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Abstract The model of the equations of generalized thermoelasticity in
a semi-conducting medium with two-temperature is established. The entire
elastic medium is rotated with a uniform angular velocity. The formula-
tion is applied under Lord-Schulman theory with one relaxation time. The
normal mode analysis is used to obtain the expressions for the considered
variables. Also some particular cases are discussed in the context of the
problem. Numerical results for the considered variables are obtained and
illustrated graphically. Comparisons are also made with the results pre-
dicted in the absence and presence of rotation as well as two-temperature
parameter.
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Nomenclature

a∗ – two temperature parameter
ce – specific heat at constant strain
DE – carrier diffusion coefficient
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Eg – energy gap of semiconductor
K – coefficient of thermal conductivity
N – carrier density
N0 – carrier concentration at temperature T
T – thermodynamic temperature above the reference temperature T0

u, v – displacement vector components

Greek symbols

α – thermal expansion coefficient
γ = (3λ + 2µ)α
δij – thermal expansion coefficient
δn – difference of deformation potential of conduction and

valence band such that δn = (3λ + 2µ)dn

εij – strain components
θ – conductive temperature
κ = ∂N0

∂T
1
τ

λ, µ – Lame’ constants
τ – photo-generated carrier lifetime
τ0 – thermal relaxation time
ρ – mass density
σy – stress components

1 Introduction

Thermoelasticity theories, which admit a finite speed for thermal signals,
have received a lot of attention for the past four decades. In contrast to
the coupled thermo-elasticity theory based on a parabolic heat equation [1],
which predicts an infinite speed of the propagation of heat, these theories
involve a hyperbolic heat equation and are referred to as generalized ther-
moelasticity theories. The theory of thermoelasticity with one relaxation
time proposed by Lord and Shulman [2] arose as a result of the modification
of equation of heat conduction in [1], originally proposed by Maxwell [3] in
the context of theory of gases, and later by Cattaneo [4] and Vernotte [5] in
the context of heat conduction in rigid bodies. Resulting from that theory
heat equation of the wave type ensures the finite speed of wave propaga-
tion of heat and the displacement distributions. This theory was extended
by Dhaliwal and Sherief [6] to include the anisotropic case. Othman and
Said [7] used the normal mode analysis to study the effect of rotation on
the two-dimensional problem of a fibre-reinforced thermoelastic with one
relaxation time.

The first photothermal method was discovered by Gordon et al. [8]
when they found the intracavity sample where a laser-based apparatus gave
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rise to photothermal blooming, namely the photothermal lens. Sometime
later, Kreuzer [9] showed that photoacoustic spectroscopy could be used for
sensitive analysis when laser light sources were used. The photo-thermal
generation during a photothermal process was studied by many authors.
For semiconductor materials, the mechanism of this process includes two
parts: two parts: part one: the propagation of a thermal wave causing
elastic vibration in the medium; this is the thermoelastic (TE) mechanism
of photothermal generation (Todorovic et al. [10]). Part two: the photoex-
cite free carriers produce directly a periodic elastic deformation that is, the
electronic deformation (ED) in the sample (Todorovic et al. [10]). A gen-
eral theoretical analysis of the (TE) and (ED) effects in a semi-conductor
medium during a photo-thermal process consists in modeling the complex
systems by simultaneous analysis of the coupled plasma, thermal, and elas-
tic wave equations (Song et al. [11]). System of partially coupled plasma,
thermal and elastic wave equations and conditions for neglecting the cou-
pling between them is analyzed (Todorovic [12]). The treatment considers
a semiconductor elastic medium for isotropic and homogeneous, thermal
and elastic properties. Song et al. [13] used the coupled generalized ther-
moelastic with thermal relaxation time and plasma theories to study the
reflection problem at the surface of a semi-infinite semiconducting medium
during a photothermal process.

Some research in the past investigated different problems of rotating
media. In a paper by Schoenberg and Censor [14], the propagation of
plane harmonic waves in a rotating elastic medium without a thermal field
has been studied. It was shown there that the rotation causes the elastic
medium to be depressive and anisotropic. Many authors [15–25] studied
the effect of rotation on elastic waves. These problems are based on the
more realistic elastic model since earth, the moon and other planets have
angular velocity.

Thermoelasticity with two temperatures is one of the nonclassical the-
ories of thermoelasticity of elastic solids. The thermal dependence is the
main difference of this theory with respect to the classical one. Chen and
Gurtin [26], Chen et al. [27,28] have formulated a theory of heat con-
duction in deformable bodies, which depend on two distinct temperatures,
the conductive temperature and thermodynamic temperature. For time
independent situations, the difference between these two temperatures is
proportional to the heat supply. For time dependent problems and with
respect to wave propagation problem in particular, the two-temperatures
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are in general different, regardless of the presence of heat supply. The two
temperatures, T , and θ, and the strain are found to have representations in
the form of a traveling wave plus a response, which occurs instantaneously
throughout the body [29]. Warren and Chen [30] investigated the wave
propagation in the two-temperature theory of thermoelasticity. Recently,
Youssef [31,32], Abbas and Youssef [33] and Bijarnia and Singh [34] studied
different problems under two temperature generalized thermoelastic theory.

This paper investigates the effect of two-temperature parameter and ro-
tation in a semiconducting medium into the context of the two-temperature
generalized thermoelasticity theory with one relaxation time.

2 Formulation of the problem and basic equations

Generally, theoretical analyses of the transport process in a semiconduc-
tor involve in the consideration of coupled plasma waves, thermal waves
and elastic waves simultaneously. For a medium with isotropic and ho-
mogeneous properties, when the body forces are neglected, the governing
equations are; Fig. 1:

1. Strain-displacement relations:

εij =
1

2
(ui,j + uj,i), i, j = 1, 2 , (1)

where the components of the displacement vector are u ≡ (u, v, 0).

2. Constitutive relations:

σij = 2µ εij + [λe − γ T − δn N ]δij . (2)

3. Heat conduction equation (hyperbolic equation [35]):

K∇2θ +
Eg

τ
N − γ T0

(

1 + τ0
∂

∂t

)

ė = ρce

(

1 + τ0
∂

∂t

)

Ṫ , (3)

such that
T = θ − a∗∇2θ . (4)

4. Equation of motion:
Since the medium is rotating uniformly with an angular velocity Ω =
Ωn ≡ (0, 0, Ω) where n is a unit vector representing the direction of
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the axis of the rotation, the equation of motion in the rotating frame
of reference has two additional terms (Schoenberg and Censor [14]):
centripetal acceleration Ω × (Ω × u) due to time-varying motion only
and Corioli’s acceleration 2 Ω × u̇, then the equation of motion in
a rotating frame of reference is

µ ∇2ui+(λ+µ)∇e−γ ∇T −δn ∇N = ρ
[

üi+[Ω×Ω×u]i+2(Ω×u̇)i
]

.
(5)

5. Coupled plasma transport equation (parabolic equation [35]):

DE∇2N − N

τ
+ κ T =

∂N

∂t
, (6)

where N is the carrier density, T is the thermodynamic temperature
above the reference temperature T0, σij are the stress components,
εij are the strain components, λ, µ are Lame’ constants, γ = (3λ +
2µ)αt, αt is the thermal expansion coefficient, δn is the difference
of deformation potential of conduction and valence band such that
δn = (3λ + 2µ)dn, δij is the Kronecker delta, K is the coefficient of
thermal conductivity, θ is the conductive temperature, a∗ is the two
temperature parameter, ρ is the mass density, ce is the specific heat
at constant strain, Eg is the energy gap of semiconductor, DE is the
carrier diffusion coefficient, τ is the photo-generated carrier lifetime,
τ0 is the thermal relaxation time and κ = ∂N0

∂T
1
τ , N0 is the carrier

concentration at temperature T.

The governing equations can be put into a more convenient form by using
the following non-dimensional variables:

(x′, y′, u′, v′) =
1

CT t∗
(x, y, u, v), (t′, τ

′

0) =
1

t∗
(t, τ0),

{T ′, θ′}=
γ

(λ + 2µ)
{T, θ}, N ′ =

δn

(λ + 2µ)
N,

σ
′

ij =
1

µ
σij , Ω

′

= t∗ Ω, C2
T =

(λ + 2µ)

ρ
, t∗ =

K

ρceC2
T

. (7)

Introducing the displacement potentials Φ(x, y, t) and Ψ(x, y, t), which re-
lated to displacement components by the relations

u = Φ, x + Ψ, y v = Φ,y − Ψ,x . (8)



106 M.I.A. Othman, R.S. Tantawi and E.E.M. Eraki

Figure 1: Schematic diagram of the problem.

Using Eqs. (2) and (8), in Eqs. (3)–(6), we obtain (the dashed above
quantities have been removed for convenience):

[

∇2 + Ω2 − ∂2

∂t2

]

Φ − 2Ω
∂Ψ

∂t
−
(

1−a0∇2)θ − N = 0 , (9)

2Ω β2 ∂Φ

∂t
+

[

∇2 + β2 Ω2 − β2 ∂2

∂t2

]

Ψ = 0 , (10)

{[

1+a0

(

1+τ0
∂

∂t

)

∂

∂t

]

∇2−
(

1+τ0
∂

∂t

)

∂

∂t

}

θ−ε1

(

1+τ0
∂

∂t

)

∇2Φ̇+ε2N = 0 ,

(11)
[

∇2 − Kt∗

ρceτDE
− K

ρceDE

∂

∂t

]

N+ε3 (1−a0∇2)θ = 0 , (12)

T= (1−a0∇2)θ . (13)

For the stress-tensor components, we have the following expressions:

σxx = β2u,x + (β2 − 2)v,y − β2T − β2N , (14)

σyy = (β2 − 2)u,x + β2v,y − β2T − β2N , (15)

σzz = (β2 − 2)∇2Φ − β2T − β2N , (16)

σxy = u,y + v,x, σxz = σyz = 0 , (17)

where:
ε1 = γ2 T0 t∗

Kρ , ε2 =
αtEgt∗

ρ ce τ dn
, ε3 = Kκ dnt∗

ρ ce αtDE
, β2 = (λ+2µ)

µ , and a0 = a∗

C2
T

t∗2 .
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3 Normal mode analysis

The solution of considered physical quantities can be decomposed in terms
of normal mode as follows:

[Φ, Ψ, T, θ, N, σij](x, y, t) = [Φ∗, Ψ∗, T ∗, θ∗, N∗, σ∗

ij](y) exp(ω t + ia x) ,
(18)

where a is the wave number in the x-direction, i =
√

−1, ω is a com-
plex constant, Φ∗, Ψ∗, T∗, θ∗, N∗, and σ∗

ij
are the amplitudes of the field

quantities Φ, Ψ, T, θ, N , and σij.
Using Eq. (18), Eqs.(9)–(12) become respectively:

(D2 − b1)Φ∗ − b2Ψ∗ + (a0 D2 − b3)θ∗ − N∗ = 0 , (19)

b4 Φ∗ + (D2 − b5) Ψ∗ = 0 , (20)

− b6 (D2 − a2) Φ∗+(b7 D2 − b8) θ∗ + ε2 N∗ = 0 , (21)

(b9 D2 − b10) θ∗ − (D2 − b11) N∗ = 0 , (22)

where:
b1 = a2 + ω2 − Ω2, b2 = 2 ω Ω, b3 = (1 + a0 a2), b4 = b2 β2,
b5 = a2 + β2 (ω2 − Ω2), b6 = ε1 ω (1 + τ0 ω), b7 = 1 + a0 ω (1 + τ0 ω),
b8 = a2 b7 + ω (1+ τ0 ω), b9 = a0 ε3, b10 = ε3 (1+ a0 a2), b11 = a2 +α,
α = K t∗

ρ ceτDE
+ Kω

ρ ceDE
, D = d

d y .

Eliminating Φ∗(y), Ψ∗(y), θ∗(y), and N∗(y) between Eqs. (19)–(22), the
following eighth order ordinary differential equation satisfied by Φ∗(y), Ψ∗(y),
θ∗(y), and N∗(y) can be obtained:

(

D8 − A D6 + B D4 − C D2 + E
)[

Φ∗(y), Ψ∗(y), θ∗(y), N∗(y)
]

= 0 , (23)

where:
A = 1

(a0 b6+b7)

[

(b1 + b5 + b11) b7 + b8 − (ε2 − b6) b9 + a0 b6 (a2 + b11)

+ b6 (a0 b5 + b3)
]

,

B = 1
(a0 b6+b7)

[

b3 b5 b6 + b8 b11 − ε2 b10 + (b1 + b5) (b7 b11 + b8 − ε2 b9)+

(b1b5+b2b4) b7+a2 b6(a0b11 + b9) + b6(a0 b5 + b3)(a2 + b11) + b6 (b5 b9 + b10)
]

,

C = 1
(a0b6+b7)

[

(b1 + b5)(b8b11 − ε2b10) + (b1b5 + b2b4)(b7b11 + b8 − ε2b9)

+a2 b6 b11(a0 b5 + b3) + b3 b5 b6 (a2 + b11) + b5 b6 b10 + a2 b6(b5 b9 + b10)
]

,



108 M.I.A. Othman, R.S. Tantawi and E.E.M. Eraki

E = 1
(a0 b6+b7)

[

(b1 b5 + b2 b4) (b8 b11 − ε2 b10) + a2 b5 b6(b3 b11 + b10)
]

.

Equation (23) can be factored as

(D2 − k2
1)(D2 − k2

2)(D2 − k2
3)(D2 − k2

4){Φ∗(y), Ψ∗(y), θ∗(y), N∗(y)} = 0,
(24)

where k2
j (j = 1, 2, 3, 4) are the roots of the characteristic equation given

by Eq. (24). The limit of Eq. (24), solution as y → ∞, reads:

Φ∗(y) =
4
∑

n=1

Mn e−kn y , (25)

Ψ∗(y) =
4
∑

n=1

H1n Mn e−kn y , (26)

θ∗(y) =
4
∑

n=1

H2n Mn e−kn y , (27)

N∗(y) =
4
∑

n=1

H3n Mn e−kn y , (28)

here Mn (n = 1, 2, 3, 4) are some coefficients and H1n = b4
(b5−k2

n) ,

H2n =
b6 (k2

n − a2) (k2
n − b11)

[(k2
n − b11)(b7 k2

n − b8) + ε2 (b9 k2
n − b10)]

, H3n =
(b9 k2

n − b10) H2n

(k2
n − b11)

.

Using Eqs. (8), (13), (18), and (25)–(28), the displacement components and
the thermo-dynamic temperature can be obtained in the following form:

u∗(y) =
4
∑

n=1

v1n Mn e−kn y , (29)

v∗(y) = −
4
∑

n=1

v2n Mn e−kn y , (30)

T ∗(y) =
4
∑

n=1

v3n Mn e−kn y . (31)

Using Eqs. (14)–(18) and (25)–(31), we obtain

σ∗

xx =
4
∑

n=1

H4n Mn e−kny , (32)
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σ∗

yy =
4
∑

n=1

H5n Mn e−kny , (33)

σ∗

zz =
4
∑

n=1

H6n Mn e−kny , (34)

σ∗

xy = −
4
∑

n=1

H7n Mn e−kny, σ∗

xz = σ∗

yz = 0 , (35)

where: v1n = i a−kn H1n, v2n = kn+i a H1n, v3n = [1−a0(k2
n−a2)]H2n,

H4n = (β2 − 2)kn v2n + β2(i a v1n − v3n − H3n), H5n = i a (β2 − 2) v1n +
β2(kn v2n − v3n − H3n), H6n = (β2 − 2)(k2

n − a2) − β2(v3n + H3n),
H7n = kn v1n + i_a v2n.

4 Boundary conditions

The coefficients Mn (n = 1, 2, 3, 4) have to be chosen such that the bound-
ary conditions on the surface y = 0, take the form

σxx = −P ∗

1 exp(ω t + iax) , σxy = 0 ,

T = P ∗

2 exp(ω t + i a x) , (36)

DE
dN

dy
= sN ,

where P ∗
1 , P ∗

2 , and s are constants.
Applying the boundary conditions (4) at the surface y = 0, we obtain

a system of four equations. After applying the following inverse of matrix
method










M1

M2

M3

M4











=











H41 H42 H43 H44

H71 H72 H73 H74

v31 v32 v33 v34

(k1+s1)H31 (k2+s1)H32 (k3+s1)H33 (k4+s1)H34











−1 









−p∗
1

0
p∗

2

0











(37)

we obtain the values of coefficients Mn (n = 1, 2, 3, 4), where

s1 =
s CT t∗

DE
.



110 M.I.A. Othman, R.S. Tantawi and E.E.M. Eraki

5 Particular cases

1. The expressions for the displacement components, force stresses, car-
rier density and temperature distribution in a rotating generalized
semiconducting medium can be obtained from the above equations
by taking a∗ = 0 (a∗ = 0 indicates one type temperature).

2. Neglecting the angular velocity (i.e., Ω = 0) in the above equa-
tions, one can obtain the displacement components, carrier density,
stress components, conductive temperature and thermodynamic tem-
perature distribution in a non-rotating generalized semiconducting
medium with two-temperature.

After substituting Ω = 0 in Eq. (5), and use Eqs. (2), (8), and (18), it
can be reached that

[

D
2 − (a2 + ω2)

]

Φ∗ + (a0 D2 − b3)θ∗ − N∗ = 0 , (38)

(D2 − m2) Ψ∗ = 0 , (39)

− b6 (D2 − a2) Φ∗+(b7 D2 − b8) θ∗ + ε2 N∗ = 0 , (40)

(b9 D2 − b10) θ∗ − (D2 − b11) N∗ = 0 . (41)

Eliminating Φ∗(y), θ∗(y), and N∗(y) in Eqs. (38), (40), and (41), the follow-
ing sixth order ordinary differential equations for Φ∗(y), θ∗(y), and N∗(y)
can be obtained

(

D6 − A1 D4 + B1 D2 − E1

)[

Φ∗(y), θ∗(y), N∗(y)
]

= 0 . (42)

Equation (42) can be factored as

(D2 − k2
1)(D2 − k2

2)(D2 − k2
3)
[

Φ∗(y), θ∗(y), N∗(y)
]

= 0 , (43)

where k2
n(n = 1, 2, 3) are the roots of the characteristic equation of Eq. (43),

m2 = a2 + β2 ω2,
A1 = 1

(a0 b6+b7) [(a0 a2 + a0 b11 + b3) b6 + (a2 + ω2 + b11) b7 + b8 + (b6 − ε2) b9],

B1 = 1
(a0 b6+b7) [b6 (a2 a0 b11 + a2 b3 + a2 b9 + b10 + b3 b11) + b8 b11 − ε2 b10

+(a2 + ω2) (b8 + b7 b11 − ε2 b9)],

E1 = 1
(a0 b6+b7) [(a2 + ω2) (b8 b11 − ε2 b10) + a2 b6(b3 b11 + b10)].
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The solution of Eqs. (43) and (39), take the form

Φ∗(y) =
3
∑

n=1

Gn e−kn y , (44)

θ∗(y) =
3
∑

n=1

R1n Gn e−kn y , (45)

N∗(y) =
3
∑

n=1

R2n Gn e−kn y , (46)

Ψ∗(y) = G4 e−m y , (47)

where Gn (n = 1, 2, 3, 4) are some coefficients,

R1n =
(k2

n − b11) [k2
n − (a2 + ω2)]

[(b9 k2
n − b10) − (k2

n − b11)(a0 k2
n − b3)]

, and R2n =
(b9 k2

n − b10) R1n

(k2
n − b11)

.

Using Eqs. (8), (13)–(18), and (44)–(47), the expressions for the displace-
ment components, the thermodynamic temperature and the stress compo-
nents distribution in a non-rotating generalized semiconducting medium
with two temperature can be written as follows:

u∗(y) =
3
∑

n=1

i a Gn e−kn y − m G4 e−m y , (48)

v∗(y) = −
3
∑

n=1

kn Gn e−kn y − i a G4 e−m y , (49)

T ∗(y) =
3
∑

n=1

R3n Gn e−kn y , (50)

σ∗

xx =
3
∑

n=1

R4n Gn e−kn y − 2 i a m G4 e−m y , (51)

σ∗

yy =
3
∑

n=1

R5n Gn e−kn y + 2 i a m G4 e−m y , (52)

σ∗

zz =
3
∑

n=1

R6n Gn e−kn y , (53)
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σ∗

xy = −
3
∑

n=1

R7n Gn e−kn y + (a2 + m2) G4 e−m y, σ∗

xz = σ∗

yz = 0 , (54)

where R3n = [1−a0(k2
n −a2)] R1n, R4n = (β2 −2)k2

n −β2(a2 +R2n +R3n),
R5n = β2(k2

n −R2n −R3n)−a2(β2−2), R6n = (β2−2)(k2
n −a2)−β2(R2n+

R3n), R7n = 2 i a kn.

Applying the boundary conditions (4) at the surface, y = 0, a system of
four equations is obtained. After solving this system, the coefficients Gn

(n = 1, 2, 3, 4) can be defined as follows:











G1

G2

G3

G4











=











R41 R42 R43 −2iam
R71 R72 R73 −(a2 + m2)
R31 R32 R33 0

(k1 + s1)R21 (k2 + s1)R22 (k3 + s1)R23 0











−1 









−p∗
1

0
p∗

2

0











. (55)

6 Numerical results

Silicon, Si, is chosen as the material for numerical simulations. The param-
eters for silicon are taken as (Song et al. [11,13]):
λ = 3.64 × 1010 N m−2, µ = 5.46 × 1010 kg m−1s−2, K = 150 W m−1K−1,

αt = 3 × 10−6 K−1, ρ = 2.33 × 103 kg m−3, CE = 695 J kg−1 K−1,

T0 = 300 K, Ω = 0.4 s−1, a∗ = 0.4, a = 0.5, p∗
1 = p∗

2 = 0.01, τ0 = 0.01,

t = 0.02, ε3 = − 450, x = 0.5, ω = ωRe. + iωIm, ω = ωRe = 0.6,

ωIm = 0, dn = − 9 × 10−31 m3, DE = 2.5 × 10−3 m2s−1,

Eg = 1.12ev, τ = 5 × 10−5 s, s = 2 m s−1.

The thermophysical data, outlined above, were used for the determination
of the distribution of the real part of displacement components u, v, ther-
modynamic temperature T, conductive temperature θ, carrier density N,
stress components σxx, σyy, σzz, and σxy in the presence and absence of the
rotation as well as the two temperature parameter. Here, all variables are
taken in the non-dimensional form. The results are shown in Figs. 2–10.
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In these figures, the solid lines represent the solution for Ω = 0.4, a∗ = 0.4,
the dashed ones represent the solution derived for Ω = 0, a∗ = 0.4, and
the dot-dashed lines represent the solution for Ω = 0.4, a∗ = 0. Due to the
boundary conditions, the stress components σxx and σxy always start from
negative values and zero, respectively, and terminate at a zero value.

Figure 2: Distribution of horizontal displacement u.

Figure 3: Distribution of vertical displacement v.

Figure 2 describes the variation of the horizontal displacement u against
the distance y. It is clear from Fig. 2 that the values of u decrease in
the range 0 ≤ y ≤ 2.5, then increase and go to zero in the range 2.5 ≤
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Figure 4: Distribution of the thermodynamic temperature T .

Figure 5: Distribution of the conductive temperature θ.

y ≤ 10, for Ω = 0.4, a∗ = 0.4, while, it increases in the range 0 ≤ y ≤
0.9 then decrease in the range 0.9 ≤ y ≤ 5 and finally increase and go
to zero for Ω = 0.4, a∗ = 0, while u is an increasing function in the
range 0 ≤ y ≤ 10 for Ω = 0, a∗ = 0.4. Figure 3 shows the variation
of the vertical displacement v. In this figure, a significant difference in the
vertical displacement v is noticed for different values of the two temperature
parameter a∗ as well as rotation. It shows that the magnitude of v for
a∗ = 0.4 is higher than that of a∗ = 0. It is also observed from this figure
that the rotation acts to increase the magnitude of the real part of v.
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Figure 6: Distribution of the carrier density N .

Figure 7: Distribution of stress component σxx.

Figure 4 is plotted to show the variation of the thermodynamic temperature
T. It is observed that the thermodynamic temperature, T , decreases in the
range 0 ≤ y ≤ 8 and finally goes to zero for the different cases. It is
also clear that the parameter a∗ of two-temperature and the rotation, Ω,
act to decrease the values of T. It is clear that the values of conductive
temperature, θ, as shown in Fig. 5, in the two-type temperature cases are
small compared to those for one-type temperature case. It is also noticed
that the conductive temperature θ is inversely proportional to the rotation.
Figure 6 clarifies that the values of the carrier density N always begin
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Figure 8: Distribution of stress component σyy.

Figure 9: Distribution of stress component σzz.

from negative values and increase in the range 0 ≤ y ≤ 10, then go to
zero for the different cases. It is also seen that the carrier density N is
directly proportional to the rotation and the two-temperature parameter.
Figure 7 represents the change in the stress component σxx with distance
y. The values of σxx always start with increasing to a maximum value
then decrease and finally go to zero. It is noticed that σxx is strongly
affected by the two temperature parameter as well as the rotation. It is
directly proportional to both of them. It is clear that the two-temperature
parameter a∗ and the rotation act to decrease the values of σyy as shown
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Figure 10: Distribution of stress component σxy.

Figure 11: Distribution of the displacement component u versus components of distance
at Ω = 0.4 and a∗ = 0.4.

in Fig. 8. Figure 9 depicts that the distribution of stress component σzz

always begins from positive values. For different cases, the values of σzz

start with increasing to a maximum value in the range 0 ≤ y ≤ 1.2, then
decrease in the range 1.2 ≤ y ≤ 10 and finally tend to zero. It is clear
that the two-temperature parameter a∗ as well as, the rotation acts to
decrease the values of σzz. Figure 9 explains that the distribution of the
stress component σxy always starts with zero at the origin which agrees with
the boundary conditions. It is clear that the two-temperature parameter a∗

acts to increase the values of σxy. It can be also observed from this figure
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Figure 12: Distribution of the thermodynamic temperature T versus components of dis-
tance at Ω = 0.4 and a∗ = 0.4.

Figure 13: Distribution of the conductive temperature θ versus components of distance
at Ω = 0.4 and a∗ = 0.4.

that the values of the stress component σxy in the presence of rotation
are higher than those in the absence of rotation. Figures 10–15 depict the
3D curves which represent the relation between the physical quantities and
both components of distance in the context of the (L-S) theory for Ω = 0.4,
and a∗ = 0.4, these figures are very important to study the dependence of
these physical quantities on the vertical component of distance. The curves
obtained are highly depending on the vertical distance and all the physical
quantities are moving in the wave propagation.
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Figure 14: Distribution of carrier density N versus components of distance at Ω = 0.4
and a∗ = 0.4.

Figure 15: Distribution of stress component σxx versus components of distance at Ω = 0.4
and a∗ = 0.4.

7 Conclusion

According to the results of this work, one can see the effect of rotation as
well as of the two temperature parameter on the wave propagation of all
fields and how they play a vital role in increasing or decreasing the am-
plitude of different physical quantities. This work proves the importance
of distinguishing between the conductive temperature and the thermody-
namic temperature. Also, the figures show that the presence of either the
two temperature parameter or the rotation has the same effect on the dif-
ferent physical quantities. This work can serve for the analysis and design
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Figure 16: Distribution of stress component σyy versus components of distance at Ω = 0.4
and a∗ = 0.4.

of the thermal resistance coated materials. There are a lot of applications
on diverse field as semiconducting and the reactions during a photothermal
process and other fields in physical engineering, electronic devices, transis-
tors, also in physical chemistry and medical physics.

Received 2 November 2016
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