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1. Introduction

Volterra difference equations have been widely used in the mod-
eling of processes in continuous mechanics and biomechanics,
problems of control and estimations and some schemes of nu-
merical solutions of integral and integro-differential equations,
see e.g. [2,7, 12, 16-19].

Problems of stability of Volterra difference equations have
attracted much attention from researchers, during the last twenty
years, see e.g. [1, 4-13, 15, 21-23] and references therein.
Many various methods have been used to investigate stability
of Volterra difference equations such as Lyapunov functions,
Z transform, comparison theorems, topological methods, fixed
point theorems, etc. (see e.g. [7, 10, 15, 23]).

In particular, the first significant result on exponential
stability of Volterra difference equations was achieved by
Elaydi and Murakami, see [8]. Roughly speaking, Elaydi and
Murakami showed that even the simplest Volterra difference
equations (namely, linear time-invariant Volterra difference
equations of convolution type) have “stronger’ exponential
stability than the uniform asymptotic stability. More precisely,
a linear time-invariant Volterra difference equation of convo-
lution type is exponentially stable if and only if it is uniformly
asymptotically stable and its kernel exponentially decays, see
[8]. For further and updated information on stability of linear
time-invariant Volterra difference equations, we refer to the re-
cent survey paper [10].

In general, problems of global exponential stability of time-
varying Volterra difference equations are difficult, even when
concerning linear time-varying Volterra equations. Most of
existing results in the literature are derived by the method of
Lyapunov functions and they are not easy to use. Some suffi-
cient conditions for exponential stability of linear time-varying
Volterra difference equations can be found in [5, 10, 15]. To the
best of our knowledge, there are not many explicit criteria for
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global exponential stability of nonlinear time-varying Volterra
difference equations in the literature. In particular, several ab-
stract criteria for exponential stability of some nonlinear Volt-
erra difference equations can be found in [5, 15, 22].

In this paper, we present a new approach to global exponen-
tial stability of nonlinear time-varying Volterra difference equa-
tions. Our approach is based on the celebrated Perron-Frobenius
theorem and the comparison principle. Consequently, we get
some new explicit criteria for global exponential stability of
the zero solution of general nonlinear time-varying Volterra
difference equations. Furthermore, we derive an explicit sta-
bility bound for equations subject to nonlinear time-varying
perturbations. Finally, the obtained results are applied to study
uniform attraction of equilibrium of discrete-time bidirectional
associative memory neural networks. Some illustrative exam-
ples are given.

2. Preliminaries

In this section, we present notation and some preliminary results
which will be of use in what follows. Let R be the set of all
real numbers and let N be the set of all natural numbers. For
any ky, ky € Z, k; < ky, let Zy, 1, be the set of all integers in the
interval [k, ky). SetZ, :=NU {0} and Z_ := {~k : k € Z,}. Let
n, I, g be positive integers. Inequalities between real matrices
and vectors will be understood component-wise, i.e. for two real
Ix g-matrices A = (ay) and B = (by), the inequality 4 > B means
a;; > by fori € Zy p),j € Zyy 4)- In particular, if a; > by fori € Zyy ),
JjE Z[l,q], then we write 4 > B instead of 4 > B. The set of
all nonnegative /x g-matrices is denoted by R%*?. The identity
m x m-matrix will be denoted by 7,,. If x = (x|, x5, ..., x,,)’ € R"
and P = (p;) € R we define |x| = (|x,)) and |P| = (|p;]). It
is easy to see that |CD| = |C||D|. For any matrix 4 € R™*", the
spectral radius of 4 is denoted by p(4) = max{|z| : z € o(4)},
where o(4) := {z € C: det(zl, — A) = 0} is the set of all ei-
genvalues of 4. A norm |.]| on R" is said to be monotonic if
|x| < |y| implies ||x|| < ||y|| for all x,y € R™. Every p-norm
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on R(lx]l, = (i + |xalf + ... + |, )7, 1 < p < o and
X[l = max;ez, ,[xi), is monotonic. Note that [|x[| = [[|x[],
Vx € R™ for any monotonic norm.

Throughout this paper, the norm of vectors is assumed
to be monotonic and the norm ||M|| of a matrix M € R'*¢
is always understood as the operator norm defined by
[M|| = max ) _|[My||, where R’ and R are provided with
some monotonic vector norms. Recall that p(M) < ||M|| for
any matrix norm, see e.g. [7], and the operator norm ||| has the
following monotonicity property, see e.g. [14],

I
PeR",0eRI|IPI<Q=|P| <[Pl <llQ]. (1)
The next theorem summarizes some basic properties of non-
negative matrices which will be used in what follows.

Theorem 2.1. [14]. Let M € R'™™, ¢ € R, then
(i) (Perron-Frobenius) p(M) is an eigenvalue of M and
there exists a nonnegative eigenvector x € R”, x # 0
such that Mx = p(M)x.
(ii) (¢1, — M) exists and is nonnegative if and only if
t> p(M).
The following theorem follows from Theorem 2.1.

Theorem 2.2. [20]. Let M € RT™"™. Then the following state-
ments are equivalent:
(i) p(M) < 1;
(1) 3peR", p>0: Mp < p;
(iii) (1,, — M) >o0.

3. Explicit criteria for exponential stability

Consider a nonlinear Volterra difference equation of the form

n
x(n+1)=F(n.x(n)) + Y G(n.k.x(k)), n>no, ()
k=0
where F(+,-) : Z, xR™ — R"and G(-,+,") : Z, X Z, x R" — R"
are given functions such that F(n, 0) = 0 for all n € Z and
G(n, k,0)=0forn>k,n, k€Z, (i.e. £ =0 is an equilibrium
point of (2)).

For given ny € Z, denote .7, the set of all functions ¢(-) :
Zio,n) — R™. Let ||p||,, = max{llp(n)|| : n € Z_,,|, for each
9(-) € 4, Clearly, for fixed ny € Z, and given ¢ € .7, (2)
has a unique solution satisfying the initial condition

x(n) = @(n), foralln € Zy,. (3)
This solution is denoted by x(-, 19, @).
Definition 3.1. The zero solution of (2) is said to be globally
exponentially stable (shortly, GES) if there exist K > 0 and
4 € (0, 1) such that

[[x(n,m0, @) || < KA [ @] )

for all n, ng € Zy, n > ng, p(-) € %,
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We are now in a position to prove the main result of this
paper.

Theorem 3.2. Suppose there exist 4(-) : Z, — R and
B(") : Z X Z — R™ such that

[F(n,x)] <A(n)|x| and |G(n,k,x)| < B(n,k)|x|,  (5)

foralln, k € Z,,n > k,x € R™. Then the zero solution of (2) is
GES provided one of the following conditions holds:
(1) There exist o > 1 and p € R, p > 0 so that

<A(n) + Z B(n,k)oc”k>p <o 'p, VneZ,. (6)
k=0

(ii) There exist # > 1 and 4 € RT*™, p(4) < 1 so that

(A(n) + Xn"B(n,k)ﬁ”‘k> <A, VneZ,. (7)

k=0

(iii) There exists y > 1 so that

sup
I’EGZ+

(HA(H)H + i‘, HB(n,k)IIV"‘> <L (8)
k=0

Remark 3.3. Roughly speaking, (5) means that (2) is “bounded
above” by the linear equation

n

y(n+1)=A(n)y(n)+ Z B(n,k)y(k), n€Zy. (9)
k=0

On the other hand, as shown in the proof of Theorem 3.2, any
one of conditions (6-8), ensures that (9) is GES. Therefore,
Theorem 3.2 states that if (2) is “bounded above” by the linear
Volterra equation (9) and (9) is GES (one of conditions (6-8),
holds) then the zero solution of (2) is also GES.

Proof. We first prove that the zero solution of (2) is GES pro-
vided (i) holds. The proof consists of two steps.
Step 1. We show that

(2,0, @) || < KA™,

forall n, ng € Zy, n > ny, ¢ € .7, ||9||,, < 1, for some K > 0,
2 €(0,1).

Since p > 0, there exists M > 1 (M is independent of ny)
such that

Mp > |o(n)|,
Vo € S,

Vn € Z[O,ng]?

10
10/l < 1. (1o

Let us define 4 := o' and u(n) := MA" "p, n € Z. From (3)
and (10), it follows that

u(n) > |x(n)|, Yn€Zpgy,. (11)

Bull. Pol. Ac.: Tech. 65(3) 2017
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It is worth noticing that

x(no+ 1) 2 |F (ng,x(no)) +§G(no,k,x(k))\

< |F (n0.x(m0)) +§O|G<no,k,x<k>>|

2 A(no)\x(mo) +:2°03<no,k> (k)

(11) o
< A(no)Mp+ Y B(ng,k)MA* " p
k=0

noy

— M(A(no) + Z B(no,k)a”O*k)p
k=0

©

<Mo 'p

=u(np+1).

By induction, we can show that
x(n)| = [x(n,n0, @)| <MA™"p,
Vn>no, Vo € S, || @]ny < 1.

By the monotonicity of vector norms, it follows that
[x(n,n0,@)|| < M||p|| A" = KA" "™,

for all n > ng, ¢ € %, [|9|l5, < 1, where K := M||p|.

Step 2. We show that (4) holds.
Consider the linear Volterra equation (9). By Step 1, we have
forany ¢ € 7, llolls, < 1,

[y(n,n0, @) || < KA, ¥n = n,
where K := M]||p||. By the linearity of (9),

e = !
1©11n, @]l

[[y(n, no, [y(n,n0, @) [| < KA™,

for all n > no, ¢ € 7, 9|, # 0.

Therefore,

300091 < K2" ] gl .
Vn > ng, Yo € 7,.
For given ¢ € .7, , let x(-) := x(-, ng, p) be the solution of (2-3)

and let y() := y(, no, lo]), where |p|(n) := lp(n)]. n € Zjg ).
Since 4A(n) > 0, B(n, k) > 0 forn,k € Z, n >k, and |¢p| > 0,
it follows that y(n) > 0, Vn € Z, n > n,,.

Bull. Pol. Ac.: Tech. 65(3) 2017

Note that

x(no +1)| < |F (n0,x(no))| + ZO, |G(no,k,x(k))|

k=0
(%)Amo)\x(no)r+§B<no,k>\x<k>\

D A(no) @ (no)| + f‘,B(no,k)\rp(k)!
k=0

9 i
2 A(no)y(no) + Y. Blno, k)y(k)
k=0
=y(np+1).
By induction, we have
x(n)| <y(n), VneZ,.

By the monotonicity of vector norms,

()]l = [l}xC) [} < lly (),

Thus, (4) follows from (12) and (13). Hence, the zero solution
of (2) is GES.

Next, we show that (ii) implies (i). Since 4 € R}*",
p(A) < 1, there is a vector p € R”, p > 0 such that 4p < p,
by Theorem 2.2. By continuity,

Vn € Zy. (13)

Ap<n'p, (14)

for some 5 > 1. Let f be as in (ii) and let a, := min{f, n|.
Clearly, ap > 1 and

(A(n) + i B(n,k)(xgk> <

k=0
<A(n) + i B(n,k)ﬁ”_k> (7§)A.
k=0

Therefore,
- n—k b -1
A(n)—i—ZB(n,k)Oco p<Ap < n 'p<oy'p.

Thus, (i) holds.

Finally, it remains to show that the zero solution of (2) is
GES provided (iii) holds. From (8), it follows that ||4(n)| +
SiollB, B)||ly"* < a,¥n € Z, for some a € [0, 1). Thus, the
zero solution of the scalar difference equation

n
z(n+1) =|A(n)||z(n) + ) [|B(n,k)|2(k), n € Z (15)
k=0
is GES, by (ii). Fix ¢ € ., . Let x() := x(-, ny, ¢) be the solution
of (2-3) and let z(-) := z(-, ng, ||@(-)||) be the solution of (15)
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with the initial value function ||¢(-)||. By a similar argument as
in Step 2 of the proof of (i), we get

[x(n)|| < z2(n), VneZs. (16)
Therefore, the zero solution of (2) is GES. This completes the
proof. O
For given y > 1, let us denote
ly(Kmxm) =
{(3(,1)),1 :B(n) e K™ neZy, ) |Bn)|y' < +oo},
n=0
K:=R,C.

In particular, the following follows from Theorem 3.2.

Theorem 3.4. Suppose there exist 4 € R?*" and B(-) : Z,
— R such that
|F(n,x)| <Alx| and |G(n,k,x)| <B(n—k)lx|, (17)
for all n,k € Zy, n >k, x € R". If (B(n)), € I"'(R™™) for

some y > 1 and p(4 + ¥/ B(n)), then the zero solution of (2)
is GES.

Proof. Since p(A + Y% B(k) < 1and (B(n), € I"(R™™) with
y> 1, p(d+ Y, 2Bk )ﬂk) < 1, for some f € (1, y], by conti-
nuity of the spectral radius, see [3]. Note that 4 + >} B(n — k)
Brr=A4+ Y1 Bk <A+ Y[ BKk)B, VYn € Z,. There-
fore, (ii) of Theorem 3.4 holds and the zero solution of (2)
is GES. O

We illustrate the obtained results by a couple of examples.

Example 3.5. Consider a scalar nonlinear Volterra difference
equation

ne*xz(")x(n)

1) =
M) == ,
N Z 2k*arctan (a"*x(k)) (18)
= (+1)(3(n—k)+1)(3(n—k)+4)
where 0 <a < landneZ,.
Let
ne*xzx
F =
(n,x) o and
2 k (19)
G, ko) 2k~ arctan (a" x)
n,K,xX) = )
(+1)(3(n—k)+1)(3(n—k)+4)
where n, k € Z,, n > kand x € R. Since
2
ne ™ x k% arctan (a""‘x)
d < I’l—k
dnt1 |x| an 241 s a7
336

forallx e R, n, k € Z,, n > k, it follows that

|F(n,x)| <Alx| and |G(n,k,x)| < B(n—k)|x|, (20)
forallx e R, n,k € Z,, n > k, where A :%and
B(n) = W, nez,.
Clearly,
|A++Z°’OB(n Z 2o
=0 3n+1 3n—|—4) 4 3

and |B(n)| < 1/a for alln € Z,. Choosing y € (1, a™!), we have
ay € (0, 1) and IB(n)[y" < +oo. Thus, the zero solution of
(18) is GES, by Theorem 3.4.

Example 3.6. Consider a nonlinear Volterra difference equation
in R3 given by

n

x(n+1)=F(n,x(n))+ Y G(n,k,x(k)), Q1)
k=0
where
In <1 + %]xl ] +O.3e‘”|x2|)
F(n,x) = 0.25x; sin(nx3)
)
\/(1?2&1"1) +(0.2x3)?
and
k—n
arctan <(k+%.)(k+6)x1 +4k—n—2x2>
G(n,k,x) = )

In (1 +0.2 x 3571 x \)

an

k—
20 e Y

with n, k € Z,, n > kand x := x(x, x5, x3)7 € R>.
Define

0 03¢ 0
A(n) == 0 025 0 |;
0.6
e 0 02
ok—n k—n—2
(k+5)(k+6) 4 0
B(n,k):=| 0.2x3k" 0 0 :
k—n—2 2k-—n
4 0 (5k+1)(5k+6)
Bull. Pol. Ac.: Tech. 65(3) 2017
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with n, k € Z, n > k. It is easy to check that
|[F(n,x)| <A(n)|x| and |G(n, k, x)| < B(n, k)|x],

forallm k€ Z ,n>k x= R3. Thus, (5) holds. Furthermore,
we have for f = 2 that

n

A(n) + Z B(n,k)ﬁ”fk =

k=0
0.1:2:+  0.3e"+0.25x 0
1 1 \n—k
Yico m5mme  2i=o0(2)
0.2Y7 o(3)" 0.25 0
nz’fH +0.25x% 0 0.2+

):Z:o(%)n_k

n 1
Li=0 1) 5576)

0.1+ 0.3+0.25% 0
(5=me) 200G
<[ 02x3(1-(3)"") 0.25 0 :
0.34+0.25x 0 0.2+0.2x
1\n 1
2(1=(3)") (1~ Ere))
forallmkeZ . ,n> k.
Thus,
. 03 08 0
A)+ Y Bn.k)p" *<A:=| 06 025 0 |
k=0 08 0 04

foralln,k € Z,,n > kand p(4) < 1. Therefore, the zero solu-
tion of (21) is GES, by (ii) of Theorem 3.2.

4. Stability of perturbed equations

Suppose (17) holds and (B(n)), € I"(R™*™) for some y > 1 and
p(A + Y% B(n)) < 1. Thus, the zero solution of (2) is GES, by
Theorem 3.4. Consider a perturbed equation of the form

x(n41) = <F(n,x(n)) +f(n,x(n))> +
+ Z < n, k. x( )+6(n,k,x(k))>.

Here F(-,-) and G(-,-,-) are as in (2) whereas F(-,-) : Z, x R™ — R"
and G(-,-,") : Z2xR™ — R™ are perturbations. Furthermore, we
assume that

(22)

Bull. Pol. Ac.: Tech. 65(3) 2017

F < DoAfrEy|x|;
{r (n.x)| < DoArEolx] o)

G (n,k,x)| < D(n—k)Ag(n—k)E(n—k)]x|,

foralln, k € Z, n >k, x € R™ where D, € R™/ E, e RT*",
() Z, — R E(): Zy — RY™ are known and Ay € Rlxq

AG() : Zy — R are unknown.

The main problem here is to seek a positive number, say 0,
such that the zero solution of an arbitrary perturbed equation
of the form (22) remains GES whenever the size of (Ag, Ag) is
strictly less than 0.

Theorem 4.1. Assume that (Ag(n)), € I"°(R™*™) for some
yo > 1 and

max{ sup D], sop [E@)] < oo 23
n€Z+ I’ZEZ+
If
1(Ar,AG)| <
- ! (25)
{o's) _1 ?
suppez peo {IIP(In—A—Y 5 B(Kk)) 0|}
where [|(Ar, Ag)ll == [AF + 242 HAG( )|| 2 := {Ey, E(0), E(1),
E(2), ...} and Q := {Dy, D(0), D(1 ...}, then the zero

solution of (22) remains GES.
Proof. By (17) and (23), it follows that
|F(n,x) —|—ﬁ(n,x)‘ < (A4 DoArEp) x|

and

(G(n,k,x) +(~7(n,k,x))|
< (B(n—k)+D(n—k)Ag(n—k)E(n—k))|x|,

for all n, k € Zy, n >k, x € R". Invoking (24) and (B(n)), €
PR™™), (Ag(n), € (R™™), we have (B(n) + D(n)Ag(n)E(n)),
€ I"([R™™), with y; := min{y, y,}.

We show that p(4 + DoApEy + Y% (B(k) + D(k)Ag(k)
E(k))) < 1 and then the zero solution of the perturbed equation
(22) is GES by Theorem 3.4.

Let M := A + Y% B(k). Since M, Dy, Ar, Eq, D(k), Ag(k),
E(k), k € Z, are nonnegative, so is M + DoApEy + ¥ D(k)
Ag(k)E(k). Assume on the contrary that py := p(M + DyArEq +

ZoD(k)Ag(k)E(k)) > 1. By the Perron-Frobenius Theorem
(Theorem 2.1 (7)), there exists x € R, x # 0, such that

+oo
(M +DoArEy+ ) D(k)A
k=0

G(k)E(k))x = pox,
or equivalently,

(Polm —M)x = (DoAFEy + f‘j D(k)Ag (k)E (k))x.
k=0

(26)
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Let H(t) := (tI,, — M), ¢ € R. Since p(M) < 1 < py, H(po) " and
H(1)™! exist and are nonnegative, by Theorem 1.1 (ii). From
(26), it follows that

H(po) ' (DoAFEo + f D(k)Ag(k)E(k))x = x.
k=0

27
Since x # 0 and sup, ¢z, ||E(n)]| < +oo, (27) implies

0 < max {||Eox||, sup ||E(n

nely

)x||} < oo,

If max{||Eox||, sup, ez, [|[E(n)x||} = [|Eox||, multiplying both sides
of (27) from the left by E,, we get

(EoH(po)_lD()AFEo)x+

(Y Eot(po)" ' DR)AGIE(K))x = Eox.

k=0

Taking norms both sides of the last equation, we have
1EoH (po)™" Doll-|AF ||| Eox| +

+oo
+ k;)HEoH(Po)‘lD(k)||-||Ac(k)H-HE(k)XII > || Eox].-

This implies

sup IIPH (Po)™

PEE,QeQ

o] (HAFH " Z Ak |> 1Eox] > [IEoxl,

or equivalently,

sup ||PH(po) " OII. | (Ar, AG)[| = 1.

PeZ,0€Q

(28)

On the other hand, the resolvent identity gives
—H(po)™" = (po—1)H(po) 'H(1)™' > 0.

This yields H(1)™' > H(po) ' > 0. Therefore, PH(1)"'Q >
PH(pg) 'Q > 0, forany P € E, 0 € Q. By (1), [|[PH(1)'Q]| >
|PH(po) Q|| > 0, for any P € E, Q € Q. It follows from (28)
that

H(1)™!

1

SUPpez pea [IPH(1) 10|
1

Im —A _Z/j:()B(k))i

However, this conflicts with (25).

1(AF,Ac) || =
(29)

suppez pea {1P(

o)}
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If sup, ez, ||E(n)x|| > [|Eox||, then for given & > 0, there is
ng € Z, such that ||E(no)x|| > sup,cz, [|E(n)x|| — & > 0. Multi-
plying both sides of (27) from the left by E(ng), we get

(E(n0)H(po) ™' DoArEg)x

+ (X Eu)H(py
k=0

)~ D(k)AG(K)E (k))x = E(no)x.

Taking norms, we get
1 (n0)H (po) ™" Dol|-| A ||| Eox]| +

Y 1E(mo)H (po)
k=0

DI AcRIIE KR)x]| > [|E (o).

It follows that

sup

+co
IPttten) 0l (a1 + X 14 (0)
PeZ,0€Q k=0
(IE(no)x[| + &) = || E(no)x]]-
Since ¢ > 0 is arbitrary, we derive

sup
PeE,QeQ

Foo
\PH(p0)" 0] (||AF|| +kgo||Ac<k>u) =

By a similar argument as in the preceding paragraph, we get
(29). This is a contradiction which completes the proof. O

Example 4.2. We now reconsider the Volterra difference equa-
tion defined by (18—-19). As shown in Example 3.5, the zero

solution of (18-19) is GES. Consider a perturbed equation
given by

x(n+1)= (F(n,x(n)) +f<nax<n>)>+
n Z < n,k,x(k +(~?(n,k,X(k))>,

(30)

where £(-,-) and G(-,-,-) are given by

—sin?(nx)

5

~ e u(n)x

F(n,x) =
and

(n—k)?cosklIn (1 + |v(n—k)x]|)

Gl x) = 3(n—k)2+ 1 ’

wherex e Ron, k€ Zy,n>kyu(): Zy — Randv() : Z;, - R
are unknown functions satisfying sup,cyz |u(n)] < +oo and
(v(n)), € I'(R) for some y > 1. It is clear that

Bull. Pol. Ac.: Tech. 65(3) 2017



www.czasopisma.pan.pl P N www.journals.pan.pl
=

Stability of norilineaiVolterra equations

~ 1 ~
[F(n,x)] < Zlu(n)llxl, 1G(n,k,x)] <

(n—k)2 (€28

= m|v(”_k)||x|7

forallx e R,n,k€Z,,n> k.
By Theorem 4.1, the zero solution of (30) is GES provided

sup |u(n)|+ Z\
n€Z+
1
<
1 - 24 -1 2 Y’
sup { (13 -L5 (3k+1)a(3k+4)) greas|
nEZ+

or equivalently,

1 9
sup [u(n)|+ ) v(n)| < 5———7=7-3p, (32
nel, Z NEET R
o0 zak
where p = €(0,2/3]and a € (0,1).

kg(’) (3k+1)(3k+4)

5. An application

In this section, we apply the obtained results to study uniform
attraction of equilibrium of discrete-time bidirectional associa-
tive memory (BAM) neural networks, see e.g. [18, 24].

Consider a discrete-time BAM neural network with infinite
delay in R? described by

xi(n41) = ar (n)x (n)
+ bi(n f1<zg1 (k)x2(n
x(n+1) =ax(n)x(n)
+ ba(n f2<282 )x1(n — k)> +hL(n), n€Zy,

~0)) 410

(33)

\

with the initial condition

x1(k) = yi(k); xa(k) =

where y(-), y(-) : Z_ — R are given bounded functions.

v (k), Vk € Z._,

Throughout, we assume that
(H,) There exist a;, b; € Ry, i € {1, 2} such that

lai(n)| < a; and |b;j(n)| < b;, Yne€ Zy,ic {1,2};

(Hy) There exists ¢; € Ry, i € {1, 2 such that
/i) = fiy)| < cile—yl, i€ {1,2}, forallx,y € R;

(H3) (gi(n), € '(R), for some y > 1, i € {1, 2}.
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Suppose x* := (x}, x3)7 € R? is an equilibrium of the BAM
neural network (33). That is,

xj=ai(n)x; +bi(n f1< Zgl x2>—|—11 n),n€Zy,
(34)
X3=as(n)x; +b2(n)fz< Y gz(’f)XT)“z(ﬂ),n €Zy.

k=0

The following theorem gives an explicit criterion for uni-
form attraction of the equilibrium of (33).

Theorem 5.1. Let (H;—H;) hold. If

o { i et b Z “l) (35)

max

i,je{l1,2},i#]j {al—'—b € Zgj

)}}<1.

then the equilibrium point x* of (33) is uniformly attractive, i.e,
[[x(n) — x*|| — 0 as n — +o0, where x(n) = (x,(n), x,(n))" € R?,
ne Z+.

Proof. Let y;(n) :=x;(n) — x;%,i €
(33-34) that

{1, 2}, n € Z.1t follows from

yi(n+1) =ai(n)yi(n)+bi(n)x
+
(fl(Zgl v (n—k)+x3]) — fi Zgl )
h—
ya(n+ 1) = s (0)y2(n) + ba(n) oo
oo
<f2(282 yi(n—k)+xi]) — f2 Zgz )
2
Clearly, (36) takes the form
y(in+1)=A(n)y(n Z G(n—k)y(k)), (37)
[
where y(n) := (y,(n), y,(n))" € R*, n € Z,, and foreachn € Z,,

[ ai(n) O ) e bi(n) 0
Aln) ._< 0 axn) >’ Bln): ( 0 bz(n))

o[ O &
o= {0 )

o+ X si0) — (X &1 (60)
o2+ Y ga(k)xi) — A2 (Y g2(k)xy)
k=0 k=0

z:=(z1,22)7 €R%.
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Let A := diag(ay, ay) and D := diag(bic), bye;) € R*Z and

+oo b too k
M:=A+Y DG(k)= “ 1e1 5o 81(k)
k=0 baca ¥ % 82(k) a

Suppose R? is endowed with ||-[|; or |||, then || E]|; = max, ;<,

12':1|eij| and [|E[|,, = max, < iS2ij':l|eij‘s for £ = (e;) € R¥?, see
e.g.[7]. Note that (35) implies that p(M) < min{||M ., [|M|);} < 1.
Since p(M) < 1 and (G(n)), € I"(R*?), it follows that the zero
solution of the linear time-invariant equation

2(n+1)=Az(n)+ Y DG(n—k)z(k), n€Z., (38)
k=0

is GES, by Theorem 3.4.
Next, consider the linear time-invariant equation with in-
finite delay

zn+1)=Az(n)+ Y, DG(n—k)z(k), n€Zy, (39)
k=—o0

with the initial condition z(s) = w(s), s € Z_, where () : Z_
— R? is bounded. Then (39) can be rewritten as

n
z(n+1)=Az(n)+ Z DG(n—k)z(k)+g(n),n € Z.,(40)
k=0

where g(n) := Y1 DG(n - j)y(j), n € Z,. Since (38) is
GES, the kernel G() and the resolvent of (38) exponentially
decay, see e.g. [8]. Using the variation of constants formula
[10], it is easy to see that

|z(n)|| = 0 as n— oo, (41
for any bounded initial function w(-) : Z_ — R?. Furthermore,
invoking (H;—Hjs), it is easy to show that

y(n)| <z(n), VneZy,

where y(-) is the unique solution of (37) with the initial function
w() == (y(), yo())" and z(") is the unique solution of (40) with
the initial function |y()| := (ly1(-)], [wa(-)|)". By the monotonicity
of vector norm, we obtain

Iyl <z, vn € Zy. (42)
It follows from (41) and (42) that || y(n)| = ||x(n) — x*| — 0 as
n — +oo. This completes the proof. O

Acknowledgements. This work was partially supported by
Dong Thap university under the grant number CS.2015.01.26.

REFERENCES

[1] J.A.D. Appleby, I. Gyori, and D.W. Reynolds, “On exact conver-
gence rates for solutions of linear systems of Volterra difference
equations”, J. Difference Equ. Appl. 12, 1257-1275 (2006).

340

[2] H. Brunner, and P.J. Houwen, The Numerical Solution of Volterra
Equations, CWI. Monographs, North-Holland, Amsterdam, 1986.

[3] L. Burlando, “Continuity of spectrum and spectral radius in alge-
bras of operators”, Ann. Fac. Sci. Toulouse Math. 9, 5-54 (1988).

[4] M.R. Crisci, V.B. Kolmanovskii, E. Russo, and A. Vecchio, “Sta-
bility of difference Volterra equations: direct Liapunov method and
numerical procedure”, Comput. Math. Appl. 36, 77-97 (1998).

[5] M.R. Crisci, V.B. Kolmanovskii, E. Russo, and A. Vecchio, “On
the exponential stability of discrete Volterra equations”, J. Dif-
ference Equ. Appl. 6, 667-680 (2000).

[6] C. Cuevas, F. Dantas, M. Choquehuanca, and H. Soto, “Bound-
edness properties for Volterra difference equations”, Appl. Math.
Comput. 219 , 69866999 (2013).

[7]1 S. Elaydi, An Introduction to Difference Equations, Springer
Verlag, 2005.

[8] S. Elaydi, and S. Murakami, “Asymptotic stability versus expo-
nential stability in linear Volterra difference equations of con-
volution type”, J. Difference Equ. Appl. 2, 401-410 (1996).

[9] S. Elaydi, and V. Kocic, “Global stability of a nonlinear Volterra
difference equations”, Diff. Eqns. Dyn. Sys. 2, 337-345 (1994).

[10] S. Elaydi, “Stability and asymptoticity of Volterra difference
equations: A progress report”, J. Comput. Appl. Math. 228,
504-513 (2009).

[11] P.W. Eloe, M.N. Islam, and Y.N. Raffoul, “Uniform asymptotic
stability in nonlinear Volterra discrete equations”, Comput. Math.
Appl. 45, 1033-1039 (2003).

[12] G. Gripenberg., S.O. Londen, and O. Staffans, Volterra integral and
functional equations, Cambridge University Press, Vol. 34, 1990.

[13] I. Gyori, and D.W. Reynolds, “On admissibility of the resol-
vent of discrete Volterra equations”, J. Difference Equ. Appl. 16,
1393-1412 (2010).

[14] D. Hinrichsen, and N.K. Son, “Stability radii of positive dis-
crete-time equations under affine parameter perturbations”, /n-
ternat. J. Robust Nonlinear Control 8, 1169—1188 (1988).

[15] V.B. Kolmanovskii, E. Castellanos-Velasco, and J. A. Torres-
Munoz, “A survey: stability and boundedness of Volterra differ-
ence equations”, Nonlinear Anal. 53, 861-928 (2003).

[16] J.J.Levin, and J.A. Nohel, “The integrodifferential equations of
a class of nuclear reactors with delayed neutrons*, Arch. Ration.
Mech. Anal. 31, 151-172, (1968).

[17] N. Levinson, “A nonlinear Volterra equation arising in the theory
of superfluidity”, J. Math. Anal. Appl. 1, 1-11 (1960).

[18] W.Li, L. Panga, H. Sua, and K.Wang, “Global stability for dis-
crete Cohen-Grossberg neural networks with finite and infinite
delays”, Appl. Math. Lett. 25, 2246-225 (2012).

[19] W.R. Mann, and F. Wolf, “Heat transfer between solids and gases
under nonlinear boundary conditions®, Quart. Appl. Math. 9,
163—-184 (1951).

[20] P.H.A. Ngoc, and L.T. Hieu, “New criteria for exponential sta-
bility of nonlinear difference systems with time-varying delay”,
Internat. J. Control 86, No. 9, 1646-1651 (2013).

[21] P.H.A.Ngoc, T. Naito, J.S. Shin, and S. Murakami, “Stability and
robust stability of positive linear Volterra difference equations”,
Internat. J. Robust Nonlinear Control 19, 552-568 (2008).

[22] Y.N. Raffoul, and Y.M. Dib, “Boundedness and stability in non-
linear discrete dystems with nonlinear perturbation”, J. Differ-
ence Equ. Appl. 9, 853-862 (2003).

[23] Y. Song, and C.T.H. Baker, “Perturbation of Volterra difference
equations”, J. Difference Equ. Appl. 10, 379-397 (2004).

[24] T.Zhou, Y. Liu, X. Li, and Y. Liu, “A new criterion to global ex-
ponential periodicity for discrete-time BAM neural network with
infinite delays”, Chaos Solitons Fractals 39, 332-341 (2009).

Bull. Pol. Ac.: Tech. 65(3) 2017



