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Abstract. Annealed iron-platinum (FePt) is ferromagnetic in a nanoscale regime which is necessary for energy and data storage, whereas the 
as-synthesized form of FePt-based nanoparticles exhibits superparamagnetism useful for biomedical applications. In this study, as-synthesized 
nanosuspensions from the reaction of Pt(acac)2 with Fe(acac)3 and Fe(hfac)3 are compared. X-ray diffraction (XRD) peaks for both samples 
are assigned to the FePt3 phase. As shown by transmission electron microscopy (TEM) and small angle X-ray scattering (SAXS), nanoparticles 
synthesized by using Fe(acac)3 have a smaller average diameter, but larger polydispersity index and particle agglomerations. On the other hand, 
the nanoparticles synthesized by using Fe(hfac)3 can self-assemble into a longer range of patterned monolayer. Dynamic light scattering (DLS), 
measuring the size of cluster of nanoparticles as well as oleic acid and oleylamine at their surface, confirms that larger agglomerations in the 
sample were synthesized by using Fe(acac)3. In addition to the size distribution, magnetic properties were influenced by the composition of 
these nanoparticles.
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sampling a much larger number of particles dispersed in forms 
of magnetic nanosuspension. For surface-modified magnetic 
nanoparticles, DLS measures the hydrodynamic diameter 
corresponding to the size of nanoparticle cluster and organic 
surfactant, whereas TEM detects boundaries of the individual 
magnetic nanoparticle [10]. The correlation between TEM and 
DLS information has been reported in the highly uniform su-
perparamagnetic CoFe2O4 nanoparticles [11].

Another non-destructive technique to determine the size 
distribution is small angle X-ray scattering (SAXS) [12]. Its 
advantages are the accurate determination of nanoparticle size 
distributions and the discrimination between polydisperse single 
particle and polydisperse particle in aggregates. SAXS has been 
successfully used to complement TEM in probing the size dis-
tribution of several nanoparticles including Au [13], CoPt3 [14] 
and FePt [15]. Furthermore, Fe3O4 and CuO nanoparticles were 
comparatively characterized using X-ray diffractometry (XRD), 
TEM, DLS and SAXS [16].

In this study, the morphology of FePt-based nanoparti-
cles synthesized from two alternative precursors is compared 
by using TEM, DLS and SAXS. Iron(III) acetylacetonate 
(Fe(acac)3) and iron(III) hexafluoroacetylacetone (Fe(hfac)3) 
have been investigated as a replacement for highly toxic 
Fe(CO)5. The synthetic procedure, adapted from the published 
method [17], replaces a N2 glove box with an Ar Schlenk line. 
The heating rate in the terminal process and revolution of pu-
rified centrifugation are also reduced.

1.	 Introduction

Monodisperse iron-platinum (FePt) nanoparticles are currently 
under investigations for applications in ultrahigh-density data 
storage [1], rare-earth-free permanent magnets [2] and biomed-
ical purposes such as biosensing, targeted drug delivery and 
hyperthermia treatment [3]. To this end, the ability to control 
the shape, size and size distribution is critically important [4, 5]. 
Moreover, the homogenous assembly by attractive van der Waals 
force and magnetic dipole interaction in monodisperse ferro-
magnetic nanoparticles is required in the data storage [6, 7]. 
The chemical synthesis normally results in the mixed phase of 
FePt3 with iron oxides and the annealing treatment is needed to 
convert the as-synthesized phase into ferromagnetic FePt [8]. 
Nevertheless, the as-synthesized FePt-based nanoparticles also 
find applications based on their superparamagnetic properties.

Various techniques have been developed to accurately char-
acterize nanoparticle morphology. The widely used transmis-
sion electron microscopy (TEM) provides images of the par-
ticles over a specific area so its main advantage is the visual 
impression of the homogeneity of a given sample [9]. However, 
TEM has potential errors due to a small area with up to thou-
sands of particles examined. To complement TEM, dynamic 
light scattering (DLS) is used as an inexpensive approach to 
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2.	 Experiments

2.1. Synthesis of nanosuspension. Nanoparticles were prepared 
by mixing 0.2 mmol of platinum(II) acetylacetonate (Pt(acac)2) 
with 0.24 mmol of either Fe(acac)3 (Sample 1) or Fe(hfac)3 
(Sample 2) in a 100 mL Schlenk flask. The flask was connected 
with a condenser and Ar gas. The temperature controlled by an 
IKA thermostat coupling with a hotplate stirrer kept the heating 
rate initially at about 5°C/min and terminally at about 1°C/
min until 250°C. The schlenk flask was evacuated and then 
filled with Ar for 3 times before adding dioctyl ether 20 mL. 
The mixture was vigorously stirred and heated up to 120°C for 
20 min under Ar atmosphere. Oleic acid (1.78 mL, 5.0 mmol) 
and oleylamine (2.3 mL, 5.0 mmol) were injected into the reac-
tion flask (solution change to black brown) and then the solution 
was heated to 200°C and dwell for 30 min. The solution was 
refluxed at 296°C to for 30 min. The product was then cooled 
to room temperature under Ar. After that, the black product was 
mixed with 45 mL of ethanol and then centrifuged at 5, 300 rpm 
for 15 min. The supernatant was discarded and the precipitate 
was redispersed in 20 mL of hexane in the presence of small 
amount (0.05 mL) of oleic acid and oleylamine. To separate 
large and uncoated particles, 5 mL of ethanol was added, and 
the mixture was centrifuged at 5, 300 rpm for 15 min. The pre-
cipitate (large particles) was discarded and an excessive ethanol 
was added to the black suspension followed with centrifugation 
to precipitate the nanoparticles. The nanoparticles were further 
purified by redisposed in 20 mL of hexane and centrifuged with 
excessive ethanol (20 mL) for three times. The final precipi-
tate was redispersed in 10 mL of hexane and small amounts 
(0.05 mL) of oleic acid and oleylamine, followed by purging 
Ar to remove O2. The obtained suspensions were stored in glass 
bottles in refrigeration.

2.2. Characterization of nanoparticles. In the characteriza-
tion of nanosuspensions, the particle size distribution and zeta 
potential measurement were carried out by using Malvern Ze-
tasizer Nano-ZS. Each diluted nanosuspension (ph 5) was filled 
in a cell glass cuvette (1 mL) and DLS was then performed at 
room temperature to determine the hydrodynamic diameter and 
size distribution. Electrophoretic mobility was also measured in 
the same apparatus and the data were subsequently transformed 
to the zeta potential value which can be related to the surface 
charge density.

The SAXS was measured at BL1.3W of Synchrotron Light 
Research Institute (Public organization), Nakhon Ratchasima, 
Thailand. The X-ray energy used was 8 keV. The samples, 
contained in a liquid cell with Kapton windows, were installed 
in the sample holder and measured. An empty cell and a cell 
injected with hexane buffer were respectively used as a ref-
erence and background. Each sample was measured with 300 
second exposure time, in which the maximum recorded inten-
sity was close to the saturation of the detector. The scattering 
patterns were recorded using a CCD detector (Mar SX165). 
The recorded patterns were normalized with an integrated 
incident beam intensity measured by an ionization chamber. 
The sample transmissions were corrected using the measured 

beam intensity after the sample from a photodiode installed in 
front of the beam stop, with the empty cell used as a reference. 
Alignment of the measured SAXS patterns and calibration of 
the sample-detector distances of 1469.7 mm were performed 
using the measured diffraction ring of silver behenate powder. 
The SAXS profile for each sample was then obtained after 
background subtraction and circular averaging. The obtained 
profiles were fitted with Beaucage’s model according to the 
unified exponential power law [18].

Before XRD and TEM characterizations, nanosuspensions 
were dropped on solid substrates and left overnight at room 
temperature for hexane evaporation. Nanoparticles were im-
aged by a TEM (JEOL, JEM-2010) at an accelerating voltage 
of 200 kV and the phases were characterized by selected-area 
electron diffraction (SAED) in TEM and XRD using Rigaku 
TTRAX III at 15 kW. Magnetic properties were measured at 
room temperature by means of vibrating sample magnetom-
etry (VSM) under the magnetic field (H) between –10 and 
10 kOe.

3.	 Results and discussion

In Fig. 1, XRD peaks of both samples are assigned to (111), 
(200), (220), (311) planes of the FePt3 phase with face-centered 
cubic (fcc) structure (ICDD Ref: 001‒089‒2050). These peaks 
can be fitted to the Gaussian distribution. The shift to lower 
angles than those of the reference, implying the co-existence 
of another phase, is specially marked in the case of Sample 2. 
The lattice parameter (a) in Table 1 is around 3.9 A° for both 
samples, slightly higher than 3.8720 A° of the FePt3 reference. 
It must be mentioned that the characteristic FePt3 peaks are 
close to those of FePt and the lattice parameter of fcc FePt 
phase (ICDD Ref: 03‒065‒9122) is 3.841 A°. The SAED in 
TEM was then additionally used to confirm the phase of the 
nanoparticles.

The SAED patterns in Fig. 2 are matched with the charac-
teristic (111), (200), (220), (311) planes of FePt3. This FePt3 
phase is favored in the case of larger elemental composition of 

Fig. 1. XRD patterns of Samples 1 and 2
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Pt. While iron oxide peaks are not present in both XRD patterns, 
other phases are not entirely ruled out since another set of low 
intensity SAED pattern, which is not matched with the FePt3 
phase, is superimposed on the pattern.

Table 1 
XRD parameters of Samples 1 and 2 compared to the FePt3 

reference (ICDD Ref: 01-089-2025)

FePt3 Sample 1 Sample 2

2Theta
(degree)

Int.
(%)

hkl 2Theta
(degree)

Int.
(count)

a
(A°)

2Theta
(degree)

Int.
(count)

a
(A°)

40.31 100 111 41.02 1703 3.897 39.85 962 3.914

46.89 45.6 200 45.81 486 3.960 45.76 636 3.960

68.48 22.9 220 67.55 673 3.932 66.73 437 3.960

82.58 23.2 311 81.66 561 3.914 81.16 355 3.914

Fig. 2. SAED patterns of Samples (a) 1 and (b) 2

Fig. 3. TEM images of Samples (a) 1 and (b) 2 with magnified insets

Fig. 4. Size distributions in terms of particle diameter of Samples (a) 
1 and (b) 2 obtained from TEM images

By applying the Image J program on over one thousand particles 
of each TEM image in Fig. 3, the size distribution is obtained 
and approximated as LogNormal curves shown in Fig. 4. From 
Table 2, the average diameters are 3.7±0.7 nm for Sample 1 
and 4.3±0.2 nm for Sample 2. By measuring in forms of mag-
netic nanosuspensions, the SAXS intensity (I ) plots against q 
in Fig. 5 exhibit a certain slope in the high q region and then 
a transition of profile at small q. The measured SAXS data is 
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fitted using the two size limit for the exponential-power scat-
tering model of Beaucage [18, 19].

3 

This FePt3 phase is favored in the case of larger elemental 
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is not matched with the FePt3 phase, is superimposed on 
the pattern. 
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where G and Gs are the Guinier prefactors of the larger and 
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power law for larger and smaller structures. B and Bs are 
the power law prefactor of the exponent P and Ps. Rg and 
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is the surface fractal cut-off radius of gyration. The first 
term in Eq. (1) describes the large scale of size Rg 
composed of small subunits of size Rs, captured in the 
third term. The second term describes the mass-fractal 
regime with two structural limits. The final two terms are 
the sub-structural per unit [20]. 
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smaller scales for radius of gyration. Rsub is the surface fractal 
cut-off radius of gyration. The first term in (1) describes the 
large scale of size Rg composed of small subunits of size Rs, 
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are the sub-structural per unit [20].

According to the fitted scattering-intensity lines shown in 
Fig. 5 and the values of fitting parameters listed in Table 3, 
Sample 1 can be fitted by the first and second terms but 
Sample 2 has to include the third term. For Sample 2, the 
second structure levels are observed in knees of the log-log 
plot in 1 < q < 2 nm–1 regime and the fourth term will be 
effected by a higher existing q measured data of Sample 2. 
Also, there may be contribution from the last two terms unused 
in Sample 1.

Table 3 
Beaucage fitting parameters from SAXS profiles of Samples 1 and 2

Sample G B Gs Rg
(nm)

Rsub
(nm)

Rs
(nm)

P

1 248.28 13.22 0 4.73 1.11 0 2.62

2 455.59 3.09 17.40 5.81 0.01 1.74 3.69

The Rg at the low q of Sample 1 4.7 nm is less than that of 
Sample 2 (5.8 nm). In addition, the power law scattering at high 
q of Sample 2 decay with a slope of 3.69. The value close to 4 in-
dicates the scattering from objects like polydisperse spheres. By 
contrast, the scattering of Sample 1 decays with a slope of 2.62 
attributable to the mass-fractal structure of aggregates [19, 21].

The particle size and size distribution have been calculated 
assuming polydisperse spheres with a log normal distribution 
of radii represented by a density function f (R) [22].
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Potential 
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The lognormal distribution curves are shown in Fig. 6 and 
the parameters obtained from SAXS are compared to other 
techniques in Table 2. SAXS results suggest a nearly monodis-
persity for larger nanoparticles synthesized by using Fe(hfac)3 
in Sample 2 and large polydispersity for smaller nanoparticles 
synthesized by using Fe(acac)3 in Sample 1. These findings are 
in good agreement with the observation from TEM. However, 
the average diameters from SAXS are much higher, i.e. 6.4 nm 
for Sample 1 and 10.4 nm for Sample 2. The discrepancy is 
likely due to the deviation of particle shape from sphere used 
in the model.

The size distribution curves measured by DLS shown in 
Fig. 7 and the relevant parameters listed in Table 2 confirm 
the smaller PDI of Sample 2, previously indicated by TEM an 
SAXS. Sample 1 exhibits bimodal peaks centered at 29 and 
246 nm. The hydrodynamic diameters obtained from DLS are 

much larger than diameters measured by TEM and SAXS. By 
inclusion of the organic surfactants and measuring cluster of 
nanoparticles, the average hydrodynamic diameters are respec-
tively 28 and 17 nm for Samples 1 and 2.

The lower PDI in Sample 2 promotes the self-assembly of 
uniform nanoparticles into a longer range of patterned mono-
layer. Sample 1 has a larger variation in size and agglomera-
tions of some nanoparticles are clearly observed in the TEM 
image. The agglomeration can be quantitatively compared 
using TEM analysis by Image J program. Aggregates of larger 
than 10 nm contribute to 5.07% in Sample 1 but only 0.29% 
in Sample 2 which corresponding to the results from DLS. 
The agglomeration and self-assembly behavior can be related 
to the zeta potential. As shown in Table 2, the modest values 
well within the ±30 mV range indicate low surface charge 
density. The difference in zeta potential between two samples 
suggests that nanoparticles in Sample 1 (–0.908 mV) is likely 
to aggregate because of a lower repulsion. A larger potential 
in Sample 2 (7.28 mV) stabilizes the suspension by preventing 
such agglomeration.

In Fig. 8, magnetic properties of Samples 1 and 2 are com-
pared. Without hysteresis, both samples exhibit superparamag-
netic characteristics. A much smaller magnetization (M) in the 
case of Fe(hfac)3 is consistent with the report from different set 
of samples in [17]. Such trend is largely attributed to the com-
position of nanoparticles. The synthesis with Fe(hfac)3 tends to 
lower the Fe:Pt ratio [17].

Fig. 6. Size distribution in terms of particle radius (R) of Samples (a) 
1 and (b) 2 obtained from SAXS

Fig. 7. Size distribution in terms of hydrodynamic diameter of Samples 
1 and 2 measured by DLS

Fig. 8. Magnetic properties of Samples 1 and 2 measured by VSM

Finally, the conversion from superparamagnetism to ferro-
magnetism upon thermal treatments is discussed. In addition to 
required magnetic properties, excessive agglomerations have to 
be inhibited. It was demonstrated in [8] that hysteresis loops 
were substantially different when nanoparticles were synthe-
sized with four different precursors. The coercive field was at 
the lowest in the case of Fe(hfac)3 which can be traced back to 
its magnetic properties in the as-synthesized form.
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4.	 Conclusions

Based on the comparative characterizations by XRD, TEM, 
SAXS and DLS, Fe(hfac)3 shows a potential as an alternative 
precursor in the synthesis of monodisperse FePt nanoparticles. 
Although the uses of Fe(acac)3, Fe(hfac)3 both lead to the for-
mation of FePt3 in as-synthesized particles, the uniform size 
and shape are obtained by using Fe(hfac)3. By contrast, the 
agglomeration of nanoparticles in the case of Fe(acac)3 severely 
affects their long-range self-assembly. Judging by these mor-
phology and self-assembly characteristics, Fe(hfac)3 is a prom-
ising candidate in the synthesis of monodisperse nanoparticles. 
Required magnetic properties can be obtained by controlling the 
composition in the synthesis.
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