z+

‖E(n)‖
}
<+∞. (24)

If

‖(∆F ,∆G)‖<
1

supP∈Ξ,Q∈Ω
{
‖P

(
Im −A−∑+∞

k=0 B(k)
)−1Q‖

},

(25)

where ‖(∆F ,∆G)‖ := ‖∆F‖ + ∑+∞
k=0 ‖∆G(k)‖,

Ξ := {E0,E(0),E(1),E(2), ...} and Ω :=
{D0,D(0),D(1),D(2), ...}, then the zero solution of (22)
remains GES.

Proof. By (17) and (23), it follows that
∣∣F(n,x)+ F̃(n,x)

∣∣≤ (
A+D0∆F E0

)
|x|

and ∣∣(G(n,k,x)+ G̃(n,k,x)
)∣∣

≤
(
B(n− k)+D(n− k)∆G(n− k)E(n− k)

)
|x|,

for all n,k ∈ Z+,n ≥ k,x ∈ Rm. Invoking (24) and
(B(n))n ∈ lγ(Rm×m),(∆G(n))n ∈ lγ0(Rm×m), we have

(
B(n)+

D(n)∆G(n)E(n)
)

n ∈ lγ1(Rm×m), with γ1 := min{γ,γ0}.
We show that ρ

(
A + D0∆F E0 + ∑+∞

k=0

(
B(k) +

D(k)∆G(k)E(k)
))

< 1 and then the zero solution of the
perturbed equation (22) is GES by Theorem 3.4.

Let M := A + ∑+∞
k=0 B(k). Since

M,D0,∆F ,E0,D(k),∆G(k),E(k),k ∈ Z+, are nonnegative, so
is M +D0∆F E0 +∑+∞

k=0 D(k)∆G(k)E(k). Assume on the con-
trary that ρ0 := ρ

(
M +D0∆F E0 +∑+∞

k=0 D(k)∆G(k)E(k)
)
≥ 1.

By the Perron-Frobenius Theorem (Theorem 2.1 (i)), there
exists x ∈ Rm

+,x �= 0, such that

(
M+D0∆F E0 +

+∞

∑
k=0

D(k)∆G(k)E(k)
)
x = ρ0x,

or equivalently,

(ρ0Im −M)x =
(
D0∆F E0 +

+∞

∑
k=0

D(k)∆G(k)E(k)
)
x. (26)

Let H(t) := (tIm −M), t ∈ R. Since ρ(M)< 1 ≤ ρ0, H(ρ0)
−1

and H(1)−1 exist and are nonnegative, by Theorem 1.1 (ii).
From (26), it follows that

H(ρ0)
−1(D0∆F E0 +

+∞

∑
k=0

D(k)∆G(k)E(k)
)
x = x. (27)

Since x �= 0 and supn∈Z+
‖E(n)‖<+∞, (27) implies

0 < max
{
‖E0x‖, sup

n∈Z+

‖E(n)x‖
}
<+∞.

If max
{
‖E0x‖,supn∈Z+

‖E(n)x‖
}
= ‖E0x‖, multiplying both

sides of (27) from the left by E0, we get

(
E0H(ρ0)

−1D0∆F E0
)
x+

( +∞

∑
k=0

E0H(ρ0)
−1D(k)∆G(k)E(k)

)
x = E0x.

Taking norms both sides of the last equation, we have

‖E0H(ρ0)
−1D0‖.‖∆F‖.‖E0x‖+

+∞

∑
k=0

‖E0H(ρ0)
−1D(k)‖.‖∆G(k)‖.‖E(k)x‖ ≥ ‖E0x‖.

This implies

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖

(
‖∆F‖+

+∞

∑
k=0

‖∆G(k)‖
)
‖E0x‖≥‖E0x‖,

or equivalently,

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖.‖(∆F ,∆G)‖ ≥ 1. (28)

On the other hand, the resolvent identity gives

H(1)−1 −H(ρ0)
−1 = (ρ0 −1)H(ρ0)

−1H(1)−1 ≥ 0.

This yields H(1)−1 ≥ H(ρ0)
−1 ≥ 0. Therefore, PH(1)−1Q ≥

PH(ρ0)
−1Q≥ 0, for any P∈Ξ,Q∈Ω. By (1), ‖PH(1)−1Q‖≥

‖PH(ρ0)
−1Q‖ ≥ 0, for any P ∈ Ξ,Q ∈ Ω. It follows from (28)

that

‖(∆F ,∆G)‖ ≥
1

supP∈Ξ,Q∈Ω ‖PH(1)−1Q‖

=
1

supP∈Ξ,Q∈Ω
{
‖P

(
Im −A−∑+∞

k=0 B(k)
)−1Q‖

}.

(29)

However, this conflicts with (25).
If supn∈Z+

‖E(n)x‖ > ‖E0x‖, then for given ε > 0, there is
n0 ∈ Z+ such that ‖E(n0)x‖> supn∈Z+

‖E(n)x‖−ε > 0. Mul-
tiplying both sides of (27) from the left by E(n0), we get

(
E(n0)H(ρ0)

−1D0∆F E0
)
x+

( +∞

∑
k=0

E(n0)H(ρ0)
−1D(k)∆G(k)E(k)

)
x = E(n0)x.

Taking norms, we get

‖E(n0)H(ρ0)
−1D0‖.‖∆F‖.‖E0x‖+

+∞

∑
k=0

‖E(n0)H(ρ0)
−1D(k)‖.‖∆G(k)‖‖E(k)x‖ ≥ ‖E(n0)x‖.

It follows that

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖

(
‖∆F‖+

+∞

∑
k=0

‖∆G(k)‖
)
(‖E(n0)x‖+ ε)

≥ ‖E(n0)x‖.

Since ε > 0 is arbitrary, we derive

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖

(
‖∆F‖+

+∞

∑
k=0

‖∆G(k)‖
)
≥ 1.
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Stability of nonlinear Volterra equations

of the form (22) remains GES whenever the size of (∆F ,∆G) is
strictly less than η .

THEOREM 4.1. Assume that (∆G(n))n ∈ lγ0(Rm×m) for
some γ0 > 1 and

max
{

sup
n∈Z+

‖D(n)‖, sup
n∈Z+

‖E(n)‖
}
<+∞. (24)

If

‖(∆F ,∆G)‖<
1

supP∈Ξ,Q∈Ω
{
‖P

(
Im −A−∑+∞

k=0 B(k)
)−1Q‖

},

(25)

where ‖(∆F ,∆G)‖ := ‖∆F‖ + ∑+∞
k=0 ‖∆G(k)‖,

Ξ := {E0,E(0),E(1),E(2), ...} and Ω :=
{D0,D(0),D(1),D(2), ...}, then the zero solution of (22)
remains GES.

Proof. By (17) and (23), it follows that
∣∣F(n,x)+ F̃(n,x)

∣∣≤ (
A+D0∆F E0

)
|x|

and ∣∣(G(n,k,x)+ G̃(n,k,x)
)∣∣

≤
(
B(n− k)+D(n− k)∆G(n− k)E(n− k)

)
|x|,

for all n,k ∈ Z+,n ≥ k,x ∈ Rm. Invoking (24) and
(B(n))n ∈ lγ(Rm×m),(∆G(n))n ∈ lγ0(Rm×m), we have

(
B(n)+

D(n)∆G(n)E(n)
)

n ∈ lγ1(Rm×m), with γ1 := min{γ,γ0}.
We show that ρ

(
A + D0∆F E0 + ∑+∞

k=0

(
B(k) +

D(k)∆G(k)E(k)
))

< 1 and then the zero solution of the
perturbed equation (22) is GES by Theorem 3.4.

Let M := A + ∑+∞
k=0 B(k). Since

M,D0,∆F ,E0,D(k),∆G(k),E(k),k ∈ Z+, are nonnegative, so
is M +D0∆F E0 +∑+∞

k=0 D(k)∆G(k)E(k). Assume on the con-
trary that ρ0 := ρ

(
M +D0∆F E0 +∑+∞

k=0 D(k)∆G(k)E(k)
)
≥ 1.

By the Perron-Frobenius Theorem (Theorem 2.1 (i)), there
exists x ∈ Rm

+,x �= 0, such that

(
M+D0∆F E0 +

+∞

∑
k=0

D(k)∆G(k)E(k)
)
x = ρ0x,

or equivalently,

(ρ0Im −M)x =
(
D0∆F E0 +

+∞

∑
k=0

D(k)∆G(k)E(k)
)
x. (26)

Let H(t) := (tIm −M), t ∈ R. Since ρ(M)< 1 ≤ ρ0, H(ρ0)
−1

and H(1)−1 exist and are nonnegative, by Theorem 1.1 (ii).
From (26), it follows that

H(ρ0)
−1(D0∆F E0 +

+∞

∑
k=0

D(k)∆G(k)E(k)
)
x = x. (27)

Since x �= 0 and supn∈Z+
‖E(n)‖<+∞, (27) implies

0 < max
{
‖E0x‖, sup

n∈Z+

‖E(n)x‖
}
<+∞.

If max
{
‖E0x‖,supn∈Z+

‖E(n)x‖
}
= ‖E0x‖, multiplying both

sides of (27) from the left by E0, we get

(
E0H(ρ0)

−1D0∆F E0
)
x+

( +∞

∑
k=0

E0H(ρ0)
−1D(k)∆G(k)E(k)

)
x = E0x.

Taking norms both sides of the last equation, we have

‖E0H(ρ0)
−1D0‖.‖∆F‖.‖E0x‖+

+∞

∑
k=0

‖E0H(ρ0)
−1D(k)‖.‖∆G(k)‖.‖E(k)x‖ ≥ ‖E0x‖.

This implies

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖

(
‖∆F‖+

+∞

∑
k=0

‖∆G(k)‖
)
‖E0x‖≥‖E0x‖,

or equivalently,

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖.‖(∆F ,∆G)‖ ≥ 1. (28)

On the other hand, the resolvent identity gives

H(1)−1 −H(ρ0)
−1 = (ρ0 −1)H(ρ0)

−1H(1)−1 ≥ 0.

This yields H(1)−1 ≥ H(ρ0)
−1 ≥ 0. Therefore, PH(1)−1Q ≥

PH(ρ0)
−1Q≥ 0, for any P∈Ξ,Q∈Ω. By (1), ‖PH(1)−1Q‖≥

‖PH(ρ0)
−1Q‖ ≥ 0, for any P ∈ Ξ,Q ∈ Ω. It follows from (28)

that

‖(∆F ,∆G)‖ ≥
1

supP∈Ξ,Q∈Ω ‖PH(1)−1Q‖

=
1

supP∈Ξ,Q∈Ω
{
‖P

(
Im −A−∑+∞

k=0 B(k)
)−1Q‖

}.

(29)

However, this conflicts with (25).
If supn∈Z+

‖E(n)x‖ > ‖E0x‖, then for given ε > 0, there is
n0 ∈ Z+ such that ‖E(n0)x‖> supn∈Z+

‖E(n)x‖−ε > 0. Mul-
tiplying both sides of (27) from the left by E(n0), we get

(
E(n0)H(ρ0)

−1D0∆F E0
)
x+

( +∞

∑
k=0

E(n0)H(ρ0)
−1D(k)∆G(k)E(k)

)
x = E(n0)x.

Taking norms, we get

‖E(n0)H(ρ0)
−1D0‖.‖∆F‖.‖E0x‖+

+∞

∑
k=0

‖E(n0)H(ρ0)
−1D(k)‖.‖∆G(k)‖‖E(k)x‖ ≥ ‖E(n0)x‖.

It follows that

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖

(
‖∆F‖+

+∞

∑
k=0

‖∆G(k)‖
)
(‖E(n0)x‖+ ε)

≥ ‖E(n0)x‖.

Since ε > 0 is arbitrary, we derive

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖

(
‖∆F‖+

+∞

∑
k=0

‖∆G(k)‖
)
≥ 1.
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Stability of nonlinear Volterra equations

of the form (22) remains GES whenever the size of (∆F ,∆G) is
strictly less than η .

THEOREM 4.1. Assume that (∆G(n))n ∈ lγ0(Rm×m) for
some γ0 > 1 and

max
{

sup
n∈Z+

‖D(n)‖, sup
n∈Z+

‖E(n)‖
}
<+∞. (24)

If

‖(∆F ,∆G)‖<
1

supP∈Ξ,Q∈Ω
{
‖P

(
Im −A−∑+∞

k=0 B(k)
)−1Q‖

},

(25)

where ‖(∆F ,∆G)‖ := ‖∆F‖ + ∑+∞
k=0 ‖∆G(k)‖,

Ξ := {E0,E(0),E(1),E(2), ...} and Ω :=
{D0,D(0),D(1),D(2), ...}, then the zero solution of (22)
remains GES.

Proof. By (17) and (23), it follows that
∣∣F(n,x)+ F̃(n,x)

∣∣≤ (
A+D0∆F E0

)
|x|

and ∣∣(G(n,k,x)+ G̃(n,k,x)
)∣∣

≤
(
B(n− k)+D(n− k)∆G(n− k)E(n− k)

)
|x|,

for all n,k ∈ Z+,n ≥ k,x ∈ Rm. Invoking (24) and
(B(n))n ∈ lγ(Rm×m),(∆G(n))n ∈ lγ0(Rm×m), we have

(
B(n)+

D(n)∆G(n)E(n)
)

n ∈ lγ1(Rm×m), with γ1 := min{γ,γ0}.
We show that ρ

(
A + D0∆F E0 + ∑+∞

k=0

(
B(k) +

D(k)∆G(k)E(k)
))

< 1 and then the zero solution of the
perturbed equation (22) is GES by Theorem 3.4.

Let M := A + ∑+∞
k=0 B(k). Since

M,D0,∆F ,E0,D(k),∆G(k),E(k),k ∈ Z+, are nonnegative, so
is M +D0∆F E0 +∑+∞

k=0 D(k)∆G(k)E(k). Assume on the con-
trary that ρ0 := ρ

(
M +D0∆F E0 +∑+∞

k=0 D(k)∆G(k)E(k)
)
≥ 1.

By the Perron-Frobenius Theorem (Theorem 2.1 (i)), there
exists x ∈ Rm

+,x �= 0, such that

(
M+D0∆F E0 +

+∞

∑
k=0

D(k)∆G(k)E(k)
)
x = ρ0x,

or equivalently,

(ρ0Im −M)x =
(
D0∆F E0 +

+∞

∑
k=0

D(k)∆G(k)E(k)
)
x. (26)

Let H(t) := (tIm −M), t ∈ R. Since ρ(M)< 1 ≤ ρ0, H(ρ0)
−1

and H(1)−1 exist and are nonnegative, by Theorem 1.1 (ii).
From (26), it follows that

H(ρ0)
−1(D0∆F E0 +

+∞

∑
k=0

D(k)∆G(k)E(k)
)
x = x. (27)

Since x �= 0 and supn∈Z+
‖E(n)‖<+∞, (27) implies

0 < max
{
‖E0x‖, sup

n∈Z+

‖E(n)x‖
}
<+∞.

If max
{
‖E0x‖,supn∈Z+

‖E(n)x‖
}
= ‖E0x‖, multiplying both

sides of (27) from the left by E0, we get

(
E0H(ρ0)

−1D0∆F E0
)
x+

( +∞

∑
k=0

E0H(ρ0)
−1D(k)∆G(k)E(k)

)
x = E0x.

Taking norms both sides of the last equation, we have

‖E0H(ρ0)
−1D0‖.‖∆F‖.‖E0x‖+

+∞

∑
k=0

‖E0H(ρ0)
−1D(k)‖.‖∆G(k)‖.‖E(k)x‖ ≥ ‖E0x‖.

This implies

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖

(
‖∆F‖+

+∞

∑
k=0

‖∆G(k)‖
)
‖E0x‖≥‖E0x‖,

or equivalently,

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖.‖(∆F ,∆G)‖ ≥ 1. (28)

On the other hand, the resolvent identity gives

H(1)−1 −H(ρ0)
−1 = (ρ0 −1)H(ρ0)

−1H(1)−1 ≥ 0.

This yields H(1)−1 ≥ H(ρ0)
−1 ≥ 0. Therefore, PH(1)−1Q ≥

PH(ρ0)
−1Q≥ 0, for any P∈Ξ,Q∈Ω. By (1), ‖PH(1)−1Q‖≥

‖PH(ρ0)
−1Q‖ ≥ 0, for any P ∈ Ξ,Q ∈ Ω. It follows from (28)

that

‖(∆F ,∆G)‖ ≥
1

supP∈Ξ,Q∈Ω ‖PH(1)−1Q‖

=
1

supP∈Ξ,Q∈Ω
{
‖P

(
Im −A−∑+∞

k=0 B(k)
)−1Q‖

}.

(29)

However, this conflicts with (25).
If supn∈Z+

‖E(n)x‖ > ‖E0x‖, then for given ε > 0, there is
n0 ∈ Z+ such that ‖E(n0)x‖> supn∈Z+

‖E(n)x‖−ε > 0. Mul-
tiplying both sides of (27) from the left by E(n0), we get

(
E(n0)H(ρ0)

−1D0∆F E0
)
x+

( +∞

∑
k=0

E(n0)H(ρ0)
−1D(k)∆G(k)E(k)

)
x = E(n0)x.

Taking norms, we get

‖E(n0)H(ρ0)
−1D0‖.‖∆F‖.‖E0x‖+

+∞

∑
k=0

‖E(n0)H(ρ0)
−1D(k)‖.‖∆G(k)‖‖E(k)x‖ ≥ ‖E(n0)x‖.

It follows that

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖

(
‖∆F‖+

+∞

∑
k=0

‖∆G(k)‖
)
(‖E(n0)x‖+ ε)

≥ ‖E(n0)x‖.

Since ε > 0 is arbitrary, we derive

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖

(
‖∆F‖+

+∞

∑
k=0

‖∆G(k)‖
)
≥ 1.
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Since ε > 0 is arbitrary, we derive

Stability of nonlinear Volterra equations

of the form (22) remains GES whenever the size of (∆F ,∆G) is
strictly less than η .

THEOREM 4.1. Assume that (∆G(n))n ∈ lγ0(Rm×m) for
some γ0 > 1 and

max
{

sup
n∈Z+

‖D(n)‖, sup
n∈Z+

‖E(n)‖
}
<+∞. (24)

If

‖(∆F ,∆G)‖<
1

supP∈Ξ,Q∈Ω
{
‖P

(
Im −A−∑+∞

k=0 B(k)
)−1Q‖

},

(25)

where ‖(∆F ,∆G)‖ := ‖∆F‖ + ∑+∞
k=0 ‖∆G(k)‖,

Ξ := {E0,E(0),E(1),E(2), ...} and Ω :=
{D0,D(0),D(1),D(2), ...}, then the zero solution of (22)
remains GES.

Proof. By (17) and (23), it follows that
∣∣F(n,x)+ F̃(n,x)

∣∣≤ (
A+D0∆F E0

)
|x|

and ∣∣(G(n,k,x)+ G̃(n,k,x)
)∣∣

≤
(
B(n− k)+D(n− k)∆G(n− k)E(n− k)

)
|x|,

for all n,k ∈ Z+,n ≥ k,x ∈ Rm. Invoking (24) and
(B(n))n ∈ lγ(Rm×m),(∆G(n))n ∈ lγ0(Rm×m), we have

(
B(n)+

D(n)∆G(n)E(n)
)

n ∈ lγ1(Rm×m), with γ1 := min{γ,γ0}.
We show that ρ

(
A + D0∆F E0 + ∑+∞

k=0

(
B(k) +

D(k)∆G(k)E(k)
))

< 1 and then the zero solution of the
perturbed equation (22) is GES by Theorem 3.4.

Let M := A + ∑+∞
k=0 B(k). Since

M,D0,∆F ,E0,D(k),∆G(k),E(k),k ∈ Z+, are nonnegative, so
is M +D0∆F E0 +∑+∞

k=0 D(k)∆G(k)E(k). Assume on the con-
trary that ρ0 := ρ

(
M +D0∆F E0 +∑+∞

k=0 D(k)∆G(k)E(k)
)
≥ 1.

By the Perron-Frobenius Theorem (Theorem 2.1 (i)), there
exists x ∈ Rm

+,x �= 0, such that

(
M+D0∆F E0 +

+∞

∑
k=0

D(k)∆G(k)E(k)
)
x = ρ0x,

or equivalently,

(ρ0Im −M)x =
(
D0∆F E0 +

+∞

∑
k=0

D(k)∆G(k)E(k)
)
x. (26)

Let H(t) := (tIm −M), t ∈ R. Since ρ(M)< 1 ≤ ρ0, H(ρ0)
−1

and H(1)−1 exist and are nonnegative, by Theorem 1.1 (ii).
From (26), it follows that

H(ρ0)
−1(D0∆F E0 +

+∞

∑
k=0

D(k)∆G(k)E(k)
)
x = x. (27)

Since x �= 0 and supn∈Z+
‖E(n)‖<+∞, (27) implies

0 < max
{
‖E0x‖, sup

n∈Z+

‖E(n)x‖
}
<+∞.

If max
{
‖E0x‖,supn∈Z+

‖E(n)x‖
}
= ‖E0x‖, multiplying both

sides of (27) from the left by E0, we get

(
E0H(ρ0)

−1D0∆F E0
)
x+

( +∞

∑
k=0

E0H(ρ0)
−1D(k)∆G(k)E(k)

)
x = E0x.

Taking norms both sides of the last equation, we have

‖E0H(ρ0)
−1D0‖.‖∆F‖.‖E0x‖+

+∞

∑
k=0

‖E0H(ρ0)
−1D(k)‖.‖∆G(k)‖.‖E(k)x‖ ≥ ‖E0x‖.

This implies

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖

(
‖∆F‖+

+∞

∑
k=0

‖∆G(k)‖
)
‖E0x‖≥‖E0x‖,

or equivalently,

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖.‖(∆F ,∆G)‖ ≥ 1. (28)

On the other hand, the resolvent identity gives

H(1)−1 −H(ρ0)
−1 = (ρ0 −1)H(ρ0)

−1H(1)−1 ≥ 0.

This yields H(1)−1 ≥ H(ρ0)
−1 ≥ 0. Therefore, PH(1)−1Q ≥

PH(ρ0)
−1Q≥ 0, for any P∈Ξ,Q∈Ω. By (1), ‖PH(1)−1Q‖≥

‖PH(ρ0)
−1Q‖ ≥ 0, for any P ∈ Ξ,Q ∈ Ω. It follows from (28)

that

‖(∆F ,∆G)‖ ≥
1

supP∈Ξ,Q∈Ω ‖PH(1)−1Q‖

=
1

supP∈Ξ,Q∈Ω
{
‖P

(
Im −A−∑+∞

k=0 B(k)
)−1Q‖

}.

(29)

However, this conflicts with (25).
If supn∈Z+

‖E(n)x‖ > ‖E0x‖, then for given ε > 0, there is
n0 ∈ Z+ such that ‖E(n0)x‖> supn∈Z+

‖E(n)x‖−ε > 0. Mul-
tiplying both sides of (27) from the left by E(n0), we get

(
E(n0)H(ρ0)

−1D0∆F E0
)
x+

( +∞

∑
k=0

E(n0)H(ρ0)
−1D(k)∆G(k)E(k)

)
x = E(n0)x.

Taking norms, we get

‖E(n0)H(ρ0)
−1D0‖.‖∆F‖.‖E0x‖+

+∞

∑
k=0

‖E(n0)H(ρ0)
−1D(k)‖.‖∆G(k)‖‖E(k)x‖ ≥ ‖E(n0)x‖.

It follows that

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖

(
‖∆F‖+

+∞

∑
k=0

‖∆G(k)‖
)
(‖E(n0)x‖+ ε)

≥ ‖E(n0)x‖.

Since ε > 0 is arbitrary, we derive

sup
P∈Ξ,Q∈Ω

‖PH(ρ0)
−1Q‖

(
‖∆F‖+

+∞

∑
k=0

‖∆G(k)‖
)
≥ 1.
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.

By a similar argument as in the preceding paragraph, we get 
(29). This is a contradiction which completes the proof.� □

Example 4.2. We now reconsider the Volterra difference equa-
tion defined by (18–19). As shown in Example 3.5, the zero 
solution of (18–19) is GES. Consider a perturbed equation 
given by

	

By a similar argument as in the preceding paragraph, we get
(29). This is a contradiction which completes the proof.

EXAMPLE 4.2. We now reconsider the Volterra difference
equation defined by (18)-(19). As shown in Example 3.5, the
zero solution of (18)-(19) is GES. Consider a perturbed equa-
tion given by

x(n+1) =
(

F
(
n,x(n)

)
+ F̃

(
n,x(n)

))
+

n

∑
k=0

(
G
(
n,k,x(k)

)
+ G̃

(
n,k,x(k)

))
, (30)

where F̃(·, ·) and G̃(·, ·, ·) are given by

F̃(n,x) =
e−sin2(nx)u(n)x

5
and

G̃(n,k,x) =
(n− k)2 cosk ln

(
1+ |v(n− k)x|

)
3(n− k)2 +1

,

where x ∈ R,n,k ∈ Z+,n ≥ k; u(·) : Z+ → R and v(·) : Z+ →
R are unknown functions satisfying supn∈Z+

|u(n)| < +∞ and
(v(n))n ∈ lγ(R) for some γ > 1. It is clear that

|F̃(n,x)| ≤ 1
5
|u(n)||x|, |G̃(n,k,x)| ≤ (n− k)2

3(n− k)2 +1
|v(n− k)||x|,

(31)

for all x ∈ R,n,k ∈ Z+,n ≥ k.
By Theorem 4.1, the zero solution of (30) is GES provided

sup
n∈Z+

|u(n)|+
∞

∑
n=0

|v(n)|<

1

sup
n∈Z+

{(
1− 1

4 −∑+∞
k=0

2ak

(3k+1)(3k+4)

)−1 n2

3n2+1

},

or equivalently,

sup
n∈Z+

|u(n)|+
∞

∑
n=0

|v(n)|<
1

( 3
4 − p)−1 1

3

=
9
4
−3p, (32)

where p :=
+∞

∑
k=0

2ak

(3k+1)(3k+4)
∈ (0,2/3] and a ∈ (0,1).

5. An application
In this section, we apply the obtained results to study uniform
attraction of equilibrium of discrete-time bidirectional associa-
tive memory (BAM) neural networks, see e.g. [18], [24].

Consider a discrete-time BAM neural network with infinite
delay in R2 described by


x1(n+1) = a1(n)x1(n)

+b1(n) f1

( +∞

∑
k=0

g1(k)x2(n− k)
)
+ I1(n),

x2(n+1) = a2(n)x2(n)

+b2(n) f2

( +∞

∑
k=0

g2(k)x1(n− k)
)
+ I2(n), n ∈ Z+,

(33)

with the initial condition

x1(k) = ψ1(k); x2(k) = ψ2(k), ∀k ∈ Z−,

where ψ1(·),ψ2(·) : Z− → R are given bounded functions.

Throughout, we assume that

(H1) There exist ai,bi ∈ R+, i ∈ {1,2} such that

|ai(n)| ≤ ai and |bi(n)| ≤ bi, ∀n ∈ Z+, i ∈ {1,2};

(H2) There exist ci,∈ R+, i ∈ {1,2} such that

| fi(x)− fi(y)| ≤ ci|x− y|, i ∈ {1,2}, for all x,y ∈ R;

(H3) (gi(n))n ∈ lγ(R), for some γ > 1, i ∈ {1,2}.

Suppose x∗ := (x∗1,x
∗
2)

T ∈ R2 is an equilibrium of the BAM
neural network (33). That is,


x∗1 = a1(n)x∗1 +b1(n) f1

( +∞

∑
k=0

g1(k)x∗2

)
+ I1(n), n ∈ Z+,

x∗2 = a2(n)x∗2 +b2(n) f2

( +∞

∑
k=0

g2(k)x∗1

)
+ I2(n), n ∈ Z+.

(34)

The following theorem gives an explicit criterion for uni-
form attraction of the equilibrium of (33).

THEOREM 5.1. Let (H1)-(H3) hold. If

min
{

max
i∈{1,2}

{
ai +bici

+∞

∑
k=0

gi(k)
}
,

max
i, j∈{1,2},i�= j

{
ai +b jc j

+∞

∑
k=0

g j(k)
}}

< 1. (35)

then the equilibrium point x∗ of (33) is uniformly attractive, i.e,
‖x(n)− x∗‖ → 0 as n → +∞, where x(n) = (x1(n),x2(n))T ∈
R2,n ∈ Z+.

Proof. Let yi(n) := xi(n)− xi
∗, i ∈ {1,2},n ∈ Z. It follows

from (33)-(34) that


y1(n+1) = a1(n)y1(n)+b1(n)×(
f1
( +∞

∑
k=0

g1(k)[y2(n− k)+ x∗2]
)
− f1

( +∞

∑
k=0

g1(k)x∗2
))

,

y2(n+1) = a2(n)y2(n)+b2(n)×(
f2
( +∞

∑
k=0

g2(k)[y1(n− k)+ x∗1]
)
− f2

( +∞

∑
k=0

g2(k)x∗1
))

.

(36)

Clearly, (36) is of the form

y(n+1) = A(n)y(n)+B(n)F
( n

∑
k=−∞

G(n− k)y(k)
)
, (37)

where y(n) := (y1(n),y2(n))T ∈ R2,n ∈ Z+, and for each n ∈
Z+,

A(n) :=

(
a1(n) 0

0 a2(n)

)
, B(n) :=

(
b1(n) 0

0 b2(n)

)
,

G(n) :=

(
0 g1(n)

g2(n) 0

)
,

6 Bull. Pol. Ac.: Tech. XX(Y) 2016

By a similar argument as in the preceding paragraph, we get
(29). This is a contradiction which completes the proof.

EXAMPLE 4.2. We now reconsider the Volterra difference
equation defined by (18)-(19). As shown in Example 3.5, the
zero solution of (18)-(19) is GES. Consider a perturbed equa-
tion given by

x(n+1) =
(

F
(
n,x(n)

)
+ F̃

(
n,x(n)

))
+

n

∑
k=0

(
G
(
n,k,x(k)

)
+ G̃

(
n,k,x(k)

))
, (30)

where F̃(·, ·) and G̃(·, ·, ·) are given by

F̃(n,x) =
e−sin2(nx)u(n)x

5
and

G̃(n,k,x) =
(n− k)2 cosk ln

(
1+ |v(n− k)x|

)
3(n− k)2 +1

,

where x ∈ R,n,k ∈ Z+,n ≥ k; u(·) : Z+ → R and v(·) : Z+ →
R are unknown functions satisfying supn∈Z+

|u(n)| < +∞ and
(v(n))n ∈ lγ(R) for some γ > 1. It is clear that

|F̃(n,x)| ≤ 1
5
|u(n)||x|, |G̃(n,k,x)| ≤ (n− k)2

3(n− k)2 +1
|v(n− k)||x|,

(31)

for all x ∈ R,n,k ∈ Z+,n ≥ k.
By Theorem 4.1, the zero solution of (30) is GES provided

sup
n∈Z+

|u(n)|+
∞

∑
n=0

|v(n)|<

1

sup
n∈Z+

{(
1− 1

4 −∑+∞
k=0

2ak

(3k+1)(3k+4)

)−1 n2

3n2+1

},

or equivalently,

sup
n∈Z+

|u(n)|+
∞

∑
n=0

|v(n)|<
1

( 3
4 − p)−1 1

3

=
9
4
−3p, (32)

where p :=
+∞

∑
k=0

2ak

(3k+1)(3k+4)
∈ (0,2/3] and a ∈ (0,1).

5. An application
In this section, we apply the obtained results to study uniform
attraction of equilibrium of discrete-time bidirectional associa-
tive memory (BAM) neural networks, see e.g. [18], [24].

Consider a discrete-time BAM neural network with infinite
delay in R2 described by


x1(n+1) = a1(n)x1(n)

+b1(n) f1

( +∞

∑
k=0

g1(k)x2(n− k)
)
+ I1(n),

x2(n+1) = a2(n)x2(n)

+b2(n) f2

( +∞

∑
k=0

g2(k)x1(n− k)
)
+ I2(n), n ∈ Z+,

(33)

with the initial condition

x1(k) = ψ1(k); x2(k) = ψ2(k), ∀k ∈ Z−,

where ψ1(·),ψ2(·) : Z− → R are given bounded functions.

Throughout, we assume that

(H1) There exist ai,bi ∈ R+, i ∈ {1,2} such that

|ai(n)| ≤ ai and |bi(n)| ≤ bi, ∀n ∈ Z+, i ∈ {1,2};

(H2) There exist ci,∈ R+, i ∈ {1,2} such that

| fi(x)− fi(y)| ≤ ci|x− y|, i ∈ {1,2}, for all x,y ∈ R;

(H3) (gi(n))n ∈ lγ(R), for some γ > 1, i ∈ {1,2}.

Suppose x∗ := (x∗1,x
∗
2)

T ∈ R2 is an equilibrium of the BAM
neural network (33). That is,


x∗1 = a1(n)x∗1 +b1(n) f1

( +∞

∑
k=0

g1(k)x∗2

)
+ I1(n), n ∈ Z+,

x∗2 = a2(n)x∗2 +b2(n) f2

( +∞

∑
k=0

g2(k)x∗1

)
+ I2(n), n ∈ Z+.

(34)

The following theorem gives an explicit criterion for uni-
form attraction of the equilibrium of (33).

THEOREM 5.1. Let (H1)-(H3) hold. If

min
{

max
i∈{1,2}

{
ai +bici

+∞

∑
k=0

gi(k)
}
,

max
i, j∈{1,2},i�= j

{
ai +b jc j

+∞

∑
k=0

g j(k)
}}

< 1. (35)

then the equilibrium point x∗ of (33) is uniformly attractive, i.e,
‖x(n)− x∗‖ → 0 as n → +∞, where x(n) = (x1(n),x2(n))T ∈
R2,n ∈ Z+.

Proof. Let yi(n) := xi(n)− xi
∗, i ∈ {1,2},n ∈ Z. It follows

from (33)-(34) that


y1(n+1) = a1(n)y1(n)+b1(n)×(
f1
( +∞

∑
k=0

g1(k)[y2(n− k)+ x∗2]
)
− f1

( +∞

∑
k=0

g1(k)x∗2
))

,

y2(n+1) = a2(n)y2(n)+b2(n)×(
f2
( +∞

∑
k=0

g2(k)[y1(n− k)+ x∗1]
)
− f2

( +∞

∑
k=0

g2(k)x∗1
))

.

(36)

Clearly, (36) is of the form

y(n+1) = A(n)y(n)+B(n)F
( n

∑
k=−∞

G(n− k)y(k)
)
, (37)

where y(n) := (y1(n),y2(n))T ∈ R2,n ∈ Z+, and for each n ∈
Z+,

A(n) :=

(
a1(n) 0

0 a2(n)

)
, B(n) :=

(
b1(n) 0

0 b2(n)

)
,

G(n) :=

(
0 g1(n)

g2(n) 0

)
,
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By a similar argument as in the preceding paragraph, we get
(29). This is a contradiction which completes the proof.

EXAMPLE 4.2. We now reconsider the Volterra difference
equation defined by (18)-(19). As shown in Example 3.5, the
zero solution of (18)-(19) is GES. Consider a perturbed equa-
tion given by

x(n+1) =
(

F
(
n,x(n)

)
+ F̃

(
n,x(n)

))
+

n

∑
k=0

(
G
(
n,k,x(k)

)
+ G̃

(
n,k,x(k)

))
, (30)

where F̃(·, ·) and G̃(·, ·, ·) are given by

F̃(n,x) =
e−sin2(nx)u(n)x

5
and

G̃(n,k,x) =
(n− k)2 cosk ln

(
1+ |v(n− k)x|

)
3(n− k)2 +1

,

where x ∈ R,n,k ∈ Z+,n ≥ k; u(·) : Z+ → R and v(·) : Z+ →
R are unknown functions satisfying supn∈Z+

|u(n)| < +∞ and
(v(n))n ∈ lγ(R) for some γ > 1. It is clear that

|F̃(n,x)| ≤ 1
5
|u(n)||x|, |G̃(n,k,x)| ≤ (n− k)2

3(n− k)2 +1
|v(n− k)||x|,

(31)

for all x ∈ R,n,k ∈ Z+,n ≥ k.
By Theorem 4.1, the zero solution of (30) is GES provided

sup
n∈Z+

|u(n)|+
∞

∑
n=0

|v(n)|<

1

sup
n∈Z+

{(
1− 1

4 −∑+∞
k=0

2ak

(3k+1)(3k+4)

)−1 n2

3n2+1

},

or equivalently,

sup
n∈Z+

|u(n)|+
∞

∑
n=0

|v(n)|<
1

( 3
4 − p)−1 1

3

=
9
4
−3p, (32)

where p :=
+∞

∑
k=0

2ak

(3k+1)(3k+4)
∈ (0,2/3] and a ∈ (0,1).

5. An application
In this section, we apply the obtained results to study uniform
attraction of equilibrium of discrete-time bidirectional associa-
tive memory (BAM) neural networks, see e.g. [18], [24].

Consider a discrete-time BAM neural network with infinite
delay in R2 described by


x1(n+1) = a1(n)x1(n)

+b1(n) f1

( +∞

∑
k=0

g1(k)x2(n− k)
)
+ I1(n),

x2(n+1) = a2(n)x2(n)

+b2(n) f2

( +∞

∑
k=0

g2(k)x1(n− k)
)
+ I2(n), n ∈ Z+,

(33)

with the initial condition

x1(k) = ψ1(k); x2(k) = ψ2(k), ∀k ∈ Z−,

where ψ1(·),ψ2(·) : Z− → R are given bounded functions.

Throughout, we assume that

(H1) There exist ai,bi ∈ R+, i ∈ {1,2} such that

|ai(n)| ≤ ai and |bi(n)| ≤ bi, ∀n ∈ Z+, i ∈ {1,2};

(H2) There exist ci,∈ R+, i ∈ {1,2} such that

| fi(x)− fi(y)| ≤ ci|x− y|, i ∈ {1,2}, for all x,y ∈ R;

(H3) (gi(n))n ∈ lγ(R), for some γ > 1, i ∈ {1,2}.

Suppose x∗ := (x∗1,x
∗
2)

T ∈ R2 is an equilibrium of the BAM
neural network (33). That is,


x∗1 = a1(n)x∗1 +b1(n) f1

( +∞

∑
k=0

g1(k)x∗2

)
+ I1(n), n ∈ Z+,

x∗2 = a2(n)x∗2 +b2(n) f2

( +∞

∑
k=0

g2(k)x∗1

)
+ I2(n), n ∈ Z+.

(34)

The following theorem gives an explicit criterion for uni-
form attraction of the equilibrium of (33).

THEOREM 5.1. Let (H1)-(H3) hold. If

min
{

max
i∈{1,2}

{
ai +bici

+∞

∑
k=0

gi(k)
}
,

max
i, j∈{1,2},i�= j

{
ai +b jc j

+∞

∑
k=0

g j(k)
}}

< 1. (35)

then the equilibrium point x∗ of (33) is uniformly attractive, i.e,
‖x(n)− x∗‖ → 0 as n → +∞, where x(n) = (x1(n),x2(n))T ∈
R2,n ∈ Z+.

Proof. Let yi(n) := xi(n)− xi
∗, i ∈ {1,2},n ∈ Z. It follows

from (33)-(34) that


y1(n+1) = a1(n)y1(n)+b1(n)×(
f1
( +∞

∑
k=0

g1(k)[y2(n− k)+ x∗2]
)
− f1

( +∞

∑
k=0

g1(k)x∗2
))

,

y2(n+1) = a2(n)y2(n)+b2(n)×(
f2
( +∞

∑
k=0

g2(k)[y1(n− k)+ x∗1]
)
− f2

( +∞

∑
k=0

g2(k)x∗1
))

.

(36)

Clearly, (36) is of the form

y(n+1) = A(n)y(n)+B(n)F
( n

∑
k=−∞

G(n− k)y(k)
)
, (37)

where y(n) := (y1(n),y2(n))T ∈ R2,n ∈ Z+, and for each n ∈
Z+,

A(n) :=

(
a1(n) 0

0 a2(n)

)
, B(n) :=

(
b1(n) 0

0 b2(n)

)
,

G(n) :=

(
0 g1(n)

g2(n) 0

)
,
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� (30)

where F̃(¢, ¢) and G̃(¢, ¢, ¢) are given by

By a similar argument as in the preceding paragraph, we get
(29). This is a contradiction which completes the proof.

EXAMPLE 4.2. We now reconsider the Volterra difference
equation defined by (18)-(19). As shown in Example 3.5, the
zero solution of (18)-(19) is GES. Consider a perturbed equa-
tion given by

x(n+1) =
(

F
(
n,x(n)

)
+ F̃

(
n,x(n)

))
+

n

∑
k=0

(
G
(
n,k,x(k)

)
+ G̃

(
n,k,x(k)

))
, (30)

where F̃(·, ·) and G̃(·, ·, ·) are given by

F̃(n,x) =
e−sin2(nx)u(n)x

5
and

G̃(n,k,x) =
(n− k)2 cosk ln

(
1+ |v(n− k)x|

)
3(n− k)2 +1

,

where x ∈ R,n,k ∈ Z+,n ≥ k; u(·) : Z+ → R and v(·) : Z+ →
R are unknown functions satisfying supn∈Z+

|u(n)| < +∞ and
(v(n))n ∈ lγ(R) for some γ > 1. It is clear that

|F̃(n,x)| ≤ 1
5
|u(n)||x|, |G̃(n,k,x)| ≤ (n− k)2

3(n− k)2 +1
|v(n− k)||x|,

(31)

for all x ∈ R,n,k ∈ Z+,n ≥ k.
By Theorem 4.1, the zero solution of (30) is GES provided

sup
n∈Z+

|u(n)|+
∞

∑
n=0

|v(n)|<

1

sup
n∈Z+

{(
1− 1

4 −∑+∞
k=0

2ak

(3k+1)(3k+4)

)−1 n2

3n2+1

},

or equivalently,

sup
n∈Z+

|u(n)|+
∞

∑
n=0

|v(n)|<
1

( 3
4 − p)−1 1

3

=
9
4
−3p, (32)

where p :=
+∞

∑
k=0

2ak

(3k+1)(3k+4)
∈ (0,2/3] and a ∈ (0,1).

5. An application
In this section, we apply the obtained results to study uniform
attraction of equilibrium of discrete-time bidirectional associa-
tive memory (BAM) neural networks, see e.g. [18], [24].

Consider a discrete-time BAM neural network with infinite
delay in R2 described by


x1(n+1) = a1(n)x1(n)

+b1(n) f1

( +∞

∑
k=0

g1(k)x2(n− k)
)
+ I1(n),

x2(n+1) = a2(n)x2(n)

+b2(n) f2

( +∞

∑
k=0

g2(k)x1(n− k)
)
+ I2(n), n ∈ Z+,

(33)

with the initial condition

x1(k) = ψ1(k); x2(k) = ψ2(k), ∀k ∈ Z−,

where ψ1(·),ψ2(·) : Z− → R are given bounded functions.

Throughout, we assume that

(H1) There exist ai,bi ∈ R+, i ∈ {1,2} such that

|ai(n)| ≤ ai and |bi(n)| ≤ bi, ∀n ∈ Z+, i ∈ {1,2};

(H2) There exist ci,∈ R+, i ∈ {1,2} such that

| fi(x)− fi(y)| ≤ ci|x− y|, i ∈ {1,2}, for all x,y ∈ R;

(H3) (gi(n))n ∈ lγ(R), for some γ > 1, i ∈ {1,2}.

Suppose x∗ := (x∗1,x
∗
2)

T ∈ R2 is an equilibrium of the BAM
neural network (33). That is,


x∗1 = a1(n)x∗1 +b1(n) f1

( +∞

∑
k=0

g1(k)x∗2

)
+ I1(n), n ∈ Z+,

x∗2 = a2(n)x∗2 +b2(n) f2

( +∞

∑
k=0

g2(k)x∗1

)
+ I2(n), n ∈ Z+.

(34)

The following theorem gives an explicit criterion for uni-
form attraction of the equilibrium of (33).

THEOREM 5.1. Let (H1)-(H3) hold. If

min
{

max
i∈{1,2}

{
ai +bici

+∞

∑
k=0

gi(k)
}
,

max
i, j∈{1,2},i�= j

{
ai +b jc j

+∞

∑
k=0

g j(k)
}}

< 1. (35)

then the equilibrium point x∗ of (33) is uniformly attractive, i.e,
‖x(n)− x∗‖ → 0 as n → +∞, where x(n) = (x1(n),x2(n))T ∈
R2,n ∈ Z+.

Proof. Let yi(n) := xi(n)− xi
∗, i ∈ {1,2},n ∈ Z. It follows

from (33)-(34) that


y1(n+1) = a1(n)y1(n)+b1(n)×(
f1
( +∞

∑
k=0

g1(k)[y2(n− k)+ x∗2]
)
− f1

( +∞

∑
k=0

g1(k)x∗2
))

,

y2(n+1) = a2(n)y2(n)+b2(n)×(
f2
( +∞

∑
k=0

g2(k)[y1(n− k)+ x∗1]
)
− f2

( +∞

∑
k=0

g2(k)x∗1
))

.

(36)

Clearly, (36) is of the form

y(n+1) = A(n)y(n)+B(n)F
( n

∑
k=−∞

G(n− k)y(k)
)
, (37)

where y(n) := (y1(n),y2(n))T ∈ R2,n ∈ Z+, and for each n ∈
Z+,

A(n) :=

(
a1(n) 0

0 a2(n)

)
, B(n) :=

(
b1(n) 0

0 b2(n)

)
,

G(n) :=

(
0 g1(n)

g2(n) 0

)
,
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and

By a similar argument as in the preceding paragraph, we get
(29). This is a contradiction which completes the proof.

EXAMPLE 4.2. We now reconsider the Volterra difference
equation defined by (18)-(19). As shown in Example 3.5, the
zero solution of (18)-(19) is GES. Consider a perturbed equa-
tion given by

x(n+1) =
(

F
(
n,x(n)

)
+ F̃

(
n,x(n)

))
+

n

∑
k=0

(
G
(
n,k,x(k)

)
+ G̃

(
n,k,x(k)

))
, (30)

where F̃(·, ·) and G̃(·, ·, ·) are given by

F̃(n,x) =
e−sin2(nx)u(n)x

5
and

G̃(n,k,x) =
(n− k)2 cosk ln

(
1+ |v(n− k)x|

)
3(n− k)2 +1

,

where x ∈ R,n,k ∈ Z+,n ≥ k; u(·) : Z+ → R and v(·) : Z+ →
R are unknown functions satisfying supn∈Z+

|u(n)| < +∞ and
(v(n))n ∈ lγ(R) for some γ > 1. It is clear that

|F̃(n,x)| ≤ 1
5
|u(n)||x|, |G̃(n,k,x)| ≤ (n− k)2

3(n− k)2 +1
|v(n− k)||x|,

(31)

for all x ∈ R,n,k ∈ Z+,n ≥ k.
By Theorem 4.1, the zero solution of (30) is GES provided

sup
n∈Z+

|u(n)|+
∞

∑
n=0

|v(n)|<

1

sup
n∈Z+

{(
1− 1

4 −∑+∞
k=0

2ak

(3k+1)(3k+4)

)−1 n2

3n2+1

},

or equivalently,

sup
n∈Z+

|u(n)|+
∞

∑
n=0

|v(n)|<
1

( 3
4 − p)−1 1

3

=
9
4
−3p, (32)

where p :=
+∞

∑
k=0

2ak

(3k+1)(3k+4)
∈ (0,2/3] and a ∈ (0,1).

5. An application
In this section, we apply the obtained results to study uniform
attraction of equilibrium of discrete-time bidirectional associa-
tive memory (BAM) neural networks, see e.g. [18], [24].

Consider a discrete-time BAM neural network with infinite
delay in R2 described by


x1(n+1) = a1(n)x1(n)

+b1(n) f1

( +∞

∑
k=0

g1(k)x2(n− k)
)
+ I1(n),

x2(n+1) = a2(n)x2(n)

+b2(n) f2

( +∞

∑
k=0

g2(k)x1(n− k)
)
+ I2(n), n ∈ Z+,

(33)

with the initial condition

x1(k) = ψ1(k); x2(k) = ψ2(k), ∀k ∈ Z−,

where ψ1(·),ψ2(·) : Z− → R are given bounded functions.

Throughout, we assume that

(H1) There exist ai,bi ∈ R+, i ∈ {1,2} such that

|ai(n)| ≤ ai and |bi(n)| ≤ bi, ∀n ∈ Z+, i ∈ {1,2};

(H2) There exist ci,∈ R+, i ∈ {1,2} such that

| fi(x)− fi(y)| ≤ ci|x− y|, i ∈ {1,2}, for all x,y ∈ R;

(H3) (gi(n))n ∈ lγ(R), for some γ > 1, i ∈ {1,2}.

Suppose x∗ := (x∗1,x
∗
2)

T ∈ R2 is an equilibrium of the BAM
neural network (33). That is,


x∗1 = a1(n)x∗1 +b1(n) f1

( +∞

∑
k=0

g1(k)x∗2

)
+ I1(n), n ∈ Z+,

x∗2 = a2(n)x∗2 +b2(n) f2

( +∞

∑
k=0

g2(k)x∗1

)
+ I2(n), n ∈ Z+.

(34)

The following theorem gives an explicit criterion for uni-
form attraction of the equilibrium of (33).

THEOREM 5.1. Let (H1)-(H3) hold. If

min
{

max
i∈{1,2}

{
ai +bici

+∞

∑
k=0

gi(k)
}
,

max
i, j∈{1,2},i�= j

{
ai +b jc j

+∞

∑
k=0

g j(k)
}}

< 1. (35)

then the equilibrium point x∗ of (33) is uniformly attractive, i.e,
‖x(n)− x∗‖ → 0 as n → +∞, where x(n) = (x1(n),x2(n))T ∈
R2,n ∈ Z+.

Proof. Let yi(n) := xi(n)− xi
∗, i ∈ {1,2},n ∈ Z. It follows

from (33)-(34) that


y1(n+1) = a1(n)y1(n)+b1(n)×(
f1
( +∞

∑
k=0

g1(k)[y2(n− k)+ x∗2]
)
− f1

( +∞

∑
k=0

g1(k)x∗2
))

,

y2(n+1) = a2(n)y2(n)+b2(n)×(
f2
( +∞

∑
k=0

g2(k)[y1(n− k)+ x∗1]
)
− f2

( +∞

∑
k=0

g2(k)x∗1
))

.

(36)

Clearly, (36) is of the form

y(n+1) = A(n)y(n)+B(n)F
( n

∑
k=−∞

G(n− k)y(k)
)
, (37)

where y(n) := (y1(n),y2(n))T ∈ R2,n ∈ Z+, and for each n ∈
Z+,

A(n) :=

(
a1(n) 0

0 a2(n)

)
, B(n) :=

(
b1(n) 0

0 b2(n)

)
,

G(n) :=

(
0 g1(n)

g2(n) 0

)
,

6 Bull. Pol. Ac.: Tech. XX(Y) 2016

,

where x 2 
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Abstract. Using a novel approach, we present some new explicit criteria for global exponential stability of the zero solution of general
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1. Introduction
Volterra difference equations have been widely used in the
modeling of processes in continuous mechanics and biome-
chanics, problems of control and estimations and some
schemes of numerical solutions of integral and integro-
differential equations, see e.g. [2], [7], [12], [16]-[19].

Problems of stability of Volterra difference equations have
attracted much attention from researchers, during the last
twenty years, see e.g. [1],[4]-[13], [15], [21]-[23] and refer-
ences therein. Many various methods have been used to inves-
tigate stability of Volterra difference equations such as Lya-
punov functions, Z transform, comparison theorems, topologi-
cal methods, fixed point theorems, etc (see e.g. [7], [10], [15],
[23]).

In particular, the first significant result on exponential sta-
bility of Volterra difference equations is due to Elaydi and
Murakami, see [8]. Roughly speaking, Elaydi and Murakami
showed that even to the simplest Volterra difference equations
(namely, linear time-invariant Volterra difference equations of
convolution type), the exponential stability is “stronger” than
the uniform asymptotic stability. More precisely, a linear time-
invariant Volterra difference equation of convolution type is ex-
ponentially stable if and only if it is uniformly asymptotically
stable and its kernel exponentially decays, see [8]. For further
and updated information on stability of linear time-invariant
Volterra difference equations, we refer to the recent survey pa-
per [10].

In general, problems of global exponential stability of time-
varying Volterra difference equations are very hard even those
of linear time-varying Volterra equations. Most of existing re-
sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
ditions for exponential stability of linear time-varying Volterra
difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
nential stability of nonlinear time-varying Volterra difference
equations. Our approach is based on the celebrated Perron-
Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
nential stability of the zero solution of general nonlinear time-

varying Volterra difference equations. Furthermore, we derive
an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.

2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there
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1. Introduction
Volterra difference equations have been widely used in the
modeling of processes in continuous mechanics and biome-
chanics, problems of control and estimations and some
schemes of numerical solutions of integral and integro-
differential equations, see e.g. [2], [7], [12], [16]-[19].

Problems of stability of Volterra difference equations have
attracted much attention from researchers, during the last
twenty years, see e.g. [1],[4]-[13], [15], [21]-[23] and refer-
ences therein. Many various methods have been used to inves-
tigate stability of Volterra difference equations such as Lya-
punov functions, Z transform, comparison theorems, topologi-
cal methods, fixed point theorems, etc (see e.g. [7], [10], [15],
[23]).

In particular, the first significant result on exponential sta-
bility of Volterra difference equations is due to Elaydi and
Murakami, see [8]. Roughly speaking, Elaydi and Murakami
showed that even to the simplest Volterra difference equations
(namely, linear time-invariant Volterra difference equations of
convolution type), the exponential stability is “stronger” than
the uniform asymptotic stability. More precisely, a linear time-
invariant Volterra difference equation of convolution type is ex-
ponentially stable if and only if it is uniformly asymptotically
stable and its kernel exponentially decays, see [8]. For further
and updated information on stability of linear time-invariant
Volterra difference equations, we refer to the recent survey pa-
per [10].

In general, problems of global exponential stability of time-
varying Volterra difference equations are very hard even those
of linear time-varying Volterra equations. Most of existing re-
sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
ditions for exponential stability of linear time-varying Volterra
difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
nential stability of nonlinear time-varying Volterra difference
equations. Our approach is based on the celebrated Perron-
Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
nential stability of the zero solution of general nonlinear time-

varying Volterra difference equations. Furthermore, we derive
an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.

2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
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(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there
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we write A � B instead of A ≥ B. The set of all nonnega-
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be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],
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+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)
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bility of Volterra difference equations is due to Elaydi and
Murakami, see [8]. Roughly speaking, Elaydi and Murakami
showed that even to the simplest Volterra difference equations
(namely, linear time-invariant Volterra difference equations of
convolution type), the exponential stability is “stronger” than
the uniform asymptotic stability. More precisely, a linear time-
invariant Volterra difference equation of convolution type is ex-
ponentially stable if and only if it is uniformly asymptotically
stable and its kernel exponentially decays, see [8]. For further
and updated information on stability of linear time-invariant
Volterra difference equations, we refer to the recent survey pa-
per [10].

In general, problems of global exponential stability of time-
varying Volterra difference equations are very hard even those
of linear time-varying Volterra equations. Most of existing re-
sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
ditions for exponential stability of linear time-varying Volterra
difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
nential stability of nonlinear time-varying Volterra difference
equations. Our approach is based on the celebrated Perron-
Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
nential stability of the zero solution of general nonlinear time-

varying Volterra difference equations. Furthermore, we derive
an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.

2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
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Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.
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ences therein. Many various methods have been used to inves-
tigate stability of Volterra difference equations such as Lya-
punov functions, Z transform, comparison theorems, topologi-
cal methods, fixed point theorems, etc (see e.g. [7], [10], [15],
[23]).

In particular, the first significant result on exponential sta-
bility of Volterra difference equations is due to Elaydi and
Murakami, see [8]. Roughly speaking, Elaydi and Murakami
showed that even to the simplest Volterra difference equations
(namely, linear time-invariant Volterra difference equations of
convolution type), the exponential stability is “stronger” than
the uniform asymptotic stability. More precisely, a linear time-
invariant Volterra difference equation of convolution type is ex-
ponentially stable if and only if it is uniformly asymptotically
stable and its kernel exponentially decays, see [8]. For further
and updated information on stability of linear time-invariant
Volterra difference equations, we refer to the recent survey pa-
per [10].

In general, problems of global exponential stability of time-
varying Volterra difference equations are very hard even those
of linear time-varying Volterra equations. Most of existing re-
sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
ditions for exponential stability of linear time-varying Volterra
difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
nential stability of nonlinear time-varying Volterra difference
equations. Our approach is based on the celebrated Perron-
Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
nential stability of the zero solution of general nonlinear time-

varying Volterra difference equations. Furthermore, we derive
an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.

2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there

1
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By a similar argument as in the preceding paragraph, we get
(29). This is a contradiction which completes the proof.

EXAMPLE 4.2. We now reconsider the Volterra difference
equation defined by (18)-(19). As shown in Example 3.5, the
zero solution of (18)-(19) is GES. Consider a perturbed equa-
tion given by

x(n+1) =
(

F
(
n,x(n)

)
+ F̃

(
n,x(n)

))
+

n

∑
k=0

(
G
(
n,k,x(k)

)
+ G̃

(
n,k,x(k)

))
, (30)

where F̃(·, ·) and G̃(·, ·, ·) are given by

F̃(n,x) =
e−sin2(nx)u(n)x

5
and

G̃(n,k,x) =
(n− k)2 cosk ln

(
1+ |v(n− k)x|

)
3(n− k)2 +1

,

where x ∈ R,n,k ∈ Z+,n ≥ k; u(·) : Z+ → R and v(·) : Z+ →
R are unknown functions satisfying supn∈Z+

|u(n)| < +∞ and
(v(n))n ∈ lγ(R) for some γ > 1. It is clear that

|F̃(n,x)| ≤ 1
5
|u(n)||x|, |G̃(n,k,x)| ≤ (n− k)2

3(n− k)2 +1
|v(n− k)||x|,

(31)

for all x ∈ R,n,k ∈ Z+,n ≥ k.
By Theorem 4.1, the zero solution of (30) is GES provided

sup
n∈Z+

|u(n)|+
∞

∑
n=0

|v(n)|<

1

sup
n∈Z+

{(
1− 1

4 −∑+∞
k=0

2ak

(3k+1)(3k+4)

)−1 n2

3n2+1

},

or equivalently,

sup
n∈Z+

|u(n)|+
∞

∑
n=0

|v(n)|<
1

( 3
4 − p)−1 1

3

=
9
4
−3p, (32)

where p :=
+∞

∑
k=0

2ak

(3k+1)(3k+4)
∈ (0,2/3] and a ∈ (0,1).

5. An application
In this section, we apply the obtained results to study uniform
attraction of equilibrium of discrete-time bidirectional associa-
tive memory (BAM) neural networks, see e.g. [18], [24].

Consider a discrete-time BAM neural network with infinite
delay in R2 described by


x1(n+1) = a1(n)x1(n)

+b1(n) f1

( +∞

∑
k=0

g1(k)x2(n− k)
)
+ I1(n),

x2(n+1) = a2(n)x2(n)

+b2(n) f2

( +∞

∑
k=0

g2(k)x1(n− k)
)
+ I2(n), n ∈ Z+,

(33)

with the initial condition

x1(k) = ψ1(k); x2(k) = ψ2(k), ∀k ∈ Z−,

where ψ1(·),ψ2(·) : Z− → R are given bounded functions.

Throughout, we assume that

(H1) There exist ai,bi ∈ R+, i ∈ {1,2} such that

|ai(n)| ≤ ai and |bi(n)| ≤ bi, ∀n ∈ Z+, i ∈ {1,2};

(H2) There exist ci,∈ R+, i ∈ {1,2} such that

| fi(x)− fi(y)| ≤ ci|x− y|, i ∈ {1,2}, for all x,y ∈ R;

(H3) (gi(n))n ∈ lγ(R), for some γ > 1, i ∈ {1,2}.

Suppose x∗ := (x∗1,x
∗
2)

T ∈ R2 is an equilibrium of the BAM
neural network (33). That is,



x∗1 = a1(n)x∗1 +b1(n) f1

( +∞

∑
k=0

g1(k)x∗2

)
+ I1(n), n ∈ Z+,

x∗2 = a2(n)x∗2 +b2(n) f2

( +∞

∑
k=0

g2(k)x∗1

)
+ I2(n), n ∈ Z+.

(34)

The following theorem gives an explicit criterion for uni-
form attraction of the equilibrium of (33).

THEOREM 5.1. Let (H1)-(H3) hold. If

min
{

max
i∈{1,2}

{
ai +bici

+∞

∑
k=0

gi(k)
}
,

max
i, j∈{1,2},i�= j

{
ai +b jc j

+∞

∑
k=0

g j(k)
}}

< 1. (35)

then the equilibrium point x∗ of (33) is uniformly attractive, i.e,
‖x(n)− x∗‖ → 0 as n → +∞, where x(n) = (x1(n),x2(n))T ∈
R2,n ∈ Z+.

Proof. Let yi(n) := xi(n)− xi
∗, i ∈ {1,2},n ∈ Z. It follows

from (33)-(34) that


y1(n+1) = a1(n)y1(n)+b1(n)×(
f1
( +∞

∑
k=0

g1(k)[y2(n− k)+ x∗2]
)
− f1

( +∞

∑
k=0

g1(k)x∗2
))

,

y2(n+1) = a2(n)y2(n)+b2(n)×(
f2
( +∞

∑
k=0

g2(k)[y1(n− k)+ x∗1]
)
− f2

( +∞

∑
k=0

g2(k)x∗1
))

.

(36)

Clearly, (36) is of the form

y(n+1) = A(n)y(n)+B(n)F
( n

∑
k=−∞

G(n− k)y(k)
)
, (37)

where y(n) := (y1(n),y2(n))T ∈ R2,n ∈ Z+, and for each n ∈
Z+,

A(n) :=

(
a1(n) 0

0 a2(n)

)
, B(n) :=

(
b1(n) 0

0 b2(n)

)
,

G(n) :=

(
0 g1(n)

g2(n) 0

)
,
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1
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k=0

2ak
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3n2+1
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|u(n)|+
∞
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n=0
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1
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3

=
9
4
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tive memory (BAM) neural networks, see e.g. [18], [24].

Consider a discrete-time BAM neural network with infinite
delay in R2 described by


x1(n+1) = a1(n)x1(n)

+b1(n) f1

( +∞

∑
k=0

g1(k)x2(n− k)
)
+ I1(n),

x2(n+1) = a2(n)x2(n)

+b2(n) f2

( +∞

∑
k=0

g2(k)x1(n− k)
)
+ I2(n), n ∈ Z+,

(33)

with the initial condition

x1(k) = ψ1(k); x2(k) = ψ2(k), ∀k ∈ Z−,

where ψ1(·),ψ2(·) : Z− → R are given bounded functions.

Throughout, we assume that

(H1) There exist ai,bi ∈ R+, i ∈ {1,2} such that

|ai(n)| ≤ ai and |bi(n)| ≤ bi, ∀n ∈ Z+, i ∈ {1,2};

(H2) There exist ci,∈ R+, i ∈ {1,2} such that

| fi(x)− fi(y)| ≤ ci|x− y|, i ∈ {1,2}, for all x,y ∈ R;

(H3) (gi(n))n ∈ lγ(R), for some γ > 1, i ∈ {1,2}.

Suppose x∗ := (x∗1,x
∗
2)

T ∈ R2 is an equilibrium of the BAM
neural network (33). That is,



x∗1 = a1(n)x∗1 +b1(n) f1

( +∞

∑
k=0

g1(k)x∗2

)
+ I1(n), n ∈ Z+,

x∗2 = a2(n)x∗2 +b2(n) f2

( +∞

∑
k=0

g2(k)x∗1

)
+ I2(n), n ∈ Z+.

(34)

The following theorem gives an explicit criterion for uni-
form attraction of the equilibrium of (33).

THEOREM 5.1. Let (H1)-(H3) hold. If

min
{

max
i∈{1,2}

{
ai +bici

+∞

∑
k=0

gi(k)
}
,

max
i, j∈{1,2},i�= j

{
ai +b jc j

+∞

∑
k=0

g j(k)
}}

< 1. (35)

then the equilibrium point x∗ of (33) is uniformly attractive, i.e,
‖x(n)− x∗‖ → 0 as n → +∞, where x(n) = (x1(n),x2(n))T ∈
R2,n ∈ Z+.

Proof. Let yi(n) := xi(n)− xi
∗, i ∈ {1,2},n ∈ Z. It follows

from (33)-(34) that


y1(n+1) = a1(n)y1(n)+b1(n)×(
f1
( +∞

∑
k=0

g1(k)[y2(n− k)+ x∗2]
)
− f1

( +∞

∑
k=0

g1(k)x∗2
))

,

y2(n+1) = a2(n)y2(n)+b2(n)×(
f2
( +∞

∑
k=0

g2(k)[y1(n− k)+ x∗1]
)
− f2

( +∞

∑
k=0

g2(k)x∗1
))

.

(36)

Clearly, (36) is of the form

y(n+1) = A(n)y(n)+B(n)F
( n

∑
k=−∞

G(n− k)y(k)
)
, (37)

where y(n) := (y1(n),y2(n))T ∈ R2,n ∈ Z+, and for each n ∈
Z+,

A(n) :=

(
a1(n) 0

0 a2(n)

)
, B(n) :=

(
b1(n) 0

0 b2(n)

)
,

G(n) :=

(
0 g1(n)

g2(n) 0

)
,
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1. Introduction
Volterra difference equations have been widely used in the
modeling of processes in continuous mechanics and biome-
chanics, problems of control and estimations and some
schemes of numerical solutions of integral and integro-
differential equations, see e.g. [2], [7], [12], [16]-[19].

Problems of stability of Volterra difference equations have
attracted much attention from researchers, during the last
twenty years, see e.g. [1],[4]-[13], [15], [21]-[23] and refer-
ences therein. Many various methods have been used to inves-
tigate stability of Volterra difference equations such as Lya-
punov functions, Z transform, comparison theorems, topologi-
cal methods, fixed point theorems, etc (see e.g. [7], [10], [15],
[23]).

In particular, the first significant result on exponential sta-
bility of Volterra difference equations is due to Elaydi and
Murakami, see [8]. Roughly speaking, Elaydi and Murakami
showed that even to the simplest Volterra difference equations
(namely, linear time-invariant Volterra difference equations of
convolution type), the exponential stability is “stronger” than
the uniform asymptotic stability. More precisely, a linear time-
invariant Volterra difference equation of convolution type is ex-
ponentially stable if and only if it is uniformly asymptotically
stable and its kernel exponentially decays, see [8]. For further
and updated information on stability of linear time-invariant
Volterra difference equations, we refer to the recent survey pa-
per [10].

In general, problems of global exponential stability of time-
varying Volterra difference equations are very hard even those
of linear time-varying Volterra equations. Most of existing re-
sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
ditions for exponential stability of linear time-varying Volterra
difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
nential stability of nonlinear time-varying Volterra difference
equations. Our approach is based on the celebrated Perron-
Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
nential stability of the zero solution of general nonlinear time-

varying Volterra difference equations. Furthermore, we derive
an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.

2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there

1

, n, k 2 
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1. Introduction
Volterra difference equations have been widely used in the
modeling of processes in continuous mechanics and biome-
chanics, problems of control and estimations and some
schemes of numerical solutions of integral and integro-
differential equations, see e.g. [2], [7], [12], [16]-[19].

Problems of stability of Volterra difference equations have
attracted much attention from researchers, during the last
twenty years, see e.g. [1],[4]-[13], [15], [21]-[23] and refer-
ences therein. Many various methods have been used to inves-
tigate stability of Volterra difference equations such as Lya-
punov functions, Z transform, comparison theorems, topologi-
cal methods, fixed point theorems, etc (see e.g. [7], [10], [15],
[23]).

In particular, the first significant result on exponential sta-
bility of Volterra difference equations is due to Elaydi and
Murakami, see [8]. Roughly speaking, Elaydi and Murakami
showed that even to the simplest Volterra difference equations
(namely, linear time-invariant Volterra difference equations of
convolution type), the exponential stability is “stronger” than
the uniform asymptotic stability. More precisely, a linear time-
invariant Volterra difference equation of convolution type is ex-
ponentially stable if and only if it is uniformly asymptotically
stable and its kernel exponentially decays, see [8]. For further
and updated information on stability of linear time-invariant
Volterra difference equations, we refer to the recent survey pa-
per [10].

In general, problems of global exponential stability of time-
varying Volterra difference equations are very hard even those
of linear time-varying Volterra equations. Most of existing re-
sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
ditions for exponential stability of linear time-varying Volterra
difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
nential stability of nonlinear time-varying Volterra difference
equations. Our approach is based on the celebrated Perron-
Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
nential stability of the zero solution of general nonlinear time-

varying Volterra difference equations. Furthermore, we derive
an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.

2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there

1

+, n ¸ k.
By Theorem 4.1, the zero solution of (30) is GES provided

By a similar argument as in the preceding paragraph, we get
(29). This is a contradiction which completes the proof.

EXAMPLE 4.2. We now reconsider the Volterra difference
equation defined by (18)-(19). As shown in Example 3.5, the
zero solution of (18)-(19) is GES. Consider a perturbed equa-
tion given by

x(n+1) =
(

F
(
n,x(n)

)
+ F̃

(
n,x(n)

))
+

n

∑
k=0

(
G
(
n,k,x(k)

)
+ G̃

(
n,k,x(k)

))
, (30)

where F̃(·, ·) and G̃(·, ·, ·) are given by

F̃(n,x) =
e−sin2(nx)u(n)x

5
and

G̃(n,k,x) =
(n− k)2 cosk ln

(
1+ |v(n− k)x|

)
3(n− k)2 +1

,

where x ∈ R,n,k ∈ Z+,n ≥ k; u(·) : Z+ → R and v(·) : Z+ →
R are unknown functions satisfying supn∈Z+

|u(n)| < +∞ and
(v(n))n ∈ lγ(R) for some γ > 1. It is clear that

|F̃(n,x)| ≤ 1
5
|u(n)||x|, |G̃(n,k,x)| ≤ (n− k)2

3(n− k)2 +1
|v(n− k)||x|,

(31)

for all x ∈ R,n,k ∈ Z+,n ≥ k.
By Theorem 4.1, the zero solution of (30) is GES provided

sup
n∈Z+

|u(n)|+
∞

∑
n=0

|v(n)|<

1

sup
n∈Z+

{(
1− 1

4 −∑+∞
k=0

2ak

(3k+1)(3k+4)

)−1 n2

3n2+1

},

or equivalently,

sup
n∈Z+

|u(n)|+
∞

∑
n=0

|v(n)|<
1

( 3
4 − p)−1 1

3

=
9
4
−3p, (32)

where p :=
+∞

∑
k=0

2ak

(3k+1)(3k+4)
∈ (0,2/3] and a ∈ (0,1).

5. An application
In this section, we apply the obtained results to study uniform
attraction of equilibrium of discrete-time bidirectional associa-
tive memory (BAM) neural networks, see e.g. [18], [24].

Consider a discrete-time BAM neural network with infinite
delay in R2 described by


x1(n+1) = a1(n)x1(n)

+b1(n) f1

( +∞

∑
k=0

g1(k)x2(n− k)
)
+ I1(n),

x2(n+1) = a2(n)x2(n)

+b2(n) f2

( +∞

∑
k=0

g2(k)x1(n− k)
)
+ I2(n), n ∈ Z+,

(33)

with the initial condition

x1(k) = ψ1(k); x2(k) = ψ2(k), ∀k ∈ Z−,

where ψ1(·),ψ2(·) : Z− → R are given bounded functions.

Throughout, we assume that

(H1) There exist ai,bi ∈ R+, i ∈ {1,2} such that

|ai(n)| ≤ ai and |bi(n)| ≤ bi, ∀n ∈ Z+, i ∈ {1,2};

(H2) There exist ci,∈ R+, i ∈ {1,2} such that

| fi(x)− fi(y)| ≤ ci|x− y|, i ∈ {1,2}, for all x,y ∈ R;

(H3) (gi(n))n ∈ lγ(R), for some γ > 1, i ∈ {1,2}.

Suppose x∗ := (x∗1,x
∗
2)

T ∈ R2 is an equilibrium of the BAM
neural network (33). That is,



x∗1 = a1(n)x∗1 +b1(n) f1

( +∞

∑
k=0

g1(k)x∗2

)
+ I1(n), n ∈ Z+,

x∗2 = a2(n)x∗2 +b2(n) f2

( +∞

∑
k=0

g2(k)x∗1

)
+ I2(n), n ∈ Z+.

(34)

The following theorem gives an explicit criterion for uni-
form attraction of the equilibrium of (33).

THEOREM 5.1. Let (H1)-(H3) hold. If

min
{

max
i∈{1,2}

{
ai +bici

+∞

∑
k=0

gi(k)
}
,

max
i, j∈{1,2},i�= j

{
ai +b jc j

+∞

∑
k=0

g j(k)
}}

< 1. (35)

then the equilibrium point x∗ of (33) is uniformly attractive, i.e,
‖x(n)− x∗‖ → 0 as n → +∞, where x(n) = (x1(n),x2(n))T ∈
R2,n ∈ Z+.

Proof. Let yi(n) := xi(n)− xi
∗, i ∈ {1,2},n ∈ Z. It follows

from (33)-(34) that


y1(n+1) = a1(n)y1(n)+b1(n)×(
f1
( +∞

∑
k=0

g1(k)[y2(n− k)+ x∗2]
)
− f1

( +∞

∑
k=0

g1(k)x∗2
))

,

y2(n+1) = a2(n)y2(n)+b2(n)×(
f2
( +∞

∑
k=0

g2(k)[y1(n− k)+ x∗1]
)
− f2

( +∞

∑
k=0

g2(k)x∗1
))

.

(36)

Clearly, (36) is of the form

y(n+1) = A(n)y(n)+B(n)F
( n

∑
k=−∞

G(n− k)y(k)
)
, (37)

where y(n) := (y1(n),y2(n))T ∈ R2,n ∈ Z+, and for each n ∈
Z+,

A(n) :=

(
a1(n) 0

0 a2(n)

)
, B(n) :=

(
b1(n) 0

0 b2(n)

)
,

G(n) :=

(
0 g1(n)

g2(n) 0

)
,
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By a similar argument as in the preceding paragraph, we get
(29). This is a contradiction which completes the proof.

EXAMPLE 4.2. We now reconsider the Volterra difference
equation defined by (18)-(19). As shown in Example 3.5, the
zero solution of (18)-(19) is GES. Consider a perturbed equa-
tion given by

x(n+1) =
(

F
(
n,x(n)

)
+ F̃

(
n,x(n)

))
+

n

∑
k=0

(
G
(
n,k,x(k)

)
+ G̃

(
n,k,x(k)

))
, (30)

where F̃(·, ·) and G̃(·, ·, ·) are given by

F̃(n,x) =
e−sin2(nx)u(n)x

5
and

G̃(n,k,x) =
(n− k)2 cosk ln

(
1+ |v(n− k)x|

)
3(n− k)2 +1

,

where x ∈ R,n,k ∈ Z+,n ≥ k; u(·) : Z+ → R and v(·) : Z+ →
R are unknown functions satisfying supn∈Z+

|u(n)| < +∞ and
(v(n))n ∈ lγ(R) for some γ > 1. It is clear that

|F̃(n,x)| ≤ 1
5
|u(n)||x|, |G̃(n,k,x)| ≤ (n− k)2

3(n− k)2 +1
|v(n− k)||x|,

(31)

for all x ∈ R,n,k ∈ Z+,n ≥ k.
By Theorem 4.1, the zero solution of (30) is GES provided

sup
n∈Z+

|u(n)|+
∞

∑
n=0

|v(n)|<

1

sup
n∈Z+

{(
1− 1

4 −∑+∞
k=0

2ak

(3k+1)(3k+4)

)−1 n2

3n2+1

},

or equivalently,

sup
n∈Z+

|u(n)|+
∞

∑
n=0

|v(n)|<
1

( 3
4 − p)−1 1

3

=
9
4
−3p, (32)

where p :=
+∞

∑
k=0

2ak

(3k+1)(3k+4)
∈ (0,2/3] and a ∈ (0,1).

5. An application
In this section, we apply the obtained results to study uniform
attraction of equilibrium of discrete-time bidirectional associa-
tive memory (BAM) neural networks, see e.g. [18], [24].

Consider a discrete-time BAM neural network with infinite
delay in R2 described by


x1(n+1) = a1(n)x1(n)

+b1(n) f1

( +∞

∑
k=0

g1(k)x2(n− k)
)
+ I1(n),

x2(n+1) = a2(n)x2(n)

+b2(n) f2

( +∞

∑
k=0

g2(k)x1(n− k)
)
+ I2(n), n ∈ Z+,

(33)

with the initial condition

x1(k) = ψ1(k); x2(k) = ψ2(k), ∀k ∈ Z−,

where ψ1(·),ψ2(·) : Z− → R are given bounded functions.

Throughout, we assume that

(H1) There exist ai,bi ∈ R+, i ∈ {1,2} such that

|ai(n)| ≤ ai and |bi(n)| ≤ bi, ∀n ∈ Z+, i ∈ {1,2};

(H2) There exist ci,∈ R+, i ∈ {1,2} such that

| fi(x)− fi(y)| ≤ ci|x− y|, i ∈ {1,2}, for all x,y ∈ R;

(H3) (gi(n))n ∈ lγ(R), for some γ > 1, i ∈ {1,2}.

Suppose x∗ := (x∗1,x
∗
2)

T ∈ R2 is an equilibrium of the BAM
neural network (33). That is,



x∗1 = a1(n)x∗1 +b1(n) f1

( +∞

∑
k=0

g1(k)x∗2

)
+ I1(n), n ∈ Z+,

x∗2 = a2(n)x∗2 +b2(n) f2

( +∞

∑
k=0

g2(k)x∗1

)
+ I2(n), n ∈ Z+.

(34)

The following theorem gives an explicit criterion for uni-
form attraction of the equilibrium of (33).

THEOREM 5.1. Let (H1)-(H3) hold. If

min
{

max
i∈{1,2}

{
ai +bici

+∞

∑
k=0

gi(k)
}
,

max
i, j∈{1,2},i�= j

{
ai +b jc j

+∞

∑
k=0

g j(k)
}}

< 1. (35)

then the equilibrium point x∗ of (33) is uniformly attractive, i.e,
‖x(n)− x∗‖ → 0 as n → +∞, where x(n) = (x1(n),x2(n))T ∈
R2,n ∈ Z+.

Proof. Let yi(n) := xi(n)− xi
∗, i ∈ {1,2},n ∈ Z. It follows

from (33)-(34) that


y1(n+1) = a1(n)y1(n)+b1(n)×(
f1
( +∞

∑
k=0

g1(k)[y2(n− k)+ x∗2]
)
− f1

( +∞

∑
k=0

g1(k)x∗2
))

,

y2(n+1) = a2(n)y2(n)+b2(n)×(
f2
( +∞

∑
k=0

g2(k)[y1(n− k)+ x∗1]
)
− f2

( +∞

∑
k=0

g2(k)x∗1
))

.

(36)

Clearly, (36) is of the form

y(n+1) = A(n)y(n)+B(n)F
( n

∑
k=−∞

G(n− k)y(k)
)
, (37)

where y(n) := (y1(n),y2(n))T ∈ R2,n ∈ Z+, and for each n ∈
Z+,

A(n) :=

(
a1(n) 0

0 a2(n)

)
, B(n) :=

(
b1(n) 0

0 b2(n)

)
,

G(n) :=

(
0 g1(n)

g2(n) 0

)
,
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By a similar argument as in the preceding paragraph, we get
(29). This is a contradiction which completes the proof.

EXAMPLE 4.2. We now reconsider the Volterra difference
equation defined by (18)-(19). As shown in Example 3.5, the
zero solution of (18)-(19) is GES. Consider a perturbed equa-
tion given by

x(n+1) =
(

F
(
n,x(n)

)
+ F̃

(
n,x(n)

))
+

n

∑
k=0

(
G
(
n,k,x(k)

)
+ G̃

(
n,k,x(k)

))
, (30)

where F̃(·, ·) and G̃(·, ·, ·) are given by

F̃(n,x) =
e−sin2(nx)u(n)x

5
and

G̃(n,k,x) =
(n− k)2 cosk ln

(
1+ |v(n− k)x|

)
3(n− k)2 +1

,

where x ∈ R,n,k ∈ Z+,n ≥ k; u(·) : Z+ → R and v(·) : Z+ →
R are unknown functions satisfying supn∈Z+

|u(n)| < +∞ and
(v(n))n ∈ lγ(R) for some γ > 1. It is clear that

|F̃(n,x)| ≤ 1
5
|u(n)||x|, |G̃(n,k,x)| ≤ (n− k)2

3(n− k)2 +1
|v(n− k)||x|,

(31)

for all x ∈ R,n,k ∈ Z+,n ≥ k.
By Theorem 4.1, the zero solution of (30) is GES provided

sup
n∈Z+

|u(n)|+
∞

∑
n=0

|v(n)|<

1

sup
n∈Z+

{(
1− 1

4 −∑+∞
k=0

2ak

(3k+1)(3k+4)

)−1 n2

3n2+1

},

or equivalently,

sup
n∈Z+

|u(n)|+
∞

∑
n=0

|v(n)|<
1

( 3
4 − p)−1 1

3

=
9
4
−3p, (32)

where p :=
+∞

∑
k=0

2ak

(3k+1)(3k+4)
∈ (0,2/3] and a ∈ (0,1).

5. An application
In this section, we apply the obtained results to study uniform
attraction of equilibrium of discrete-time bidirectional associa-
tive memory (BAM) neural networks, see e.g. [18], [24].

Consider a discrete-time BAM neural network with infinite
delay in R2 described by


x1(n+1) = a1(n)x1(n)

+b1(n) f1

( +∞

∑
k=0

g1(k)x2(n− k)
)
+ I1(n),

x2(n+1) = a2(n)x2(n)

+b2(n) f2

( +∞

∑
k=0

g2(k)x1(n− k)
)
+ I2(n), n ∈ Z+,

(33)

with the initial condition

x1(k) = ψ1(k); x2(k) = ψ2(k), ∀k ∈ Z−,

where ψ1(·),ψ2(·) : Z− → R are given bounded functions.

Throughout, we assume that

(H1) There exist ai,bi ∈ R+, i ∈ {1,2} such that

|ai(n)| ≤ ai and |bi(n)| ≤ bi, ∀n ∈ Z+, i ∈ {1,2};

(H2) There exist ci,∈ R+, i ∈ {1,2} such that

| fi(x)− fi(y)| ≤ ci|x− y|, i ∈ {1,2}, for all x,y ∈ R;

(H3) (gi(n))n ∈ lγ(R), for some γ > 1, i ∈ {1,2}.

Suppose x∗ := (x∗1,x
∗
2)

T ∈ R2 is an equilibrium of the BAM
neural network (33). That is,



x∗1 = a1(n)x∗1 +b1(n) f1

( +∞

∑
k=0

g1(k)x∗2

)
+ I1(n), n ∈ Z+,

x∗2 = a2(n)x∗2 +b2(n) f2

( +∞

∑
k=0

g2(k)x∗1

)
+ I2(n), n ∈ Z+.

(34)

The following theorem gives an explicit criterion for uni-
form attraction of the equilibrium of (33).

THEOREM 5.1. Let (H1)-(H3) hold. If

min
{

max
i∈{1,2}

{
ai +bici

+∞

∑
k=0

gi(k)
}
,

max
i, j∈{1,2},i�= j

{
ai +b jc j

+∞

∑
k=0

g j(k)
}}

< 1. (35)

then the equilibrium point x∗ of (33) is uniformly attractive, i.e,
‖x(n)− x∗‖ → 0 as n → +∞, where x(n) = (x1(n),x2(n))T ∈
R2,n ∈ Z+.

Proof. Let yi(n) := xi(n)− xi
∗, i ∈ {1,2},n ∈ Z. It follows

from (33)-(34) that


y1(n+1) = a1(n)y1(n)+b1(n)×(
f1
( +∞

∑
k=0

g1(k)[y2(n− k)+ x∗2]
)
− f1

( +∞

∑
k=0

g1(k)x∗2
))

,

y2(n+1) = a2(n)y2(n)+b2(n)×(
f2
( +∞

∑
k=0

g2(k)[y1(n− k)+ x∗1]
)
− f2

( +∞

∑
k=0

g2(k)x∗1
))

.

(36)

Clearly, (36) is of the form

y(n+1) = A(n)y(n)+B(n)F
( n

∑
k=−∞

G(n− k)y(k)
)
, (37)

where y(n) := (y1(n),y2(n))T ∈ R2,n ∈ Z+, and for each n ∈
Z+,

A(n) :=

(
a1(n) 0

0 a2(n)

)
, B(n) :=

(
b1(n) 0

0 b2(n)

)
,

G(n) :=

(
0 g1(n)

g2(n) 0

)
,
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By a similar argument as in the preceding paragraph, we get
(29). This is a contradiction which completes the proof.

EXAMPLE 4.2. We now reconsider the Volterra difference
equation defined by (18)-(19). As shown in Example 3.5, the
zero solution of (18)-(19) is GES. Consider a perturbed equa-
tion given by

x(n+1) =
(

F
(
n,x(n)

)
+ F̃

(
n,x(n)

))
+

n

∑
k=0

(
G
(
n,k,x(k)

)
+ G̃

(
n,k,x(k)

))
, (30)

where F̃(·, ·) and G̃(·, ·, ·) are given by

F̃(n,x) =
e−sin2(nx)u(n)x

5
and

G̃(n,k,x) =
(n− k)2 cosk ln

(
1+ |v(n− k)x|

)
3(n− k)2 +1

,

where x ∈ R,n,k ∈ Z+,n ≥ k; u(·) : Z+ → R and v(·) : Z+ →
R are unknown functions satisfying supn∈Z+

|u(n)| < +∞ and
(v(n))n ∈ lγ(R) for some γ > 1. It is clear that

|F̃(n,x)| ≤ 1
5
|u(n)||x|, |G̃(n,k,x)| ≤ (n− k)2

3(n− k)2 +1
|v(n− k)||x|,

(31)

for all x ∈ R,n,k ∈ Z+,n ≥ k.
By Theorem 4.1, the zero solution of (30) is GES provided

sup
n∈Z+

|u(n)|+
∞

∑
n=0

|v(n)|<

1

sup
n∈Z+

{(
1− 1

4 −∑+∞
k=0

2ak

(3k+1)(3k+4)

)−1 n2

3n2+1

},

or equivalently,

sup
n∈Z+

|u(n)|+
∞

∑
n=0

|v(n)|<
1

( 3
4 − p)−1 1

3

=
9
4
−3p, (32)

where p :=
+∞

∑
k=0

2ak

(3k+1)(3k+4)
∈ (0,2/3] and a ∈ (0,1).

5. An application
In this section, we apply the obtained results to study uniform
attraction of equilibrium of discrete-time bidirectional associa-
tive memory (BAM) neural networks, see e.g. [18], [24].

Consider a discrete-time BAM neural network with infinite
delay in R2 described by


x1(n+1) = a1(n)x1(n)

+b1(n) f1

( +∞

∑
k=0

g1(k)x2(n− k)
)
+ I1(n),

x2(n+1) = a2(n)x2(n)

+b2(n) f2

( +∞

∑
k=0

g2(k)x1(n− k)
)
+ I2(n), n ∈ Z+,

(33)

with the initial condition

x1(k) = ψ1(k); x2(k) = ψ2(k), ∀k ∈ Z−,

where ψ1(·),ψ2(·) : Z− → R are given bounded functions.

Throughout, we assume that

(H1) There exist ai,bi ∈ R+, i ∈ {1,2} such that

|ai(n)| ≤ ai and |bi(n)| ≤ bi, ∀n ∈ Z+, i ∈ {1,2};

(H2) There exist ci,∈ R+, i ∈ {1,2} such that

| fi(x)− fi(y)| ≤ ci|x− y|, i ∈ {1,2}, for all x,y ∈ R;

(H3) (gi(n))n ∈ lγ(R), for some γ > 1, i ∈ {1,2}.

Suppose x∗ := (x∗1,x
∗
2)

T ∈ R2 is an equilibrium of the BAM
neural network (33). That is,



x∗1 = a1(n)x∗1 +b1(n) f1

( +∞

∑
k=0

g1(k)x∗2

)
+ I1(n), n ∈ Z+,

x∗2 = a2(n)x∗2 +b2(n) f2

( +∞

∑
k=0

g2(k)x∗1

)
+ I2(n), n ∈ Z+.

(34)

The following theorem gives an explicit criterion for uni-
form attraction of the equilibrium of (33).

THEOREM 5.1. Let (H1)-(H3) hold. If

min
{

max
i∈{1,2}

{
ai +bici

+∞

∑
k=0

gi(k)
}
,

max
i, j∈{1,2},i�= j

{
ai +b jc j

+∞

∑
k=0

g j(k)
}}

< 1. (35)

then the equilibrium point x∗ of (33) is uniformly attractive, i.e,
‖x(n)− x∗‖ → 0 as n → +∞, where x(n) = (x1(n),x2(n))T ∈
R2,n ∈ Z+.

Proof. Let yi(n) := xi(n)− xi
∗, i ∈ {1,2},n ∈ Z. It follows

from (33)-(34) that


y1(n+1) = a1(n)y1(n)+b1(n)×(
f1
( +∞

∑
k=0

g1(k)[y2(n− k)+ x∗2]
)
− f1

( +∞

∑
k=0

g1(k)x∗2
))

,

y2(n+1) = a2(n)y2(n)+b2(n)×(
f2
( +∞

∑
k=0

g2(k)[y1(n− k)+ x∗1]
)
− f2

( +∞

∑
k=0

g2(k)x∗1
))

.

(36)

Clearly, (36) is of the form

y(n+1) = A(n)y(n)+B(n)F
( n

∑
k=−∞

G(n− k)y(k)
)
, (37)

where y(n) := (y1(n),y2(n))T ∈ R2,n ∈ Z+, and for each n ∈
Z+,

A(n) :=

(
a1(n) 0

0 a2(n)

)
, B(n) :=

(
b1(n) 0

0 b2(n)

)
,

G(n) :=

(
0 g1(n)

g2(n) 0

)
,
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or equivalently,

	

By a similar argument as in the preceding paragraph, we get
(29). This is a contradiction which completes the proof.

EXAMPLE 4.2. We now reconsider the Volterra difference
equation defined by (18)-(19). As shown in Example 3.5, the
zero solution of (18)-(19) is GES. Consider a perturbed equa-
tion given by

x(n+1) =
(

F
(
n,x(n)

)
+ F̃

(
n,x(n)

))
+

n

∑
k=0

(
G
(
n,k,x(k)

)
+ G̃

(
n,k,x(k)

))
, (30)

where F̃(·, ·) and G̃(·, ·, ·) are given by

F̃(n,x) =
e−sin2(nx)u(n)x

5
and

G̃(n,k,x) =
(n− k)2 cosk ln

(
1+ |v(n− k)x|

)
3(n− k)2 +1

,

where x ∈ R,n,k ∈ Z+,n ≥ k; u(·) : Z+ → R and v(·) : Z+ →
R are unknown functions satisfying supn∈Z+

|u(n)| < +∞ and
(v(n))n ∈ lγ(R) for some γ > 1. It is clear that

|F̃(n,x)| ≤ 1
5
|u(n)||x|, |G̃(n,k,x)| ≤ (n− k)2

3(n− k)2 +1
|v(n− k)||x|,

(31)

for all x ∈ R,n,k ∈ Z+,n ≥ k.
By Theorem 4.1, the zero solution of (30) is GES provided

sup
n∈Z+

|u(n)|+
∞

∑
n=0

|v(n)|<

1

sup
n∈Z+

{(
1− 1

4 −∑+∞
k=0

2ak

(3k+1)(3k+4)

)−1 n2

3n2+1

},

or equivalently,

sup
n∈Z+

|u(n)|+
∞

∑
n=0

|v(n)|<
1

( 3
4 − p)−1 1

3

=
9
4
−3p, (32)

where p :=
+∞

∑
k=0

2ak

(3k+1)(3k+4)
∈ (0,2/3] and a ∈ (0,1).

5. An application
In this section, we apply the obtained results to study uniform
attraction of equilibrium of discrete-time bidirectional associa-
tive memory (BAM) neural networks, see e.g. [18], [24].

Consider a discrete-time BAM neural network with infinite
delay in R2 described by


x1(n+1) = a1(n)x1(n)

+b1(n) f1

( +∞

∑
k=0

g1(k)x2(n− k)
)
+ I1(n),

x2(n+1) = a2(n)x2(n)

+b2(n) f2

( +∞

∑
k=0

g2(k)x1(n− k)
)
+ I2(n), n ∈ Z+,

(33)

with the initial condition

x1(k) = ψ1(k); x2(k) = ψ2(k), ∀k ∈ Z−,

where ψ1(·),ψ2(·) : Z− → R are given bounded functions.

Throughout, we assume that

(H1) There exist ai,bi ∈ R+, i ∈ {1,2} such that

|ai(n)| ≤ ai and |bi(n)| ≤ bi, ∀n ∈ Z+, i ∈ {1,2};

(H2) There exist ci,∈ R+, i ∈ {1,2} such that

| fi(x)− fi(y)| ≤ ci|x− y|, i ∈ {1,2}, for all x,y ∈ R;

(H3) (gi(n))n ∈ lγ(R), for some γ > 1, i ∈ {1,2}.

Suppose x∗ := (x∗1,x
∗
2)

T ∈ R2 is an equilibrium of the BAM
neural network (33). That is,



x∗1 = a1(n)x∗1 +b1(n) f1

( +∞

∑
k=0

g1(k)x∗2

)
+ I1(n), n ∈ Z+,

x∗2 = a2(n)x∗2 +b2(n) f2

( +∞

∑
k=0

g2(k)x∗1

)
+ I2(n), n ∈ Z+.

(34)

The following theorem gives an explicit criterion for uni-
form attraction of the equilibrium of (33).

THEOREM 5.1. Let (H1)-(H3) hold. If

min
{

max
i∈{1,2}

{
ai +bici

+∞

∑
k=0

gi(k)
}
,

max
i, j∈{1,2},i�= j

{
ai +b jc j

+∞

∑
k=0

g j(k)
}}

< 1. (35)

then the equilibrium point x∗ of (33) is uniformly attractive, i.e,
‖x(n)− x∗‖ → 0 as n → +∞, where x(n) = (x1(n),x2(n))T ∈
R2,n ∈ Z+.

Proof. Let yi(n) := xi(n)− xi
∗, i ∈ {1,2},n ∈ Z. It follows

from (33)-(34) that


y1(n+1) = a1(n)y1(n)+b1(n)×(
f1
( +∞

∑
k=0

g1(k)[y2(n− k)+ x∗2]
)
− f1

( +∞

∑
k=0

g1(k)x∗2
))

,

y2(n+1) = a2(n)y2(n)+b2(n)×(
f2
( +∞

∑
k=0

g2(k)[y1(n− k)+ x∗1]
)
− f2

( +∞

∑
k=0

g2(k)x∗1
))

.

(36)

Clearly, (36) is of the form

y(n+1) = A(n)y(n)+B(n)F
( n

∑
k=−∞

G(n− k)y(k)
)
, (37)

where y(n) := (y1(n),y2(n))T ∈ R2,n ∈ Z+, and for each n ∈
Z+,

A(n) :=

(
a1(n) 0

0 a2(n)

)
, B(n) :=

(
b1(n) 0

0 b2(n)

)
,

G(n) :=

(
0 g1(n)

g2(n) 0

)
,
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By a similar argument as in the preceding paragraph, we get
(29). This is a contradiction which completes the proof.

EXAMPLE 4.2. We now reconsider the Volterra difference
equation defined by (18)-(19). As shown in Example 3.5, the
zero solution of (18)-(19) is GES. Consider a perturbed equa-
tion given by

x(n+1) =
(

F
(
n,x(n)

)
+ F̃

(
n,x(n)

))
+

n

∑
k=0

(
G
(
n,k,x(k)

)
+ G̃

(
n,k,x(k)

))
, (30)

where F̃(·, ·) and G̃(·, ·, ·) are given by

F̃(n,x) =
e−sin2(nx)u(n)x

5
and

G̃(n,k,x) =
(n− k)2 cosk ln

(
1+ |v(n− k)x|

)
3(n− k)2 +1

,

where x ∈ R,n,k ∈ Z+,n ≥ k; u(·) : Z+ → R and v(·) : Z+ →
R are unknown functions satisfying supn∈Z+

|u(n)| < +∞ and
(v(n))n ∈ lγ(R) for some γ > 1. It is clear that

|F̃(n,x)| ≤ 1
5
|u(n)||x|, |G̃(n,k,x)| ≤ (n− k)2

3(n− k)2 +1
|v(n− k)||x|,

(31)

for all x ∈ R,n,k ∈ Z+,n ≥ k.
By Theorem 4.1, the zero solution of (30) is GES provided

sup
n∈Z+

|u(n)|+
∞

∑
n=0

|v(n)|<

1

sup
n∈Z+

{(
1− 1

4 −∑+∞
k=0

2ak

(3k+1)(3k+4)

)−1 n2

3n2+1

},

or equivalently,

sup
n∈Z+

|u(n)|+
∞

∑
n=0

|v(n)|<
1

( 3
4 − p)−1 1

3

=
9
4
−3p, (32)

where p :=
+∞

∑
k=0

2ak

(3k+1)(3k+4)
∈ (0,2/3] and a ∈ (0,1).

5. An application
In this section, we apply the obtained results to study uniform
attraction of equilibrium of discrete-time bidirectional associa-
tive memory (BAM) neural networks, see e.g. [18], [24].

Consider a discrete-time BAM neural network with infinite
delay in R2 described by


x1(n+1) = a1(n)x1(n)

+b1(n) f1

( +∞

∑
k=0

g1(k)x2(n− k)
)
+ I1(n),

x2(n+1) = a2(n)x2(n)

+b2(n) f2

( +∞

∑
k=0

g2(k)x1(n− k)
)
+ I2(n), n ∈ Z+,

(33)

with the initial condition

x1(k) = ψ1(k); x2(k) = ψ2(k), ∀k ∈ Z−,

where ψ1(·),ψ2(·) : Z− → R are given bounded functions.

Throughout, we assume that

(H1) There exist ai,bi ∈ R+, i ∈ {1,2} such that

|ai(n)| ≤ ai and |bi(n)| ≤ bi, ∀n ∈ Z+, i ∈ {1,2};

(H2) There exist ci,∈ R+, i ∈ {1,2} such that

| fi(x)− fi(y)| ≤ ci|x− y|, i ∈ {1,2}, for all x,y ∈ R;

(H3) (gi(n))n ∈ lγ(R), for some γ > 1, i ∈ {1,2}.

Suppose x∗ := (x∗1,x
∗
2)

T ∈ R2 is an equilibrium of the BAM
neural network (33). That is,


x∗1 = a1(n)x∗1 +b1(n) f1

( +∞

∑
k=0

g1(k)x∗2

)
+ I1(n), n ∈ Z+,

x∗2 = a2(n)x∗2 +b2(n) f2

( +∞

∑
k=0

g2(k)x∗1

)
+ I2(n), n ∈ Z+.

(34)

The following theorem gives an explicit criterion for uni-
form attraction of the equilibrium of (33).

THEOREM 5.1. Let (H1)-(H3) hold. If

min
{

max
i∈{1,2}

{
ai +bici

+∞

∑
k=0

gi(k)
}
,

max
i, j∈{1,2},i�= j

{
ai +b jc j

+∞

∑
k=0

g j(k)
}}

< 1. (35)

then the equilibrium point x∗ of (33) is uniformly attractive, i.e,
‖x(n)− x∗‖ → 0 as n → +∞, where x(n) = (x1(n),x2(n))T ∈
R2,n ∈ Z+.

Proof. Let yi(n) := xi(n)− xi
∗, i ∈ {1,2},n ∈ Z. It follows

from (33)-(34) that


y1(n+1) = a1(n)y1(n)+b1(n)×(
f1
( +∞

∑
k=0

g1(k)[y2(n− k)+ x∗2]
)
− f1

( +∞

∑
k=0

g1(k)x∗2
))

,

y2(n+1) = a2(n)y2(n)+b2(n)×(
f2
( +∞

∑
k=0

g2(k)[y1(n− k)+ x∗1]
)
− f2

( +∞

∑
k=0

g2(k)x∗1
))

.

(36)

Clearly, (36) is of the form

y(n+1) = A(n)y(n)+B(n)F
( n

∑
k=−∞

G(n− k)y(k)
)
, (37)

where y(n) := (y1(n),y2(n))T ∈ R2,n ∈ Z+, and for each n ∈
Z+,

A(n) :=

(
a1(n) 0

0 a2(n)

)
, B(n) :=

(
b1(n) 0

0 b2(n)

)
,

G(n) :=

(
0 g1(n)

g2(n) 0

)
,
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,� (32)

where 

By a similar argument as in the preceding paragraph, we get
(29). This is a contradiction which completes the proof.

EXAMPLE 4.2. We now reconsider the Volterra difference
equation defined by (18)-(19). As shown in Example 3.5, the
zero solution of (18)-(19) is GES. Consider a perturbed equa-
tion given by

x(n+1) =
(

F
(
n,x(n)

)
+ F̃

(
n,x(n)

))
+

n

∑
k=0

(
G
(
n,k,x(k)

)
+ G̃

(
n,k,x(k)

))
, (30)

where F̃(·, ·) and G̃(·, ·, ·) are given by

F̃(n,x) =
e−sin2(nx)u(n)x

5
and

G̃(n,k,x) =
(n− k)2 cosk ln

(
1+ |v(n− k)x|

)
3(n− k)2 +1

,

where x ∈ R,n,k ∈ Z+,n ≥ k; u(·) : Z+ → R and v(·) : Z+ →
R are unknown functions satisfying supn∈Z+

|u(n)| < +∞ and
(v(n))n ∈ lγ(R) for some γ > 1. It is clear that

|F̃(n,x)| ≤ 1
5
|u(n)||x|, |G̃(n,k,x)| ≤ (n− k)2

3(n− k)2 +1
|v(n− k)||x|,

(31)

for all x ∈ R,n,k ∈ Z+,n ≥ k.
By Theorem 4.1, the zero solution of (30) is GES provided

sup
n∈Z+

|u(n)|+
∞

∑
n=0

|v(n)|<

1

sup
n∈Z+

{(
1− 1

4 −∑+∞
k=0

2ak

(3k+1)(3k+4)

)−1 n2

3n2+1

},

or equivalently,

sup
n∈Z+

|u(n)|+
∞

∑
n=0

|v(n)|<
1

( 3
4 − p)−1 1

3

=
9
4
−3p, (32)

where p :=
+∞

∑
k=0

2ak

(3k+1)(3k+4)
∈ (0,2/3] and a ∈ (0,1).

5. An application
In this section, we apply the obtained results to study uniform
attraction of equilibrium of discrete-time bidirectional associa-
tive memory (BAM) neural networks, see e.g. [18], [24].

Consider a discrete-time BAM neural network with infinite
delay in R2 described by


x1(n+1) = a1(n)x1(n)

+b1(n) f1

( +∞

∑
k=0

g1(k)x2(n− k)
)
+ I1(n),

x2(n+1) = a2(n)x2(n)

+b2(n) f2

( +∞

∑
k=0

g2(k)x1(n− k)
)
+ I2(n), n ∈ Z+,

(33)

with the initial condition

x1(k) = ψ1(k); x2(k) = ψ2(k), ∀k ∈ Z−,

where ψ1(·),ψ2(·) : Z− → R are given bounded functions.

Throughout, we assume that

(H1) There exist ai,bi ∈ R+, i ∈ {1,2} such that

|ai(n)| ≤ ai and |bi(n)| ≤ bi, ∀n ∈ Z+, i ∈ {1,2};

(H2) There exist ci,∈ R+, i ∈ {1,2} such that

| fi(x)− fi(y)| ≤ ci|x− y|, i ∈ {1,2}, for all x,y ∈ R;

(H3) (gi(n))n ∈ lγ(R), for some γ > 1, i ∈ {1,2}.

Suppose x∗ := (x∗1,x
∗
2)

T ∈ R2 is an equilibrium of the BAM
neural network (33). That is,


x∗1 = a1(n)x∗1 +b1(n) f1

( +∞

∑
k=0

g1(k)x∗2

)
+ I1(n), n ∈ Z+,

x∗2 = a2(n)x∗2 +b2(n) f2

( +∞

∑
k=0

g2(k)x∗1

)
+ I2(n), n ∈ Z+.

(34)

The following theorem gives an explicit criterion for uni-
form attraction of the equilibrium of (33).

THEOREM 5.1. Let (H1)-(H3) hold. If

min
{

max
i∈{1,2}

{
ai +bici

+∞

∑
k=0

gi(k)
}
,

max
i, j∈{1,2},i�= j

{
ai +b jc j

+∞

∑
k=0

g j(k)
}}

< 1. (35)

then the equilibrium point x∗ of (33) is uniformly attractive, i.e,
‖x(n)− x∗‖ → 0 as n → +∞, where x(n) = (x1(n),x2(n))T ∈
R2,n ∈ Z+.

Proof. Let yi(n) := xi(n)− xi
∗, i ∈ {1,2},n ∈ Z. It follows

from (33)-(34) that


y1(n+1) = a1(n)y1(n)+b1(n)×(
f1
( +∞

∑
k=0

g1(k)[y2(n− k)+ x∗2]
)
− f1

( +∞

∑
k=0

g1(k)x∗2
))

,

y2(n+1) = a2(n)y2(n)+b2(n)×(
f2
( +∞

∑
k=0

g2(k)[y1(n− k)+ x∗1]
)
− f2

( +∞

∑
k=0

g2(k)x∗1
))

.

(36)

Clearly, (36) is of the form

y(n+1) = A(n)y(n)+B(n)F
( n

∑
k=−∞

G(n− k)y(k)
)
, (37)

where y(n) := (y1(n),y2(n))T ∈ R2,n ∈ Z+, and for each n ∈
Z+,

A(n) :=

(
a1(n) 0

0 a2(n)

)
, B(n) :=

(
b1(n) 0

0 b2(n)

)
,

G(n) :=

(
0 g1(n)

g2(n) 0

)
,
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5.	 An application

In this section, we apply the obtained results to study uniform 
attraction of equilibrium of discrete-time bidirectional associa-
tive memory (BAM) neural networks, see e.g. [18, 24].

Consider a discrete-time BAM neural network with infinite 
delay in 
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1. Introduction
Volterra difference equations have been widely used in the
modeling of processes in continuous mechanics and biome-
chanics, problems of control and estimations and some
schemes of numerical solutions of integral and integro-
differential equations, see e.g. [2], [7], [12], [16]-[19].

Problems of stability of Volterra difference equations have
attracted much attention from researchers, during the last
twenty years, see e.g. [1],[4]-[13], [15], [21]-[23] and refer-
ences therein. Many various methods have been used to inves-
tigate stability of Volterra difference equations such as Lya-
punov functions, Z transform, comparison theorems, topologi-
cal methods, fixed point theorems, etc (see e.g. [7], [10], [15],
[23]).

In particular, the first significant result on exponential sta-
bility of Volterra difference equations is due to Elaydi and
Murakami, see [8]. Roughly speaking, Elaydi and Murakami
showed that even to the simplest Volterra difference equations
(namely, linear time-invariant Volterra difference equations of
convolution type), the exponential stability is “stronger” than
the uniform asymptotic stability. More precisely, a linear time-
invariant Volterra difference equation of convolution type is ex-
ponentially stable if and only if it is uniformly asymptotically
stable and its kernel exponentially decays, see [8]. For further
and updated information on stability of linear time-invariant
Volterra difference equations, we refer to the recent survey pa-
per [10].

In general, problems of global exponential stability of time-
varying Volterra difference equations are very hard even those
of linear time-varying Volterra equations. Most of existing re-
sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
ditions for exponential stability of linear time-varying Volterra
difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
nential stability of nonlinear time-varying Volterra difference
equations. Our approach is based on the celebrated Perron-
Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
nential stability of the zero solution of general nonlinear time-

varying Volterra difference equations. Furthermore, we derive
an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.

2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there

1

2 described by

	

By a similar argument as in the preceding paragraph, we get
(29). This is a contradiction which completes the proof.

EXAMPLE 4.2. We now reconsider the Volterra difference
equation defined by (18)-(19). As shown in Example 3.5, the
zero solution of (18)-(19) is GES. Consider a perturbed equa-
tion given by

x(n+1) =
(

F
(
n,x(n)

)
+ F̃

(
n,x(n)

))
+

n

∑
k=0

(
G
(
n,k,x(k)

)
+ G̃

(
n,k,x(k)

))
, (30)

where F̃(·, ·) and G̃(·, ·, ·) are given by

F̃(n,x) =
e−sin2(nx)u(n)x

5
and

G̃(n,k,x) =
(n− k)2 cosk ln

(
1+ |v(n− k)x|

)
3(n− k)2 +1

,

where x ∈ R,n,k ∈ Z+,n ≥ k; u(·) : Z+ → R and v(·) : Z+ →
R are unknown functions satisfying supn∈Z+

|u(n)| < +∞ and
(v(n))n ∈ lγ(R) for some γ > 1. It is clear that

|F̃(n,x)| ≤ 1
5
|u(n)||x|, |G̃(n,k,x)| ≤ (n− k)2

3(n− k)2 +1
|v(n− k)||x|,

(31)

for all x ∈ R,n,k ∈ Z+,n ≥ k.
By Theorem 4.1, the zero solution of (30) is GES provided

sup
n∈Z+

|u(n)|+
∞

∑
n=0

|v(n)|<

1

sup
n∈Z+

{(
1− 1

4 −∑+∞
k=0

2ak

(3k+1)(3k+4)

)−1 n2

3n2+1

},

or equivalently,

sup
n∈Z+

|u(n)|+
∞

∑
n=0

|v(n)|<
1

( 3
4 − p)−1 1

3

=
9
4
−3p, (32)

where p :=
+∞

∑
k=0

2ak

(3k+1)(3k+4)
∈ (0,2/3] and a ∈ (0,1).

5. An application
In this section, we apply the obtained results to study uniform
attraction of equilibrium of discrete-time bidirectional associa-
tive memory (BAM) neural networks, see e.g. [18], [24].

Consider a discrete-time BAM neural network with infinite
delay in R2 described by


x1(n+1) = a1(n)x1(n)

+b1(n) f1

( +∞

∑
k=0

g1(k)x2(n− k)
)
+ I1(n),

x2(n+1) = a2(n)x2(n)

+b2(n) f2

( +∞

∑
k=0

g2(k)x1(n− k)
)
+ I2(n), n ∈ Z+,

(33)

with the initial condition

x1(k) = ψ1(k); x2(k) = ψ2(k), ∀k ∈ Z−,

where ψ1(·),ψ2(·) : Z− → R are given bounded functions.

Throughout, we assume that

(H1) There exist ai,bi ∈ R+, i ∈ {1,2} such that

|ai(n)| ≤ ai and |bi(n)| ≤ bi, ∀n ∈ Z+, i ∈ {1,2};

(H2) There exist ci,∈ R+, i ∈ {1,2} such that

| fi(x)− fi(y)| ≤ ci|x− y|, i ∈ {1,2}, for all x,y ∈ R;

(H3) (gi(n))n ∈ lγ(R), for some γ > 1, i ∈ {1,2}.

Suppose x∗ := (x∗1,x
∗
2)

T ∈ R2 is an equilibrium of the BAM
neural network (33). That is,



x∗1 = a1(n)x∗1 +b1(n) f1

( +∞

∑
k=0

g1(k)x∗2

)
+ I1(n), n ∈ Z+,

x∗2 = a2(n)x∗2 +b2(n) f2

( +∞

∑
k=0

g2(k)x∗1

)
+ I2(n), n ∈ Z+.

(34)

The following theorem gives an explicit criterion for uni-
form attraction of the equilibrium of (33).

THEOREM 5.1. Let (H1)-(H3) hold. If

min
{

max
i∈{1,2}

{
ai +bici

+∞

∑
k=0

gi(k)
}
,

max
i, j∈{1,2},i�= j

{
ai +b jc j

+∞

∑
k=0

g j(k)
}}

< 1. (35)

then the equilibrium point x∗ of (33) is uniformly attractive, i.e,
‖x(n)− x∗‖ → 0 as n → +∞, where x(n) = (x1(n),x2(n))T ∈
R2,n ∈ Z+.

Proof. Let yi(n) := xi(n)− xi
∗, i ∈ {1,2},n ∈ Z. It follows

from (33)-(34) that


y1(n+1) = a1(n)y1(n)+b1(n)×(
f1
( +∞

∑
k=0

g1(k)[y2(n− k)+ x∗2]
)
− f1

( +∞

∑
k=0

g1(k)x∗2
))

,

y2(n+1) = a2(n)y2(n)+b2(n)×(
f2
( +∞

∑
k=0

g2(k)[y1(n− k)+ x∗1]
)
− f2

( +∞

∑
k=0

g2(k)x∗1
))

.

(36)

Clearly, (36) is of the form

y(n+1) = A(n)y(n)+B(n)F
( n

∑
k=−∞

G(n− k)y(k)
)
, (37)

where y(n) := (y1(n),y2(n))T ∈ R2,n ∈ Z+, and for each n ∈
Z+,

A(n) :=

(
a1(n) 0

0 a2(n)

)
, B(n) :=

(
b1(n) 0

0 b2(n)

)
,

G(n) :=

(
0 g1(n)

g2(n) 0

)
,
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By a similar argument as in the preceding paragraph, we get
(29). This is a contradiction which completes the proof.

EXAMPLE 4.2. We now reconsider the Volterra difference
equation defined by (18)-(19). As shown in Example 3.5, the
zero solution of (18)-(19) is GES. Consider a perturbed equa-
tion given by

x(n+1) =
(

F
(
n,x(n)

)
+ F̃

(
n,x(n)

))
+

n

∑
k=0

(
G
(
n,k,x(k)

)
+ G̃

(
n,k,x(k)

))
, (30)

where F̃(·, ·) and G̃(·, ·, ·) are given by

F̃(n,x) =
e−sin2(nx)u(n)x

5
and

G̃(n,k,x) =
(n− k)2 cosk ln

(
1+ |v(n− k)x|

)
3(n− k)2 +1

,

where x ∈ R,n,k ∈ Z+,n ≥ k; u(·) : Z+ → R and v(·) : Z+ →
R are unknown functions satisfying supn∈Z+

|u(n)| < +∞ and
(v(n))n ∈ lγ(R) for some γ > 1. It is clear that

|F̃(n,x)| ≤ 1
5
|u(n)||x|, |G̃(n,k,x)| ≤ (n− k)2

3(n− k)2 +1
|v(n− k)||x|,

(31)

for all x ∈ R,n,k ∈ Z+,n ≥ k.
By Theorem 4.1, the zero solution of (30) is GES provided

sup
n∈Z+

|u(n)|+
∞

∑
n=0

|v(n)|<

1

sup
n∈Z+

{(
1− 1

4 −∑+∞
k=0

2ak

(3k+1)(3k+4)

)−1 n2

3n2+1

},

or equivalently,

sup
n∈Z+

|u(n)|+
∞

∑
n=0

|v(n)|<
1

( 3
4 − p)−1 1

3

=
9
4
−3p, (32)

where p :=
+∞

∑
k=0

2ak

(3k+1)(3k+4)
∈ (0,2/3] and a ∈ (0,1).

5. An application
In this section, we apply the obtained results to study uniform
attraction of equilibrium of discrete-time bidirectional associa-
tive memory (BAM) neural networks, see e.g. [18], [24].

Consider a discrete-time BAM neural network with infinite
delay in R2 described by


x1(n+1) = a1(n)x1(n)

+b1(n) f1

( +∞

∑
k=0

g1(k)x2(n− k)
)
+ I1(n),

x2(n+1) = a2(n)x2(n)

+b2(n) f2

( +∞

∑
k=0

g2(k)x1(n− k)
)
+ I2(n), n ∈ Z+,

(33)

with the initial condition

x1(k) = ψ1(k); x2(k) = ψ2(k), ∀k ∈ Z−,

where ψ1(·),ψ2(·) : Z− → R are given bounded functions.

Throughout, we assume that

(H1) There exist ai,bi ∈ R+, i ∈ {1,2} such that

|ai(n)| ≤ ai and |bi(n)| ≤ bi, ∀n ∈ Z+, i ∈ {1,2};

(H2) There exist ci,∈ R+, i ∈ {1,2} such that

| fi(x)− fi(y)| ≤ ci|x− y|, i ∈ {1,2}, for all x,y ∈ R;

(H3) (gi(n))n ∈ lγ(R), for some γ > 1, i ∈ {1,2}.

Suppose x∗ := (x∗1,x
∗
2)

T ∈ R2 is an equilibrium of the BAM
neural network (33). That is,



x∗1 = a1(n)x∗1 +b1(n) f1

( +∞

∑
k=0

g1(k)x∗2

)
+ I1(n), n ∈ Z+,

x∗2 = a2(n)x∗2 +b2(n) f2

( +∞

∑
k=0

g2(k)x∗1

)
+ I2(n), n ∈ Z+.

(34)

The following theorem gives an explicit criterion for uni-
form attraction of the equilibrium of (33).

THEOREM 5.1. Let (H1)-(H3) hold. If

min
{

max
i∈{1,2}

{
ai +bici

+∞

∑
k=0

gi(k)
}
,

max
i, j∈{1,2},i�= j

{
ai +b jc j

+∞

∑
k=0

g j(k)
}}

< 1. (35)

then the equilibrium point x∗ of (33) is uniformly attractive, i.e,
‖x(n)− x∗‖ → 0 as n → +∞, where x(n) = (x1(n),x2(n))T ∈
R2,n ∈ Z+.

Proof. Let yi(n) := xi(n)− xi
∗, i ∈ {1,2},n ∈ Z. It follows

from (33)-(34) that


y1(n+1) = a1(n)y1(n)+b1(n)×(
f1
( +∞

∑
k=0

g1(k)[y2(n− k)+ x∗2]
)
− f1

( +∞

∑
k=0

g1(k)x∗2
))

,

y2(n+1) = a2(n)y2(n)+b2(n)×(
f2
( +∞

∑
k=0

g2(k)[y1(n− k)+ x∗1]
)
− f2

( +∞

∑
k=0

g2(k)x∗1
))

.

(36)

Clearly, (36) is of the form

y(n+1) = A(n)y(n)+B(n)F
( n

∑
k=−∞

G(n− k)y(k)
)
, (37)

where y(n) := (y1(n),y2(n))T ∈ R2,n ∈ Z+, and for each n ∈
Z+,

A(n) :=

(
a1(n) 0

0 a2(n)

)
, B(n) :=

(
b1(n) 0

0 b2(n)

)
,

G(n) :=

(
0 g1(n)

g2(n) 0

)
,
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By a similar argument as in the preceding paragraph, we get
(29). This is a contradiction which completes the proof.

EXAMPLE 4.2. We now reconsider the Volterra difference
equation defined by (18)-(19). As shown in Example 3.5, the
zero solution of (18)-(19) is GES. Consider a perturbed equa-
tion given by

x(n+1) =
(

F
(
n,x(n)

)
+ F̃

(
n,x(n)

))
+

n

∑
k=0

(
G
(
n,k,x(k)

)
+ G̃

(
n,k,x(k)

))
, (30)

where F̃(·, ·) and G̃(·, ·, ·) are given by

F̃(n,x) =
e−sin2(nx)u(n)x

5
and

G̃(n,k,x) =
(n− k)2 cosk ln

(
1+ |v(n− k)x|

)
3(n− k)2 +1

,

where x ∈ R,n,k ∈ Z+,n ≥ k; u(·) : Z+ → R and v(·) : Z+ →
R are unknown functions satisfying supn∈Z+

|u(n)| < +∞ and
(v(n))n ∈ lγ(R) for some γ > 1. It is clear that

|F̃(n,x)| ≤ 1
5
|u(n)||x|, |G̃(n,k,x)| ≤ (n− k)2

3(n− k)2 +1
|v(n− k)||x|,

(31)

for all x ∈ R,n,k ∈ Z+,n ≥ k.
By Theorem 4.1, the zero solution of (30) is GES provided

sup
n∈Z+

|u(n)|+
∞

∑
n=0

|v(n)|<

1

sup
n∈Z+

{(
1− 1

4 −∑+∞
k=0

2ak

(3k+1)(3k+4)

)−1 n2

3n2+1

},

or equivalently,

sup
n∈Z+

|u(n)|+
∞

∑
n=0

|v(n)|<
1

( 3
4 − p)−1 1

3

=
9
4
−3p, (32)

where p :=
+∞

∑
k=0

2ak

(3k+1)(3k+4)
∈ (0,2/3] and a ∈ (0,1).

5. An application
In this section, we apply the obtained results to study uniform
attraction of equilibrium of discrete-time bidirectional associa-
tive memory (BAM) neural networks, see e.g. [18], [24].

Consider a discrete-time BAM neural network with infinite
delay in R2 described by


x1(n+1) = a1(n)x1(n)

+b1(n) f1

( +∞

∑
k=0

g1(k)x2(n− k)
)
+ I1(n),

x2(n+1) = a2(n)x2(n)

+b2(n) f2

( +∞

∑
k=0

g2(k)x1(n− k)
)
+ I2(n), n ∈ Z+,

(33)

with the initial condition

x1(k) = ψ1(k); x2(k) = ψ2(k), ∀k ∈ Z−,

where ψ1(·),ψ2(·) : Z− → R are given bounded functions.

Throughout, we assume that

(H1) There exist ai,bi ∈ R+, i ∈ {1,2} such that

|ai(n)| ≤ ai and |bi(n)| ≤ bi, ∀n ∈ Z+, i ∈ {1,2};

(H2) There exist ci,∈ R+, i ∈ {1,2} such that

| fi(x)− fi(y)| ≤ ci|x− y|, i ∈ {1,2}, for all x,y ∈ R;

(H3) (gi(n))n ∈ lγ(R), for some γ > 1, i ∈ {1,2}.

Suppose x∗ := (x∗1,x
∗
2)

T ∈ R2 is an equilibrium of the BAM
neural network (33). That is,



x∗1 = a1(n)x∗1 +b1(n) f1

( +∞

∑
k=0

g1(k)x∗2

)
+ I1(n), n ∈ Z+,

x∗2 = a2(n)x∗2 +b2(n) f2

( +∞

∑
k=0

g2(k)x∗1

)
+ I2(n), n ∈ Z+.

(34)

The following theorem gives an explicit criterion for uni-
form attraction of the equilibrium of (33).

THEOREM 5.1. Let (H1)-(H3) hold. If

min
{

max
i∈{1,2}

{
ai +bici

+∞

∑
k=0

gi(k)
}
,

max
i, j∈{1,2},i�= j

{
ai +b jc j

+∞

∑
k=0

g j(k)
}}

< 1. (35)

then the equilibrium point x∗ of (33) is uniformly attractive, i.e,
‖x(n)− x∗‖ → 0 as n → +∞, where x(n) = (x1(n),x2(n))T ∈
R2,n ∈ Z+.

Proof. Let yi(n) := xi(n)− xi
∗, i ∈ {1,2},n ∈ Z. It follows

from (33)-(34) that


y1(n+1) = a1(n)y1(n)+b1(n)×(
f1
( +∞

∑
k=0

g1(k)[y2(n− k)+ x∗2]
)
− f1

( +∞

∑
k=0

g1(k)x∗2
))

,

y2(n+1) = a2(n)y2(n)+b2(n)×(
f2
( +∞

∑
k=0

g2(k)[y1(n− k)+ x∗1]
)
− f2

( +∞

∑
k=0

g2(k)x∗1
))

.

(36)

Clearly, (36) is of the form

y(n+1) = A(n)y(n)+B(n)F
( n

∑
k=−∞

G(n− k)y(k)
)
, (37)

where y(n) := (y1(n),y2(n))T ∈ R2,n ∈ Z+, and for each n ∈
Z+,

A(n) :=

(
a1(n) 0

0 a2(n)

)
, B(n) :=

(
b1(n) 0

0 b2(n)

)
,

G(n) :=

(
0 g1(n)

g2(n) 0

)
,
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By a similar argument as in the preceding paragraph, we get
(29). This is a contradiction which completes the proof.

EXAMPLE 4.2. We now reconsider the Volterra difference
equation defined by (18)-(19). As shown in Example 3.5, the
zero solution of (18)-(19) is GES. Consider a perturbed equa-
tion given by

x(n+1) =
(

F
(
n,x(n)

)
+ F̃

(
n,x(n)

))
+

n

∑
k=0

(
G
(
n,k,x(k)

)
+ G̃

(
n,k,x(k)

))
, (30)

where F̃(·, ·) and G̃(·, ·, ·) are given by

F̃(n,x) =
e−sin2(nx)u(n)x

5
and

G̃(n,k,x) =
(n− k)2 cosk ln

(
1+ |v(n− k)x|

)
3(n− k)2 +1

,

where x ∈ R,n,k ∈ Z+,n ≥ k; u(·) : Z+ → R and v(·) : Z+ →
R are unknown functions satisfying supn∈Z+

|u(n)| < +∞ and
(v(n))n ∈ lγ(R) for some γ > 1. It is clear that

|F̃(n,x)| ≤ 1
5
|u(n)||x|, |G̃(n,k,x)| ≤ (n− k)2

3(n− k)2 +1
|v(n− k)||x|,

(31)

for all x ∈ R,n,k ∈ Z+,n ≥ k.
By Theorem 4.1, the zero solution of (30) is GES provided

sup
n∈Z+

|u(n)|+
∞

∑
n=0

|v(n)|<

1

sup
n∈Z+

{(
1− 1

4 −∑+∞
k=0

2ak

(3k+1)(3k+4)

)−1 n2

3n2+1

},

or equivalently,

sup
n∈Z+

|u(n)|+
∞

∑
n=0

|v(n)|<
1

( 3
4 − p)−1 1

3

=
9
4
−3p, (32)

where p :=
+∞

∑
k=0

2ak

(3k+1)(3k+4)
∈ (0,2/3] and a ∈ (0,1).

5. An application
In this section, we apply the obtained results to study uniform
attraction of equilibrium of discrete-time bidirectional associa-
tive memory (BAM) neural networks, see e.g. [18], [24].

Consider a discrete-time BAM neural network with infinite
delay in R2 described by


x1(n+1) = a1(n)x1(n)

+b1(n) f1

( +∞

∑
k=0

g1(k)x2(n− k)
)
+ I1(n),

x2(n+1) = a2(n)x2(n)

+b2(n) f2

( +∞

∑
k=0

g2(k)x1(n− k)
)
+ I2(n), n ∈ Z+,

(33)

with the initial condition

x1(k) = ψ1(k); x2(k) = ψ2(k), ∀k ∈ Z−,

where ψ1(·),ψ2(·) : Z− → R are given bounded functions.

Throughout, we assume that

(H1) There exist ai,bi ∈ R+, i ∈ {1,2} such that

|ai(n)| ≤ ai and |bi(n)| ≤ bi, ∀n ∈ Z+, i ∈ {1,2};

(H2) There exist ci,∈ R+, i ∈ {1,2} such that

| fi(x)− fi(y)| ≤ ci|x− y|, i ∈ {1,2}, for all x,y ∈ R;

(H3) (gi(n))n ∈ lγ(R), for some γ > 1, i ∈ {1,2}.

Suppose x∗ := (x∗1,x
∗
2)

T ∈ R2 is an equilibrium of the BAM
neural network (33). That is,



x∗1 = a1(n)x∗1 +b1(n) f1

( +∞

∑
k=0

g1(k)x∗2

)
+ I1(n), n ∈ Z+,

x∗2 = a2(n)x∗2 +b2(n) f2

( +∞

∑
k=0

g2(k)x∗1

)
+ I2(n), n ∈ Z+.

(34)

The following theorem gives an explicit criterion for uni-
form attraction of the equilibrium of (33).

THEOREM 5.1. Let (H1)-(H3) hold. If

min
{

max
i∈{1,2}

{
ai +bici

+∞

∑
k=0

gi(k)
}
,

max
i, j∈{1,2},i�= j

{
ai +b jc j

+∞

∑
k=0

g j(k)
}}

< 1. (35)

then the equilibrium point x∗ of (33) is uniformly attractive, i.e,
‖x(n)− x∗‖ → 0 as n → +∞, where x(n) = (x1(n),x2(n))T ∈
R2,n ∈ Z+.

Proof. Let yi(n) := xi(n)− xi
∗, i ∈ {1,2},n ∈ Z. It follows

from (33)-(34) that


y1(n+1) = a1(n)y1(n)+b1(n)×(
f1
( +∞

∑
k=0

g1(k)[y2(n− k)+ x∗2]
)
− f1

( +∞

∑
k=0

g1(k)x∗2
))

,

y2(n+1) = a2(n)y2(n)+b2(n)×(
f2
( +∞

∑
k=0

g2(k)[y1(n− k)+ x∗1]
)
− f2

( +∞

∑
k=0

g2(k)x∗1
))

.

(36)

Clearly, (36) is of the form

y(n+1) = A(n)y(n)+B(n)F
( n

∑
k=−∞

G(n− k)y(k)
)
, (37)

where y(n) := (y1(n),y2(n))T ∈ R2,n ∈ Z+, and for each n ∈
Z+,

A(n) :=

(
a1(n) 0

0 a2(n)

)
, B(n) :=

(
b1(n) 0

0 b2(n)

)
,

G(n) :=

(
0 g1(n)

g2(n) 0

)
,
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By a similar argument as in the preceding paragraph, we get
(29). This is a contradiction which completes the proof.

EXAMPLE 4.2. We now reconsider the Volterra difference
equation defined by (18)-(19). As shown in Example 3.5, the
zero solution of (18)-(19) is GES. Consider a perturbed equa-
tion given by

x(n+1) =
(

F
(
n,x(n)

)
+ F̃

(
n,x(n)

))
+

n

∑
k=0

(
G
(
n,k,x(k)

)
+ G̃

(
n,k,x(k)

))
, (30)

where F̃(·, ·) and G̃(·, ·, ·) are given by

F̃(n,x) =
e−sin2(nx)u(n)x

5
and

G̃(n,k,x) =
(n− k)2 cosk ln

(
1+ |v(n− k)x|

)
3(n− k)2 +1

,

where x ∈ R,n,k ∈ Z+,n ≥ k; u(·) : Z+ → R and v(·) : Z+ →
R are unknown functions satisfying supn∈Z+

|u(n)| < +∞ and
(v(n))n ∈ lγ(R) for some γ > 1. It is clear that

|F̃(n,x)| ≤ 1
5
|u(n)||x|, |G̃(n,k,x)| ≤ (n− k)2

3(n− k)2 +1
|v(n− k)||x|,

(31)

for all x ∈ R,n,k ∈ Z+,n ≥ k.
By Theorem 4.1, the zero solution of (30) is GES provided

sup
n∈Z+

|u(n)|+
∞

∑
n=0

|v(n)|<

1

sup
n∈Z+

{(
1− 1

4 −∑+∞
k=0

2ak

(3k+1)(3k+4)

)−1 n2

3n2+1

},

or equivalently,

sup
n∈Z+

|u(n)|+
∞

∑
n=0

|v(n)|<
1

( 3
4 − p)−1 1

3

=
9
4
−3p, (32)

where p :=
+∞

∑
k=0

2ak

(3k+1)(3k+4)
∈ (0,2/3] and a ∈ (0,1).

5. An application
In this section, we apply the obtained results to study uniform
attraction of equilibrium of discrete-time bidirectional associa-
tive memory (BAM) neural networks, see e.g. [18], [24].

Consider a discrete-time BAM neural network with infinite
delay in R2 described by


x1(n+1) = a1(n)x1(n)

+b1(n) f1

( +∞

∑
k=0

g1(k)x2(n− k)
)
+ I1(n),

x2(n+1) = a2(n)x2(n)

+b2(n) f2

( +∞

∑
k=0

g2(k)x1(n− k)
)
+ I2(n), n ∈ Z+,

(33)

with the initial condition

x1(k) = ψ1(k); x2(k) = ψ2(k), ∀k ∈ Z−,

where ψ1(·),ψ2(·) : Z− → R are given bounded functions.

Throughout, we assume that

(H1) There exist ai,bi ∈ R+, i ∈ {1,2} such that

|ai(n)| ≤ ai and |bi(n)| ≤ bi, ∀n ∈ Z+, i ∈ {1,2};

(H2) There exist ci,∈ R+, i ∈ {1,2} such that

| fi(x)− fi(y)| ≤ ci|x− y|, i ∈ {1,2}, for all x,y ∈ R;

(H3) (gi(n))n ∈ lγ(R), for some γ > 1, i ∈ {1,2}.

Suppose x∗ := (x∗1,x
∗
2)

T ∈ R2 is an equilibrium of the BAM
neural network (33). That is,



x∗1 = a1(n)x∗1 +b1(n) f1

( +∞

∑
k=0

g1(k)x∗2

)
+ I1(n), n ∈ Z+,

x∗2 = a2(n)x∗2 +b2(n) f2

( +∞

∑
k=0

g2(k)x∗1

)
+ I2(n), n ∈ Z+.

(34)

The following theorem gives an explicit criterion for uni-
form attraction of the equilibrium of (33).

THEOREM 5.1. Let (H1)-(H3) hold. If

min
{

max
i∈{1,2}

{
ai +bici

+∞

∑
k=0

gi(k)
}
,

max
i, j∈{1,2},i�= j

{
ai +b jc j

+∞

∑
k=0

g j(k)
}}

< 1. (35)

then the equilibrium point x∗ of (33) is uniformly attractive, i.e,
‖x(n)− x∗‖ → 0 as n → +∞, where x(n) = (x1(n),x2(n))T ∈
R2,n ∈ Z+.

Proof. Let yi(n) := xi(n)− xi
∗, i ∈ {1,2},n ∈ Z. It follows

from (33)-(34) that


y1(n+1) = a1(n)y1(n)+b1(n)×(
f1
( +∞

∑
k=0

g1(k)[y2(n− k)+ x∗2]
)
− f1

( +∞

∑
k=0

g1(k)x∗2
))

,

y2(n+1) = a2(n)y2(n)+b2(n)×(
f2
( +∞

∑
k=0

g2(k)[y1(n− k)+ x∗1]
)
− f2

( +∞

∑
k=0

g2(k)x∗1
))

.

(36)

Clearly, (36) is of the form

y(n+1) = A(n)y(n)+B(n)F
( n

∑
k=−∞

G(n− k)y(k)
)
, (37)

where y(n) := (y1(n),y2(n))T ∈ R2,n ∈ Z+, and for each n ∈
Z+,

A(n) :=

(
a1(n) 0

0 a2(n)

)
, B(n) :=

(
b1(n) 0

0 b2(n)

)
,

G(n) :=

(
0 g1(n)

g2(n) 0

)
,
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with the initial conditionBy a similar argument as in the preceding paragraph, we get
(29). This is a contradiction which completes the proof.

EXAMPLE 4.2. We now reconsider the Volterra difference
equation defined by (18)-(19). As shown in Example 3.5, the
zero solution of (18)-(19) is GES. Consider a perturbed equa-
tion given by

x(n+1) =
(

F
(
n,x(n)

)
+ F̃

(
n,x(n)

))
+

n

∑
k=0

(
G
(
n,k,x(k)

)
+ G̃

(
n,k,x(k)

))
, (30)

where F̃(·, ·) and G̃(·, ·, ·) are given by

F̃(n,x) =
e−sin2(nx)u(n)x

5
and

G̃(n,k,x) =
(n− k)2 cosk ln

(
1+ |v(n− k)x|

)
3(n− k)2 +1

,

where x ∈ R,n,k ∈ Z+,n ≥ k; u(·) : Z+ → R and v(·) : Z+ →
R are unknown functions satisfying supn∈Z+

|u(n)| < +∞ and
(v(n))n ∈ lγ(R) for some γ > 1. It is clear that

|F̃(n,x)| ≤ 1
5
|u(n)||x|, |G̃(n,k,x)| ≤ (n− k)2

3(n− k)2 +1
|v(n− k)||x|,

(31)

for all x ∈ R,n,k ∈ Z+,n ≥ k.
By Theorem 4.1, the zero solution of (30) is GES provided

sup
n∈Z+

|u(n)|+
∞

∑
n=0

|v(n)|<

1

sup
n∈Z+

{(
1− 1

4 −∑+∞
k=0

2ak

(3k+1)(3k+4)

)−1 n2

3n2+1

},

or equivalently,

sup
n∈Z+

|u(n)|+
∞

∑
n=0

|v(n)|<
1

( 3
4 − p)−1 1

3

=
9
4
−3p, (32)

where p :=
+∞

∑
k=0

2ak

(3k+1)(3k+4)
∈ (0,2/3] and a ∈ (0,1).

5. An application
In this section, we apply the obtained results to study uniform
attraction of equilibrium of discrete-time bidirectional associa-
tive memory (BAM) neural networks, see e.g. [18], [24].

Consider a discrete-time BAM neural network with infinite
delay in R2 described by



x1(n+1) = a1(n)x1(n)

+b1(n) f1

( +∞

∑
k=0

g1(k)x2(n− k)
)
+ I1(n),

x2(n+1) = a2(n)x2(n)

+b2(n) f2

( +∞

∑
k=0

g2(k)x1(n− k)
)
+ I2(n), n ∈ Z+,

(33)

with the initial condition

x1(k) = ψ1(k); x2(k) = ψ2(k), ∀k ∈ Z−,

where ψ1(·),ψ2(·) : Z− → R are given bounded functions.

Throughout, we assume that

(H1) There exist ai,bi ∈ R+, i ∈ {1,2} such that

|ai(n)| ≤ ai and |bi(n)| ≤ bi, ∀n ∈ Z+, i ∈ {1,2};

(H2) There exist ci,∈ R+, i ∈ {1,2} such that

| fi(x)− fi(y)| ≤ ci|x− y|, i ∈ {1,2}, for all x,y ∈ R;

(H3) (gi(n))n ∈ lγ(R), for some γ > 1, i ∈ {1,2}.

Suppose x∗ := (x∗1,x
∗
2)

T ∈ R2 is an equilibrium of the BAM
neural network (33). That is,


x∗1 = a1(n)x∗1 +b1(n) f1

( +∞

∑
k=0

g1(k)x∗2

)
+ I1(n), n ∈ Z+,

x∗2 = a2(n)x∗2 +b2(n) f2

( +∞

∑
k=0

g2(k)x∗1

)
+ I2(n), n ∈ Z+.

(34)

The following theorem gives an explicit criterion for uni-
form attraction of the equilibrium of (33).

THEOREM 5.1. Let (H1)-(H3) hold. If

min
{

max
i∈{1,2}

{
ai +bici

+∞

∑
k=0

gi(k)
}
,

max
i, j∈{1,2},i�= j

{
ai +b jc j

+∞

∑
k=0

g j(k)
}}

< 1. (35)

then the equilibrium point x∗ of (33) is uniformly attractive, i.e,
‖x(n)− x∗‖ → 0 as n → +∞, where x(n) = (x1(n),x2(n))T ∈
R2,n ∈ Z+.

Proof. Let yi(n) := xi(n)− xi
∗, i ∈ {1,2},n ∈ Z. It follows

from (33)-(34) that


y1(n+1) = a1(n)y1(n)+b1(n)×(
f1
( +∞

∑
k=0

g1(k)[y2(n− k)+ x∗2]
)
− f1

( +∞

∑
k=0

g1(k)x∗2
))

,

y2(n+1) = a2(n)y2(n)+b2(n)×(
f2
( +∞

∑
k=0

g2(k)[y1(n− k)+ x∗1]
)
− f2

( +∞

∑
k=0

g2(k)x∗1
))

.

(36)

Clearly, (36) is of the form

y(n+1) = A(n)y(n)+B(n)F
( n

∑
k=−∞

G(n− k)y(k)
)
, (37)

where y(n) := (y1(n),y2(n))T ∈ R2,n ∈ Z+, and for each n ∈
Z+,

A(n) :=

(
a1(n) 0

0 a2(n)

)
, B(n) :=

(
b1(n) 0

0 b2(n)

)
,

G(n) :=

(
0 g1(n)

g2(n) 0

)
,
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where ψ1(¢), ψ2(¢) : 
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1. Introduction
Volterra difference equations have been widely used in the
modeling of processes in continuous mechanics and biome-
chanics, problems of control and estimations and some
schemes of numerical solutions of integral and integro-
differential equations, see e.g. [2], [7], [12], [16]-[19].

Problems of stability of Volterra difference equations have
attracted much attention from researchers, during the last
twenty years, see e.g. [1],[4]-[13], [15], [21]-[23] and refer-
ences therein. Many various methods have been used to inves-
tigate stability of Volterra difference equations such as Lya-
punov functions, Z transform, comparison theorems, topologi-
cal methods, fixed point theorems, etc (see e.g. [7], [10], [15],
[23]).

In particular, the first significant result on exponential sta-
bility of Volterra difference equations is due to Elaydi and
Murakami, see [8]. Roughly speaking, Elaydi and Murakami
showed that even to the simplest Volterra difference equations
(namely, linear time-invariant Volterra difference equations of
convolution type), the exponential stability is “stronger” than
the uniform asymptotic stability. More precisely, a linear time-
invariant Volterra difference equation of convolution type is ex-
ponentially stable if and only if it is uniformly asymptotically
stable and its kernel exponentially decays, see [8]. For further
and updated information on stability of linear time-invariant
Volterra difference equations, we refer to the recent survey pa-
per [10].

In general, problems of global exponential stability of time-
varying Volterra difference equations are very hard even those
of linear time-varying Volterra equations. Most of existing re-
sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
ditions for exponential stability of linear time-varying Volterra
difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
nential stability of nonlinear time-varying Volterra difference
equations. Our approach is based on the celebrated Perron-
Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
nential stability of the zero solution of general nonlinear time-

varying Volterra difference equations. Furthermore, we derive
an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.

2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there

1

¡ ! 
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1. Introduction
Volterra difference equations have been widely used in the
modeling of processes in continuous mechanics and biome-
chanics, problems of control and estimations and some
schemes of numerical solutions of integral and integro-
differential equations, see e.g. [2], [7], [12], [16]-[19].

Problems of stability of Volterra difference equations have
attracted much attention from researchers, during the last
twenty years, see e.g. [1],[4]-[13], [15], [21]-[23] and refer-
ences therein. Many various methods have been used to inves-
tigate stability of Volterra difference equations such as Lya-
punov functions, Z transform, comparison theorems, topologi-
cal methods, fixed point theorems, etc (see e.g. [7], [10], [15],
[23]).

In particular, the first significant result on exponential sta-
bility of Volterra difference equations is due to Elaydi and
Murakami, see [8]. Roughly speaking, Elaydi and Murakami
showed that even to the simplest Volterra difference equations
(namely, linear time-invariant Volterra difference equations of
convolution type), the exponential stability is “stronger” than
the uniform asymptotic stability. More precisely, a linear time-
invariant Volterra difference equation of convolution type is ex-
ponentially stable if and only if it is uniformly asymptotically
stable and its kernel exponentially decays, see [8]. For further
and updated information on stability of linear time-invariant
Volterra difference equations, we refer to the recent survey pa-
per [10].

In general, problems of global exponential stability of time-
varying Volterra difference equations are very hard even those
of linear time-varying Volterra equations. Most of existing re-
sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
ditions for exponential stability of linear time-varying Volterra
difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
nential stability of nonlinear time-varying Volterra difference
equations. Our approach is based on the celebrated Perron-
Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
nential stability of the zero solution of general nonlinear time-

varying Volterra difference equations. Furthermore, we derive
an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.

2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there

1

 are given bounded functions.

Throughout, we assume that
(H1) There exist ai, bi 2 
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1. Introduction
Volterra difference equations have been widely used in the
modeling of processes in continuous mechanics and biome-
chanics, problems of control and estimations and some
schemes of numerical solutions of integral and integro-
differential equations, see e.g. [2], [7], [12], [16]-[19].

Problems of stability of Volterra difference equations have
attracted much attention from researchers, during the last
twenty years, see e.g. [1],[4]-[13], [15], [21]-[23] and refer-
ences therein. Many various methods have been used to inves-
tigate stability of Volterra difference equations such as Lya-
punov functions, Z transform, comparison theorems, topologi-
cal methods, fixed point theorems, etc (see e.g. [7], [10], [15],
[23]).

In particular, the first significant result on exponential sta-
bility of Volterra difference equations is due to Elaydi and
Murakami, see [8]. Roughly speaking, Elaydi and Murakami
showed that even to the simplest Volterra difference equations
(namely, linear time-invariant Volterra difference equations of
convolution type), the exponential stability is “stronger” than
the uniform asymptotic stability. More precisely, a linear time-
invariant Volterra difference equation of convolution type is ex-
ponentially stable if and only if it is uniformly asymptotically
stable and its kernel exponentially decays, see [8]. For further
and updated information on stability of linear time-invariant
Volterra difference equations, we refer to the recent survey pa-
per [10].

In general, problems of global exponential stability of time-
varying Volterra difference equations are very hard even those
of linear time-varying Volterra equations. Most of existing re-
sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
ditions for exponential stability of linear time-varying Volterra
difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
nential stability of nonlinear time-varying Volterra difference
equations. Our approach is based on the celebrated Perron-
Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
nential stability of the zero solution of general nonlinear time-

varying Volterra difference equations. Furthermore, we derive
an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.

2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there

1

+, i 2 {1, 2} such that

By a similar argument as in the preceding paragraph, we get
(29). This is a contradiction which completes the proof.

EXAMPLE 4.2. We now reconsider the Volterra difference
equation defined by (18)-(19). As shown in Example 3.5, the
zero solution of (18)-(19) is GES. Consider a perturbed equa-
tion given by

x(n+1) =
(

F
(
n,x(n)

)
+ F̃

(
n,x(n)

))
+

n

∑
k=0

(
G
(
n,k,x(k)

)
+ G̃

(
n,k,x(k)

))
, (30)

where F̃(·, ·) and G̃(·, ·, ·) are given by

F̃(n,x) =
e−sin2(nx)u(n)x

5
and

G̃(n,k,x) =
(n− k)2 cosk ln

(
1+ |v(n− k)x|

)
3(n− k)2 +1

,

where x ∈ R,n,k ∈ Z+,n ≥ k; u(·) : Z+ → R and v(·) : Z+ →
R are unknown functions satisfying supn∈Z+

|u(n)| < +∞ and
(v(n))n ∈ lγ(R) for some γ > 1. It is clear that

|F̃(n,x)| ≤ 1
5
|u(n)||x|, |G̃(n,k,x)| ≤ (n− k)2

3(n− k)2 +1
|v(n− k)||x|,

(31)

for all x ∈ R,n,k ∈ Z+,n ≥ k.
By Theorem 4.1, the zero solution of (30) is GES provided

sup
n∈Z+

|u(n)|+
∞

∑
n=0

|v(n)|<

1

sup
n∈Z+

{(
1− 1

4 −∑+∞
k=0

2ak

(3k+1)(3k+4)

)−1 n2

3n2+1

},

or equivalently,

sup
n∈Z+

|u(n)|+
∞

∑
n=0

|v(n)|<
1

( 3
4 − p)−1 1

3

=
9
4
−3p, (32)

where p :=
+∞

∑
k=0

2ak

(3k+1)(3k+4)
∈ (0,2/3] and a ∈ (0,1).

5. An application
In this section, we apply the obtained results to study uniform
attraction of equilibrium of discrete-time bidirectional associa-
tive memory (BAM) neural networks, see e.g. [18], [24].

Consider a discrete-time BAM neural network with infinite
delay in R2 described by


x1(n+1) = a1(n)x1(n)

+b1(n) f1

( +∞

∑
k=0

g1(k)x2(n− k)
)
+ I1(n),

x2(n+1) = a2(n)x2(n)

+b2(n) f2

( +∞

∑
k=0

g2(k)x1(n− k)
)
+ I2(n), n ∈ Z+,

(33)

with the initial condition

x1(k) = ψ1(k); x2(k) = ψ2(k), ∀k ∈ Z−,

where ψ1(·),ψ2(·) : Z− → R are given bounded functions.

Throughout, we assume that

(H1) There exist ai,bi ∈ R+, i ∈ {1,2} such that

|ai(n)| ≤ ai and |bi(n)| ≤ bi, ∀n ∈ Z+, i ∈ {1,2};

(H2) There exist ci,∈ R+, i ∈ {1,2} such that

| fi(x)− fi(y)| ≤ ci|x− y|, i ∈ {1,2}, for all x,y ∈ R;

(H3) (gi(n))n ∈ lγ(R), for some γ > 1, i ∈ {1,2}.

Suppose x∗ := (x∗1,x
∗
2)

T ∈ R2 is an equilibrium of the BAM
neural network (33). That is,


x∗1 = a1(n)x∗1 +b1(n) f1

( +∞

∑
k=0

g1(k)x∗2

)
+ I1(n), n ∈ Z+,

x∗2 = a2(n)x∗2 +b2(n) f2

( +∞

∑
k=0

g2(k)x∗1

)
+ I2(n), n ∈ Z+.

(34)

The following theorem gives an explicit criterion for uni-
form attraction of the equilibrium of (33).

THEOREM 5.1. Let (H1)-(H3) hold. If

min
{

max
i∈{1,2}

{
ai +bici

+∞

∑
k=0

gi(k)
}
,

max
i, j∈{1,2},i�= j

{
ai +b jc j

+∞

∑
k=0

g j(k)
}}

< 1. (35)

then the equilibrium point x∗ of (33) is uniformly attractive, i.e,
‖x(n)− x∗‖ → 0 as n → +∞, where x(n) = (x1(n),x2(n))T ∈
R2,n ∈ Z+.

Proof. Let yi(n) := xi(n)− xi
∗, i ∈ {1,2},n ∈ Z. It follows

from (33)-(34) that


y1(n+1) = a1(n)y1(n)+b1(n)×(
f1
( +∞

∑
k=0

g1(k)[y2(n− k)+ x∗2]
)
− f1

( +∞

∑
k=0

g1(k)x∗2
))

,

y2(n+1) = a2(n)y2(n)+b2(n)×(
f2
( +∞

∑
k=0

g2(k)[y1(n− k)+ x∗1]
)
− f2

( +∞

∑
k=0

g2(k)x∗1
))

.

(36)

Clearly, (36) is of the form

y(n+1) = A(n)y(n)+B(n)F
( n

∑
k=−∞

G(n− k)y(k)
)
, (37)

where y(n) := (y1(n),y2(n))T ∈ R2,n ∈ Z+, and for each n ∈
Z+,

A(n) :=

(
a1(n) 0

0 a2(n)

)
, B(n) :=

(
b1(n) 0

0 b2(n)

)
,

G(n) :=

(
0 g1(n)

g2(n) 0

)
,
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1. Introduction
Volterra difference equations have been widely used in the
modeling of processes in continuous mechanics and biome-
chanics, problems of control and estimations and some
schemes of numerical solutions of integral and integro-
differential equations, see e.g. [2], [7], [12], [16]-[19].

Problems of stability of Volterra difference equations have
attracted much attention from researchers, during the last
twenty years, see e.g. [1],[4]-[13], [15], [21]-[23] and refer-
ences therein. Many various methods have been used to inves-
tigate stability of Volterra difference equations such as Lya-
punov functions, Z transform, comparison theorems, topologi-
cal methods, fixed point theorems, etc (see e.g. [7], [10], [15],
[23]).

In particular, the first significant result on exponential sta-
bility of Volterra difference equations is due to Elaydi and
Murakami, see [8]. Roughly speaking, Elaydi and Murakami
showed that even to the simplest Volterra difference equations
(namely, linear time-invariant Volterra difference equations of
convolution type), the exponential stability is “stronger” than
the uniform asymptotic stability. More precisely, a linear time-
invariant Volterra difference equation of convolution type is ex-
ponentially stable if and only if it is uniformly asymptotically
stable and its kernel exponentially decays, see [8]. For further
and updated information on stability of linear time-invariant
Volterra difference equations, we refer to the recent survey pa-
per [10].

In general, problems of global exponential stability of time-
varying Volterra difference equations are very hard even those
of linear time-varying Volterra equations. Most of existing re-
sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
ditions for exponential stability of linear time-varying Volterra
difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
nential stability of nonlinear time-varying Volterra difference
equations. Our approach is based on the celebrated Perron-
Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
nential stability of the zero solution of general nonlinear time-

varying Volterra difference equations. Furthermore, we derive
an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.

2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there

1

+, i 2 {1, 2} such that

By a similar argument as in the preceding paragraph, we get
(29). This is a contradiction which completes the proof.

EXAMPLE 4.2. We now reconsider the Volterra difference
equation defined by (18)-(19). As shown in Example 3.5, the
zero solution of (18)-(19) is GES. Consider a perturbed equa-
tion given by

x(n+1) =
(

F
(
n,x(n)

)
+ F̃

(
n,x(n)

))
+

n

∑
k=0

(
G
(
n,k,x(k)

)
+ G̃

(
n,k,x(k)

))
, (30)

where F̃(·, ·) and G̃(·, ·, ·) are given by

F̃(n,x) =
e−sin2(nx)u(n)x

5
and

G̃(n,k,x) =
(n− k)2 cosk ln

(
1+ |v(n− k)x|

)
3(n− k)2 +1

,

where x ∈ R,n,k ∈ Z+,n ≥ k; u(·) : Z+ → R and v(·) : Z+ →
R are unknown functions satisfying supn∈Z+

|u(n)| < +∞ and
(v(n))n ∈ lγ(R) for some γ > 1. It is clear that

|F̃(n,x)| ≤ 1
5
|u(n)||x|, |G̃(n,k,x)| ≤ (n− k)2

3(n− k)2 +1
|v(n− k)||x|,

(31)

for all x ∈ R,n,k ∈ Z+,n ≥ k.
By Theorem 4.1, the zero solution of (30) is GES provided

sup
n∈Z+

|u(n)|+
∞

∑
n=0

|v(n)|<

1

sup
n∈Z+

{(
1− 1

4 −∑+∞
k=0

2ak

(3k+1)(3k+4)

)−1 n2

3n2+1

},

or equivalently,

sup
n∈Z+

|u(n)|+
∞

∑
n=0

|v(n)|<
1

( 3
4 − p)−1 1

3

=
9
4
−3p, (32)

where p :=
+∞

∑
k=0

2ak

(3k+1)(3k+4)
∈ (0,2/3] and a ∈ (0,1).

5. An application
In this section, we apply the obtained results to study uniform
attraction of equilibrium of discrete-time bidirectional associa-
tive memory (BAM) neural networks, see e.g. [18], [24].

Consider a discrete-time BAM neural network with infinite
delay in R2 described by


x1(n+1) = a1(n)x1(n)

+b1(n) f1

( +∞

∑
k=0

g1(k)x2(n− k)
)
+ I1(n),

x2(n+1) = a2(n)x2(n)

+b2(n) f2

( +∞

∑
k=0

g2(k)x1(n− k)
)
+ I2(n), n ∈ Z+,

(33)

with the initial condition

x1(k) = ψ1(k); x2(k) = ψ2(k), ∀k ∈ Z−,

where ψ1(·),ψ2(·) : Z− → R are given bounded functions.

Throughout, we assume that

(H1) There exist ai,bi ∈ R+, i ∈ {1,2} such that

|ai(n)| ≤ ai and |bi(n)| ≤ bi, ∀n ∈ Z+, i ∈ {1,2};

(H2) There exist ci,∈ R+, i ∈ {1,2} such that

| fi(x)− fi(y)| ≤ ci|x− y|, i ∈ {1,2}, for all x,y ∈ R;

(H3) (gi(n))n ∈ lγ(R), for some γ > 1, i ∈ {1,2}.

Suppose x∗ := (x∗1,x
∗
2)

T ∈ R2 is an equilibrium of the BAM
neural network (33). That is,



x∗1 = a1(n)x∗1 +b1(n) f1

( +∞

∑
k=0

g1(k)x∗2

)
+ I1(n), n ∈ Z+,

x∗2 = a2(n)x∗2 +b2(n) f2

( +∞

∑
k=0

g2(k)x∗1

)
+ I2(n), n ∈ Z+.

(34)

The following theorem gives an explicit criterion for uni-
form attraction of the equilibrium of (33).

THEOREM 5.1. Let (H1)-(H3) hold. If

min
{

max
i∈{1,2}

{
ai +bici

+∞

∑
k=0

gi(k)
}
,

max
i, j∈{1,2},i�= j

{
ai +b jc j

+∞

∑
k=0

g j(k)
}}

< 1. (35)

then the equilibrium point x∗ of (33) is uniformly attractive, i.e,
‖x(n)− x∗‖ → 0 as n → +∞, where x(n) = (x1(n),x2(n))T ∈
R2,n ∈ Z+.

Proof. Let yi(n) := xi(n)− xi
∗, i ∈ {1,2},n ∈ Z. It follows

from (33)-(34) that


y1(n+1) = a1(n)y1(n)+b1(n)×(
f1
( +∞

∑
k=0

g1(k)[y2(n− k)+ x∗2]
)
− f1

( +∞

∑
k=0

g1(k)x∗2
))

,

y2(n+1) = a2(n)y2(n)+b2(n)×(
f2
( +∞

∑
k=0

g2(k)[y1(n− k)+ x∗1]
)
− f2

( +∞

∑
k=0

g2(k)x∗1
))

.

(36)

Clearly, (36) is of the form

y(n+1) = A(n)y(n)+B(n)F
( n

∑
k=−∞

G(n− k)y(k)
)
, (37)

where y(n) := (y1(n),y2(n))T ∈ R2,n ∈ Z+, and for each n ∈
Z+,

A(n) :=

(
a1(n) 0

0 a2(n)

)
, B(n) :=

(
b1(n) 0

0 b2(n)

)
,

G(n) :=

(
0 g1(n)

g2(n) 0

)
,
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1. Introduction
Volterra difference equations have been widely used in the
modeling of processes in continuous mechanics and biome-
chanics, problems of control and estimations and some
schemes of numerical solutions of integral and integro-
differential equations, see e.g. [2], [7], [12], [16]-[19].

Problems of stability of Volterra difference equations have
attracted much attention from researchers, during the last
twenty years, see e.g. [1],[4]-[13], [15], [21]-[23] and refer-
ences therein. Many various methods have been used to inves-
tigate stability of Volterra difference equations such as Lya-
punov functions, Z transform, comparison theorems, topologi-
cal methods, fixed point theorems, etc (see e.g. [7], [10], [15],
[23]).

In particular, the first significant result on exponential sta-
bility of Volterra difference equations is due to Elaydi and
Murakami, see [8]. Roughly speaking, Elaydi and Murakami
showed that even to the simplest Volterra difference equations
(namely, linear time-invariant Volterra difference equations of
convolution type), the exponential stability is “stronger” than
the uniform asymptotic stability. More precisely, a linear time-
invariant Volterra difference equation of convolution type is ex-
ponentially stable if and only if it is uniformly asymptotically
stable and its kernel exponentially decays, see [8]. For further
and updated information on stability of linear time-invariant
Volterra difference equations, we refer to the recent survey pa-
per [10].

In general, problems of global exponential stability of time-
varying Volterra difference equations are very hard even those
of linear time-varying Volterra equations. Most of existing re-
sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
ditions for exponential stability of linear time-varying Volterra
difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
nential stability of nonlinear time-varying Volterra difference
equations. Our approach is based on the celebrated Perron-
Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
nential stability of the zero solution of general nonlinear time-

varying Volterra difference equations. Furthermore, we derive
an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.

2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there

1

), for some γ > 1, i 2 {1, 2}.

Suppose x¤ := (x1
¤, x2
¤)T 2 
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1. Introduction
Volterra difference equations have been widely used in the
modeling of processes in continuous mechanics and biome-
chanics, problems of control and estimations and some
schemes of numerical solutions of integral and integro-
differential equations, see e.g. [2], [7], [12], [16]-[19].

Problems of stability of Volterra difference equations have
attracted much attention from researchers, during the last
twenty years, see e.g. [1],[4]-[13], [15], [21]-[23] and refer-
ences therein. Many various methods have been used to inves-
tigate stability of Volterra difference equations such as Lya-
punov functions, Z transform, comparison theorems, topologi-
cal methods, fixed point theorems, etc (see e.g. [7], [10], [15],
[23]).

In particular, the first significant result on exponential sta-
bility of Volterra difference equations is due to Elaydi and
Murakami, see [8]. Roughly speaking, Elaydi and Murakami
showed that even to the simplest Volterra difference equations
(namely, linear time-invariant Volterra difference equations of
convolution type), the exponential stability is “stronger” than
the uniform asymptotic stability. More precisely, a linear time-
invariant Volterra difference equation of convolution type is ex-
ponentially stable if and only if it is uniformly asymptotically
stable and its kernel exponentially decays, see [8]. For further
and updated information on stability of linear time-invariant
Volterra difference equations, we refer to the recent survey pa-
per [10].

In general, problems of global exponential stability of time-
varying Volterra difference equations are very hard even those
of linear time-varying Volterra equations. Most of existing re-
sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
ditions for exponential stability of linear time-varying Volterra
difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
nential stability of nonlinear time-varying Volterra difference
equations. Our approach is based on the celebrated Perron-
Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
nential stability of the zero solution of general nonlinear time-

varying Volterra difference equations. Furthermore, we derive
an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.

2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there

1

2 is an equilibrium of the BAM 
neural network (33). That is,

By a similar argument as in the preceding paragraph, we get
(29). This is a contradiction which completes the proof.

EXAMPLE 4.2. We now reconsider the Volterra difference
equation defined by (18)-(19). As shown in Example 3.5, the
zero solution of (18)-(19) is GES. Consider a perturbed equa-
tion given by

x(n+1) =
(

F
(
n,x(n)

)
+ F̃

(
n,x(n)

))
+

n

∑
k=0

(
G
(
n,k,x(k)

)
+ G̃

(
n,k,x(k)

))
, (30)

where F̃(·, ·) and G̃(·, ·, ·) are given by

F̃(n,x) =
e−sin2(nx)u(n)x

5
and

G̃(n,k,x) =
(n− k)2 cosk ln

(
1+ |v(n− k)x|

)
3(n− k)2 +1

,

where x ∈ R,n,k ∈ Z+,n ≥ k; u(·) : Z+ → R and v(·) : Z+ →
R are unknown functions satisfying supn∈Z+

|u(n)| < +∞ and
(v(n))n ∈ lγ(R) for some γ > 1. It is clear that

|F̃(n,x)| ≤ 1
5
|u(n)||x|, |G̃(n,k,x)| ≤ (n− k)2

3(n− k)2 +1
|v(n− k)||x|,

(31)

for all x ∈ R,n,k ∈ Z+,n ≥ k.
By Theorem 4.1, the zero solution of (30) is GES provided

sup
n∈Z+

|u(n)|+
∞

∑
n=0

|v(n)|<

1

sup
n∈Z+

{(
1− 1

4 −∑+∞
k=0

2ak

(3k+1)(3k+4)

)−1 n2

3n2+1

},

or equivalently,

sup
n∈Z+

|u(n)|+
∞

∑
n=0

|v(n)|<
1

( 3
4 − p)−1 1

3

=
9
4
−3p, (32)

where p :=
+∞

∑
k=0

2ak

(3k+1)(3k+4)
∈ (0,2/3] and a ∈ (0,1).

5. An application
In this section, we apply the obtained results to study uniform
attraction of equilibrium of discrete-time bidirectional associa-
tive memory (BAM) neural networks, see e.g. [18], [24].

Consider a discrete-time BAM neural network with infinite
delay in R2 described by


x1(n+1) = a1(n)x1(n)

+b1(n) f1

( +∞

∑
k=0

g1(k)x2(n− k)
)
+ I1(n),

x2(n+1) = a2(n)x2(n)

+b2(n) f2

( +∞

∑
k=0

g2(k)x1(n− k)
)
+ I2(n), n ∈ Z+,

(33)

with the initial condition

x1(k) = ψ1(k); x2(k) = ψ2(k), ∀k ∈ Z−,

where ψ1(·),ψ2(·) : Z− → R are given bounded functions.

Throughout, we assume that

(H1) There exist ai,bi ∈ R+, i ∈ {1,2} such that

|ai(n)| ≤ ai and |bi(n)| ≤ bi, ∀n ∈ Z+, i ∈ {1,2};

(H2) There exist ci,∈ R+, i ∈ {1,2} such that

| fi(x)− fi(y)| ≤ ci|x− y|, i ∈ {1,2}, for all x,y ∈ R;

(H3) (gi(n))n ∈ lγ(R), for some γ > 1, i ∈ {1,2}.

Suppose x∗ := (x∗1,x
∗
2)

T ∈ R2 is an equilibrium of the BAM
neural network (33). That is,



x∗1 = a1(n)x∗1 +b1(n) f1

( +∞

∑
k=0

g1(k)x∗2

)
+ I1(n), n ∈ Z+,

x∗2 = a2(n)x∗2 +b2(n) f2

( +∞

∑
k=0

g2(k)x∗1

)
+ I2(n), n ∈ Z+.

(34)

The following theorem gives an explicit criterion for uni-
form attraction of the equilibrium of (33).

THEOREM 5.1. Let (H1)-(H3) hold. If

min
{

max
i∈{1,2}

{
ai +bici

+∞

∑
k=0

gi(k)
}
,

max
i, j∈{1,2},i�= j

{
ai +b jc j

+∞

∑
k=0

g j(k)
}}

< 1. (35)

then the equilibrium point x∗ of (33) is uniformly attractive, i.e,
‖x(n)− x∗‖ → 0 as n → +∞, where x(n) = (x1(n),x2(n))T ∈
R2,n ∈ Z+.

Proof. Let yi(n) := xi(n)− xi
∗, i ∈ {1,2},n ∈ Z. It follows

from (33)-(34) that


y1(n+1) = a1(n)y1(n)+b1(n)×(
f1
( +∞

∑
k=0

g1(k)[y2(n− k)+ x∗2]
)
− f1

( +∞

∑
k=0

g1(k)x∗2
))

,

y2(n+1) = a2(n)y2(n)+b2(n)×(
f2
( +∞

∑
k=0

g2(k)[y1(n− k)+ x∗1]
)
− f2

( +∞

∑
k=0

g2(k)x∗1
))

.

(36)

Clearly, (36) is of the form

y(n+1) = A(n)y(n)+B(n)F
( n

∑
k=−∞

G(n− k)y(k)
)
, (37)

where y(n) := (y1(n),y2(n))T ∈ R2,n ∈ Z+, and for each n ∈
Z+,

A(n) :=

(
a1(n) 0

0 a2(n)

)
, B(n) :=

(
b1(n) 0

0 b2(n)

)
,

G(n) :=

(
0 g1(n)

g2(n) 0

)
,
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By a similar argument as in the preceding paragraph, we get
(29). This is a contradiction which completes the proof.

EXAMPLE 4.2. We now reconsider the Volterra difference
equation defined by (18)-(19). As shown in Example 3.5, the
zero solution of (18)-(19) is GES. Consider a perturbed equa-
tion given by

x(n+1) =
(

F
(
n,x(n)

)
+ F̃

(
n,x(n)

))
+

n

∑
k=0

(
G
(
n,k,x(k)

)
+ G̃

(
n,k,x(k)

))
, (30)

where F̃(·, ·) and G̃(·, ·, ·) are given by

F̃(n,x) =
e−sin2(nx)u(n)x

5
and

G̃(n,k,x) =
(n− k)2 cosk ln

(
1+ |v(n− k)x|

)
3(n− k)2 +1

,

where x ∈ R,n,k ∈ Z+,n ≥ k; u(·) : Z+ → R and v(·) : Z+ →
R are unknown functions satisfying supn∈Z+

|u(n)| < +∞ and
(v(n))n ∈ lγ(R) for some γ > 1. It is clear that

|F̃(n,x)| ≤ 1
5
|u(n)||x|, |G̃(n,k,x)| ≤ (n− k)2

3(n− k)2 +1
|v(n− k)||x|,

(31)

for all x ∈ R,n,k ∈ Z+,n ≥ k.
By Theorem 4.1, the zero solution of (30) is GES provided

sup
n∈Z+

|u(n)|+
∞

∑
n=0

|v(n)|<

1

sup
n∈Z+

{(
1− 1

4 −∑+∞
k=0

2ak

(3k+1)(3k+4)

)−1 n2

3n2+1

},

or equivalently,

sup
n∈Z+

|u(n)|+
∞

∑
n=0

|v(n)|<
1

( 3
4 − p)−1 1

3

=
9
4
−3p, (32)

where p :=
+∞

∑
k=0

2ak

(3k+1)(3k+4)
∈ (0,2/3] and a ∈ (0,1).

5. An application
In this section, we apply the obtained results to study uniform
attraction of equilibrium of discrete-time bidirectional associa-
tive memory (BAM) neural networks, see e.g. [18], [24].

Consider a discrete-time BAM neural network with infinite
delay in R2 described by


x1(n+1) = a1(n)x1(n)

+b1(n) f1

( +∞

∑
k=0

g1(k)x2(n− k)
)
+ I1(n),

x2(n+1) = a2(n)x2(n)

+b2(n) f2

( +∞

∑
k=0

g2(k)x1(n− k)
)
+ I2(n), n ∈ Z+,

(33)

with the initial condition

x1(k) = ψ1(k); x2(k) = ψ2(k), ∀k ∈ Z−,

where ψ1(·),ψ2(·) : Z− → R are given bounded functions.

Throughout, we assume that

(H1) There exist ai,bi ∈ R+, i ∈ {1,2} such that

|ai(n)| ≤ ai and |bi(n)| ≤ bi, ∀n ∈ Z+, i ∈ {1,2};

(H2) There exist ci,∈ R+, i ∈ {1,2} such that

| fi(x)− fi(y)| ≤ ci|x− y|, i ∈ {1,2}, for all x,y ∈ R;

(H3) (gi(n))n ∈ lγ(R), for some γ > 1, i ∈ {1,2}.

Suppose x∗ := (x∗1,x
∗
2)

T ∈ R2 is an equilibrium of the BAM
neural network (33). That is,



x∗1 = a1(n)x∗1 +b1(n) f1

( +∞

∑
k=0

g1(k)x∗2

)
+ I1(n), n ∈ Z+,

x∗2 = a2(n)x∗2 +b2(n) f2

( +∞

∑
k=0

g2(k)x∗1

)
+ I2(n), n ∈ Z+.

(34)

The following theorem gives an explicit criterion for uni-
form attraction of the equilibrium of (33).

THEOREM 5.1. Let (H1)-(H3) hold. If

min
{

max
i∈{1,2}

{
ai +bici

+∞

∑
k=0

gi(k)
}
,

max
i, j∈{1,2},i�= j

{
ai +b jc j

+∞

∑
k=0

g j(k)
}}

< 1. (35)

then the equilibrium point x∗ of (33) is uniformly attractive, i.e,
‖x(n)− x∗‖ → 0 as n → +∞, where x(n) = (x1(n),x2(n))T ∈
R2,n ∈ Z+.

Proof. Let yi(n) := xi(n)− xi
∗, i ∈ {1,2},n ∈ Z. It follows

from (33)-(34) that


y1(n+1) = a1(n)y1(n)+b1(n)×(
f1
( +∞

∑
k=0

g1(k)[y2(n− k)+ x∗2]
)
− f1

( +∞

∑
k=0

g1(k)x∗2
))

,

y2(n+1) = a2(n)y2(n)+b2(n)×(
f2
( +∞

∑
k=0

g2(k)[y1(n− k)+ x∗1]
)
− f2

( +∞

∑
k=0

g2(k)x∗1
))

.

(36)

Clearly, (36) is of the form

y(n+1) = A(n)y(n)+B(n)F
( n

∑
k=−∞

G(n− k)y(k)
)
, (37)

where y(n) := (y1(n),y2(n))T ∈ R2,n ∈ Z+, and for each n ∈
Z+,

A(n) :=

(
a1(n) 0

0 a2(n)

)
, B(n) :=

(
b1(n) 0

0 b2(n)

)
,

G(n) :=

(
0 g1(n)

g2(n) 0

)
,
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By a similar argument as in the preceding paragraph, we get
(29). This is a contradiction which completes the proof.

EXAMPLE 4.2. We now reconsider the Volterra difference
equation defined by (18)-(19). As shown in Example 3.5, the
zero solution of (18)-(19) is GES. Consider a perturbed equa-
tion given by

x(n+1) =
(

F
(
n,x(n)

)
+ F̃

(
n,x(n)

))
+

n

∑
k=0

(
G
(
n,k,x(k)

)
+ G̃

(
n,k,x(k)

))
, (30)

where F̃(·, ·) and G̃(·, ·, ·) are given by

F̃(n,x) =
e−sin2(nx)u(n)x

5
and

G̃(n,k,x) =
(n− k)2 cosk ln

(
1+ |v(n− k)x|

)
3(n− k)2 +1

,

where x ∈ R,n,k ∈ Z+,n ≥ k; u(·) : Z+ → R and v(·) : Z+ →
R are unknown functions satisfying supn∈Z+

|u(n)| < +∞ and
(v(n))n ∈ lγ(R) for some γ > 1. It is clear that

|F̃(n,x)| ≤ 1
5
|u(n)||x|, |G̃(n,k,x)| ≤ (n− k)2

3(n− k)2 +1
|v(n− k)||x|,

(31)

for all x ∈ R,n,k ∈ Z+,n ≥ k.
By Theorem 4.1, the zero solution of (30) is GES provided

sup
n∈Z+

|u(n)|+
∞

∑
n=0

|v(n)|<

1

sup
n∈Z+

{(
1− 1

4 −∑+∞
k=0

2ak

(3k+1)(3k+4)

)−1 n2

3n2+1

},

or equivalently,

sup
n∈Z+

|u(n)|+
∞

∑
n=0

|v(n)|<
1

( 3
4 − p)−1 1

3

=
9
4
−3p, (32)

where p :=
+∞

∑
k=0

2ak

(3k+1)(3k+4)
∈ (0,2/3] and a ∈ (0,1).

5. An application
In this section, we apply the obtained results to study uniform
attraction of equilibrium of discrete-time bidirectional associa-
tive memory (BAM) neural networks, see e.g. [18], [24].

Consider a discrete-time BAM neural network with infinite
delay in R2 described by


x1(n+1) = a1(n)x1(n)

+b1(n) f1

( +∞

∑
k=0

g1(k)x2(n− k)
)
+ I1(n),

x2(n+1) = a2(n)x2(n)

+b2(n) f2

( +∞

∑
k=0

g2(k)x1(n− k)
)
+ I2(n), n ∈ Z+,

(33)

with the initial condition

x1(k) = ψ1(k); x2(k) = ψ2(k), ∀k ∈ Z−,

where ψ1(·),ψ2(·) : Z− → R are given bounded functions.

Throughout, we assume that

(H1) There exist ai,bi ∈ R+, i ∈ {1,2} such that

|ai(n)| ≤ ai and |bi(n)| ≤ bi, ∀n ∈ Z+, i ∈ {1,2};

(H2) There exist ci,∈ R+, i ∈ {1,2} such that

| fi(x)− fi(y)| ≤ ci|x− y|, i ∈ {1,2}, for all x,y ∈ R;

(H3) (gi(n))n ∈ lγ(R), for some γ > 1, i ∈ {1,2}.

Suppose x∗ := (x∗1,x
∗
2)

T ∈ R2 is an equilibrium of the BAM
neural network (33). That is,



x∗1 = a1(n)x∗1 +b1(n) f1

( +∞

∑
k=0

g1(k)x∗2

)
+ I1(n), n ∈ Z+,

x∗2 = a2(n)x∗2 +b2(n) f2

( +∞

∑
k=0

g2(k)x∗1

)
+ I2(n), n ∈ Z+.

(34)

The following theorem gives an explicit criterion for uni-
form attraction of the equilibrium of (33).

THEOREM 5.1. Let (H1)-(H3) hold. If

min
{

max
i∈{1,2}

{
ai +bici

+∞

∑
k=0

gi(k)
}
,

max
i, j∈{1,2},i�= j

{
ai +b jc j

+∞

∑
k=0

g j(k)
}}

< 1. (35)

then the equilibrium point x∗ of (33) is uniformly attractive, i.e,
‖x(n)− x∗‖ → 0 as n → +∞, where x(n) = (x1(n),x2(n))T ∈
R2,n ∈ Z+.

Proof. Let yi(n) := xi(n)− xi
∗, i ∈ {1,2},n ∈ Z. It follows

from (33)-(34) that


y1(n+1) = a1(n)y1(n)+b1(n)×(
f1
( +∞

∑
k=0

g1(k)[y2(n− k)+ x∗2]
)
− f1

( +∞

∑
k=0

g1(k)x∗2
))

,

y2(n+1) = a2(n)y2(n)+b2(n)×(
f2
( +∞

∑
k=0

g2(k)[y1(n− k)+ x∗1]
)
− f2

( +∞

∑
k=0

g2(k)x∗1
))

.

(36)

Clearly, (36) is of the form

y(n+1) = A(n)y(n)+B(n)F
( n

∑
k=−∞

G(n− k)y(k)
)
, (37)

where y(n) := (y1(n),y2(n))T ∈ R2,n ∈ Z+, and for each n ∈
Z+,

A(n) :=

(
a1(n) 0

0 a2(n)

)
, B(n) :=

(
b1(n) 0

0 b2(n)

)
,

G(n) :=

(
0 g1(n)

g2(n) 0

)
,
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By a similar argument as in the preceding paragraph, we get
(29). This is a contradiction which completes the proof.

EXAMPLE 4.2. We now reconsider the Volterra difference
equation defined by (18)-(19). As shown in Example 3.5, the
zero solution of (18)-(19) is GES. Consider a perturbed equa-
tion given by

x(n+1) =
(

F
(
n,x(n)

)
+ F̃

(
n,x(n)

))
+

n

∑
k=0

(
G
(
n,k,x(k)

)
+ G̃

(
n,k,x(k)

))
, (30)

where F̃(·, ·) and G̃(·, ·, ·) are given by

F̃(n,x) =
e−sin2(nx)u(n)x

5
and

G̃(n,k,x) =
(n− k)2 cosk ln

(
1+ |v(n− k)x|

)
3(n− k)2 +1

,

where x ∈ R,n,k ∈ Z+,n ≥ k; u(·) : Z+ → R and v(·) : Z+ →
R are unknown functions satisfying supn∈Z+

|u(n)| < +∞ and
(v(n))n ∈ lγ(R) for some γ > 1. It is clear that

|F̃(n,x)| ≤ 1
5
|u(n)||x|, |G̃(n,k,x)| ≤ (n− k)2

3(n− k)2 +1
|v(n− k)||x|,

(31)

for all x ∈ R,n,k ∈ Z+,n ≥ k.
By Theorem 4.1, the zero solution of (30) is GES provided

sup
n∈Z+

|u(n)|+
∞

∑
n=0

|v(n)|<

1

sup
n∈Z+

{(
1− 1

4 −∑+∞
k=0

2ak

(3k+1)(3k+4)

)−1 n2

3n2+1

},

or equivalently,

sup
n∈Z+

|u(n)|+
∞

∑
n=0

|v(n)|<
1

( 3
4 − p)−1 1

3

=
9
4
−3p, (32)

where p :=
+∞

∑
k=0

2ak

(3k+1)(3k+4)
∈ (0,2/3] and a ∈ (0,1).

5. An application
In this section, we apply the obtained results to study uniform
attraction of equilibrium of discrete-time bidirectional associa-
tive memory (BAM) neural networks, see e.g. [18], [24].

Consider a discrete-time BAM neural network with infinite
delay in R2 described by


x1(n+1) = a1(n)x1(n)

+b1(n) f1

( +∞

∑
k=0

g1(k)x2(n− k)
)
+ I1(n),

x2(n+1) = a2(n)x2(n)

+b2(n) f2

( +∞

∑
k=0

g2(k)x1(n− k)
)
+ I2(n), n ∈ Z+,

(33)

with the initial condition

x1(k) = ψ1(k); x2(k) = ψ2(k), ∀k ∈ Z−,

where ψ1(·),ψ2(·) : Z− → R are given bounded functions.

Throughout, we assume that

(H1) There exist ai,bi ∈ R+, i ∈ {1,2} such that

|ai(n)| ≤ ai and |bi(n)| ≤ bi, ∀n ∈ Z+, i ∈ {1,2};

(H2) There exist ci,∈ R+, i ∈ {1,2} such that

| fi(x)− fi(y)| ≤ ci|x− y|, i ∈ {1,2}, for all x,y ∈ R;

(H3) (gi(n))n ∈ lγ(R), for some γ > 1, i ∈ {1,2}.

Suppose x∗ := (x∗1,x
∗
2)

T ∈ R2 is an equilibrium of the BAM
neural network (33). That is,



x∗1 = a1(n)x∗1 +b1(n) f1

( +∞

∑
k=0

g1(k)x∗2

)
+ I1(n), n ∈ Z+,

x∗2 = a2(n)x∗2 +b2(n) f2

( +∞

∑
k=0

g2(k)x∗1

)
+ I2(n), n ∈ Z+.

(34)

The following theorem gives an explicit criterion for uni-
form attraction of the equilibrium of (33).

THEOREM 5.1. Let (H1)-(H3) hold. If

min
{

max
i∈{1,2}

{
ai +bici

+∞

∑
k=0

gi(k)
}
,

max
i, j∈{1,2},i�= j

{
ai +b jc j

+∞

∑
k=0

g j(k)
}}

< 1. (35)

then the equilibrium point x∗ of (33) is uniformly attractive, i.e,
‖x(n)− x∗‖ → 0 as n → +∞, where x(n) = (x1(n),x2(n))T ∈
R2,n ∈ Z+.

Proof. Let yi(n) := xi(n)− xi
∗, i ∈ {1,2},n ∈ Z. It follows

from (33)-(34) that


y1(n+1) = a1(n)y1(n)+b1(n)×(
f1
( +∞

∑
k=0

g1(k)[y2(n− k)+ x∗2]
)
− f1

( +∞

∑
k=0

g1(k)x∗2
))

,

y2(n+1) = a2(n)y2(n)+b2(n)×(
f2
( +∞

∑
k=0

g2(k)[y1(n− k)+ x∗1]
)
− f2

( +∞

∑
k=0

g2(k)x∗1
))

.

(36)

Clearly, (36) is of the form

y(n+1) = A(n)y(n)+B(n)F
( n

∑
k=−∞

G(n− k)y(k)
)
, (37)

where y(n) := (y1(n),y2(n))T ∈ R2,n ∈ Z+, and for each n ∈
Z+,

A(n) :=

(
a1(n) 0

0 a2(n)

)
, B(n) :=

(
b1(n) 0

0 b2(n)

)
,

G(n) :=

(
0 g1(n)

g2(n) 0

)
,
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By a similar argument as in the preceding paragraph, we get
(29). This is a contradiction which completes the proof.

EXAMPLE 4.2. We now reconsider the Volterra difference
equation defined by (18)-(19). As shown in Example 3.5, the
zero solution of (18)-(19) is GES. Consider a perturbed equa-
tion given by

x(n+1) =
(

F
(
n,x(n)

)
+ F̃

(
n,x(n)

))
+

n

∑
k=0

(
G
(
n,k,x(k)

)
+ G̃

(
n,k,x(k)

))
, (30)

where F̃(·, ·) and G̃(·, ·, ·) are given by

F̃(n,x) =
e−sin2(nx)u(n)x

5
and

G̃(n,k,x) =
(n− k)2 cosk ln

(
1+ |v(n− k)x|

)
3(n− k)2 +1

,

where x ∈ R,n,k ∈ Z+,n ≥ k; u(·) : Z+ → R and v(·) : Z+ →
R are unknown functions satisfying supn∈Z+

|u(n)| < +∞ and
(v(n))n ∈ lγ(R) for some γ > 1. It is clear that

|F̃(n,x)| ≤ 1
5
|u(n)||x|, |G̃(n,k,x)| ≤ (n− k)2

3(n− k)2 +1
|v(n− k)||x|,

(31)

for all x ∈ R,n,k ∈ Z+,n ≥ k.
By Theorem 4.1, the zero solution of (30) is GES provided

sup
n∈Z+

|u(n)|+
∞

∑
n=0

|v(n)|<

1

sup
n∈Z+

{(
1− 1

4 −∑+∞
k=0

2ak

(3k+1)(3k+4)

)−1 n2

3n2+1

},

or equivalently,

sup
n∈Z+

|u(n)|+
∞

∑
n=0

|v(n)|<
1

( 3
4 − p)−1 1

3

=
9
4
−3p, (32)

where p :=
+∞

∑
k=0

2ak

(3k+1)(3k+4)
∈ (0,2/3] and a ∈ (0,1).

5. An application
In this section, we apply the obtained results to study uniform
attraction of equilibrium of discrete-time bidirectional associa-
tive memory (BAM) neural networks, see e.g. [18], [24].

Consider a discrete-time BAM neural network with infinite
delay in R2 described by


x1(n+1) = a1(n)x1(n)

+b1(n) f1

( +∞

∑
k=0

g1(k)x2(n− k)
)
+ I1(n),

x2(n+1) = a2(n)x2(n)

+b2(n) f2

( +∞

∑
k=0

g2(k)x1(n− k)
)
+ I2(n), n ∈ Z+,

(33)

with the initial condition

x1(k) = ψ1(k); x2(k) = ψ2(k), ∀k ∈ Z−,

where ψ1(·),ψ2(·) : Z− → R are given bounded functions.

Throughout, we assume that

(H1) There exist ai,bi ∈ R+, i ∈ {1,2} such that

|ai(n)| ≤ ai and |bi(n)| ≤ bi, ∀n ∈ Z+, i ∈ {1,2};

(H2) There exist ci,∈ R+, i ∈ {1,2} such that

| fi(x)− fi(y)| ≤ ci|x− y|, i ∈ {1,2}, for all x,y ∈ R;

(H3) (gi(n))n ∈ lγ(R), for some γ > 1, i ∈ {1,2}.

Suppose x∗ := (x∗1,x
∗
2)

T ∈ R2 is an equilibrium of the BAM
neural network (33). That is,



x∗1 = a1(n)x∗1 +b1(n) f1

( +∞

∑
k=0

g1(k)x∗2

)
+ I1(n), n ∈ Z+,

x∗2 = a2(n)x∗2 +b2(n) f2

( +∞

∑
k=0

g2(k)x∗1

)
+ I2(n), n ∈ Z+.

(34)

The following theorem gives an explicit criterion for uni-
form attraction of the equilibrium of (33).

THEOREM 5.1. Let (H1)-(H3) hold. If

min
{

max
i∈{1,2}

{
ai +bici

+∞

∑
k=0

gi(k)
}
,

max
i, j∈{1,2},i�= j

{
ai +b jc j

+∞

∑
k=0

g j(k)
}}

< 1. (35)

then the equilibrium point x∗ of (33) is uniformly attractive, i.e,
‖x(n)− x∗‖ → 0 as n → +∞, where x(n) = (x1(n),x2(n))T ∈
R2,n ∈ Z+.

Proof. Let yi(n) := xi(n)− xi
∗, i ∈ {1,2},n ∈ Z. It follows

from (33)-(34) that


y1(n+1) = a1(n)y1(n)+b1(n)×(
f1
( +∞

∑
k=0

g1(k)[y2(n− k)+ x∗2]
)
− f1

( +∞

∑
k=0

g1(k)x∗2
))

,

y2(n+1) = a2(n)y2(n)+b2(n)×(
f2
( +∞

∑
k=0

g2(k)[y1(n− k)+ x∗1]
)
− f2

( +∞

∑
k=0

g2(k)x∗1
))

.

(36)

Clearly, (36) is of the form

y(n+1) = A(n)y(n)+B(n)F
( n

∑
k=−∞

G(n− k)y(k)
)
, (37)

where y(n) := (y1(n),y2(n))T ∈ R2,n ∈ Z+, and for each n ∈
Z+,

A(n) :=

(
a1(n) 0

0 a2(n)

)
, B(n) :=

(
b1(n) 0

0 b2(n)

)
,

G(n) :=

(
0 g1(n)

g2(n) 0

)
,
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By a similar argument as in the preceding paragraph, we get
(29). This is a contradiction which completes the proof.

EXAMPLE 4.2. We now reconsider the Volterra difference
equation defined by (18)-(19). As shown in Example 3.5, the
zero solution of (18)-(19) is GES. Consider a perturbed equa-
tion given by

x(n+1) =
(

F
(
n,x(n)

)
+ F̃

(
n,x(n)

))
+

n

∑
k=0

(
G
(
n,k,x(k)

)
+ G̃

(
n,k,x(k)

))
, (30)

where F̃(·, ·) and G̃(·, ·, ·) are given by

F̃(n,x) =
e−sin2(nx)u(n)x

5
and

G̃(n,k,x) =
(n− k)2 cosk ln

(
1+ |v(n− k)x|

)
3(n− k)2 +1

,

where x ∈ R,n,k ∈ Z+,n ≥ k; u(·) : Z+ → R and v(·) : Z+ →
R are unknown functions satisfying supn∈Z+

|u(n)| < +∞ and
(v(n))n ∈ lγ(R) for some γ > 1. It is clear that

|F̃(n,x)| ≤ 1
5
|u(n)||x|, |G̃(n,k,x)| ≤ (n− k)2

3(n− k)2 +1
|v(n− k)||x|,

(31)

for all x ∈ R,n,k ∈ Z+,n ≥ k.
By Theorem 4.1, the zero solution of (30) is GES provided

sup
n∈Z+

|u(n)|+
∞

∑
n=0

|v(n)|<

1

sup
n∈Z+

{(
1− 1

4 −∑+∞
k=0

2ak

(3k+1)(3k+4)

)−1 n2

3n2+1

},

or equivalently,

sup
n∈Z+

|u(n)|+
∞

∑
n=0

|v(n)|<
1

( 3
4 − p)−1 1

3

=
9
4
−3p, (32)

where p :=
+∞

∑
k=0

2ak

(3k+1)(3k+4)
∈ (0,2/3] and a ∈ (0,1).

5. An application
In this section, we apply the obtained results to study uniform
attraction of equilibrium of discrete-time bidirectional associa-
tive memory (BAM) neural networks, see e.g. [18], [24].

Consider a discrete-time BAM neural network with infinite
delay in R2 described by


x1(n+1) = a1(n)x1(n)

+b1(n) f1

( +∞

∑
k=0

g1(k)x2(n− k)
)
+ I1(n),

x2(n+1) = a2(n)x2(n)

+b2(n) f2

( +∞

∑
k=0

g2(k)x1(n− k)
)
+ I2(n), n ∈ Z+,

(33)

with the initial condition

x1(k) = ψ1(k); x2(k) = ψ2(k), ∀k ∈ Z−,

where ψ1(·),ψ2(·) : Z− → R are given bounded functions.

Throughout, we assume that

(H1) There exist ai,bi ∈ R+, i ∈ {1,2} such that

|ai(n)| ≤ ai and |bi(n)| ≤ bi, ∀n ∈ Z+, i ∈ {1,2};

(H2) There exist ci,∈ R+, i ∈ {1,2} such that

| fi(x)− fi(y)| ≤ ci|x− y|, i ∈ {1,2}, for all x,y ∈ R;

(H3) (gi(n))n ∈ lγ(R), for some γ > 1, i ∈ {1,2}.

Suppose x∗ := (x∗1,x
∗
2)

T ∈ R2 is an equilibrium of the BAM
neural network (33). That is,



x∗1 = a1(n)x∗1 +b1(n) f1

( +∞

∑
k=0

g1(k)x∗2

)
+ I1(n), n ∈ Z+,

x∗2 = a2(n)x∗2 +b2(n) f2

( +∞

∑
k=0

g2(k)x∗1

)
+ I2(n), n ∈ Z+.

(34)

The following theorem gives an explicit criterion for uni-
form attraction of the equilibrium of (33).

THEOREM 5.1. Let (H1)-(H3) hold. If

min
{

max
i∈{1,2}

{
ai +bici

+∞

∑
k=0

gi(k)
}
,

max
i, j∈{1,2},i�= j

{
ai +b jc j

+∞

∑
k=0

g j(k)
}}

< 1. (35)

then the equilibrium point x∗ of (33) is uniformly attractive, i.e,
‖x(n)− x∗‖ → 0 as n → +∞, where x(n) = (x1(n),x2(n))T ∈
R2,n ∈ Z+.

Proof. Let yi(n) := xi(n)− xi
∗, i ∈ {1,2},n ∈ Z. It follows

from (33)-(34) that


y1(n+1) = a1(n)y1(n)+b1(n)×(
f1
( +∞

∑
k=0

g1(k)[y2(n− k)+ x∗2]
)
− f1

( +∞

∑
k=0

g1(k)x∗2
))

,

y2(n+1) = a2(n)y2(n)+b2(n)×(
f2
( +∞

∑
k=0

g2(k)[y1(n− k)+ x∗1]
)
− f2

( +∞

∑
k=0

g2(k)x∗1
))

.

(36)

Clearly, (36) is of the form

y(n+1) = A(n)y(n)+B(n)F
( n

∑
k=−∞

G(n− k)y(k)
)
, (37)

where y(n) := (y1(n),y2(n))T ∈ R2,n ∈ Z+, and for each n ∈
Z+,

A(n) :=

(
a1(n) 0

0 a2(n)

)
, B(n) :=

(
b1(n) 0

0 b2(n)

)
,

G(n) :=

(
0 g1(n)

g2(n) 0

)
,
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By a similar argument as in the preceding paragraph, we get
(29). This is a contradiction which completes the proof.

EXAMPLE 4.2. We now reconsider the Volterra difference
equation defined by (18)-(19). As shown in Example 3.5, the
zero solution of (18)-(19) is GES. Consider a perturbed equa-
tion given by

x(n+1) =
(

F
(
n,x(n)

)
+ F̃

(
n,x(n)

))
+

n

∑
k=0

(
G
(
n,k,x(k)

)
+ G̃

(
n,k,x(k)

))
, (30)

where F̃(·, ·) and G̃(·, ·, ·) are given by

F̃(n,x) =
e−sin2(nx)u(n)x

5
and

G̃(n,k,x) =
(n− k)2 cosk ln

(
1+ |v(n− k)x|

)
3(n− k)2 +1

,

where x ∈ R,n,k ∈ Z+,n ≥ k; u(·) : Z+ → R and v(·) : Z+ →
R are unknown functions satisfying supn∈Z+

|u(n)| < +∞ and
(v(n))n ∈ lγ(R) for some γ > 1. It is clear that

|F̃(n,x)| ≤ 1
5
|u(n)||x|, |G̃(n,k,x)| ≤ (n− k)2

3(n− k)2 +1
|v(n− k)||x|,

(31)

for all x ∈ R,n,k ∈ Z+,n ≥ k.
By Theorem 4.1, the zero solution of (30) is GES provided

sup
n∈Z+

|u(n)|+
∞

∑
n=0

|v(n)|<

1

sup
n∈Z+

{(
1− 1

4 −∑+∞
k=0

2ak

(3k+1)(3k+4)

)−1 n2

3n2+1

},

or equivalently,

sup
n∈Z+

|u(n)|+
∞

∑
n=0

|v(n)|<
1

( 3
4 − p)−1 1

3

=
9
4
−3p, (32)

where p :=
+∞

∑
k=0

2ak

(3k+1)(3k+4)
∈ (0,2/3] and a ∈ (0,1).

5. An application
In this section, we apply the obtained results to study uniform
attraction of equilibrium of discrete-time bidirectional associa-
tive memory (BAM) neural networks, see e.g. [18], [24].

Consider a discrete-time BAM neural network with infinite
delay in R2 described by


x1(n+1) = a1(n)x1(n)

+b1(n) f1

( +∞

∑
k=0

g1(k)x2(n− k)
)
+ I1(n),

x2(n+1) = a2(n)x2(n)

+b2(n) f2

( +∞

∑
k=0

g2(k)x1(n− k)
)
+ I2(n), n ∈ Z+,

(33)

with the initial condition

x1(k) = ψ1(k); x2(k) = ψ2(k), ∀k ∈ Z−,

where ψ1(·),ψ2(·) : Z− → R are given bounded functions.

Throughout, we assume that

(H1) There exist ai,bi ∈ R+, i ∈ {1,2} such that

|ai(n)| ≤ ai and |bi(n)| ≤ bi, ∀n ∈ Z+, i ∈ {1,2};

(H2) There exist ci,∈ R+, i ∈ {1,2} such that

| fi(x)− fi(y)| ≤ ci|x− y|, i ∈ {1,2}, for all x,y ∈ R;

(H3) (gi(n))n ∈ lγ(R), for some γ > 1, i ∈ {1,2}.

Suppose x∗ := (x∗1,x
∗
2)

T ∈ R2 is an equilibrium of the BAM
neural network (33). That is,



x∗1 = a1(n)x∗1 +b1(n) f1

( +∞

∑
k=0

g1(k)x∗2

)
+ I1(n), n ∈ Z+,

x∗2 = a2(n)x∗2 +b2(n) f2

( +∞

∑
k=0

g2(k)x∗1

)
+ I2(n), n ∈ Z+.

(34)

The following theorem gives an explicit criterion for uni-
form attraction of the equilibrium of (33).

THEOREM 5.1. Let (H1)-(H3) hold. If

min
{

max
i∈{1,2}

{
ai +bici

+∞

∑
k=0

gi(k)
}
,

max
i, j∈{1,2},i�= j

{
ai +b jc j

+∞

∑
k=0

g j(k)
}}

< 1. (35)

then the equilibrium point x∗ of (33) is uniformly attractive, i.e,
‖x(n)− x∗‖ → 0 as n → +∞, where x(n) = (x1(n),x2(n))T ∈
R2,n ∈ Z+.

Proof. Let yi(n) := xi(n)− xi
∗, i ∈ {1,2},n ∈ Z. It follows

from (33)-(34) that


y1(n+1) = a1(n)y1(n)+b1(n)×(
f1
( +∞

∑
k=0

g1(k)[y2(n− k)+ x∗2]
)
− f1

( +∞

∑
k=0

g1(k)x∗2
))

,

y2(n+1) = a2(n)y2(n)+b2(n)×(
f2
( +∞

∑
k=0

g2(k)[y1(n− k)+ x∗1]
)
− f2

( +∞

∑
k=0

g2(k)x∗1
))

.

(36)

Clearly, (36) is of the form

y(n+1) = A(n)y(n)+B(n)F
( n

∑
k=−∞

G(n− k)y(k)
)
, (37)

where y(n) := (y1(n),y2(n))T ∈ R2,n ∈ Z+, and for each n ∈
Z+,

A(n) :=

(
a1(n) 0

0 a2(n)

)
, B(n) :=

(
b1(n) 0

0 b2(n)

)
,

G(n) :=

(
0 g1(n)

g2(n) 0

)
,
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By a similar argument as in the preceding paragraph, we get
(29). This is a contradiction which completes the proof.

EXAMPLE 4.2. We now reconsider the Volterra difference
equation defined by (18)-(19). As shown in Example 3.5, the
zero solution of (18)-(19) is GES. Consider a perturbed equa-
tion given by

x(n+1) =
(

F
(
n,x(n)

)
+ F̃

(
n,x(n)

))
+

n

∑
k=0

(
G
(
n,k,x(k)

)
+ G̃

(
n,k,x(k)

))
, (30)

where F̃(·, ·) and G̃(·, ·, ·) are given by

F̃(n,x) =
e−sin2(nx)u(n)x

5
and

G̃(n,k,x) =
(n− k)2 cosk ln

(
1+ |v(n− k)x|

)
3(n− k)2 +1

,

where x ∈ R,n,k ∈ Z+,n ≥ k; u(·) : Z+ → R and v(·) : Z+ →
R are unknown functions satisfying supn∈Z+

|u(n)| < +∞ and
(v(n))n ∈ lγ(R) for some γ > 1. It is clear that

|F̃(n,x)| ≤ 1
5
|u(n)||x|, |G̃(n,k,x)| ≤ (n− k)2

3(n− k)2 +1
|v(n− k)||x|,

(31)

for all x ∈ R,n,k ∈ Z+,n ≥ k.
By Theorem 4.1, the zero solution of (30) is GES provided

sup
n∈Z+

|u(n)|+
∞

∑
n=0

|v(n)|<

1

sup
n∈Z+

{(
1− 1

4 −∑+∞
k=0

2ak

(3k+1)(3k+4)

)−1 n2

3n2+1

},

or equivalently,

sup
n∈Z+

|u(n)|+
∞

∑
n=0

|v(n)|<
1

( 3
4 − p)−1 1

3

=
9
4
−3p, (32)

where p :=
+∞

∑
k=0

2ak

(3k+1)(3k+4)
∈ (0,2/3] and a ∈ (0,1).

5. An application
In this section, we apply the obtained results to study uniform
attraction of equilibrium of discrete-time bidirectional associa-
tive memory (BAM) neural networks, see e.g. [18], [24].

Consider a discrete-time BAM neural network with infinite
delay in R2 described by


x1(n+1) = a1(n)x1(n)

+b1(n) f1

( +∞

∑
k=0

g1(k)x2(n− k)
)
+ I1(n),

x2(n+1) = a2(n)x2(n)

+b2(n) f2

( +∞

∑
k=0

g2(k)x1(n− k)
)
+ I2(n), n ∈ Z+,

(33)

with the initial condition

x1(k) = ψ1(k); x2(k) = ψ2(k), ∀k ∈ Z−,

where ψ1(·),ψ2(·) : Z− → R are given bounded functions.

Throughout, we assume that

(H1) There exist ai,bi ∈ R+, i ∈ {1,2} such that

|ai(n)| ≤ ai and |bi(n)| ≤ bi, ∀n ∈ Z+, i ∈ {1,2};

(H2) There exist ci,∈ R+, i ∈ {1,2} such that

| fi(x)− fi(y)| ≤ ci|x− y|, i ∈ {1,2}, for all x,y ∈ R;

(H3) (gi(n))n ∈ lγ(R), for some γ > 1, i ∈ {1,2}.

Suppose x∗ := (x∗1,x
∗
2)

T ∈ R2 is an equilibrium of the BAM
neural network (33). That is,



x∗1 = a1(n)x∗1 +b1(n) f1

( +∞

∑
k=0

g1(k)x∗2

)
+ I1(n), n ∈ Z+,

x∗2 = a2(n)x∗2 +b2(n) f2

( +∞

∑
k=0

g2(k)x∗1

)
+ I2(n), n ∈ Z+.

(34)

The following theorem gives an explicit criterion for uni-
form attraction of the equilibrium of (33).

THEOREM 5.1. Let (H1)-(H3) hold. If

min
{

max
i∈{1,2}

{
ai +bici

+∞

∑
k=0

gi(k)
}
,

max
i, j∈{1,2},i�= j

{
ai +b jc j

+∞

∑
k=0

g j(k)
}}

< 1. (35)

then the equilibrium point x∗ of (33) is uniformly attractive, i.e,
‖x(n)− x∗‖ → 0 as n → +∞, where x(n) = (x1(n),x2(n))T ∈
R2,n ∈ Z+.

Proof. Let yi(n) := xi(n)− xi
∗, i ∈ {1,2},n ∈ Z. It follows

from (33)-(34) that


y1(n+1) = a1(n)y1(n)+b1(n)×(
f1
( +∞

∑
k=0

g1(k)[y2(n− k)+ x∗2]
)
− f1

( +∞

∑
k=0

g1(k)x∗2
))

,

y2(n+1) = a2(n)y2(n)+b2(n)×(
f2
( +∞

∑
k=0

g2(k)[y1(n− k)+ x∗1]
)
− f2

( +∞

∑
k=0

g2(k)x∗1
))

.

(36)

Clearly, (36) is of the form

y(n+1) = A(n)y(n)+B(n)F
( n

∑
k=−∞

G(n− k)y(k)
)
, (37)

where y(n) := (y1(n),y2(n))T ∈ R2,n ∈ Z+, and for each n ∈
Z+,

A(n) :=

(
a1(n) 0

0 a2(n)

)
, B(n) :=

(
b1(n) 0

0 b2(n)

)
,

G(n) :=

(
0 g1(n)

g2(n) 0

)
,
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The following theorem gives an explicit criterion for uni-
form attraction of the equilibrium of (33).

Theorem 5.1. Let (H1–H3) hold. If

	

By a similar argument as in the preceding paragraph, we get
(29). This is a contradiction which completes the proof.

EXAMPLE 4.2. We now reconsider the Volterra difference
equation defined by (18)-(19). As shown in Example 3.5, the
zero solution of (18)-(19) is GES. Consider a perturbed equa-
tion given by

x(n+1) =
(

F
(
n,x(n)

)
+ F̃

(
n,x(n)

))
+

n

∑
k=0

(
G
(
n,k,x(k)

)
+ G̃

(
n,k,x(k)

))
, (30)

where F̃(·, ·) and G̃(·, ·, ·) are given by

F̃(n,x) =
e−sin2(nx)u(n)x

5
and

G̃(n,k,x) =
(n− k)2 cosk ln

(
1+ |v(n− k)x|

)
3(n− k)2 +1

,

where x ∈ R,n,k ∈ Z+,n ≥ k; u(·) : Z+ → R and v(·) : Z+ →
R are unknown functions satisfying supn∈Z+

|u(n)| < +∞ and
(v(n))n ∈ lγ(R) for some γ > 1. It is clear that

|F̃(n,x)| ≤ 1
5
|u(n)||x|, |G̃(n,k,x)| ≤ (n− k)2

3(n− k)2 +1
|v(n− k)||x|,

(31)

for all x ∈ R,n,k ∈ Z+,n ≥ k.
By Theorem 4.1, the zero solution of (30) is GES provided

sup
n∈Z+

|u(n)|+
∞

∑
n=0

|v(n)|<

1

sup
n∈Z+

{(
1− 1

4 −∑+∞
k=0

2ak

(3k+1)(3k+4)

)−1 n2

3n2+1

},

or equivalently,

sup
n∈Z+

|u(n)|+
∞

∑
n=0

|v(n)|<
1

( 3
4 − p)−1 1

3

=
9
4
−3p, (32)

where p :=
+∞

∑
k=0

2ak

(3k+1)(3k+4)
∈ (0,2/3] and a ∈ (0,1).

5. An application
In this section, we apply the obtained results to study uniform
attraction of equilibrium of discrete-time bidirectional associa-
tive memory (BAM) neural networks, see e.g. [18], [24].

Consider a discrete-time BAM neural network with infinite
delay in R2 described by


x1(n+1) = a1(n)x1(n)

+b1(n) f1

( +∞

∑
k=0

g1(k)x2(n− k)
)
+ I1(n),

x2(n+1) = a2(n)x2(n)

+b2(n) f2

( +∞

∑
k=0

g2(k)x1(n− k)
)
+ I2(n), n ∈ Z+,

(33)

with the initial condition

x1(k) = ψ1(k); x2(k) = ψ2(k), ∀k ∈ Z−,

where ψ1(·),ψ2(·) : Z− → R are given bounded functions.

Throughout, we assume that

(H1) There exist ai,bi ∈ R+, i ∈ {1,2} such that

|ai(n)| ≤ ai and |bi(n)| ≤ bi, ∀n ∈ Z+, i ∈ {1,2};

(H2) There exist ci,∈ R+, i ∈ {1,2} such that

| fi(x)− fi(y)| ≤ ci|x− y|, i ∈ {1,2}, for all x,y ∈ R;

(H3) (gi(n))n ∈ lγ(R), for some γ > 1, i ∈ {1,2}.

Suppose x∗ := (x∗1,x
∗
2)

T ∈ R2 is an equilibrium of the BAM
neural network (33). That is,



x∗1 = a1(n)x∗1 +b1(n) f1

( +∞

∑
k=0

g1(k)x∗2

)
+ I1(n), n ∈ Z+,

x∗2 = a2(n)x∗2 +b2(n) f2

( +∞

∑
k=0

g2(k)x∗1

)
+ I2(n), n ∈ Z+.

(34)

The following theorem gives an explicit criterion for uni-
form attraction of the equilibrium of (33).

THEOREM 5.1. Let (H1)-(H3) hold. If

min
{

max
i∈{1,2}

{
ai +bici

+∞

∑
k=0

gi(k)
}
,

max
i, j∈{1,2},i�= j

{
ai +b jc j

+∞

∑
k=0

g j(k)
}}

< 1. (35)

then the equilibrium point x∗ of (33) is uniformly attractive, i.e,
‖x(n)− x∗‖ → 0 as n → +∞, where x(n) = (x1(n),x2(n))T ∈
R2,n ∈ Z+.

Proof. Let yi(n) := xi(n)− xi
∗, i ∈ {1,2},n ∈ Z. It follows

from (33)-(34) that


y1(n+1) = a1(n)y1(n)+b1(n)×(
f1
( +∞

∑
k=0

g1(k)[y2(n− k)+ x∗2]
)
− f1

( +∞

∑
k=0

g1(k)x∗2
))

,

y2(n+1) = a2(n)y2(n)+b2(n)×(
f2
( +∞

∑
k=0

g2(k)[y1(n− k)+ x∗1]
)
− f2

( +∞

∑
k=0

g2(k)x∗1
))

.

(36)

Clearly, (36) is of the form

y(n+1) = A(n)y(n)+B(n)F
( n

∑
k=−∞

G(n− k)y(k)
)
, (37)

where y(n) := (y1(n),y2(n))T ∈ R2,n ∈ Z+, and for each n ∈
Z+,

A(n) :=

(
a1(n) 0

0 a2(n)

)
, B(n) :=

(
b1(n) 0

0 b2(n)

)
,

G(n) :=

(
0 g1(n)

g2(n) 0

)
,
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By a similar argument as in the preceding paragraph, we get
(29). This is a contradiction which completes the proof.

EXAMPLE 4.2. We now reconsider the Volterra difference
equation defined by (18)-(19). As shown in Example 3.5, the
zero solution of (18)-(19) is GES. Consider a perturbed equa-
tion given by

x(n+1) =
(

F
(
n,x(n)

)
+ F̃

(
n,x(n)

))
+

n

∑
k=0

(
G
(
n,k,x(k)

)
+ G̃

(
n,k,x(k)

))
, (30)

where F̃(·, ·) and G̃(·, ·, ·) are given by

F̃(n,x) =
e−sin2(nx)u(n)x

5
and

G̃(n,k,x) =
(n− k)2 cosk ln

(
1+ |v(n− k)x|

)
3(n− k)2 +1

,

where x ∈ R,n,k ∈ Z+,n ≥ k; u(·) : Z+ → R and v(·) : Z+ →
R are unknown functions satisfying supn∈Z+

|u(n)| < +∞ and
(v(n))n ∈ lγ(R) for some γ > 1. It is clear that

|F̃(n,x)| ≤ 1
5
|u(n)||x|, |G̃(n,k,x)| ≤ (n− k)2

3(n− k)2 +1
|v(n− k)||x|,

(31)

for all x ∈ R,n,k ∈ Z+,n ≥ k.
By Theorem 4.1, the zero solution of (30) is GES provided

sup
n∈Z+

|u(n)|+
∞

∑
n=0

|v(n)|<

1

sup
n∈Z+

{(
1− 1

4 −∑+∞
k=0

2ak

(3k+1)(3k+4)

)−1 n2

3n2+1

},

or equivalently,

sup
n∈Z+

|u(n)|+
∞

∑
n=0

|v(n)|<
1

( 3
4 − p)−1 1

3

=
9
4
−3p, (32)

where p :=
+∞

∑
k=0

2ak

(3k+1)(3k+4)
∈ (0,2/3] and a ∈ (0,1).

5. An application
In this section, we apply the obtained results to study uniform
attraction of equilibrium of discrete-time bidirectional associa-
tive memory (BAM) neural networks, see e.g. [18], [24].

Consider a discrete-time BAM neural network with infinite
delay in R2 described by


x1(n+1) = a1(n)x1(n)

+b1(n) f1

( +∞

∑
k=0

g1(k)x2(n− k)
)
+ I1(n),

x2(n+1) = a2(n)x2(n)

+b2(n) f2

( +∞

∑
k=0

g2(k)x1(n− k)
)
+ I2(n), n ∈ Z+,

(33)

with the initial condition

x1(k) = ψ1(k); x2(k) = ψ2(k), ∀k ∈ Z−,

where ψ1(·),ψ2(·) : Z− → R are given bounded functions.

Throughout, we assume that

(H1) There exist ai,bi ∈ R+, i ∈ {1,2} such that

|ai(n)| ≤ ai and |bi(n)| ≤ bi, ∀n ∈ Z+, i ∈ {1,2};

(H2) There exist ci,∈ R+, i ∈ {1,2} such that

| fi(x)− fi(y)| ≤ ci|x− y|, i ∈ {1,2}, for all x,y ∈ R;

(H3) (gi(n))n ∈ lγ(R), for some γ > 1, i ∈ {1,2}.

Suppose x∗ := (x∗1,x
∗
2)

T ∈ R2 is an equilibrium of the BAM
neural network (33). That is,



x∗1 = a1(n)x∗1 +b1(n) f1

( +∞

∑
k=0

g1(k)x∗2

)
+ I1(n), n ∈ Z+,

x∗2 = a2(n)x∗2 +b2(n) f2

( +∞

∑
k=0

g2(k)x∗1

)
+ I2(n), n ∈ Z+.

(34)

The following theorem gives an explicit criterion for uni-
form attraction of the equilibrium of (33).

THEOREM 5.1. Let (H1)-(H3) hold. If

min
{

max
i∈{1,2}

{
ai +bici

+∞

∑
k=0

gi(k)
}
,

max
i, j∈{1,2},i�= j

{
ai +b jc j

+∞

∑
k=0

g j(k)
}}

< 1. (35)

then the equilibrium point x∗ of (33) is uniformly attractive, i.e,
‖x(n)− x∗‖ → 0 as n → +∞, where x(n) = (x1(n),x2(n))T ∈
R2,n ∈ Z+.

Proof. Let yi(n) := xi(n)− xi
∗, i ∈ {1,2},n ∈ Z. It follows

from (33)-(34) that


y1(n+1) = a1(n)y1(n)+b1(n)×(
f1
( +∞

∑
k=0

g1(k)[y2(n− k)+ x∗2]
)
− f1

( +∞

∑
k=0

g1(k)x∗2
))

,

y2(n+1) = a2(n)y2(n)+b2(n)×(
f2
( +∞

∑
k=0

g2(k)[y1(n− k)+ x∗1]
)
− f2

( +∞

∑
k=0

g2(k)x∗1
))

.

(36)

Clearly, (36) is of the form

y(n+1) = A(n)y(n)+B(n)F
( n

∑
k=−∞

G(n− k)y(k)
)
, (37)

where y(n) := (y1(n),y2(n))T ∈ R2,n ∈ Z+, and for each n ∈
Z+,

A(n) :=

(
a1(n) 0

0 a2(n)

)
, B(n) :=

(
b1(n) 0

0 b2(n)

)
,

G(n) :=

(
0 g1(n)

g2(n) 0

)
,
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then the equilibrium point x¤ of (33) is uniformly attractive, i.e,  
kx(n) ¡ x¤k ! 0 as n ! +1, where x(n) = (x1(n), x2(n))T 2 
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Stability of nonlinear Volterra equations

Abstract. Using a novel approach, we present some new explicit criteria for global exponential stability of the zero solution of general
nonlinear time-varying Volterra difference equations. Furthermore, an explicit stability bound for equations subject to nonlinear time-varying
perturbations is given. Finally, the obtained results are used to study uniform attraction of equilibrium of discrete-time bidirectional associative
memory (BAM) neural networks. Some illustrative examples are given.
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1. Introduction
Volterra difference equations have been widely used in the
modeling of processes in continuous mechanics and biome-
chanics, problems of control and estimations and some
schemes of numerical solutions of integral and integro-
differential equations, see e.g. [2], [7], [12], [16]-[19].

Problems of stability of Volterra difference equations have
attracted much attention from researchers, during the last
twenty years, see e.g. [1],[4]-[13], [15], [21]-[23] and refer-
ences therein. Many various methods have been used to inves-
tigate stability of Volterra difference equations such as Lya-
punov functions, Z transform, comparison theorems, topologi-
cal methods, fixed point theorems, etc (see e.g. [7], [10], [15],
[23]).

In particular, the first significant result on exponential sta-
bility of Volterra difference equations is due to Elaydi and
Murakami, see [8]. Roughly speaking, Elaydi and Murakami
showed that even to the simplest Volterra difference equations
(namely, linear time-invariant Volterra difference equations of
convolution type), the exponential stability is “stronger” than
the uniform asymptotic stability. More precisely, a linear time-
invariant Volterra difference equation of convolution type is ex-
ponentially stable if and only if it is uniformly asymptotically
stable and its kernel exponentially decays, see [8]. For further
and updated information on stability of linear time-invariant
Volterra difference equations, we refer to the recent survey pa-
per [10].

In general, problems of global exponential stability of time-
varying Volterra difference equations are very hard even those
of linear time-varying Volterra equations. Most of existing re-
sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
ditions for exponential stability of linear time-varying Volterra
difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
nential stability of nonlinear time-varying Volterra difference
equations. Our approach is based on the celebrated Perron-
Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
nential stability of the zero solution of general nonlinear time-

varying Volterra difference equations. Furthermore, we derive
an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.

2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there

1

2,  
n 2 

BULLETIN OF THE POLISH ACADEMY OF SCIENCES
TECHNICAL SCIENCES, Vol. XX, No. Y, 2016
DOI: 10.1515/bpasts-2016-00ZZ

Stability of nonlinear Volterra equations

Abstract. Using a novel approach, we present some new explicit criteria for global exponential stability of the zero solution of general
nonlinear time-varying Volterra difference equations. Furthermore, an explicit stability bound for equations subject to nonlinear time-varying
perturbations is given. Finally, the obtained results are used to study uniform attraction of equilibrium of discrete-time bidirectional associative
memory (BAM) neural networks. Some illustrative examples are given.

Key words: Global exponential stability, Volterra equations

1. Introduction
Volterra difference equations have been widely used in the
modeling of processes in continuous mechanics and biome-
chanics, problems of control and estimations and some
schemes of numerical solutions of integral and integro-
differential equations, see e.g. [2], [7], [12], [16]-[19].

Problems of stability of Volterra difference equations have
attracted much attention from researchers, during the last
twenty years, see e.g. [1],[4]-[13], [15], [21]-[23] and refer-
ences therein. Many various methods have been used to inves-
tigate stability of Volterra difference equations such as Lya-
punov functions, Z transform, comparison theorems, topologi-
cal methods, fixed point theorems, etc (see e.g. [7], [10], [15],
[23]).

In particular, the first significant result on exponential sta-
bility of Volterra difference equations is due to Elaydi and
Murakami, see [8]. Roughly speaking, Elaydi and Murakami
showed that even to the simplest Volterra difference equations
(namely, linear time-invariant Volterra difference equations of
convolution type), the exponential stability is “stronger” than
the uniform asymptotic stability. More precisely, a linear time-
invariant Volterra difference equation of convolution type is ex-
ponentially stable if and only if it is uniformly asymptotically
stable and its kernel exponentially decays, see [8]. For further
and updated information on stability of linear time-invariant
Volterra difference equations, we refer to the recent survey pa-
per [10].

In general, problems of global exponential stability of time-
varying Volterra difference equations are very hard even those
of linear time-varying Volterra equations. Most of existing re-
sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
ditions for exponential stability of linear time-varying Volterra
difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
nential stability of nonlinear time-varying Volterra difference
equations. Our approach is based on the celebrated Perron-
Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
nential stability of the zero solution of general nonlinear time-

varying Volterra difference equations. Furthermore, we derive
an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.

2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
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difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
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an explicit stability bound for equations subject to nonlinear
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all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
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B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
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we write A � B instead of A ≥ B. The set of all nonnega-
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matrix will be denoted by Im. If x = (x1,x2, ...,xm)
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P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there

1

. It follows from 
(33–34) that

By a similar argument as in the preceding paragraph, we get
(29). This is a contradiction which completes the proof.

EXAMPLE 4.2. We now reconsider the Volterra difference
equation defined by (18)-(19). As shown in Example 3.5, the
zero solution of (18)-(19) is GES. Consider a perturbed equa-
tion given by

x(n+1) =
(

F
(
n,x(n)

)
+ F̃

(
n,x(n)

))
+

n

∑
k=0

(
G
(
n,k,x(k)

)
+ G̃

(
n,k,x(k)

))
, (30)

where F̃(·, ·) and G̃(·, ·, ·) are given by

F̃(n,x) =
e−sin2(nx)u(n)x

5
and

G̃(n,k,x) =
(n− k)2 cosk ln

(
1+ |v(n− k)x|

)
3(n− k)2 +1

,

where x ∈ R,n,k ∈ Z+,n ≥ k; u(·) : Z+ → R and v(·) : Z+ →
R are unknown functions satisfying supn∈Z+

|u(n)| < +∞ and
(v(n))n ∈ lγ(R) for some γ > 1. It is clear that

|F̃(n,x)| ≤ 1
5
|u(n)||x|, |G̃(n,k,x)| ≤ (n− k)2

3(n− k)2 +1
|v(n− k)||x|,

(31)

for all x ∈ R,n,k ∈ Z+,n ≥ k.
By Theorem 4.1, the zero solution of (30) is GES provided

sup
n∈Z+

|u(n)|+
∞

∑
n=0

|v(n)|<

1

sup
n∈Z+

{(
1− 1

4 −∑+∞
k=0

2ak

(3k+1)(3k+4)

)−1 n2

3n2+1

},

or equivalently,

sup
n∈Z+

|u(n)|+
∞

∑
n=0

|v(n)|<
1

( 3
4 − p)−1 1

3

=
9
4
−3p, (32)

where p :=
+∞

∑
k=0

2ak

(3k+1)(3k+4)
∈ (0,2/3] and a ∈ (0,1).

5. An application
In this section, we apply the obtained results to study uniform
attraction of equilibrium of discrete-time bidirectional associa-
tive memory (BAM) neural networks, see e.g. [18], [24].

Consider a discrete-time BAM neural network with infinite
delay in R2 described by



x1(n+1) = a1(n)x1(n)

+b1(n) f1

( +∞

∑
k=0

g1(k)x2(n− k)
)
+ I1(n),

x2(n+1) = a2(n)x2(n)

+b2(n) f2

( +∞

∑
k=0

g2(k)x1(n− k)
)
+ I2(n), n ∈ Z+,

(33)

with the initial condition

x1(k) = ψ1(k); x2(k) = ψ2(k), ∀k ∈ Z−,

where ψ1(·),ψ2(·) : Z− → R are given bounded functions.

Throughout, we assume that

(H1) There exist ai,bi ∈ R+, i ∈ {1,2} such that

|ai(n)| ≤ ai and |bi(n)| ≤ bi, ∀n ∈ Z+, i ∈ {1,2};

(H2) There exist ci,∈ R+, i ∈ {1,2} such that

| fi(x)− fi(y)| ≤ ci|x− y|, i ∈ {1,2}, for all x,y ∈ R;

(H3) (gi(n))n ∈ lγ(R), for some γ > 1, i ∈ {1,2}.

Suppose x∗ := (x∗1,x
∗
2)

T ∈ R2 is an equilibrium of the BAM
neural network (33). That is,



x∗1 = a1(n)x∗1 +b1(n) f1

( +∞

∑
k=0

g1(k)x∗2

)
+ I1(n), n ∈ Z+,

x∗2 = a2(n)x∗2 +b2(n) f2

( +∞

∑
k=0

g2(k)x∗1

)
+ I2(n), n ∈ Z+.

(34)

The following theorem gives an explicit criterion for uni-
form attraction of the equilibrium of (33).

THEOREM 5.1. Let (H1)-(H3) hold. If

min
{

max
i∈{1,2}

{
ai +bici

+∞

∑
k=0

gi(k)
}
,

max
i, j∈{1,2},i�= j

{
ai +b jc j

+∞

∑
k=0

g j(k)
}}

< 1. (35)

then the equilibrium point x∗ of (33) is uniformly attractive, i.e,
‖x(n)− x∗‖ → 0 as n → +∞, where x(n) = (x1(n),x2(n))T ∈
R2,n ∈ Z+.

Proof. Let yi(n) := xi(n)− xi
∗, i ∈ {1,2},n ∈ Z. It follows

from (33)-(34) that


y1(n+1) = a1(n)y1(n)+b1(n)×(
f1
( +∞

∑
k=0

g1(k)[y2(n− k)+ x∗2]
)
− f1

( +∞

∑
k=0

g1(k)x∗2
))

,

y2(n+1) = a2(n)y2(n)+b2(n)×(
f2
( +∞

∑
k=0

g2(k)[y1(n− k)+ x∗1]
)
− f2

( +∞

∑
k=0

g2(k)x∗1
))

.

(36)

Clearly, (36) is of the form

y(n+1) = A(n)y(n)+B(n)F
( n

∑
k=−∞

G(n− k)y(k)
)
, (37)

where y(n) := (y1(n),y2(n))T ∈ R2,n ∈ Z+, and for each n ∈
Z+,

A(n) :=

(
a1(n) 0

0 a2(n)

)
, B(n) :=

(
b1(n) 0

0 b2(n)

)
,

G(n) :=

(
0 g1(n)

g2(n) 0

)
,
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By a similar argument as in the preceding paragraph, we get
(29). This is a contradiction which completes the proof.

EXAMPLE 4.2. We now reconsider the Volterra difference
equation defined by (18)-(19). As shown in Example 3.5, the
zero solution of (18)-(19) is GES. Consider a perturbed equa-
tion given by

x(n+1) =
(

F
(
n,x(n)

)
+ F̃

(
n,x(n)

))
+

n

∑
k=0

(
G
(
n,k,x(k)

)
+ G̃

(
n,k,x(k)

))
, (30)

where F̃(·, ·) and G̃(·, ·, ·) are given by

F̃(n,x) =
e−sin2(nx)u(n)x

5
and

G̃(n,k,x) =
(n− k)2 cosk ln

(
1+ |v(n− k)x|

)
3(n− k)2 +1

,

where x ∈ R,n,k ∈ Z+,n ≥ k; u(·) : Z+ → R and v(·) : Z+ →
R are unknown functions satisfying supn∈Z+

|u(n)| < +∞ and
(v(n))n ∈ lγ(R) for some γ > 1. It is clear that

|F̃(n,x)| ≤ 1
5
|u(n)||x|, |G̃(n,k,x)| ≤ (n− k)2

3(n− k)2 +1
|v(n− k)||x|,

(31)

for all x ∈ R,n,k ∈ Z+,n ≥ k.
By Theorem 4.1, the zero solution of (30) is GES provided

sup
n∈Z+

|u(n)|+
∞

∑
n=0

|v(n)|<

1

sup
n∈Z+

{(
1− 1

4 −∑+∞
k=0

2ak

(3k+1)(3k+4)

)−1 n2

3n2+1

},

or equivalently,

sup
n∈Z+

|u(n)|+
∞

∑
n=0

|v(n)|<
1

( 3
4 − p)−1 1

3

=
9
4
−3p, (32)

where p :=
+∞

∑
k=0

2ak

(3k+1)(3k+4)
∈ (0,2/3] and a ∈ (0,1).

5. An application
In this section, we apply the obtained results to study uniform
attraction of equilibrium of discrete-time bidirectional associa-
tive memory (BAM) neural networks, see e.g. [18], [24].

Consider a discrete-time BAM neural network with infinite
delay in R2 described by



x1(n+1) = a1(n)x1(n)

+b1(n) f1

( +∞

∑
k=0

g1(k)x2(n− k)
)
+ I1(n),

x2(n+1) = a2(n)x2(n)

+b2(n) f2

( +∞

∑
k=0

g2(k)x1(n− k)
)
+ I2(n), n ∈ Z+,

(33)

with the initial condition

x1(k) = ψ1(k); x2(k) = ψ2(k), ∀k ∈ Z−,

where ψ1(·),ψ2(·) : Z− → R are given bounded functions.

Throughout, we assume that

(H1) There exist ai,bi ∈ R+, i ∈ {1,2} such that

|ai(n)| ≤ ai and |bi(n)| ≤ bi, ∀n ∈ Z+, i ∈ {1,2};

(H2) There exist ci,∈ R+, i ∈ {1,2} such that

| fi(x)− fi(y)| ≤ ci|x− y|, i ∈ {1,2}, for all x,y ∈ R;

(H3) (gi(n))n ∈ lγ(R), for some γ > 1, i ∈ {1,2}.

Suppose x∗ := (x∗1,x
∗
2)

T ∈ R2 is an equilibrium of the BAM
neural network (33). That is,



x∗1 = a1(n)x∗1 +b1(n) f1

( +∞

∑
k=0

g1(k)x∗2

)
+ I1(n), n ∈ Z+,

x∗2 = a2(n)x∗2 +b2(n) f2

( +∞

∑
k=0

g2(k)x∗1

)
+ I2(n), n ∈ Z+.

(34)

The following theorem gives an explicit criterion for uni-
form attraction of the equilibrium of (33).

THEOREM 5.1. Let (H1)-(H3) hold. If

min
{

max
i∈{1,2}

{
ai +bici

+∞

∑
k=0

gi(k)
}
,

max
i, j∈{1,2},i�= j

{
ai +b jc j

+∞

∑
k=0

g j(k)
}}

< 1. (35)

then the equilibrium point x∗ of (33) is uniformly attractive, i.e,
‖x(n)− x∗‖ → 0 as n → +∞, where x(n) = (x1(n),x2(n))T ∈
R2,n ∈ Z+.

Proof. Let yi(n) := xi(n)− xi
∗, i ∈ {1,2},n ∈ Z. It follows

from (33)-(34) that


y1(n+1) = a1(n)y1(n)+b1(n)×(
f1
( +∞

∑
k=0

g1(k)[y2(n− k)+ x∗2]
)
− f1

( +∞

∑
k=0

g1(k)x∗2
))

,

y2(n+1) = a2(n)y2(n)+b2(n)×(
f2
( +∞

∑
k=0

g2(k)[y1(n− k)+ x∗1]
)
− f2

( +∞

∑
k=0

g2(k)x∗1
))

.

(36)

Clearly, (36) is of the form

y(n+1) = A(n)y(n)+B(n)F
( n

∑
k=−∞

G(n− k)y(k)
)
, (37)

where y(n) := (y1(n),y2(n))T ∈ R2,n ∈ Z+, and for each n ∈
Z+,

A(n) :=

(
a1(n) 0

0 a2(n)

)
, B(n) :=

(
b1(n) 0

0 b2(n)

)
,

G(n) :=

(
0 g1(n)

g2(n) 0

)
,
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By a similar argument as in the preceding paragraph, we get
(29). This is a contradiction which completes the proof.

EXAMPLE 4.2. We now reconsider the Volterra difference
equation defined by (18)-(19). As shown in Example 3.5, the
zero solution of (18)-(19) is GES. Consider a perturbed equa-
tion given by

x(n+1) =
(

F
(
n,x(n)

)
+ F̃

(
n,x(n)

))
+

n

∑
k=0

(
G
(
n,k,x(k)

)
+ G̃

(
n,k,x(k)

))
, (30)

where F̃(·, ·) and G̃(·, ·, ·) are given by

F̃(n,x) =
e−sin2(nx)u(n)x

5
and

G̃(n,k,x) =
(n− k)2 cosk ln

(
1+ |v(n− k)x|

)
3(n− k)2 +1

,

where x ∈ R,n,k ∈ Z+,n ≥ k; u(·) : Z+ → R and v(·) : Z+ →
R are unknown functions satisfying supn∈Z+

|u(n)| < +∞ and
(v(n))n ∈ lγ(R) for some γ > 1. It is clear that

|F̃(n,x)| ≤ 1
5
|u(n)||x|, |G̃(n,k,x)| ≤ (n− k)2

3(n− k)2 +1
|v(n− k)||x|,

(31)

for all x ∈ R,n,k ∈ Z+,n ≥ k.
By Theorem 4.1, the zero solution of (30) is GES provided

sup
n∈Z+

|u(n)|+
∞

∑
n=0

|v(n)|<

1

sup
n∈Z+

{(
1− 1

4 −∑+∞
k=0

2ak

(3k+1)(3k+4)

)−1 n2

3n2+1

},

or equivalently,

sup
n∈Z+

|u(n)|+
∞

∑
n=0

|v(n)|<
1

( 3
4 − p)−1 1

3

=
9
4
−3p, (32)

where p :=
+∞

∑
k=0

2ak

(3k+1)(3k+4)
∈ (0,2/3] and a ∈ (0,1).

5. An application
In this section, we apply the obtained results to study uniform
attraction of equilibrium of discrete-time bidirectional associa-
tive memory (BAM) neural networks, see e.g. [18], [24].

Consider a discrete-time BAM neural network with infinite
delay in R2 described by



x1(n+1) = a1(n)x1(n)

+b1(n) f1

( +∞

∑
k=0

g1(k)x2(n− k)
)
+ I1(n),

x2(n+1) = a2(n)x2(n)

+b2(n) f2

( +∞

∑
k=0

g2(k)x1(n− k)
)
+ I2(n), n ∈ Z+,

(33)

with the initial condition

x1(k) = ψ1(k); x2(k) = ψ2(k), ∀k ∈ Z−,

where ψ1(·),ψ2(·) : Z− → R are given bounded functions.

Throughout, we assume that

(H1) There exist ai,bi ∈ R+, i ∈ {1,2} such that

|ai(n)| ≤ ai and |bi(n)| ≤ bi, ∀n ∈ Z+, i ∈ {1,2};

(H2) There exist ci,∈ R+, i ∈ {1,2} such that

| fi(x)− fi(y)| ≤ ci|x− y|, i ∈ {1,2}, for all x,y ∈ R;

(H3) (gi(n))n ∈ lγ(R), for some γ > 1, i ∈ {1,2}.

Suppose x∗ := (x∗1,x
∗
2)

T ∈ R2 is an equilibrium of the BAM
neural network (33). That is,



x∗1 = a1(n)x∗1 +b1(n) f1

( +∞

∑
k=0

g1(k)x∗2

)
+ I1(n), n ∈ Z+,

x∗2 = a2(n)x∗2 +b2(n) f2

( +∞

∑
k=0

g2(k)x∗1

)
+ I2(n), n ∈ Z+.

(34)

The following theorem gives an explicit criterion for uni-
form attraction of the equilibrium of (33).

THEOREM 5.1. Let (H1)-(H3) hold. If

min
{

max
i∈{1,2}

{
ai +bici

+∞

∑
k=0

gi(k)
}
,

max
i, j∈{1,2},i�= j

{
ai +b jc j

+∞

∑
k=0

g j(k)
}}

< 1. (35)

then the equilibrium point x∗ of (33) is uniformly attractive, i.e,
‖x(n)− x∗‖ → 0 as n → +∞, where x(n) = (x1(n),x2(n))T ∈
R2,n ∈ Z+.

Proof. Let yi(n) := xi(n)− xi
∗, i ∈ {1,2},n ∈ Z. It follows

from (33)-(34) that


y1(n+1) = a1(n)y1(n)+b1(n)×(
f1
( +∞

∑
k=0

g1(k)[y2(n− k)+ x∗2]
)
− f1

( +∞

∑
k=0

g1(k)x∗2
))

,

y2(n+1) = a2(n)y2(n)+b2(n)×(
f2
( +∞

∑
k=0

g2(k)[y1(n− k)+ x∗1]
)
− f2

( +∞

∑
k=0

g2(k)x∗1
))

.

(36)

Clearly, (36) is of the form

y(n+1) = A(n)y(n)+B(n)F
( n

∑
k=−∞

G(n− k)y(k)
)
, (37)

where y(n) := (y1(n),y2(n))T ∈ R2,n ∈ Z+, and for each n ∈
Z+,

A(n) :=

(
a1(n) 0

0 a2(n)

)
, B(n) :=

(
b1(n) 0

0 b2(n)

)
,

G(n) :=

(
0 g1(n)

g2(n) 0

)
,
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.

�(36)

Clearly, (36) takes the form

	

By a similar argument as in the preceding paragraph, we get
(29). This is a contradiction which completes the proof.

EXAMPLE 4.2. We now reconsider the Volterra difference
equation defined by (18)-(19). As shown in Example 3.5, the
zero solution of (18)-(19) is GES. Consider a perturbed equa-
tion given by

x(n+1) =
(

F
(
n,x(n)

)
+ F̃

(
n,x(n)

))
+

n

∑
k=0

(
G
(
n,k,x(k)

)
+ G̃

(
n,k,x(k)

))
, (30)

where F̃(·, ·) and G̃(·, ·, ·) are given by

F̃(n,x) =
e−sin2(nx)u(n)x

5
and

G̃(n,k,x) =
(n− k)2 cosk ln

(
1+ |v(n− k)x|

)
3(n− k)2 +1

,

where x ∈ R,n,k ∈ Z+,n ≥ k; u(·) : Z+ → R and v(·) : Z+ →
R are unknown functions satisfying supn∈Z+

|u(n)| < +∞ and
(v(n))n ∈ lγ(R) for some γ > 1. It is clear that

|F̃(n,x)| ≤ 1
5
|u(n)||x|, |G̃(n,k,x)| ≤ (n− k)2

3(n− k)2 +1
|v(n− k)||x|,

(31)

for all x ∈ R,n,k ∈ Z+,n ≥ k.
By Theorem 4.1, the zero solution of (30) is GES provided

sup
n∈Z+

|u(n)|+
∞

∑
n=0

|v(n)|<

1

sup
n∈Z+

{(
1− 1

4 −∑+∞
k=0

2ak

(3k+1)(3k+4)

)−1 n2

3n2+1

},

or equivalently,

sup
n∈Z+

|u(n)|+
∞

∑
n=0

|v(n)|<
1

( 3
4 − p)−1 1

3

=
9
4
−3p, (32)

where p :=
+∞

∑
k=0

2ak

(3k+1)(3k+4)
∈ (0,2/3] and a ∈ (0,1).

5. An application
In this section, we apply the obtained results to study uniform
attraction of equilibrium of discrete-time bidirectional associa-
tive memory (BAM) neural networks, see e.g. [18], [24].

Consider a discrete-time BAM neural network with infinite
delay in R2 described by


x1(n+1) = a1(n)x1(n)

+b1(n) f1

( +∞

∑
k=0

g1(k)x2(n− k)
)
+ I1(n),

x2(n+1) = a2(n)x2(n)

+b2(n) f2

( +∞

∑
k=0

g2(k)x1(n− k)
)
+ I2(n), n ∈ Z+,

(33)

with the initial condition

x1(k) = ψ1(k); x2(k) = ψ2(k), ∀k ∈ Z−,

where ψ1(·),ψ2(·) : Z− → R are given bounded functions.

Throughout, we assume that

(H1) There exist ai,bi ∈ R+, i ∈ {1,2} such that

|ai(n)| ≤ ai and |bi(n)| ≤ bi, ∀n ∈ Z+, i ∈ {1,2};

(H2) There exist ci,∈ R+, i ∈ {1,2} such that

| fi(x)− fi(y)| ≤ ci|x− y|, i ∈ {1,2}, for all x,y ∈ R;

(H3) (gi(n))n ∈ lγ(R), for some γ > 1, i ∈ {1,2}.

Suppose x∗ := (x∗1,x
∗
2)

T ∈ R2 is an equilibrium of the BAM
neural network (33). That is,



x∗1 = a1(n)x∗1 +b1(n) f1

( +∞

∑
k=0

g1(k)x∗2

)
+ I1(n), n ∈ Z+,

x∗2 = a2(n)x∗2 +b2(n) f2

( +∞

∑
k=0

g2(k)x∗1

)
+ I2(n), n ∈ Z+.

(34)

The following theorem gives an explicit criterion for uni-
form attraction of the equilibrium of (33).

THEOREM 5.1. Let (H1)-(H3) hold. If

min
{

max
i∈{1,2}

{
ai +bici

+∞

∑
k=0

gi(k)
}
,

max
i, j∈{1,2},i�= j

{
ai +b jc j

+∞

∑
k=0

g j(k)
}}

< 1. (35)

then the equilibrium point x∗ of (33) is uniformly attractive, i.e,
‖x(n)− x∗‖ → 0 as n → +∞, where x(n) = (x1(n),x2(n))T ∈
R2,n ∈ Z+.

Proof. Let yi(n) := xi(n)− xi
∗, i ∈ {1,2},n ∈ Z. It follows

from (33)-(34) that


y1(n+1) = a1(n)y1(n)+b1(n)×(
f1
( +∞

∑
k=0

g1(k)[y2(n− k)+ x∗2]
)
− f1

( +∞

∑
k=0

g1(k)x∗2
))

,

y2(n+1) = a2(n)y2(n)+b2(n)×(
f2
( +∞

∑
k=0

g2(k)[y1(n− k)+ x∗1]
)
− f2

( +∞

∑
k=0

g2(k)x∗1
))

.

(36)

Clearly, (36) is of the form

y(n+1) = A(n)y(n)+B(n)F
( n

∑
k=−∞

G(n− k)y(k)
)
, (37)

where y(n) := (y1(n),y2(n))T ∈ R2,n ∈ Z+, and for each n ∈
Z+,

A(n) :=

(
a1(n) 0

0 a2(n)

)
, B(n) :=

(
b1(n) 0

0 b2(n)

)
,

G(n) :=

(
0 g1(n)

g2(n) 0

)
,
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where y(n) := (y1(n), y2(n))T 2 
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1. Introduction
Volterra difference equations have been widely used in the
modeling of processes in continuous mechanics and biome-
chanics, problems of control and estimations and some
schemes of numerical solutions of integral and integro-
differential equations, see e.g. [2], [7], [12], [16]-[19].

Problems of stability of Volterra difference equations have
attracted much attention from researchers, during the last
twenty years, see e.g. [1],[4]-[13], [15], [21]-[23] and refer-
ences therein. Many various methods have been used to inves-
tigate stability of Volterra difference equations such as Lya-
punov functions, Z transform, comparison theorems, topologi-
cal methods, fixed point theorems, etc (see e.g. [7], [10], [15],
[23]).

In particular, the first significant result on exponential sta-
bility of Volterra difference equations is due to Elaydi and
Murakami, see [8]. Roughly speaking, Elaydi and Murakami
showed that even to the simplest Volterra difference equations
(namely, linear time-invariant Volterra difference equations of
convolution type), the exponential stability is “stronger” than
the uniform asymptotic stability. More precisely, a linear time-
invariant Volterra difference equation of convolution type is ex-
ponentially stable if and only if it is uniformly asymptotically
stable and its kernel exponentially decays, see [8]. For further
and updated information on stability of linear time-invariant
Volterra difference equations, we refer to the recent survey pa-
per [10].

In general, problems of global exponential stability of time-
varying Volterra difference equations are very hard even those
of linear time-varying Volterra equations. Most of existing re-
sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
ditions for exponential stability of linear time-varying Volterra
difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
nential stability of nonlinear time-varying Volterra difference
equations. Our approach is based on the celebrated Perron-
Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
nential stability of the zero solution of general nonlinear time-

varying Volterra difference equations. Furthermore, we derive
an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.

2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there

1

2, n 2 
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1. Introduction
Volterra difference equations have been widely used in the
modeling of processes in continuous mechanics and biome-
chanics, problems of control and estimations and some
schemes of numerical solutions of integral and integro-
differential equations, see e.g. [2], [7], [12], [16]-[19].

Problems of stability of Volterra difference equations have
attracted much attention from researchers, during the last
twenty years, see e.g. [1],[4]-[13], [15], [21]-[23] and refer-
ences therein. Many various methods have been used to inves-
tigate stability of Volterra difference equations such as Lya-
punov functions, Z transform, comparison theorems, topologi-
cal methods, fixed point theorems, etc (see e.g. [7], [10], [15],
[23]).

In particular, the first significant result on exponential sta-
bility of Volterra difference equations is due to Elaydi and
Murakami, see [8]. Roughly speaking, Elaydi and Murakami
showed that even to the simplest Volterra difference equations
(namely, linear time-invariant Volterra difference equations of
convolution type), the exponential stability is “stronger” than
the uniform asymptotic stability. More precisely, a linear time-
invariant Volterra difference equation of convolution type is ex-
ponentially stable if and only if it is uniformly asymptotically
stable and its kernel exponentially decays, see [8]. For further
and updated information on stability of linear time-invariant
Volterra difference equations, we refer to the recent survey pa-
per [10].

In general, problems of global exponential stability of time-
varying Volterra difference equations are very hard even those
of linear time-varying Volterra equations. Most of existing re-
sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
ditions for exponential stability of linear time-varying Volterra
difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
nential stability of nonlinear time-varying Volterra difference
equations. Our approach is based on the celebrated Perron-
Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
nential stability of the zero solution of general nonlinear time-

varying Volterra difference equations. Furthermore, we derive
an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.

2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there

1

+, and for each n 2 
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1. Introduction
Volterra difference equations have been widely used in the
modeling of processes in continuous mechanics and biome-
chanics, problems of control and estimations and some
schemes of numerical solutions of integral and integro-
differential equations, see e.g. [2], [7], [12], [16]-[19].

Problems of stability of Volterra difference equations have
attracted much attention from researchers, during the last
twenty years, see e.g. [1],[4]-[13], [15], [21]-[23] and refer-
ences therein. Many various methods have been used to inves-
tigate stability of Volterra difference equations such as Lya-
punov functions, Z transform, comparison theorems, topologi-
cal methods, fixed point theorems, etc (see e.g. [7], [10], [15],
[23]).

In particular, the first significant result on exponential sta-
bility of Volterra difference equations is due to Elaydi and
Murakami, see [8]. Roughly speaking, Elaydi and Murakami
showed that even to the simplest Volterra difference equations
(namely, linear time-invariant Volterra difference equations of
convolution type), the exponential stability is “stronger” than
the uniform asymptotic stability. More precisely, a linear time-
invariant Volterra difference equation of convolution type is ex-
ponentially stable if and only if it is uniformly asymptotically
stable and its kernel exponentially decays, see [8]. For further
and updated information on stability of linear time-invariant
Volterra difference equations, we refer to the recent survey pa-
per [10].

In general, problems of global exponential stability of time-
varying Volterra difference equations are very hard even those
of linear time-varying Volterra equations. Most of existing re-
sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
ditions for exponential stability of linear time-varying Volterra
difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
nential stability of nonlinear time-varying Volterra difference
equations. Our approach is based on the celebrated Perron-
Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
nential stability of the zero solution of general nonlinear time-

varying Volterra difference equations. Furthermore, we derive
an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.

2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there

1

+,

By a similar argument as in the preceding paragraph, we get
(29). This is a contradiction which completes the proof.

EXAMPLE 4.2. We now reconsider the Volterra difference
equation defined by (18)-(19). As shown in Example 3.5, the
zero solution of (18)-(19) is GES. Consider a perturbed equa-
tion given by

x(n+1) =
(

F
(
n,x(n)

)
+ F̃

(
n,x(n)

))
+

n

∑
k=0

(
G
(
n,k,x(k)

)
+ G̃

(
n,k,x(k)

))
, (30)

where F̃(·, ·) and G̃(·, ·, ·) are given by

F̃(n,x) =
e−sin2(nx)u(n)x

5
and

G̃(n,k,x) =
(n− k)2 cosk ln

(
1+ |v(n− k)x|

)
3(n− k)2 +1

,

where x ∈ R,n,k ∈ Z+,n ≥ k; u(·) : Z+ → R and v(·) : Z+ →
R are unknown functions satisfying supn∈Z+

|u(n)| < +∞ and
(v(n))n ∈ lγ(R) for some γ > 1. It is clear that

|F̃(n,x)| ≤ 1
5
|u(n)||x|, |G̃(n,k,x)| ≤ (n− k)2

3(n− k)2 +1
|v(n− k)||x|,

(31)

for all x ∈ R,n,k ∈ Z+,n ≥ k.
By Theorem 4.1, the zero solution of (30) is GES provided

sup
n∈Z+

|u(n)|+
∞

∑
n=0

|v(n)|<

1

sup
n∈Z+

{(
1− 1

4 −∑+∞
k=0

2ak

(3k+1)(3k+4)

)−1 n2

3n2+1

},

or equivalently,

sup
n∈Z+

|u(n)|+
∞

∑
n=0

|v(n)|<
1

( 3
4 − p)−1 1

3

=
9
4
−3p, (32)

where p :=
+∞

∑
k=0

2ak

(3k+1)(3k+4)
∈ (0,2/3] and a ∈ (0,1).

5. An application
In this section, we apply the obtained results to study uniform
attraction of equilibrium of discrete-time bidirectional associa-
tive memory (BAM) neural networks, see e.g. [18], [24].

Consider a discrete-time BAM neural network with infinite
delay in R2 described by


x1(n+1) = a1(n)x1(n)

+b1(n) f1

( +∞

∑
k=0

g1(k)x2(n− k)
)
+ I1(n),

x2(n+1) = a2(n)x2(n)

+b2(n) f2

( +∞

∑
k=0

g2(k)x1(n− k)
)
+ I2(n), n ∈ Z+,

(33)

with the initial condition

x1(k) = ψ1(k); x2(k) = ψ2(k), ∀k ∈ Z−,

where ψ1(·),ψ2(·) : Z− → R are given bounded functions.

Throughout, we assume that

(H1) There exist ai,bi ∈ R+, i ∈ {1,2} such that

|ai(n)| ≤ ai and |bi(n)| ≤ bi, ∀n ∈ Z+, i ∈ {1,2};

(H2) There exist ci,∈ R+, i ∈ {1,2} such that

| fi(x)− fi(y)| ≤ ci|x− y|, i ∈ {1,2}, for all x,y ∈ R;

(H3) (gi(n))n ∈ lγ(R), for some γ > 1, i ∈ {1,2}.

Suppose x∗ := (x∗1,x
∗
2)

T ∈ R2 is an equilibrium of the BAM
neural network (33). That is,



x∗1 = a1(n)x∗1 +b1(n) f1

( +∞

∑
k=0

g1(k)x∗2

)
+ I1(n), n ∈ Z+,

x∗2 = a2(n)x∗2 +b2(n) f2

( +∞

∑
k=0

g2(k)x∗1

)
+ I2(n), n ∈ Z+.

(34)

The following theorem gives an explicit criterion for uni-
form attraction of the equilibrium of (33).

THEOREM 5.1. Let (H1)-(H3) hold. If

min
{

max
i∈{1,2}

{
ai +bici

+∞

∑
k=0

gi(k)
}
,

max
i, j∈{1,2},i�= j

{
ai +b jc j

+∞

∑
k=0

g j(k)
}}

< 1. (35)

then the equilibrium point x∗ of (33) is uniformly attractive, i.e,
‖x(n)− x∗‖ → 0 as n → +∞, where x(n) = (x1(n),x2(n))T ∈
R2,n ∈ Z+.

Proof. Let yi(n) := xi(n)− xi
∗, i ∈ {1,2},n ∈ Z. It follows

from (33)-(34) that


y1(n+1) = a1(n)y1(n)+b1(n)×(
f1
( +∞

∑
k=0

g1(k)[y2(n− k)+ x∗2]
)
− f1

( +∞

∑
k=0

g1(k)x∗2
))

,

y2(n+1) = a2(n)y2(n)+b2(n)×(
f2
( +∞

∑
k=0

g2(k)[y1(n− k)+ x∗1]
)
− f2

( +∞

∑
k=0

g2(k)x∗1
))

.

(36)

Clearly, (36) is of the form

y(n+1) = A(n)y(n)+B(n)F
( n

∑
k=−∞

G(n− k)y(k)
)
, (37)

where y(n) := (y1(n),y2(n))T ∈ R2,n ∈ Z+, and for each n ∈
Z+,

A(n) :=

(
a1(n) 0

0 a2(n)

)
, B(n) :=

(
b1(n) 0

0 b2(n)

)
,

G(n) :=

(
0 g1(n)

g2(n) 0

)
,
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By a similar argument as in the preceding paragraph, we get
(29). This is a contradiction which completes the proof.

EXAMPLE 4.2. We now reconsider the Volterra difference
equation defined by (18)-(19). As shown in Example 3.5, the
zero solution of (18)-(19) is GES. Consider a perturbed equa-
tion given by

x(n+1) =
(

F
(
n,x(n)

)
+ F̃

(
n,x(n)

))
+

n

∑
k=0

(
G
(
n,k,x(k)

)
+ G̃

(
n,k,x(k)

))
, (30)

where F̃(·, ·) and G̃(·, ·, ·) are given by

F̃(n,x) =
e−sin2(nx)u(n)x

5
and

G̃(n,k,x) =
(n− k)2 cosk ln

(
1+ |v(n− k)x|

)
3(n− k)2 +1

,

where x ∈ R,n,k ∈ Z+,n ≥ k; u(·) : Z+ → R and v(·) : Z+ →
R are unknown functions satisfying supn∈Z+

|u(n)| < +∞ and
(v(n))n ∈ lγ(R) for some γ > 1. It is clear that

|F̃(n,x)| ≤ 1
5
|u(n)||x|, |G̃(n,k,x)| ≤ (n− k)2

3(n− k)2 +1
|v(n− k)||x|,

(31)

for all x ∈ R,n,k ∈ Z+,n ≥ k.
By Theorem 4.1, the zero solution of (30) is GES provided

sup
n∈Z+

|u(n)|+
∞

∑
n=0

|v(n)|<

1

sup
n∈Z+

{(
1− 1

4 −∑+∞
k=0

2ak

(3k+1)(3k+4)

)−1 n2

3n2+1

},

or equivalently,

sup
n∈Z+

|u(n)|+
∞

∑
n=0

|v(n)|<
1

( 3
4 − p)−1 1

3

=
9
4
−3p, (32)

where p :=
+∞

∑
k=0

2ak

(3k+1)(3k+4)
∈ (0,2/3] and a ∈ (0,1).

5. An application
In this section, we apply the obtained results to study uniform
attraction of equilibrium of discrete-time bidirectional associa-
tive memory (BAM) neural networks, see e.g. [18], [24].

Consider a discrete-time BAM neural network with infinite
delay in R2 described by


x1(n+1) = a1(n)x1(n)

+b1(n) f1

( +∞

∑
k=0

g1(k)x2(n− k)
)
+ I1(n),

x2(n+1) = a2(n)x2(n)

+b2(n) f2

( +∞

∑
k=0

g2(k)x1(n− k)
)
+ I2(n), n ∈ Z+,

(33)

with the initial condition

x1(k) = ψ1(k); x2(k) = ψ2(k), ∀k ∈ Z−,

where ψ1(·),ψ2(·) : Z− → R are given bounded functions.

Throughout, we assume that

(H1) There exist ai,bi ∈ R+, i ∈ {1,2} such that

|ai(n)| ≤ ai and |bi(n)| ≤ bi, ∀n ∈ Z+, i ∈ {1,2};

(H2) There exist ci,∈ R+, i ∈ {1,2} such that

| fi(x)− fi(y)| ≤ ci|x− y|, i ∈ {1,2}, for all x,y ∈ R;

(H3) (gi(n))n ∈ lγ(R), for some γ > 1, i ∈ {1,2}.

Suppose x∗ := (x∗1,x
∗
2)

T ∈ R2 is an equilibrium of the BAM
neural network (33). That is,



x∗1 = a1(n)x∗1 +b1(n) f1

( +∞

∑
k=0

g1(k)x∗2

)
+ I1(n), n ∈ Z+,

x∗2 = a2(n)x∗2 +b2(n) f2

( +∞

∑
k=0

g2(k)x∗1

)
+ I2(n), n ∈ Z+.

(34)

The following theorem gives an explicit criterion for uni-
form attraction of the equilibrium of (33).

THEOREM 5.1. Let (H1)-(H3) hold. If

min
{

max
i∈{1,2}

{
ai +bici

+∞

∑
k=0

gi(k)
}
,

max
i, j∈{1,2},i�= j

{
ai +b jc j

+∞

∑
k=0

g j(k)
}}

< 1. (35)

then the equilibrium point x∗ of (33) is uniformly attractive, i.e,
‖x(n)− x∗‖ → 0 as n → +∞, where x(n) = (x1(n),x2(n))T ∈
R2,n ∈ Z+.

Proof. Let yi(n) := xi(n)− xi
∗, i ∈ {1,2},n ∈ Z. It follows

from (33)-(34) that


y1(n+1) = a1(n)y1(n)+b1(n)×(
f1
( +∞

∑
k=0

g1(k)[y2(n− k)+ x∗2]
)
− f1

( +∞

∑
k=0

g1(k)x∗2
))

,

y2(n+1) = a2(n)y2(n)+b2(n)×(
f2
( +∞

∑
k=0

g2(k)[y1(n− k)+ x∗1]
)
− f2

( +∞

∑
k=0

g2(k)x∗1
))

.

(36)

Clearly, (36) is of the form

y(n+1) = A(n)y(n)+B(n)F
( n

∑
k=−∞

G(n− k)y(k)
)
, (37)

where y(n) := (y1(n),y2(n))T ∈ R2,n ∈ Z+, and for each n ∈
Z+,

A(n) :=

(
a1(n) 0

0 a2(n)

)
, B(n) :=

(
b1(n) 0

0 b2(n)

)
,

G(n) :=

(
0 g1(n)

g2(n) 0

)
,
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By a similar argument as in the preceding paragraph, we get
(29). This is a contradiction which completes the proof.

EXAMPLE 4.2. We now reconsider the Volterra difference
equation defined by (18)-(19). As shown in Example 3.5, the
zero solution of (18)-(19) is GES. Consider a perturbed equa-
tion given by

x(n+1) =
(

F
(
n,x(n)

)
+ F̃

(
n,x(n)

))
+

n

∑
k=0

(
G
(
n,k,x(k)

)
+ G̃

(
n,k,x(k)

))
, (30)

where F̃(·, ·) and G̃(·, ·, ·) are given by

F̃(n,x) =
e−sin2(nx)u(n)x

5
and

G̃(n,k,x) =
(n− k)2 cosk ln

(
1+ |v(n− k)x|

)
3(n− k)2 +1

,

where x ∈ R,n,k ∈ Z+,n ≥ k; u(·) : Z+ → R and v(·) : Z+ →
R are unknown functions satisfying supn∈Z+

|u(n)| < +∞ and
(v(n))n ∈ lγ(R) for some γ > 1. It is clear that

|F̃(n,x)| ≤ 1
5
|u(n)||x|, |G̃(n,k,x)| ≤ (n− k)2

3(n− k)2 +1
|v(n− k)||x|,

(31)

for all x ∈ R,n,k ∈ Z+,n ≥ k.
By Theorem 4.1, the zero solution of (30) is GES provided

sup
n∈Z+

|u(n)|+
∞

∑
n=0

|v(n)|<

1

sup
n∈Z+

{(
1− 1

4 −∑+∞
k=0

2ak

(3k+1)(3k+4)

)−1 n2

3n2+1

},

or equivalently,

sup
n∈Z+

|u(n)|+
∞

∑
n=0

|v(n)|<
1

( 3
4 − p)−1 1

3

=
9
4
−3p, (32)

where p :=
+∞

∑
k=0

2ak

(3k+1)(3k+4)
∈ (0,2/3] and a ∈ (0,1).

5. An application
In this section, we apply the obtained results to study uniform
attraction of equilibrium of discrete-time bidirectional associa-
tive memory (BAM) neural networks, see e.g. [18], [24].

Consider a discrete-time BAM neural network with infinite
delay in R2 described by


x1(n+1) = a1(n)x1(n)

+b1(n) f1

( +∞

∑
k=0

g1(k)x2(n− k)
)
+ I1(n),

x2(n+1) = a2(n)x2(n)

+b2(n) f2

( +∞

∑
k=0

g2(k)x1(n− k)
)
+ I2(n), n ∈ Z+,

(33)

with the initial condition

x1(k) = ψ1(k); x2(k) = ψ2(k), ∀k ∈ Z−,

where ψ1(·),ψ2(·) : Z− → R are given bounded functions.

Throughout, we assume that

(H1) There exist ai,bi ∈ R+, i ∈ {1,2} such that

|ai(n)| ≤ ai and |bi(n)| ≤ bi, ∀n ∈ Z+, i ∈ {1,2};

(H2) There exist ci,∈ R+, i ∈ {1,2} such that

| fi(x)− fi(y)| ≤ ci|x− y|, i ∈ {1,2}, for all x,y ∈ R;

(H3) (gi(n))n ∈ lγ(R), for some γ > 1, i ∈ {1,2}.

Suppose x∗ := (x∗1,x
∗
2)

T ∈ R2 is an equilibrium of the BAM
neural network (33). That is,



x∗1 = a1(n)x∗1 +b1(n) f1

( +∞

∑
k=0

g1(k)x∗2

)
+ I1(n), n ∈ Z+,

x∗2 = a2(n)x∗2 +b2(n) f2

( +∞

∑
k=0

g2(k)x∗1

)
+ I2(n), n ∈ Z+.

(34)

The following theorem gives an explicit criterion for uni-
form attraction of the equilibrium of (33).

THEOREM 5.1. Let (H1)-(H3) hold. If

min
{

max
i∈{1,2}

{
ai +bici

+∞

∑
k=0

gi(k)
}
,

max
i, j∈{1,2},i�= j

{
ai +b jc j

+∞

∑
k=0

g j(k)
}}

< 1. (35)

then the equilibrium point x∗ of (33) is uniformly attractive, i.e,
‖x(n)− x∗‖ → 0 as n → +∞, where x(n) = (x1(n),x2(n))T ∈
R2,n ∈ Z+.

Proof. Let yi(n) := xi(n)− xi
∗, i ∈ {1,2},n ∈ Z. It follows

from (33)-(34) that


y1(n+1) = a1(n)y1(n)+b1(n)×(
f1
( +∞

∑
k=0

g1(k)[y2(n− k)+ x∗2]
)
− f1

( +∞

∑
k=0

g1(k)x∗2
))

,

y2(n+1) = a2(n)y2(n)+b2(n)×(
f2
( +∞

∑
k=0

g2(k)[y1(n− k)+ x∗1]
)
− f2

( +∞

∑
k=0

g2(k)x∗1
))

.

(36)

Clearly, (36) is of the form

y(n+1) = A(n)y(n)+B(n)F
( n

∑
k=−∞

G(n− k)y(k)
)
, (37)

where y(n) := (y1(n),y2(n))T ∈ R2,n ∈ Z+, and for each n ∈
Z+,

A(n) :=

(
a1(n) 0

0 a2(n)

)
, B(n) :=

(
b1(n) 0

0 b2(n)

)
,

G(n) :=

(
0 g1(n)

g2(n) 0

)
,
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By a similar argument as in the preceding paragraph, we get
(29). This is a contradiction which completes the proof.

EXAMPLE 4.2. We now reconsider the Volterra difference
equation defined by (18)-(19). As shown in Example 3.5, the
zero solution of (18)-(19) is GES. Consider a perturbed equa-
tion given by

x(n+1) =
(

F
(
n,x(n)

)
+ F̃

(
n,x(n)

))
+

n

∑
k=0

(
G
(
n,k,x(k)

)
+ G̃

(
n,k,x(k)

))
, (30)

where F̃(·, ·) and G̃(·, ·, ·) are given by

F̃(n,x) =
e−sin2(nx)u(n)x

5
and

G̃(n,k,x) =
(n− k)2 cosk ln

(
1+ |v(n− k)x|

)
3(n− k)2 +1

,

where x ∈ R,n,k ∈ Z+,n ≥ k; u(·) : Z+ → R and v(·) : Z+ →
R are unknown functions satisfying supn∈Z+

|u(n)| < +∞ and
(v(n))n ∈ lγ(R) for some γ > 1. It is clear that

|F̃(n,x)| ≤ 1
5
|u(n)||x|, |G̃(n,k,x)| ≤ (n− k)2

3(n− k)2 +1
|v(n− k)||x|,

(31)

for all x ∈ R,n,k ∈ Z+,n ≥ k.
By Theorem 4.1, the zero solution of (30) is GES provided

sup
n∈Z+

|u(n)|+
∞

∑
n=0

|v(n)|<

1

sup
n∈Z+

{(
1− 1

4 −∑+∞
k=0

2ak

(3k+1)(3k+4)

)−1 n2

3n2+1

},

or equivalently,

sup
n∈Z+

|u(n)|+
∞

∑
n=0

|v(n)|<
1

( 3
4 − p)−1 1

3

=
9
4
−3p, (32)

where p :=
+∞

∑
k=0

2ak

(3k+1)(3k+4)
∈ (0,2/3] and a ∈ (0,1).

5. An application
In this section, we apply the obtained results to study uniform
attraction of equilibrium of discrete-time bidirectional associa-
tive memory (BAM) neural networks, see e.g. [18], [24].

Consider a discrete-time BAM neural network with infinite
delay in R2 described by


x1(n+1) = a1(n)x1(n)

+b1(n) f1

( +∞

∑
k=0

g1(k)x2(n− k)
)
+ I1(n),

x2(n+1) = a2(n)x2(n)

+b2(n) f2

( +∞

∑
k=0

g2(k)x1(n− k)
)
+ I2(n), n ∈ Z+,

(33)

with the initial condition

x1(k) = ψ1(k); x2(k) = ψ2(k), ∀k ∈ Z−,

where ψ1(·),ψ2(·) : Z− → R are given bounded functions.

Throughout, we assume that

(H1) There exist ai,bi ∈ R+, i ∈ {1,2} such that

|ai(n)| ≤ ai and |bi(n)| ≤ bi, ∀n ∈ Z+, i ∈ {1,2};

(H2) There exist ci,∈ R+, i ∈ {1,2} such that

| fi(x)− fi(y)| ≤ ci|x− y|, i ∈ {1,2}, for all x,y ∈ R;

(H3) (gi(n))n ∈ lγ(R), for some γ > 1, i ∈ {1,2}.

Suppose x∗ := (x∗1,x
∗
2)

T ∈ R2 is an equilibrium of the BAM
neural network (33). That is,



x∗1 = a1(n)x∗1 +b1(n) f1

( +∞

∑
k=0

g1(k)x∗2

)
+ I1(n), n ∈ Z+,

x∗2 = a2(n)x∗2 +b2(n) f2

( +∞

∑
k=0

g2(k)x∗1

)
+ I2(n), n ∈ Z+.

(34)

The following theorem gives an explicit criterion for uni-
form attraction of the equilibrium of (33).

THEOREM 5.1. Let (H1)-(H3) hold. If

min
{

max
i∈{1,2}

{
ai +bici

+∞

∑
k=0

gi(k)
}
,

max
i, j∈{1,2},i�= j

{
ai +b jc j

+∞

∑
k=0

g j(k)
}}

< 1. (35)

then the equilibrium point x∗ of (33) is uniformly attractive, i.e,
‖x(n)− x∗‖ → 0 as n → +∞, where x(n) = (x1(n),x2(n))T ∈
R2,n ∈ Z+.

Proof. Let yi(n) := xi(n)− xi
∗, i ∈ {1,2},n ∈ Z. It follows

from (33)-(34) that


y1(n+1) = a1(n)y1(n)+b1(n)×(
f1
( +∞

∑
k=0

g1(k)[y2(n− k)+ x∗2]
)
− f1

( +∞

∑
k=0

g1(k)x∗2
))

,

y2(n+1) = a2(n)y2(n)+b2(n)×(
f2
( +∞

∑
k=0

g2(k)[y1(n− k)+ x∗1]
)
− f2

( +∞

∑
k=0

g2(k)x∗1
))

.

(36)

Clearly, (36) is of the form

y(n+1) = A(n)y(n)+B(n)F
( n

∑
k=−∞

G(n− k)y(k)
)
, (37)

where y(n) := (y1(n),y2(n))T ∈ R2,n ∈ Z+, and for each n ∈
Z+,

A(n) :=

(
a1(n) 0

0 a2(n)

)
, B(n) :=

(
b1(n) 0

0 b2(n)

)
,

G(n) :=

(
0 g1(n)

g2(n) 0

)
,
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By a similar argument as in the preceding paragraph, we get
(29). This is a contradiction which completes the proof.

EXAMPLE 4.2. We now reconsider the Volterra difference
equation defined by (18)-(19). As shown in Example 3.5, the
zero solution of (18)-(19) is GES. Consider a perturbed equa-
tion given by

x(n+1) =
(

F
(
n,x(n)

)
+ F̃

(
n,x(n)

))
+

n

∑
k=0

(
G
(
n,k,x(k)

)
+ G̃

(
n,k,x(k)

))
, (30)

where F̃(·, ·) and G̃(·, ·, ·) are given by

F̃(n,x) =
e−sin2(nx)u(n)x

5
and

G̃(n,k,x) =
(n− k)2 cosk ln

(
1+ |v(n− k)x|

)
3(n− k)2 +1

,

where x ∈ R,n,k ∈ Z+,n ≥ k; u(·) : Z+ → R and v(·) : Z+ →
R are unknown functions satisfying supn∈Z+

|u(n)| < +∞ and
(v(n))n ∈ lγ(R) for some γ > 1. It is clear that

|F̃(n,x)| ≤ 1
5
|u(n)||x|, |G̃(n,k,x)| ≤ (n− k)2

3(n− k)2 +1
|v(n− k)||x|,

(31)

for all x ∈ R,n,k ∈ Z+,n ≥ k.
By Theorem 4.1, the zero solution of (30) is GES provided

sup
n∈Z+

|u(n)|+
∞

∑
n=0

|v(n)|<

1

sup
n∈Z+

{(
1− 1

4 −∑+∞
k=0

2ak

(3k+1)(3k+4)

)−1 n2

3n2+1

},

or equivalently,

sup
n∈Z+

|u(n)|+
∞

∑
n=0

|v(n)|<
1

( 3
4 − p)−1 1

3

=
9
4
−3p, (32)

where p :=
+∞

∑
k=0

2ak

(3k+1)(3k+4)
∈ (0,2/3] and a ∈ (0,1).

5. An application
In this section, we apply the obtained results to study uniform
attraction of equilibrium of discrete-time bidirectional associa-
tive memory (BAM) neural networks, see e.g. [18], [24].

Consider a discrete-time BAM neural network with infinite
delay in R2 described by


x1(n+1) = a1(n)x1(n)

+b1(n) f1

( +∞

∑
k=0

g1(k)x2(n− k)
)
+ I1(n),

x2(n+1) = a2(n)x2(n)

+b2(n) f2

( +∞

∑
k=0

g2(k)x1(n− k)
)
+ I2(n), n ∈ Z+,

(33)

with the initial condition

x1(k) = ψ1(k); x2(k) = ψ2(k), ∀k ∈ Z−,

where ψ1(·),ψ2(·) : Z− → R are given bounded functions.

Throughout, we assume that

(H1) There exist ai,bi ∈ R+, i ∈ {1,2} such that

|ai(n)| ≤ ai and |bi(n)| ≤ bi, ∀n ∈ Z+, i ∈ {1,2};

(H2) There exist ci,∈ R+, i ∈ {1,2} such that

| fi(x)− fi(y)| ≤ ci|x− y|, i ∈ {1,2}, for all x,y ∈ R;

(H3) (gi(n))n ∈ lγ(R), for some γ > 1, i ∈ {1,2}.

Suppose x∗ := (x∗1,x
∗
2)

T ∈ R2 is an equilibrium of the BAM
neural network (33). That is,



x∗1 = a1(n)x∗1 +b1(n) f1

( +∞

∑
k=0

g1(k)x∗2

)
+ I1(n), n ∈ Z+,

x∗2 = a2(n)x∗2 +b2(n) f2

( +∞

∑
k=0

g2(k)x∗1

)
+ I2(n), n ∈ Z+.

(34)

The following theorem gives an explicit criterion for uni-
form attraction of the equilibrium of (33).

THEOREM 5.1. Let (H1)-(H3) hold. If

min
{

max
i∈{1,2}

{
ai +bici

+∞

∑
k=0

gi(k)
}
,

max
i, j∈{1,2},i�= j

{
ai +b jc j

+∞

∑
k=0

g j(k)
}}

< 1. (35)

then the equilibrium point x∗ of (33) is uniformly attractive, i.e,
‖x(n)− x∗‖ → 0 as n → +∞, where x(n) = (x1(n),x2(n))T ∈
R2,n ∈ Z+.

Proof. Let yi(n) := xi(n)− xi
∗, i ∈ {1,2},n ∈ Z. It follows

from (33)-(34) that


y1(n+1) = a1(n)y1(n)+b1(n)×(
f1
( +∞

∑
k=0

g1(k)[y2(n− k)+ x∗2]
)
− f1

( +∞

∑
k=0

g1(k)x∗2
))

,

y2(n+1) = a2(n)y2(n)+b2(n)×(
f2
( +∞

∑
k=0

g2(k)[y1(n− k)+ x∗1]
)
− f2

( +∞

∑
k=0

g2(k)x∗1
))

.

(36)

Clearly, (36) is of the form

y(n+1) = A(n)y(n)+B(n)F
( n

∑
k=−∞

G(n− k)y(k)
)
, (37)

where y(n) := (y1(n),y2(n))T ∈ R2,n ∈ Z+, and for each n ∈
Z+,

A(n) :=

(
a1(n) 0

0 a2(n)

)
, B(n) :=

(
b1(n) 0

0 b2(n)

)
,

G(n) :=

(
0 g1(n)

g2(n) 0

)
,

6 Bull. Pol. Ac.: Tech. XX(Y) 2016

By a similar argument as in the preceding paragraph, we get
(29). This is a contradiction which completes the proof.

EXAMPLE 4.2. We now reconsider the Volterra difference
equation defined by (18)-(19). As shown in Example 3.5, the
zero solution of (18)-(19) is GES. Consider a perturbed equa-
tion given by

x(n+1) =
(

F
(
n,x(n)

)
+ F̃

(
n,x(n)

))
+

n

∑
k=0

(
G
(
n,k,x(k)

)
+ G̃

(
n,k,x(k)

))
, (30)

where F̃(·, ·) and G̃(·, ·, ·) are given by

F̃(n,x) =
e−sin2(nx)u(n)x

5
and

G̃(n,k,x) =
(n− k)2 cosk ln

(
1+ |v(n− k)x|

)
3(n− k)2 +1

,

where x ∈ R,n,k ∈ Z+,n ≥ k; u(·) : Z+ → R and v(·) : Z+ →
R are unknown functions satisfying supn∈Z+

|u(n)| < +∞ and
(v(n))n ∈ lγ(R) for some γ > 1. It is clear that

|F̃(n,x)| ≤ 1
5
|u(n)||x|, |G̃(n,k,x)| ≤ (n− k)2

3(n− k)2 +1
|v(n− k)||x|,

(31)

for all x ∈ R,n,k ∈ Z+,n ≥ k.
By Theorem 4.1, the zero solution of (30) is GES provided

sup
n∈Z+

|u(n)|+
∞

∑
n=0

|v(n)|<

1

sup
n∈Z+

{(
1− 1

4 −∑+∞
k=0

2ak

(3k+1)(3k+4)

)−1 n2

3n2+1

},

or equivalently,

sup
n∈Z+

|u(n)|+
∞

∑
n=0

|v(n)|<
1

( 3
4 − p)−1 1

3

=
9
4
−3p, (32)

where p :=
+∞

∑
k=0

2ak

(3k+1)(3k+4)
∈ (0,2/3] and a ∈ (0,1).

5. An application
In this section, we apply the obtained results to study uniform
attraction of equilibrium of discrete-time bidirectional associa-
tive memory (BAM) neural networks, see e.g. [18], [24].

Consider a discrete-time BAM neural network with infinite
delay in R2 described by


x1(n+1) = a1(n)x1(n)

+b1(n) f1

( +∞

∑
k=0

g1(k)x2(n− k)
)
+ I1(n),

x2(n+1) = a2(n)x2(n)

+b2(n) f2

( +∞

∑
k=0

g2(k)x1(n− k)
)
+ I2(n), n ∈ Z+,

(33)

with the initial condition

x1(k) = ψ1(k); x2(k) = ψ2(k), ∀k ∈ Z−,

where ψ1(·),ψ2(·) : Z− → R are given bounded functions.

Throughout, we assume that

(H1) There exist ai,bi ∈ R+, i ∈ {1,2} such that

|ai(n)| ≤ ai and |bi(n)| ≤ bi, ∀n ∈ Z+, i ∈ {1,2};

(H2) There exist ci,∈ R+, i ∈ {1,2} such that

| fi(x)− fi(y)| ≤ ci|x− y|, i ∈ {1,2}, for all x,y ∈ R;

(H3) (gi(n))n ∈ lγ(R), for some γ > 1, i ∈ {1,2}.

Suppose x∗ := (x∗1,x
∗
2)

T ∈ R2 is an equilibrium of the BAM
neural network (33). That is,



x∗1 = a1(n)x∗1 +b1(n) f1

( +∞

∑
k=0

g1(k)x∗2

)
+ I1(n), n ∈ Z+,

x∗2 = a2(n)x∗2 +b2(n) f2

( +∞

∑
k=0

g2(k)x∗1

)
+ I2(n), n ∈ Z+.

(34)

The following theorem gives an explicit criterion for uni-
form attraction of the equilibrium of (33).

THEOREM 5.1. Let (H1)-(H3) hold. If

min
{

max
i∈{1,2}

{
ai +bici

+∞

∑
k=0

gi(k)
}
,

max
i, j∈{1,2},i�= j

{
ai +b jc j

+∞

∑
k=0

g j(k)
}}

< 1. (35)

then the equilibrium point x∗ of (33) is uniformly attractive, i.e,
‖x(n)− x∗‖ → 0 as n → +∞, where x(n) = (x1(n),x2(n))T ∈
R2,n ∈ Z+.

Proof. Let yi(n) := xi(n)− xi
∗, i ∈ {1,2},n ∈ Z. It follows

from (33)-(34) that


y1(n+1) = a1(n)y1(n)+b1(n)×(
f1
( +∞

∑
k=0

g1(k)[y2(n− k)+ x∗2]
)
− f1

( +∞

∑
k=0

g1(k)x∗2
))

,

y2(n+1) = a2(n)y2(n)+b2(n)×(
f2
( +∞

∑
k=0

g2(k)[y1(n− k)+ x∗1]
)
− f2

( +∞

∑
k=0

g2(k)x∗1
))

.

(36)

Clearly, (36) is of the form

y(n+1) = A(n)y(n)+B(n)F
( n

∑
k=−∞

G(n− k)y(k)
)
, (37)

where y(n) := (y1(n),y2(n))T ∈ R2,n ∈ Z+, and for each n ∈
Z+,

A(n) :=

(
a1(n) 0

0 a2(n)

)
, B(n) :=

(
b1(n) 0

0 b2(n)

)
,

G(n) :=

(
0 g1(n)

g2(n) 0

)
,
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By a similar argument as in the preceding paragraph, we get
(29). This is a contradiction which completes the proof.

EXAMPLE 4.2. We now reconsider the Volterra difference
equation defined by (18)-(19). As shown in Example 3.5, the
zero solution of (18)-(19) is GES. Consider a perturbed equa-
tion given by

x(n+1) =
(

F
(
n,x(n)

)
+ F̃

(
n,x(n)

))
+

n

∑
k=0

(
G
(
n,k,x(k)

)
+ G̃

(
n,k,x(k)

))
, (30)

where F̃(·, ·) and G̃(·, ·, ·) are given by

F̃(n,x) =
e−sin2(nx)u(n)x

5
and

G̃(n,k,x) =
(n− k)2 cosk ln

(
1+ |v(n− k)x|

)
3(n− k)2 +1

,

where x ∈ R,n,k ∈ Z+,n ≥ k; u(·) : Z+ → R and v(·) : Z+ →
R are unknown functions satisfying supn∈Z+

|u(n)| < +∞ and
(v(n))n ∈ lγ(R) for some γ > 1. It is clear that

|F̃(n,x)| ≤ 1
5
|u(n)||x|, |G̃(n,k,x)| ≤ (n− k)2

3(n− k)2 +1
|v(n− k)||x|,

(31)

for all x ∈ R,n,k ∈ Z+,n ≥ k.
By Theorem 4.1, the zero solution of (30) is GES provided

sup
n∈Z+

|u(n)|+
∞

∑
n=0

|v(n)|<

1

sup
n∈Z+

{(
1− 1

4 −∑+∞
k=0

2ak

(3k+1)(3k+4)

)−1 n2

3n2+1

},

or equivalently,

sup
n∈Z+

|u(n)|+
∞

∑
n=0

|v(n)|<
1

( 3
4 − p)−1 1

3

=
9
4
−3p, (32)

where p :=
+∞

∑
k=0

2ak

(3k+1)(3k+4)
∈ (0,2/3] and a ∈ (0,1).

5. An application
In this section, we apply the obtained results to study uniform
attraction of equilibrium of discrete-time bidirectional associa-
tive memory (BAM) neural networks, see e.g. [18], [24].

Consider a discrete-time BAM neural network with infinite
delay in R2 described by


x1(n+1) = a1(n)x1(n)

+b1(n) f1

( +∞

∑
k=0

g1(k)x2(n− k)
)
+ I1(n),

x2(n+1) = a2(n)x2(n)

+b2(n) f2

( +∞

∑
k=0

g2(k)x1(n− k)
)
+ I2(n), n ∈ Z+,

(33)

with the initial condition

x1(k) = ψ1(k); x2(k) = ψ2(k), ∀k ∈ Z−,

where ψ1(·),ψ2(·) : Z− → R are given bounded functions.

Throughout, we assume that

(H1) There exist ai,bi ∈ R+, i ∈ {1,2} such that

|ai(n)| ≤ ai and |bi(n)| ≤ bi, ∀n ∈ Z+, i ∈ {1,2};

(H2) There exist ci,∈ R+, i ∈ {1,2} such that

| fi(x)− fi(y)| ≤ ci|x− y|, i ∈ {1,2}, for all x,y ∈ R;

(H3) (gi(n))n ∈ lγ(R), for some γ > 1, i ∈ {1,2}.

Suppose x∗ := (x∗1,x
∗
2)

T ∈ R2 is an equilibrium of the BAM
neural network (33). That is,



x∗1 = a1(n)x∗1 +b1(n) f1

( +∞

∑
k=0

g1(k)x∗2

)
+ I1(n), n ∈ Z+,

x∗2 = a2(n)x∗2 +b2(n) f2

( +∞

∑
k=0

g2(k)x∗1

)
+ I2(n), n ∈ Z+.

(34)

The following theorem gives an explicit criterion for uni-
form attraction of the equilibrium of (33).

THEOREM 5.1. Let (H1)-(H3) hold. If

min
{

max
i∈{1,2}

{
ai +bici

+∞

∑
k=0

gi(k)
}
,

max
i, j∈{1,2},i�= j

{
ai +b jc j

+∞

∑
k=0

g j(k)
}}

< 1. (35)

then the equilibrium point x∗ of (33) is uniformly attractive, i.e,
‖x(n)− x∗‖ → 0 as n → +∞, where x(n) = (x1(n),x2(n))T ∈
R2,n ∈ Z+.

Proof. Let yi(n) := xi(n)− xi
∗, i ∈ {1,2},n ∈ Z. It follows

from (33)-(34) that


y1(n+1) = a1(n)y1(n)+b1(n)×(
f1
( +∞

∑
k=0

g1(k)[y2(n− k)+ x∗2]
)
− f1

( +∞

∑
k=0

g1(k)x∗2
))

,

y2(n+1) = a2(n)y2(n)+b2(n)×(
f2
( +∞

∑
k=0

g2(k)[y1(n− k)+ x∗1]
)
− f2

( +∞

∑
k=0

g2(k)x∗1
))

.

(36)

Clearly, (36) is of the form

y(n+1) = A(n)y(n)+B(n)F
( n

∑
k=−∞

G(n− k)y(k)
)
, (37)

where y(n) := (y1(n),y2(n))T ∈ R2,n ∈ Z+, and for each n ∈
Z+,

A(n) :=

(
a1(n) 0

0 a2(n)

)
, B(n) :=

(
b1(n) 0

0 b2(n)

)
,

G(n) :=

(
0 g1(n)

g2(n) 0

)
,
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By a similar argument as in the preceding paragraph, we get
(29). This is a contradiction which completes the proof.

EXAMPLE 4.2. We now reconsider the Volterra difference
equation defined by (18)-(19). As shown in Example 3.5, the
zero solution of (18)-(19) is GES. Consider a perturbed equa-
tion given by

x(n+1) =
(

F
(
n,x(n)

)
+ F̃

(
n,x(n)

))
+

n

∑
k=0

(
G
(
n,k,x(k)

)
+ G̃

(
n,k,x(k)

))
, (30)

where F̃(·, ·) and G̃(·, ·, ·) are given by

F̃(n,x) =
e−sin2(nx)u(n)x

5
and

G̃(n,k,x) =
(n− k)2 cosk ln

(
1+ |v(n− k)x|

)
3(n− k)2 +1

,

where x ∈ R,n,k ∈ Z+,n ≥ k; u(·) : Z+ → R and v(·) : Z+ →
R are unknown functions satisfying supn∈Z+

|u(n)| < +∞ and
(v(n))n ∈ lγ(R) for some γ > 1. It is clear that

|F̃(n,x)| ≤ 1
5
|u(n)||x|, |G̃(n,k,x)| ≤ (n− k)2

3(n− k)2 +1
|v(n− k)||x|,

(31)

for all x ∈ R,n,k ∈ Z+,n ≥ k.
By Theorem 4.1, the zero solution of (30) is GES provided

sup
n∈Z+

|u(n)|+
∞

∑
n=0

|v(n)|<

1

sup
n∈Z+

{(
1− 1

4 −∑+∞
k=0

2ak

(3k+1)(3k+4)

)−1 n2

3n2+1

},

or equivalently,

sup
n∈Z+

|u(n)|+
∞

∑
n=0

|v(n)|<
1

( 3
4 − p)−1 1

3

=
9
4
−3p, (32)

where p :=
+∞

∑
k=0

2ak

(3k+1)(3k+4)
∈ (0,2/3] and a ∈ (0,1).

5. An application
In this section, we apply the obtained results to study uniform
attraction of equilibrium of discrete-time bidirectional associa-
tive memory (BAM) neural networks, see e.g. [18], [24].

Consider a discrete-time BAM neural network with infinite
delay in R2 described by


x1(n+1) = a1(n)x1(n)

+b1(n) f1

( +∞

∑
k=0

g1(k)x2(n− k)
)
+ I1(n),

x2(n+1) = a2(n)x2(n)

+b2(n) f2

( +∞

∑
k=0

g2(k)x1(n− k)
)
+ I2(n), n ∈ Z+,

(33)

with the initial condition

x1(k) = ψ1(k); x2(k) = ψ2(k), ∀k ∈ Z−,

where ψ1(·),ψ2(·) : Z− → R are given bounded functions.

Throughout, we assume that

(H1) There exist ai,bi ∈ R+, i ∈ {1,2} such that

|ai(n)| ≤ ai and |bi(n)| ≤ bi, ∀n ∈ Z+, i ∈ {1,2};

(H2) There exist ci,∈ R+, i ∈ {1,2} such that

| fi(x)− fi(y)| ≤ ci|x− y|, i ∈ {1,2}, for all x,y ∈ R;

(H3) (gi(n))n ∈ lγ(R), for some γ > 1, i ∈ {1,2}.

Suppose x∗ := (x∗1,x
∗
2)

T ∈ R2 is an equilibrium of the BAM
neural network (33). That is,



x∗1 = a1(n)x∗1 +b1(n) f1

( +∞

∑
k=0

g1(k)x∗2

)
+ I1(n), n ∈ Z+,

x∗2 = a2(n)x∗2 +b2(n) f2

( +∞

∑
k=0

g2(k)x∗1

)
+ I2(n), n ∈ Z+.

(34)

The following theorem gives an explicit criterion for uni-
form attraction of the equilibrium of (33).

THEOREM 5.1. Let (H1)-(H3) hold. If

min
{

max
i∈{1,2}

{
ai +bici

+∞

∑
k=0

gi(k)
}
,

max
i, j∈{1,2},i�= j

{
ai +b jc j

+∞

∑
k=0

g j(k)
}}

< 1. (35)

then the equilibrium point x∗ of (33) is uniformly attractive, i.e,
‖x(n)− x∗‖ → 0 as n → +∞, where x(n) = (x1(n),x2(n))T ∈
R2,n ∈ Z+.

Proof. Let yi(n) := xi(n)− xi
∗, i ∈ {1,2},n ∈ Z. It follows

from (33)-(34) that


y1(n+1) = a1(n)y1(n)+b1(n)×(
f1
( +∞

∑
k=0

g1(k)[y2(n− k)+ x∗2]
)
− f1

( +∞

∑
k=0

g1(k)x∗2
))

,

y2(n+1) = a2(n)y2(n)+b2(n)×(
f2
( +∞

∑
k=0

g2(k)[y1(n− k)+ x∗1]
)
− f2

( +∞

∑
k=0

g2(k)x∗1
))

.

(36)

Clearly, (36) is of the form

y(n+1) = A(n)y(n)+B(n)F
( n

∑
k=−∞

G(n− k)y(k)
)
, (37)

where y(n) := (y1(n),y2(n))T ∈ R2,n ∈ Z+, and for each n ∈
Z+,

A(n) :=

(
a1(n) 0

0 a2(n)

)
, B(n) :=

(
b1(n) 0

0 b2(n)

)
,

G(n) :=

(
0 g1(n)

g2(n) 0

)
,
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By a similar argument as in the preceding paragraph, we get
(29). This is a contradiction which completes the proof.

EXAMPLE 4.2. We now reconsider the Volterra difference
equation defined by (18)-(19). As shown in Example 3.5, the
zero solution of (18)-(19) is GES. Consider a perturbed equa-
tion given by

x(n+1) =
(

F
(
n,x(n)

)
+ F̃

(
n,x(n)

))
+

n

∑
k=0

(
G
(
n,k,x(k)

)
+ G̃

(
n,k,x(k)

))
, (30)

where F̃(·, ·) and G̃(·, ·, ·) are given by

F̃(n,x) =
e−sin2(nx)u(n)x

5
and

G̃(n,k,x) =
(n− k)2 cosk ln

(
1+ |v(n− k)x|

)
3(n− k)2 +1

,

where x ∈ R,n,k ∈ Z+,n ≥ k; u(·) : Z+ → R and v(·) : Z+ →
R are unknown functions satisfying supn∈Z+

|u(n)| < +∞ and
(v(n))n ∈ lγ(R) for some γ > 1. It is clear that

|F̃(n,x)| ≤ 1
5
|u(n)||x|, |G̃(n,k,x)| ≤ (n− k)2

3(n− k)2 +1
|v(n− k)||x|,

(31)

for all x ∈ R,n,k ∈ Z+,n ≥ k.
By Theorem 4.1, the zero solution of (30) is GES provided

sup
n∈Z+

|u(n)|+
∞

∑
n=0

|v(n)|<

1

sup
n∈Z+

{(
1− 1

4 −∑+∞
k=0

2ak

(3k+1)(3k+4)

)−1 n2

3n2+1

},

or equivalently,

sup
n∈Z+

|u(n)|+
∞

∑
n=0

|v(n)|<
1

( 3
4 − p)−1 1

3

=
9
4
−3p, (32)

where p :=
+∞

∑
k=0

2ak

(3k+1)(3k+4)
∈ (0,2/3] and a ∈ (0,1).

5. An application
In this section, we apply the obtained results to study uniform
attraction of equilibrium of discrete-time bidirectional associa-
tive memory (BAM) neural networks, see e.g. [18], [24].

Consider a discrete-time BAM neural network with infinite
delay in R2 described by


x1(n+1) = a1(n)x1(n)

+b1(n) f1

( +∞

∑
k=0

g1(k)x2(n− k)
)
+ I1(n),

x2(n+1) = a2(n)x2(n)

+b2(n) f2

( +∞

∑
k=0

g2(k)x1(n− k)
)
+ I2(n), n ∈ Z+,

(33)

with the initial condition

x1(k) = ψ1(k); x2(k) = ψ2(k), ∀k ∈ Z−,

where ψ1(·),ψ2(·) : Z− → R are given bounded functions.

Throughout, we assume that

(H1) There exist ai,bi ∈ R+, i ∈ {1,2} such that

|ai(n)| ≤ ai and |bi(n)| ≤ bi, ∀n ∈ Z+, i ∈ {1,2};

(H2) There exist ci,∈ R+, i ∈ {1,2} such that

| fi(x)− fi(y)| ≤ ci|x− y|, i ∈ {1,2}, for all x,y ∈ R;

(H3) (gi(n))n ∈ lγ(R), for some γ > 1, i ∈ {1,2}.

Suppose x∗ := (x∗1,x
∗
2)

T ∈ R2 is an equilibrium of the BAM
neural network (33). That is,



x∗1 = a1(n)x∗1 +b1(n) f1

( +∞

∑
k=0

g1(k)x∗2

)
+ I1(n), n ∈ Z+,

x∗2 = a2(n)x∗2 +b2(n) f2

( +∞

∑
k=0

g2(k)x∗1

)
+ I2(n), n ∈ Z+.

(34)

The following theorem gives an explicit criterion for uni-
form attraction of the equilibrium of (33).

THEOREM 5.1. Let (H1)-(H3) hold. If

min
{

max
i∈{1,2}

{
ai +bici

+∞

∑
k=0

gi(k)
}
,

max
i, j∈{1,2},i�= j

{
ai +b jc j

+∞

∑
k=0

g j(k)
}}

< 1. (35)

then the equilibrium point x∗ of (33) is uniformly attractive, i.e,
‖x(n)− x∗‖ → 0 as n → +∞, where x(n) = (x1(n),x2(n))T ∈
R2,n ∈ Z+.

Proof. Let yi(n) := xi(n)− xi
∗, i ∈ {1,2},n ∈ Z. It follows

from (33)-(34) that


y1(n+1) = a1(n)y1(n)+b1(n)×(
f1
( +∞

∑
k=0

g1(k)[y2(n− k)+ x∗2]
)
− f1

( +∞

∑
k=0

g1(k)x∗2
))

,

y2(n+1) = a2(n)y2(n)+b2(n)×(
f2
( +∞

∑
k=0

g2(k)[y1(n− k)+ x∗1]
)
− f2

( +∞

∑
k=0

g2(k)x∗1
))

.

(36)

Clearly, (36) is of the form

y(n+1) = A(n)y(n)+B(n)F
( n

∑
k=−∞

G(n− k)y(k)
)
, (37)

where y(n) := (y1(n),y2(n))T ∈ R2,n ∈ Z+, and for each n ∈
Z+,

A(n) :=

(
a1(n) 0

0 a2(n)

)
, B(n) :=

(
b1(n) 0

0 b2(n)

)
,

G(n) :=

(
0 g1(n)

g2(n) 0

)
,

6 Bull. Pol. Ac.: Tech. XX(Y) 2016

, ,

,

and

Stability of nonlinear Volterra equations

and

F(z) :=




f1
(
z1 +

+∞

∑
k=0

g1(k)x∗2
)
− f1

( +∞

∑
k=0

g1(k)x∗2
)

f2
(
z2 +

+∞

∑
k=0

g2(k)x∗1
)
− f2

( +∞

∑
k=0

g2(k)x∗1
)


 ,

z := (z1,z2)
T ∈ R2.

Let A := diag(a1,a2) and D := diag(b1c1,b2c2) ∈ R2×2 and

M :=A+
+∞

∑
k=0

DG(k)=

(
a1 b1c1 ∑+∞

k=0 g1(k)
b2c2 ∑+∞

k=0 g2(k) a2

)
.

Suppose R2 is endowed with ‖ · ‖1 or ‖ · ‖∞, then ‖E‖1 =
max1≤ j≤2 ∑2

i=1 |ei j| and ‖E‖∞ = max1≤i≤2 ∑2
j=1 |ei j|, for E =

(ei j) ∈ R2×2, see e.g. [7]. Note that (35) implies that ρ(M)≤
min{‖M‖∞,‖M‖1} < 1. Since ρ(M) < 1 and (G(n))n ∈
lγ(R2×2), it follows that the zero solution of the linear time-
invariant equation

z(n+1) = Az(n)+
n

∑
k=0

DG(n− k)z(k), n ∈ Z+, (38)

is GES, by Theorem 3.4.
Next, consider the linear time-invariant equation with infi-

nite delay

z(n+1) = Az(n)+
n

∑
k=−∞

DG(n− k)z(k), n ∈ Z+, (39)

with the initial condition z(s) = ψ(s), s ∈ Z−, where ψ(·) :
Z− → R2 is bounded.

Note that (39) can be represented as a nonhomogeneous
equation associated with (38)

z(n+1) = Az(n)+
n

∑
k=0

DG(n− k)z(k)+g(n), n ∈ Z+, (40)

where g(n) := ∑−1
j=−∞ DG(n − j)ψ( j),n ∈ Z+. Since (38) is

GES, the kernel G(·) and the resolvent of (38) exponentially
decay, see e.g. [8]. Using the variation of constants formula
[10], it is easy to see that

‖z(n)‖→ 0 as n →+∞, (41)

for any bounded initial function ψ(·) : Z− →R2. Furthermore,
invoking (H1)-(H3), it is easy to show that

|y(n)| ≤ z(n), ∀n ∈ Z+,

where y(·) is the unique solution of (37) with the initial func-
tion ψ(·) := (ψ1(·),ψ2(·))T and z(·) is the unique solution of
(40) with the initial function |ψ(·)| := (|ψ1(·)|, |ψ2(·)|)T . By
the monotonicity of vector norm, we get

‖y(n)‖ ≤ ‖z(n)‖, ∀n ∈ Z+. (42)

It follows from (41) and (42) that ‖y(n)‖ = ‖x(n)− x∗‖ →
0 as n →+∞. This completes the proof.
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and
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
 ,

z := (z1,z2)
T ∈ R2.

Let A := diag(a1,a2) and D := diag(b1c1,b2c2) ∈ R2×2 and

M :=A+
+∞

∑
k=0

DG(k)=

(
a1 b1c1 ∑+∞

k=0 g1(k)
b2c2 ∑+∞

k=0 g2(k) a2

)
.

Suppose R2 is endowed with ‖ · ‖1 or ‖ · ‖∞, then ‖E‖1 =
max1≤ j≤2 ∑2

i=1 |ei j| and ‖E‖∞ = max1≤i≤2 ∑2
j=1 |ei j|, for E =

(ei j) ∈ R2×2, see e.g. [7]. Note that (35) implies that ρ(M)≤
min{‖M‖∞,‖M‖1} < 1. Since ρ(M) < 1 and (G(n))n ∈
lγ(R2×2), it follows that the zero solution of the linear time-
invariant equation

z(n+1) = Az(n)+
n

∑
k=0

DG(n− k)z(k), n ∈ Z+, (38)

is GES, by Theorem 3.4.
Next, consider the linear time-invariant equation with infi-

nite delay

z(n+1) = Az(n)+
n

∑
k=−∞

DG(n− k)z(k), n ∈ Z+, (39)

with the initial condition z(s) = ψ(s), s ∈ Z−, where ψ(·) :
Z− → R2 is bounded.

Note that (39) can be represented as a nonhomogeneous
equation associated with (38)

z(n+1) = Az(n)+
n

∑
k=0

DG(n− k)z(k)+g(n), n ∈ Z+, (40)

where g(n) := ∑−1
j=−∞ DG(n − j)ψ( j),n ∈ Z+. Since (38) is

GES, the kernel G(·) and the resolvent of (38) exponentially
decay, see e.g. [8]. Using the variation of constants formula
[10], it is easy to see that

‖z(n)‖→ 0 as n →+∞, (41)

for any bounded initial function ψ(·) : Z− →R2. Furthermore,
invoking (H1)-(H3), it is easy to show that

|y(n)| ≤ z(n), ∀n ∈ Z+,

where y(·) is the unique solution of (37) with the initial func-
tion ψ(·) := (ψ1(·),ψ2(·))T and z(·) is the unique solution of
(40) with the initial function |ψ(·)| := (|ψ1(·)|, |ψ2(·)|)T . By
the monotonicity of vector norm, we get

‖y(n)‖ ≤ ‖z(n)‖, ∀n ∈ Z+. (42)

It follows from (41) and (42) that ‖y(n)‖ = ‖x(n)− x∗‖ →
0 as n →+∞. This completes the proof.
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1. Introduction
Volterra difference equations have been widely used in the
modeling of processes in continuous mechanics and biome-
chanics, problems of control and estimations and some
schemes of numerical solutions of integral and integro-
differential equations, see e.g. [2], [7], [12], [16]-[19].

Problems of stability of Volterra difference equations have
attracted much attention from researchers, during the last
twenty years, see e.g. [1],[4]-[13], [15], [21]-[23] and refer-
ences therein. Many various methods have been used to inves-
tigate stability of Volterra difference equations such as Lya-
punov functions, Z transform, comparison theorems, topologi-
cal methods, fixed point theorems, etc (see e.g. [7], [10], [15],
[23]).

In particular, the first significant result on exponential sta-
bility of Volterra difference equations is due to Elaydi and
Murakami, see [8]. Roughly speaking, Elaydi and Murakami
showed that even to the simplest Volterra difference equations
(namely, linear time-invariant Volterra difference equations of
convolution type), the exponential stability is “stronger” than
the uniform asymptotic stability. More precisely, a linear time-
invariant Volterra difference equation of convolution type is ex-
ponentially stable if and only if it is uniformly asymptotically
stable and its kernel exponentially decays, see [8]. For further
and updated information on stability of linear time-invariant
Volterra difference equations, we refer to the recent survey pa-
per [10].

In general, problems of global exponential stability of time-
varying Volterra difference equations are very hard even those
of linear time-varying Volterra equations. Most of existing re-
sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
ditions for exponential stability of linear time-varying Volterra
difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
nential stability of nonlinear time-varying Volterra difference
equations. Our approach is based on the celebrated Perron-
Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
nential stability of the zero solution of general nonlinear time-

varying Volterra difference equations. Furthermore, we derive
an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.

2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there

1

2×2 and
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and

F(z) :=
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f1
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)
− f1

( +∞
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g1(k)x∗2
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(
z2 +
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∑
k=0

g2(k)x∗1
)
− f2

( +∞

∑
k=0

g2(k)x∗1
)


 ,

z := (z1,z2)
T ∈ R2.

Let A := diag(a1,a2) and D := diag(b1c1,b2c2) ∈ R2×2 and

M :=A+
+∞

∑
k=0

DG(k)=

(
a1 b1c1 ∑+∞

k=0 g1(k)
b2c2 ∑+∞

k=0 g2(k) a2

)
.

Suppose R2 is endowed with ‖ · ‖1 or ‖ · ‖∞, then ‖E‖1 =
max1≤ j≤2 ∑2

i=1 |ei j| and ‖E‖∞ = max1≤i≤2 ∑2
j=1 |ei j|, for E =

(ei j) ∈ R2×2, see e.g. [7]. Note that (35) implies that ρ(M)≤
min{‖M‖∞,‖M‖1} < 1. Since ρ(M) < 1 and (G(n))n ∈
lγ(R2×2), it follows that the zero solution of the linear time-
invariant equation

z(n+1) = Az(n)+
n

∑
k=0

DG(n− k)z(k), n ∈ Z+, (38)

is GES, by Theorem 3.4.
Next, consider the linear time-invariant equation with infi-

nite delay

z(n+1) = Az(n)+
n

∑
k=−∞

DG(n− k)z(k), n ∈ Z+, (39)

with the initial condition z(s) = ψ(s), s ∈ Z−, where ψ(·) :
Z− → R2 is bounded.

Note that (39) can be represented as a nonhomogeneous
equation associated with (38)

z(n+1) = Az(n)+
n

∑
k=0

DG(n− k)z(k)+g(n), n ∈ Z+, (40)

where g(n) := ∑−1
j=−∞ DG(n − j)ψ( j),n ∈ Z+. Since (38) is

GES, the kernel G(·) and the resolvent of (38) exponentially
decay, see e.g. [8]. Using the variation of constants formula
[10], it is easy to see that

‖z(n)‖→ 0 as n →+∞, (41)

for any bounded initial function ψ(·) : Z− →R2. Furthermore,
invoking (H1)-(H3), it is easy to show that

|y(n)| ≤ z(n), ∀n ∈ Z+,

where y(·) is the unique solution of (37) with the initial func-
tion ψ(·) := (ψ1(·),ψ2(·))T and z(·) is the unique solution of
(40) with the initial function |ψ(·)| := (|ψ1(·)|, |ψ2(·)|)T . By
the monotonicity of vector norm, we get

‖y(n)‖ ≤ ‖z(n)‖, ∀n ∈ Z+. (42)

It follows from (41) and (42) that ‖y(n)‖ = ‖x(n)− x∗‖ →
0 as n →+∞. This completes the proof.
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Let A := diag(a1,a2) and D := diag(b1c1,b2c2) ∈ R2×2 and
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k=0

DG(k)=

(
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k=0 g1(k)
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Suppose R2 is endowed with ‖ · ‖1 or ‖ · ‖∞, then ‖E‖1 =
max1≤ j≤2 ∑2

i=1 |ei j| and ‖E‖∞ = max1≤i≤2 ∑2
j=1 |ei j|, for E =

(ei j) ∈ R2×2, see e.g. [7]. Note that (35) implies that ρ(M)≤
min{‖M‖∞,‖M‖1} < 1. Since ρ(M) < 1 and (G(n))n ∈
lγ(R2×2), it follows that the zero solution of the linear time-
invariant equation

z(n+1) = Az(n)+
n

∑
k=0

DG(n− k)z(k), n ∈ Z+, (38)

is GES, by Theorem 3.4.
Next, consider the linear time-invariant equation with infi-

nite delay

z(n+1) = Az(n)+
n

∑
k=−∞

DG(n− k)z(k), n ∈ Z+, (39)

with the initial condition z(s) = ψ(s), s ∈ Z−, where ψ(·) :
Z− → R2 is bounded.

Note that (39) can be represented as a nonhomogeneous
equation associated with (38)

z(n+1) = Az(n)+
n

∑
k=0

DG(n− k)z(k)+g(n), n ∈ Z+, (40)

where g(n) := ∑−1
j=−∞ DG(n − j)ψ( j),n ∈ Z+. Since (38) is

GES, the kernel G(·) and the resolvent of (38) exponentially
decay, see e.g. [8]. Using the variation of constants formula
[10], it is easy to see that

‖z(n)‖→ 0 as n →+∞, (41)

for any bounded initial function ψ(·) : Z− →R2. Furthermore,
invoking (H1)-(H3), it is easy to show that

|y(n)| ≤ z(n), ∀n ∈ Z+,

where y(·) is the unique solution of (37) with the initial func-
tion ψ(·) := (ψ1(·),ψ2(·))T and z(·) is the unique solution of
(40) with the initial function |ψ(·)| := (|ψ1(·)|, |ψ2(·)|)T . By
the monotonicity of vector norm, we get

‖y(n)‖ ≤ ‖z(n)‖, ∀n ∈ Z+. (42)

It follows from (41) and (42) that ‖y(n)‖ = ‖x(n)− x∗‖ →
0 as n →+∞. This completes the proof.
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F(z) :=


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f1
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g1(k)x∗2
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g2(k)x∗1
)
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( +∞

∑
k=0

g2(k)x∗1
)


 ,

z := (z1,z2)
T ∈ R2.

Let A := diag(a1,a2) and D := diag(b1c1,b2c2) ∈ R2×2 and

M :=A+
+∞

∑
k=0

DG(k)=

(
a1 b1c1 ∑+∞

k=0 g1(k)
b2c2 ∑+∞

k=0 g2(k) a2

)
.

Suppose R2 is endowed with ‖ · ‖1 or ‖ · ‖∞, then ‖E‖1 =
max1≤ j≤2 ∑2

i=1 |ei j| and ‖E‖∞ = max1≤i≤2 ∑2
j=1 |ei j|, for E =

(ei j) ∈ R2×2, see e.g. [7]. Note that (35) implies that ρ(M)≤
min{‖M‖∞,‖M‖1} < 1. Since ρ(M) < 1 and (G(n))n ∈
lγ(R2×2), it follows that the zero solution of the linear time-
invariant equation

z(n+1) = Az(n)+
n

∑
k=0

DG(n− k)z(k), n ∈ Z+, (38)

is GES, by Theorem 3.4.
Next, consider the linear time-invariant equation with infi-

nite delay

z(n+1) = Az(n)+
n

∑
k=−∞

DG(n− k)z(k), n ∈ Z+, (39)

with the initial condition z(s) = ψ(s), s ∈ Z−, where ψ(·) :
Z− → R2 is bounded.

Note that (39) can be represented as a nonhomogeneous
equation associated with (38)

z(n+1) = Az(n)+
n

∑
k=0

DG(n− k)z(k)+g(n), n ∈ Z+, (40)

where g(n) := ∑−1
j=−∞ DG(n − j)ψ( j),n ∈ Z+. Since (38) is

GES, the kernel G(·) and the resolvent of (38) exponentially
decay, see e.g. [8]. Using the variation of constants formula
[10], it is easy to see that

‖z(n)‖→ 0 as n →+∞, (41)

for any bounded initial function ψ(·) : Z− →R2. Furthermore,
invoking (H1)-(H3), it is easy to show that

|y(n)| ≤ z(n), ∀n ∈ Z+,

where y(·) is the unique solution of (37) with the initial func-
tion ψ(·) := (ψ1(·),ψ2(·))T and z(·) is the unique solution of
(40) with the initial function |ψ(·)| := (|ψ1(·)|, |ψ2(·)|)T . By
the monotonicity of vector norm, we get

‖y(n)‖ ≤ ‖z(n)‖, ∀n ∈ Z+. (42)

It follows from (41) and (42) that ‖y(n)‖ = ‖x(n)− x∗‖ →
0 as n →+∞. This completes the proof.
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(ei j) ∈ R2×2, see e.g. [7]. Note that (35) implies that ρ(M)≤
min{‖M‖∞,‖M‖1} < 1. Since ρ(M) < 1 and (G(n))n ∈
lγ(R2×2), it follows that the zero solution of the linear time-
invariant equation

z(n+1) = Az(n)+
n

∑
k=0

DG(n− k)z(k), n ∈ Z+, (38)

is GES, by Theorem 3.4.
Next, consider the linear time-invariant equation with infi-

nite delay

z(n+1) = Az(n)+
n

∑
k=−∞

DG(n− k)z(k), n ∈ Z+, (39)

with the initial condition z(s) = ψ(s), s ∈ Z−, where ψ(·) :
Z− → R2 is bounded.

Note that (39) can be represented as a nonhomogeneous
equation associated with (38)

z(n+1) = Az(n)+
n

∑
k=0

DG(n− k)z(k)+g(n), n ∈ Z+, (40)

where g(n) := ∑−1
j=−∞ DG(n − j)ψ( j),n ∈ Z+. Since (38) is

GES, the kernel G(·) and the resolvent of (38) exponentially
decay, see e.g. [8]. Using the variation of constants formula
[10], it is easy to see that

‖z(n)‖→ 0 as n →+∞, (41)

for any bounded initial function ψ(·) : Z− →R2. Furthermore,
invoking (H1)-(H3), it is easy to show that

|y(n)| ≤ z(n), ∀n ∈ Z+,

where y(·) is the unique solution of (37) with the initial func-
tion ψ(·) := (ψ1(·),ψ2(·))T and z(·) is the unique solution of
(40) with the initial function |ψ(·)| := (|ψ1(·)|, |ψ2(·)|)T . By
the monotonicity of vector norm, we get

‖y(n)‖ ≤ ‖z(n)‖, ∀n ∈ Z+. (42)

It follows from (41) and (42) that ‖y(n)‖ = ‖x(n)− x∗‖ →
0 as n →+∞. This completes the proof.
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1. Introduction
Volterra difference equations have been widely used in the
modeling of processes in continuous mechanics and biome-
chanics, problems of control and estimations and some
schemes of numerical solutions of integral and integro-
differential equations, see e.g. [2], [7], [12], [16]-[19].

Problems of stability of Volterra difference equations have
attracted much attention from researchers, during the last
twenty years, see e.g. [1],[4]-[13], [15], [21]-[23] and refer-
ences therein. Many various methods have been used to inves-
tigate stability of Volterra difference equations such as Lya-
punov functions, Z transform, comparison theorems, topologi-
cal methods, fixed point theorems, etc (see e.g. [7], [10], [15],
[23]).

In particular, the first significant result on exponential sta-
bility of Volterra difference equations is due to Elaydi and
Murakami, see [8]. Roughly speaking, Elaydi and Murakami
showed that even to the simplest Volterra difference equations
(namely, linear time-invariant Volterra difference equations of
convolution type), the exponential stability is “stronger” than
the uniform asymptotic stability. More precisely, a linear time-
invariant Volterra difference equation of convolution type is ex-
ponentially stable if and only if it is uniformly asymptotically
stable and its kernel exponentially decays, see [8]. For further
and updated information on stability of linear time-invariant
Volterra difference equations, we refer to the recent survey pa-
per [10].

In general, problems of global exponential stability of time-
varying Volterra difference equations are very hard even those
of linear time-varying Volterra equations. Most of existing re-
sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
ditions for exponential stability of linear time-varying Volterra
difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
nential stability of nonlinear time-varying Volterra difference
equations. Our approach is based on the celebrated Perron-
Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
nential stability of the zero solution of general nonlinear time-

varying Volterra difference equations. Furthermore, we derive
an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.

2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there

1

2 is endowed with k¢k1 or k¢k1, then kEk1 = max1∙  j∙2 
∑2

i=1jeijj and kEk1 = max1∙  i∙2∑2
j=1jeijj, for E = (eij) 2 
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bility of Volterra difference equations is due to Elaydi and
Murakami, see [8]. Roughly speaking, Elaydi and Murakami
showed that even to the simplest Volterra difference equations
(namely, linear time-invariant Volterra difference equations of
convolution type), the exponential stability is “stronger” than
the uniform asymptotic stability. More precisely, a linear time-
invariant Volterra difference equation of convolution type is ex-
ponentially stable if and only if it is uniformly asymptotically
stable and its kernel exponentially decays, see [8]. For further
and updated information on stability of linear time-invariant
Volterra difference equations, we refer to the recent survey pa-
per [10].

In general, problems of global exponential stability of time-
varying Volterra difference equations are very hard even those
of linear time-varying Volterra equations. Most of existing re-
sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
ditions for exponential stability of linear time-varying Volterra
difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
nential stability of nonlinear time-varying Volterra difference
equations. Our approach is based on the celebrated Perron-
Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
nential stability of the zero solution of general nonlinear time-

varying Volterra difference equations. Furthermore, we derive
an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.

2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there

1

2×2, see 
e.g. [7]. Note that (35) implies that ρ(M) ∙ min{kMk1, kMk1} < 1. 
Since ρ(M) < 1 and (G(n))n 2 lγ(
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2×2), it follows that the zero 
solution of the linear time-invariant equation
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and

F(z) :=




f1
(
z1 +

+∞

∑
k=0

g1(k)x∗2
)
− f1

( +∞

∑
k=0

g1(k)x∗2
)

f2
(
z2 +

+∞

∑
k=0

g2(k)x∗1
)
− f2

( +∞

∑
k=0

g2(k)x∗1
)


 ,

z := (z1,z2)
T ∈ R2.

Let A := diag(a1,a2) and D := diag(b1c1,b2c2) ∈ R2×2 and

M :=A+
+∞

∑
k=0

DG(k)=

(
a1 b1c1 ∑+∞

k=0 g1(k)
b2c2 ∑+∞

k=0 g2(k) a2

)
.

Suppose R2 is endowed with ‖ · ‖1 or ‖ · ‖∞, then ‖E‖1 =
max1≤ j≤2 ∑2

i=1 |ei j| and ‖E‖∞ = max1≤i≤2 ∑2
j=1 |ei j|, for E =

(ei j) ∈ R2×2, see e.g. [7]. Note that (35) implies that ρ(M)≤
min{‖M‖∞,‖M‖1} < 1. Since ρ(M) < 1 and (G(n))n ∈
lγ(R2×2), it follows that the zero solution of the linear time-
invariant equation

z(n+1) = Az(n)+
n

∑
k=0

DG(n− k)z(k), n ∈ Z+, (38)

is GES, by Theorem 3.4.
Next, consider the linear time-invariant equation with infi-

nite delay

z(n+1) = Az(n)+
n

∑
k=−∞

DG(n− k)z(k), n ∈ Z+, (39)

with the initial condition z(s) = ψ(s), s ∈ Z−, where ψ(·) :
Z− → R2 is bounded.

Note that (39) can be represented as a nonhomogeneous
equation associated with (38)

z(n+1) = Az(n)+
n

∑
k=0

DG(n− k)z(k)+g(n), n ∈ Z+, (40)

where g(n) := ∑−1
j=−∞ DG(n − j)ψ( j),n ∈ Z+. Since (38) is

GES, the kernel G(·) and the resolvent of (38) exponentially
decay, see e.g. [8]. Using the variation of constants formula
[10], it is easy to see that

‖z(n)‖→ 0 as n →+∞, (41)

for any bounded initial function ψ(·) : Z− →R2. Furthermore,
invoking (H1)-(H3), it is easy to show that

|y(n)| ≤ z(n), ∀n ∈ Z+,

where y(·) is the unique solution of (37) with the initial func-
tion ψ(·) := (ψ1(·),ψ2(·))T and z(·) is the unique solution of
(40) with the initial function |ψ(·)| := (|ψ1(·)|, |ψ2(·)|)T . By
the monotonicity of vector norm, we get

‖y(n)‖ ≤ ‖z(n)‖, ∀n ∈ Z+. (42)

It follows from (41) and (42) that ‖y(n)‖ = ‖x(n)− x∗‖ →
0 as n →+∞. This completes the proof.
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with the initial condition z(s) = ψ(s), s 2 

BULLETIN OF THE POLISH ACADEMY OF SCIENCES
TECHNICAL SCIENCES, Vol. XX, No. Y, 2016
DOI: 10.1515/bpasts-2016-00ZZ

Stability of nonlinear Volterra equations

Abstract. Using a novel approach, we present some new explicit criteria for global exponential stability of the zero solution of general
nonlinear time-varying Volterra difference equations. Furthermore, an explicit stability bound for equations subject to nonlinear time-varying
perturbations is given. Finally, the obtained results are used to study uniform attraction of equilibrium of discrete-time bidirectional associative
memory (BAM) neural networks. Some illustrative examples are given.

Key words: Global exponential stability, Volterra equations

1. Introduction
Volterra difference equations have been widely used in the
modeling of processes in continuous mechanics and biome-
chanics, problems of control and estimations and some
schemes of numerical solutions of integral and integro-
differential equations, see e.g. [2], [7], [12], [16]-[19].

Problems of stability of Volterra difference equations have
attracted much attention from researchers, during the last
twenty years, see e.g. [1],[4]-[13], [15], [21]-[23] and refer-
ences therein. Many various methods have been used to inves-
tigate stability of Volterra difference equations such as Lya-
punov functions, Z transform, comparison theorems, topologi-
cal methods, fixed point theorems, etc (see e.g. [7], [10], [15],
[23]).

In particular, the first significant result on exponential sta-
bility of Volterra difference equations is due to Elaydi and
Murakami, see [8]. Roughly speaking, Elaydi and Murakami
showed that even to the simplest Volterra difference equations
(namely, linear time-invariant Volterra difference equations of
convolution type), the exponential stability is “stronger” than
the uniform asymptotic stability. More precisely, a linear time-
invariant Volterra difference equation of convolution type is ex-
ponentially stable if and only if it is uniformly asymptotically
stable and its kernel exponentially decays, see [8]. For further
and updated information on stability of linear time-invariant
Volterra difference equations, we refer to the recent survey pa-
per [10].

In general, problems of global exponential stability of time-
varying Volterra difference equations are very hard even those
of linear time-varying Volterra equations. Most of existing re-
sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
ditions for exponential stability of linear time-varying Volterra
difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
nential stability of nonlinear time-varying Volterra difference
equations. Our approach is based on the celebrated Perron-
Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
nential stability of the zero solution of general nonlinear time-

varying Volterra difference equations. Furthermore, we derive
an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.

2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there

1
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bility of Volterra difference equations is due to Elaydi and
Murakami, see [8]. Roughly speaking, Elaydi and Murakami
showed that even to the simplest Volterra difference equations
(namely, linear time-invariant Volterra difference equations of
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invariant Volterra difference equation of convolution type is ex-
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Volterra difference equations, we refer to the recent survey pa-
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sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
ditions for exponential stability of linear time-varying Volterra
difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].
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nential stability of nonlinear time-varying Volterra difference
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Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
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an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.
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In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
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B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
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we write A � B instead of A ≥ B. The set of all nonnega-
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always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
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P ∈ Rl×q, Q ∈ Rl×q
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negative matrices which will be used in what follows.
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showed that even to the simplest Volterra difference equations
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invariant Volterra difference equation of convolution type is ex-
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stable and its kernel exponentially decays, see [8]. For further
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difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
nential stability of nonlinear time-varying Volterra difference
equations. Our approach is based on the celebrated Perron-
Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
nential stability of the zero solution of general nonlinear time-

varying Volterra difference equations. Furthermore, we derive
an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
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Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
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Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
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where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there

1

2 is bounded. Then (39) can be rewritten as
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and

F(z) :=




f1
(
z1 +

+∞

∑
k=0

g1(k)x∗2
)
− f1

( +∞

∑
k=0

g1(k)x∗2
)

f2
(
z2 +

+∞

∑
k=0

g2(k)x∗1
)
− f2

( +∞

∑
k=0

g2(k)x∗1
)


 ,

z := (z1,z2)
T ∈ R2.

Let A := diag(a1,a2) and D := diag(b1c1,b2c2) ∈ R2×2 and

M :=A+
+∞

∑
k=0

DG(k)=

(
a1 b1c1 ∑+∞

k=0 g1(k)
b2c2 ∑+∞

k=0 g2(k) a2

)
.

Suppose R2 is endowed with ‖ · ‖1 or ‖ · ‖∞, then ‖E‖1 =
max1≤ j≤2 ∑2

i=1 |ei j| and ‖E‖∞ = max1≤i≤2 ∑2
j=1 |ei j|, for E =

(ei j) ∈ R2×2, see e.g. [7]. Note that (35) implies that ρ(M)≤
min{‖M‖∞,‖M‖1} < 1. Since ρ(M) < 1 and (G(n))n ∈
lγ(R2×2), it follows that the zero solution of the linear time-
invariant equation

z(n+1) = Az(n)+
n

∑
k=0

DG(n− k)z(k), n ∈ Z+, (38)

is GES, by Theorem 3.4.
Next, consider the linear time-invariant equation with infi-

nite delay

z(n+1) = Az(n)+
n

∑
k=−∞

DG(n− k)z(k), n ∈ Z+, (39)

with the initial condition z(s) = ψ(s), s ∈ Z−, where ψ(·) :
Z− → R2 is bounded.

Note that (39) can be represented as a nonhomogeneous
equation associated with (38)

z(n+1) = Az(n)+
n

∑
k=0

DG(n− k)z(k)+g(n), n ∈ Z+, (40)

where g(n) := ∑−1
j=−∞ DG(n − j)ψ( j),n ∈ Z+. Since (38) is

GES, the kernel G(·) and the resolvent of (38) exponentially
decay, see e.g. [8]. Using the variation of constants formula
[10], it is easy to see that

‖z(n)‖→ 0 as n →+∞, (41)

for any bounded initial function ψ(·) : Z− →R2. Furthermore,
invoking (H1)-(H3), it is easy to show that

|y(n)| ≤ z(n), ∀n ∈ Z+,

where y(·) is the unique solution of (37) with the initial func-
tion ψ(·) := (ψ1(·),ψ2(·))T and z(·) is the unique solution of
(40) with the initial function |ψ(·)| := (|ψ1(·)|, |ψ2(·)|)T . By
the monotonicity of vector norm, we get

‖y(n)‖ ≤ ‖z(n)‖, ∀n ∈ Z+. (42)

It follows from (41) and (42) that ‖y(n)‖ = ‖x(n)− x∗‖ →
0 as n →+∞. This completes the proof.
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i=1 |ei j| and ‖E‖∞ = max1≤i≤2 ∑2
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(ei j) ∈ R2×2, see e.g. [7]. Note that (35) implies that ρ(M)≤
min{‖M‖∞,‖M‖1} < 1. Since ρ(M) < 1 and (G(n))n ∈
lγ(R2×2), it follows that the zero solution of the linear time-
invariant equation

z(n+1) = Az(n)+
n

∑
k=0

DG(n− k)z(k), n ∈ Z+, (38)

is GES, by Theorem 3.4.
Next, consider the linear time-invariant equation with infi-

nite delay

z(n+1) = Az(n)+
n

∑
k=−∞

DG(n− k)z(k), n ∈ Z+, (39)

with the initial condition z(s) = ψ(s), s ∈ Z−, where ψ(·) :
Z− → R2 is bounded.

Note that (39) can be represented as a nonhomogeneous
equation associated with (38)

z(n+1) = Az(n)+
n

∑
k=0

DG(n− k)z(k)+g(n), n ∈ Z+, (40)

where g(n) := ∑−1
j=−∞ DG(n − j)ψ( j),n ∈ Z+. Since (38) is

GES, the kernel G(·) and the resolvent of (38) exponentially
decay, see e.g. [8]. Using the variation of constants formula
[10], it is easy to see that

‖z(n)‖→ 0 as n →+∞, (41)

for any bounded initial function ψ(·) : Z− →R2. Furthermore,
invoking (H1)-(H3), it is easy to show that

|y(n)| ≤ z(n), ∀n ∈ Z+,

where y(·) is the unique solution of (37) with the initial func-
tion ψ(·) := (ψ1(·),ψ2(·))T and z(·) is the unique solution of
(40) with the initial function |ψ(·)| := (|ψ1(·)|, |ψ2(·)|)T . By
the monotonicity of vector norm, we get

‖y(n)‖ ≤ ‖z(n)‖, ∀n ∈ Z+. (42)

It follows from (41) and (42) that ‖y(n)‖ = ‖x(n)− x∗‖ →
0 as n →+∞. This completes the proof.
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T ∈ R2.

Let A := diag(a1,a2) and D := diag(b1c1,b2c2) ∈ R2×2 and
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DG(k)=
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Suppose R2 is endowed with ‖ · ‖1 or ‖ · ‖∞, then ‖E‖1 =
max1≤ j≤2 ∑2

i=1 |ei j| and ‖E‖∞ = max1≤i≤2 ∑2
j=1 |ei j|, for E =

(ei j) ∈ R2×2, see e.g. [7]. Note that (35) implies that ρ(M)≤
min{‖M‖∞,‖M‖1} < 1. Since ρ(M) < 1 and (G(n))n ∈
lγ(R2×2), it follows that the zero solution of the linear time-
invariant equation

z(n+1) = Az(n)+
n

∑
k=0

DG(n− k)z(k), n ∈ Z+, (38)

is GES, by Theorem 3.4.
Next, consider the linear time-invariant equation with infi-

nite delay

z(n+1) = Az(n)+
n

∑
k=−∞

DG(n− k)z(k), n ∈ Z+, (39)

with the initial condition z(s) = ψ(s), s ∈ Z−, where ψ(·) :
Z− → R2 is bounded.

Note that (39) can be represented as a nonhomogeneous
equation associated with (38)

z(n+1) = Az(n)+
n

∑
k=0

DG(n− k)z(k)+g(n), n ∈ Z+, (40)

where g(n) := ∑−1
j=−∞ DG(n − j)ψ( j),n ∈ Z+. Since (38) is

GES, the kernel G(·) and the resolvent of (38) exponentially
decay, see e.g. [8]. Using the variation of constants formula
[10], it is easy to see that

‖z(n)‖→ 0 as n →+∞, (41)

for any bounded initial function ψ(·) : Z− →R2. Furthermore,
invoking (H1)-(H3), it is easy to show that

|y(n)| ≤ z(n), ∀n ∈ Z+,

where y(·) is the unique solution of (37) with the initial func-
tion ψ(·) := (ψ1(·),ψ2(·))T and z(·) is the unique solution of
(40) with the initial function |ψ(·)| := (|ψ1(·)|, |ψ2(·)|)T . By
the monotonicity of vector norm, we get

‖y(n)‖ ≤ ‖z(n)‖, ∀n ∈ Z+. (42)

It follows from (41) and (42) that ‖y(n)‖ = ‖x(n)− x∗‖ →
0 as n →+∞. This completes the proof.
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Stability of nonlinear Volterra equations

Abstract. Using a novel approach, we present some new explicit criteria for global exponential stability of the zero solution of general
nonlinear time-varying Volterra difference equations. Furthermore, an explicit stability bound for equations subject to nonlinear time-varying
perturbations is given. Finally, the obtained results are used to study uniform attraction of equilibrium of discrete-time bidirectional associative
memory (BAM) neural networks. Some illustrative examples are given.
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1. Introduction
Volterra difference equations have been widely used in the
modeling of processes in continuous mechanics and biome-
chanics, problems of control and estimations and some
schemes of numerical solutions of integral and integro-
differential equations, see e.g. [2], [7], [12], [16]-[19].

Problems of stability of Volterra difference equations have
attracted much attention from researchers, during the last
twenty years, see e.g. [1],[4]-[13], [15], [21]-[23] and refer-
ences therein. Many various methods have been used to inves-
tigate stability of Volterra difference equations such as Lya-
punov functions, Z transform, comparison theorems, topologi-
cal methods, fixed point theorems, etc (see e.g. [7], [10], [15],
[23]).

In particular, the first significant result on exponential sta-
bility of Volterra difference equations is due to Elaydi and
Murakami, see [8]. Roughly speaking, Elaydi and Murakami
showed that even to the simplest Volterra difference equations
(namely, linear time-invariant Volterra difference equations of
convolution type), the exponential stability is “stronger” than
the uniform asymptotic stability. More precisely, a linear time-
invariant Volterra difference equation of convolution type is ex-
ponentially stable if and only if it is uniformly asymptotically
stable and its kernel exponentially decays, see [8]. For further
and updated information on stability of linear time-invariant
Volterra difference equations, we refer to the recent survey pa-
per [10].

In general, problems of global exponential stability of time-
varying Volterra difference equations are very hard even those
of linear time-varying Volterra equations. Most of existing re-
sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
ditions for exponential stability of linear time-varying Volterra
difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
nential stability of nonlinear time-varying Volterra difference
equations. Our approach is based on the celebrated Perron-
Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
nential stability of the zero solution of general nonlinear time-

varying Volterra difference equations. Furthermore, we derive
an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.

2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there

1

+. Since (38) is 
GES, the kernel G(¢) and the resolvent of (38) exponentially 
decay, see e.g. [8]. Using the variation of constants formula 
[10], it is easy to see that
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and
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
 ,

z := (z1,z2)
T ∈ R2.

Let A := diag(a1,a2) and D := diag(b1c1,b2c2) ∈ R2×2 and

M :=A+
+∞

∑
k=0

DG(k)=

(
a1 b1c1 ∑+∞

k=0 g1(k)
b2c2 ∑+∞

k=0 g2(k) a2

)
.

Suppose R2 is endowed with ‖ · ‖1 or ‖ · ‖∞, then ‖E‖1 =
max1≤ j≤2 ∑2

i=1 |ei j| and ‖E‖∞ = max1≤i≤2 ∑2
j=1 |ei j|, for E =

(ei j) ∈ R2×2, see e.g. [7]. Note that (35) implies that ρ(M)≤
min{‖M‖∞,‖M‖1} < 1. Since ρ(M) < 1 and (G(n))n ∈
lγ(R2×2), it follows that the zero solution of the linear time-
invariant equation

z(n+1) = Az(n)+
n

∑
k=0

DG(n− k)z(k), n ∈ Z+, (38)

is GES, by Theorem 3.4.
Next, consider the linear time-invariant equation with infi-

nite delay

z(n+1) = Az(n)+
n

∑
k=−∞

DG(n− k)z(k), n ∈ Z+, (39)

with the initial condition z(s) = ψ(s), s ∈ Z−, where ψ(·) :
Z− → R2 is bounded.

Note that (39) can be represented as a nonhomogeneous
equation associated with (38)

z(n+1) = Az(n)+
n

∑
k=0

DG(n− k)z(k)+g(n), n ∈ Z+, (40)

where g(n) := ∑−1
j=−∞ DG(n − j)ψ( j),n ∈ Z+. Since (38) is

GES, the kernel G(·) and the resolvent of (38) exponentially
decay, see e.g. [8]. Using the variation of constants formula
[10], it is easy to see that

‖z(n)‖→ 0 as n →+∞, (41)

for any bounded initial function ψ(·) : Z− →R2. Furthermore,
invoking (H1)-(H3), it is easy to show that

|y(n)| ≤ z(n), ∀n ∈ Z+,

where y(·) is the unique solution of (37) with the initial func-
tion ψ(·) := (ψ1(·),ψ2(·))T and z(·) is the unique solution of
(40) with the initial function |ψ(·)| := (|ψ1(·)|, |ψ2(·)|)T . By
the monotonicity of vector norm, we get

‖y(n)‖ ≤ ‖z(n)‖, ∀n ∈ Z+. (42)

It follows from (41) and (42) that ‖y(n)‖ = ‖x(n)− x∗‖ →
0 as n →+∞. This completes the proof.
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1. Introduction
Volterra difference equations have been widely used in the
modeling of processes in continuous mechanics and biome-
chanics, problems of control and estimations and some
schemes of numerical solutions of integral and integro-
differential equations, see e.g. [2], [7], [12], [16]-[19].

Problems of stability of Volterra difference equations have
attracted much attention from researchers, during the last
twenty years, see e.g. [1],[4]-[13], [15], [21]-[23] and refer-
ences therein. Many various methods have been used to inves-
tigate stability of Volterra difference equations such as Lya-
punov functions, Z transform, comparison theorems, topologi-
cal methods, fixed point theorems, etc (see e.g. [7], [10], [15],
[23]).

In particular, the first significant result on exponential sta-
bility of Volterra difference equations is due to Elaydi and
Murakami, see [8]. Roughly speaking, Elaydi and Murakami
showed that even to the simplest Volterra difference equations
(namely, linear time-invariant Volterra difference equations of
convolution type), the exponential stability is “stronger” than
the uniform asymptotic stability. More precisely, a linear time-
invariant Volterra difference equation of convolution type is ex-
ponentially stable if and only if it is uniformly asymptotically
stable and its kernel exponentially decays, see [8]. For further
and updated information on stability of linear time-invariant
Volterra difference equations, we refer to the recent survey pa-
per [10].

In general, problems of global exponential stability of time-
varying Volterra difference equations are very hard even those
of linear time-varying Volterra equations. Most of existing re-
sults in the literature are derived by the method of Lyapunov
functions and they are not easy to use. Some sufficient con-
ditions for exponential stability of linear time-varying Volterra
difference equations can be found in [5], [10], [15]. To the best
of our knowledge, there are not many explicit criteria for global
exponential stability of nonlinear time-varying Volterra differ-
ence equations in the literature. In particular, several abstract
criteria for exponential stability of some nonlinear Volterra dif-
ference equations can be found in [5], [15], [22].

In this paper, we present a new approach to global expo-
nential stability of nonlinear time-varying Volterra difference
equations. Our approach is based on the celebrated Perron-
Frobenius theorem and the comparison principle. Conse-
quently, we get some new explicit criteria for global expo-
nential stability of the zero solution of general nonlinear time-

varying Volterra difference equations. Furthermore, we derive
an explicit stability bound for equations subject to nonlinear
time-varying perturbations. Finally, the obtained results are
applied to study uniform attraction of equilibrium of discrete-
time bidirectional associative memory neural networks. Some
illustrative examples are given.

2. Preliminaries
In this section, we present notation and some preliminary re-
sults which will be of use in what follows. Let R be the set
of all real numbers and let N be the set of all natural num-
bers. For any k1,k2 ∈ Z, k1 ≤ k2, let Z[k1,k2] be the set of
all integers in the interval [k1,k2]. Set Z+ := N ∪ {0} and
Z− := {−k : k ∈ Z+}. Let n, l,q be positive integers. In-
equalities between real matrices and vectors will be understood
componentwise, i.e. for two real l × q-matrices A = (ai j) and
B=(bi j), the inequality A≥B means ai j ≥ bi j for i∈Z[1,l], j ∈
Z[1,q]. In particular, if ai j > bi j for i ∈ Z[1,l], j ∈ Z[1,q], then
we write A � B instead of A ≥ B. The set of all nonnega-
tive l × q-matrices is denoted by Rl×q

+ . The identity m × m-
matrix will be denoted by Im. If x = (x1,x2, ...,xm)

T ∈ Rm and
P = (pi j) ∈ Rl×q we define |x| = (|xi|) and |P| = (|pi j|). It is
easy to see that |CD| ≤ |C||D|. For any matrix A ∈ Rm×m, the
spectral radius of A is denoted by ρ(A) =max{|z| : z∈ σ(A)},
where σ(A) := {z ∈ C : det(zIm − A) = 0} is the set of all
eigenvalues of A. A norm ‖.‖ on Rm is said to be mono-
tonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x,y ∈ Rm. Every p-

norm on Rm (‖x‖p = (|x1|p + |x2|p + ...+ |xm|p)
1
p , 1 ≤ p < ∞

and ‖x‖∞ = maxi∈Z[1,m]
|xi|), is monotonic. Note that ‖x‖ =

‖|x|‖, ∀x ∈ Rm, for any monotonic norm.
Throughout this paper, the norm of vectors is assumed to

be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there

1
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1
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|xi|), is monotonic. Note that ‖x‖ =
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be monotonic and the norm ‖M‖ of a matrix M ∈ Rl×q is
always understood as the operator norm defined by ‖M‖ =
max‖y‖=1 ‖My‖, where Rl and Rq are provided with some
monotonic vector norms. Recall that ρ(M)≤ ‖M‖ for any ma-
trix norm, see e.g. [7], and the operator norm ‖ · ‖ has the
following monotonicity property, see e.g. [14],

P ∈ Rl×q, Q ∈ Rl×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ‖|P|‖ ≤ ‖Q‖. (1)

The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

THEOREM 2.1. [14] Let M ∈ Rm×m
+ , t ∈ R, then

(i) (Perron-Frobenius) ρ(M) is an eigenvalue of M and there
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2. Furthermore, 
invoking (H1–H3), it is easy to show that
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and

F(z) :=




f1
(
z1 +

+∞

∑
k=0

g1(k)x∗2
)
− f1

( +∞

∑
k=0

g1(k)x∗2
)

f2
(
z2 +

+∞

∑
k=0

g2(k)x∗1
)
− f2

( +∞

∑
k=0

g2(k)x∗1
)


 ,

z := (z1,z2)
T ∈ R2.

Let A := diag(a1,a2) and D := diag(b1c1,b2c2) ∈ R2×2 and

M :=A+
+∞

∑
k=0

DG(k)=

(
a1 b1c1 ∑+∞

k=0 g1(k)
b2c2 ∑+∞

k=0 g2(k) a2

)
.

Suppose R2 is endowed with ‖ · ‖1 or ‖ · ‖∞, then ‖E‖1 =
max1≤ j≤2 ∑2

i=1 |ei j| and ‖E‖∞ = max1≤i≤2 ∑2
j=1 |ei j|, for E =

(ei j) ∈ R2×2, see e.g. [7]. Note that (35) implies that ρ(M)≤
min{‖M‖∞,‖M‖1} < 1. Since ρ(M) < 1 and (G(n))n ∈
lγ(R2×2), it follows that the zero solution of the linear time-
invariant equation

z(n+1) = Az(n)+
n

∑
k=0

DG(n− k)z(k), n ∈ Z+, (38)

is GES, by Theorem 3.4.
Next, consider the linear time-invariant equation with infi-

nite delay

z(n+1) = Az(n)+
n

∑
k=−∞

DG(n− k)z(k), n ∈ Z+, (39)

with the initial condition z(s) = ψ(s), s ∈ Z−, where ψ(·) :
Z− → R2 is bounded.

Note that (39) can be represented as a nonhomogeneous
equation associated with (38)

z(n+1) = Az(n)+
n

∑
k=0

DG(n− k)z(k)+g(n), n ∈ Z+, (40)

where g(n) := ∑−1
j=−∞ DG(n − j)ψ( j),n ∈ Z+. Since (38) is

GES, the kernel G(·) and the resolvent of (38) exponentially
decay, see e.g. [8]. Using the variation of constants formula
[10], it is easy to see that

‖z(n)‖→ 0 as n →+∞, (41)

for any bounded initial function ψ(·) : Z− →R2. Furthermore,
invoking (H1)-(H3), it is easy to show that

|y(n)| ≤ z(n), ∀n ∈ Z+,

where y(·) is the unique solution of (37) with the initial func-
tion ψ(·) := (ψ1(·),ψ2(·))T and z(·) is the unique solution of
(40) with the initial function |ψ(·)| := (|ψ1(·)|, |ψ2(·)|)T . By
the monotonicity of vector norm, we get

‖y(n)‖ ≤ ‖z(n)‖, ∀n ∈ Z+. (42)

It follows from (41) and (42) that ‖y(n)‖ = ‖x(n)− x∗‖ →
0 as n →+∞. This completes the proof.

Acknowledgements. This work was partially supported by
Dong Thap university under the grant number CS.2015.01.26.

REFERENCES

[1] J.A.D. Applelby, I. Gyori, and D.W. Reynolds, “On exact con-
vergence rates for solutions of linear systems of Volterra differ-
ence equations”, J. Difference Equ. Appl. 12, 1257-1275 (2006).

[2] H. Brunner, and P.J. Houwen, The Numerical Solution of
Volterra Equations, CWI. Monographs, North-Holland, Ams-
terdam, 1986.

[3] L. Burlando, “Continuity of spectrum and spectral radius in
algebras of operators”, Ann. Fac. Sci. Toulouse Math. 9, 5-54
(1988).

[4] M.R. Crisci, V.B. Kolmanovskii, E. Russo, and A. Vecchio,
“Stability of difference Volterra equations: direct Liapunov
method and numerical procedure”, Comput. Math. Appl. 36, 77-
97 (1998).

[5] M.R. Crisci, V.B. Kolmanovskii, E. Russo, and A. Vecchio, “On
the exponential stability of discrete Volterra equations”, J. Dif-
ference Equ. Appl. 6, 667-680 (2000).

[6] C. Cuevas, F. Dantas, M. Choquehuanca, and H. Soto, “l p-
boundedness properties for Volterra difference equations”,
Appl. Math. Comput. 219 , 6986-6999 (2013).

[7] S. Elaydi, An Introduction to Difference Equations, Springer
Verlag, 2005.

[8] S. Elaydi, and S. Murakami, “Asymptotic stability versus expo-
nential stability in linear Volterra difference equations of con-
volution type”, J. Difference Equ. Appl. 2, 401-410 (1996).

[9] S. Elaydi, and V. Kocic, “Global stability of a nonlinear Volterra
difference equations”, Diff. Eqns. Dyn. Sys. 2, 337-345 (1994).

[10] S. Elaydi, “Stability and asymptoticity of Volterra difference
equations: A progress report”, J. Comput. Appl. Math. 228,
504-513 (2009).

[11] P.W. Eloe, M.N. Islam, and Y.N. Raffoul, “Uniform asymp-
totic stability in nonlinear Volterra discrete equations”, Comput.
Math. Appl. 45, 1033-1039 (2003).

[12] G. Gripenberg., S.O. Londen, and O. Staffans, Volterra integral
and functional equations, Cambridge University Press, Vol. 34,
1990.

[13] I. Gyori, and D.W. Reynolds, “On admissibility of the resol-
vent of discrete Volterra equations”, J. Difference Equ. Appl.
16, 1393-1412 (2010).

[14] D. Hinrichsen, and N.K. Son, “Stability radii of positive
discrete-time equations under affine parameter perturbations”,
Internat. J. Robust Nonlinear Control 8, 1169-1188 (1988).

[15] V.B. Kolmanovskii, E. Castellanos-Velasco, and J. A. Torres-
Munoz, “A survey: stability and boundedness of Volterra dif-
ference equations”, Nonlinear Anal. 53, 861-928 (2003).

[16] J.J. Levin, and J.A. Nohel, “The integrodifferential equations of
a class of nuclear reactors with delayed neutrons“, Arch. Ration.
Mech. Anal. 31, 151-172, (1968).

[17] N. Levinson, “A nonlinear Volterra equation arising in the the-
ory of superfluidity”, J. Math. Anal. Appl. 1, 1-11 (1960).

[18] W. Li, L. Panga, H. Sua, and K. Wang, “Global stability for dis-
crete Cohen-Grossberg neural networks with finite and infinite
delays”, Appl. Math. Lett. 25, 2246-225 (2012).

[19] W.R. Mann, and F. Wolf, “Heat transfer between solids and
gases under nonlinear boundary conditions“, Quart. Appl.
Math. 9, 163-184 (1951).

[20] P.H.A. Ngoc, and L.T. Hieu, “New criteria for exponential sta-
bility of nonlinear difference systems with time-varying delay”,
Internat. J. Control 86, No. 9, 1646-1651 (2013).

[21] P.H.A. Ngoc, T. Naito, J.S. Shin, and S. Murakami, “Stabil-
ity and robust stability of positive linear Volterra difference
equations”, Internat. J. Robust Nonlinear Control 19, 552-568
(2008).

Bull. Pol. Ac.: Tech. XX(Y) 2016 7

where y(¢) is the unique solution of (37) with the initial function 
ψ(¢) := (ψ1(¢), ψ2(¢))T and z(¢) is the unique solution of (40) with 
the initial function jψ(¢)j := (jψ1(¢)j, jψ2(¢)j)T. By the monotonicity 
of vector norm, we obtain

	

Stability of nonlinear Volterra equations

and

F(z) :=




f1
(
z1 +

+∞

∑
k=0

g1(k)x∗2
)
− f1

( +∞

∑
k=0

g1(k)x∗2
)

f2
(
z2 +

+∞

∑
k=0

g2(k)x∗1
)
− f2

( +∞

∑
k=0

g2(k)x∗1
)


 ,

z := (z1,z2)
T ∈ R2.

Let A := diag(a1,a2) and D := diag(b1c1,b2c2) ∈ R2×2 and

M :=A+
+∞

∑
k=0

DG(k)=

(
a1 b1c1 ∑+∞

k=0 g1(k)
b2c2 ∑+∞

k=0 g2(k) a2

)
.

Suppose R2 is endowed with ‖ · ‖1 or ‖ · ‖∞, then ‖E‖1 =
max1≤ j≤2 ∑2

i=1 |ei j| and ‖E‖∞ = max1≤i≤2 ∑2
j=1 |ei j|, for E =

(ei j) ∈ R2×2, see e.g. [7]. Note that (35) implies that ρ(M)≤
min{‖M‖∞,‖M‖1} < 1. Since ρ(M) < 1 and (G(n))n ∈
lγ(R2×2), it follows that the zero solution of the linear time-
invariant equation

z(n+1) = Az(n)+
n

∑
k=0

DG(n− k)z(k), n ∈ Z+, (38)

is GES, by Theorem 3.4.
Next, consider the linear time-invariant equation with infi-

nite delay

z(n+1) = Az(n)+
n

∑
k=−∞

DG(n− k)z(k), n ∈ Z+, (39)

with the initial condition z(s) = ψ(s), s ∈ Z−, where ψ(·) :
Z− → R2 is bounded.

Note that (39) can be represented as a nonhomogeneous
equation associated with (38)

z(n+1) = Az(n)+
n

∑
k=0

DG(n− k)z(k)+g(n), n ∈ Z+, (40)

where g(n) := ∑−1
j=−∞ DG(n − j)ψ( j),n ∈ Z+. Since (38) is

GES, the kernel G(·) and the resolvent of (38) exponentially
decay, see e.g. [8]. Using the variation of constants formula
[10], it is easy to see that

‖z(n)‖→ 0 as n →+∞, (41)

for any bounded initial function ψ(·) : Z− →R2. Furthermore,
invoking (H1)-(H3), it is easy to show that

|y(n)| ≤ z(n), ∀n ∈ Z+,

where y(·) is the unique solution of (37) with the initial func-
tion ψ(·) := (ψ1(·),ψ2(·))T and z(·) is the unique solution of
(40) with the initial function |ψ(·)| := (|ψ1(·)|, |ψ2(·)|)T . By
the monotonicity of vector norm, we get

‖y(n)‖ ≤ ‖z(n)‖, ∀n ∈ Z+. (42)

It follows from (41) and (42) that ‖y(n)‖ = ‖x(n)− x∗‖ →
0 as n →+∞. This completes the proof.

Acknowledgements. This work was partially supported by
Dong Thap university under the grant number CS.2015.01.26.

REFERENCES

[1] J.A.D. Applelby, I. Gyori, and D.W. Reynolds, “On exact con-
vergence rates for solutions of linear systems of Volterra differ-
ence equations”, J. Difference Equ. Appl. 12, 1257-1275 (2006).

[2] H. Brunner, and P.J. Houwen, The Numerical Solution of
Volterra Equations, CWI. Monographs, North-Holland, Ams-
terdam, 1986.

[3] L. Burlando, “Continuity of spectrum and spectral radius in
algebras of operators”, Ann. Fac. Sci. Toulouse Math. 9, 5-54
(1988).

[4] M.R. Crisci, V.B. Kolmanovskii, E. Russo, and A. Vecchio,
“Stability of difference Volterra equations: direct Liapunov
method and numerical procedure”, Comput. Math. Appl. 36, 77-
97 (1998).

[5] M.R. Crisci, V.B. Kolmanovskii, E. Russo, and A. Vecchio, “On
the exponential stability of discrete Volterra equations”, J. Dif-
ference Equ. Appl. 6, 667-680 (2000).

[6] C. Cuevas, F. Dantas, M. Choquehuanca, and H. Soto, “l p-
boundedness properties for Volterra difference equations”,
Appl. Math. Comput. 219 , 6986-6999 (2013).

[7] S. Elaydi, An Introduction to Difference Equations, Springer
Verlag, 2005.

[8] S. Elaydi, and S. Murakami, “Asymptotic stability versus expo-
nential stability in linear Volterra difference equations of con-
volution type”, J. Difference Equ. Appl. 2, 401-410 (1996).

[9] S. Elaydi, and V. Kocic, “Global stability of a nonlinear Volterra
difference equations”, Diff. Eqns. Dyn. Sys. 2, 337-345 (1994).

[10] S. Elaydi, “Stability and asymptoticity of Volterra difference
equations: A progress report”, J. Comput. Appl. Math. 228,
504-513 (2009).

[11] P.W. Eloe, M.N. Islam, and Y.N. Raffoul, “Uniform asymp-
totic stability in nonlinear Volterra discrete equations”, Comput.
Math. Appl. 45, 1033-1039 (2003).

[12] G. Gripenberg., S.O. Londen, and O. Staffans, Volterra integral
and functional equations, Cambridge University Press, Vol. 34,
1990.

[13] I. Gyori, and D.W. Reynolds, “On admissibility of the resol-
vent of discrete Volterra equations”, J. Difference Equ. Appl.
16, 1393-1412 (2010).

[14] D. Hinrichsen, and N.K. Son, “Stability radii of positive
discrete-time equations under affine parameter perturbations”,
Internat. J. Robust Nonlinear Control 8, 1169-1188 (1988).

[15] V.B. Kolmanovskii, E. Castellanos-Velasco, and J. A. Torres-
Munoz, “A survey: stability and boundedness of Volterra dif-
ference equations”, Nonlinear Anal. 53, 861-928 (2003).

[16] J.J. Levin, and J.A. Nohel, “The integrodifferential equations of
a class of nuclear reactors with delayed neutrons“, Arch. Ration.
Mech. Anal. 31, 151-172, (1968).

[17] N. Levinson, “A nonlinear Volterra equation arising in the the-
ory of superfluidity”, J. Math. Anal. Appl. 1, 1-11 (1960).

[18] W. Li, L. Panga, H. Sua, and K. Wang, “Global stability for dis-
crete Cohen-Grossberg neural networks with finite and infinite
delays”, Appl. Math. Lett. 25, 2246-225 (2012).

[19] W.R. Mann, and F. Wolf, “Heat transfer between solids and
gases under nonlinear boundary conditions“, Quart. Appl.
Math. 9, 163-184 (1951).

[20] P.H.A. Ngoc, and L.T. Hieu, “New criteria for exponential sta-
bility of nonlinear difference systems with time-varying delay”,
Internat. J. Control 86, No. 9, 1646-1651 (2013).

[21] P.H.A. Ngoc, T. Naito, J.S. Shin, and S. Murakami, “Stabil-
ity and robust stability of positive linear Volterra difference
equations”, Internat. J. Robust Nonlinear Control 19, 552-568
(2008).

Bull. Pol. Ac.: Tech. XX(Y) 2016 7

.� (42)

It follows from (41) and (42) that ky(n)k = kx(n) ¡ x¤k ! 0 as 
n ! +1. This completes the proof.� □

Acknowledgements. This work was partially supported by 
Dong Thap university under the grant number CS.2015.01.26.

References
	 [1]	 J.A.D. Appleby, I. Gyori, and D.W. Reynolds, “On exact conver-

gence rates for solutions of linear systems of Volterra difference 
equations”, J. Difference Equ. Appl. 12, 1257‒1275 (2006).

	 [2]	 H. Brunner, and P.J. Houwen, The Numerical Solution of Volterra 
Equations, CWI. Monographs, North-Holland, Amsterdam, 1986.

	 [3]	 L. Burlando, “Continuity of spectrum and spectral radius in alge-
bras of operators”, Ann. Fac. Sci. Toulouse Math. 9, 5‒54 (1988).

	 [4]	 M.R. Crisci, V.B. Kolmanovskii, E. Russo, and A. Vecchio, “Sta-
bility of difference Volterra equations: direct Liapunov method and 
numerical procedure”, Comput. Math. Appl. 36, 77‒97 (1998).

	 [5]	 M.R. Crisci, V.B. Kolmanovskii, E. Russo, and A. Vecchio, “On 
the exponential stability of discrete Volterra equations”, J. Dif-
ference Equ. Appl. 6, 667‒680 (2000).

	 [6]	 C. Cuevas, F. Dantas, M. Choquehuanca, and H. Soto, “Bound-
edness properties for Volterra difference equations”, Appl. Math. 
Comput. 219 , 6986‒6999 (2013).

	 [7]	 S. Elaydi, An Introduction to Difference Equations, Springer 
Verlag, 2005.

	 [8]	 S. Elaydi, and S. Murakami, “Asymptotic stability versus expo-
nential stability in linear Volterra difference equations of con-
volution type”, J. Difference Equ. Appl. 2, 401‒410 (1996).

	 [9]	 S. Elaydi, and V. Kocic, “Global stability of a nonlinear Volterra 
difference equations”, Diff. Eqns. Dyn. Sys. 2, 337‒345 (1994).

	[10]	 S. Elaydi, “Stability and asymptoticity of Volterra difference 
equations: A progress report”, J. Comput. Appl. Math. 228, 
504‒513 (2009).

	[11]	 P.W. Eloe, M.N. Islam, and Y.N. Raffoul, “Uniform asymptotic 
stability in nonlinear Volterra discrete equations”, Comput. Math. 
Appl. 45, 1033‒1039 (2003).

	[12]	 G. Gripenberg., S.O. Londen, and O. Staffans, Volterra integral and 
functional equations, Cambridge University Press, Vol. 34, 1990.

	[13]	 I. Gyori, and D.W. Reynolds, “On admissibility of the resol-
vent of discrete Volterra equations”, J. Difference Equ. Appl. 16, 
1393‒1412 (2010).

	[14]	 D. Hinrichsen, and N.K. Son, “Stability radii of positive dis-
crete-time equations under affine parameter perturbations”, In-
ternat. J. Robust Nonlinear Control 8, 1169‒1188 (1988).

	[15]	 V.B. Kolmanovskii, E. Castellanos-Velasco, and J. A. Torres- 
Munoz, “A survey: stability and boundedness of Volterra differ-
ence equations”, Nonlinear Anal. 53, 861‒928 (2003).

	[16]	 J.J. Levin, and J.A. Nohel, “The integrodifferential equations of 
a class of nuclear reactors with delayed neutrons“, Arch. Ration. 
Mech. Anal. 31, 151‒172, (1968).

	[17]	 N. Levinson, “A nonlinear Volterra equation arising in the theory 
of superfluidity”, J. Math. Anal. Appl. 1, 1‒11 (1960).

	[18]	 W. Li, L. Panga, H. Sua, and K.Wang, “Global stability for dis-
crete Cohen-Grossberg neural networks with finite and infinite 
delays”, Appl. Math. Lett. 25, 2246‒225 (2012).

	[19]	 W.R. Mann, and F. Wolf, “Heat transfer between solids and gases 
under nonlinear boundary conditions“, Quart. Appl. Math. 9, 
163‒184 (1951).

	[20]	 P.H.A. Ngoc, and L.T. Hieu, “New criteria for exponential sta-
bility of nonlinear difference systems with time-varying delay”, 
Internat. J. Control 86, No. 9, 1646‒1651 (2013).

	[21]	 P.H.A. Ngoc, T. Naito, J.S. Shin, and S. Murakami, “Stability and 
robust stability of positive linear Volterra difference equations”, 
Internat. J. Robust Nonlinear Control 19, 552‒568 (2008).

	[22]	 Y.N. Raffoul, and Y.M. Dib, “Boundedness and stability in non-
linear discrete dystems with nonlinear perturbation”, J. Differ-
ence Equ. Appl. 9, 853‒862 (2003).

	[23]	 Y. Song, and C.T.H. Baker, “Perturbation of Volterra difference 
equations”, J. Difference Equ. Appl. 10, 379‒397 (2004).

	[24]	 T. Zhou, Y. Liu, X. Li, and Y. Liu, “A new criterion to global ex-
ponential periodicity for discrete-time BAM neural network with 
infinite delays”, Chaos Solitons Fractals 39, 332‒341 (2009).


