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BADANIE WPŁYWU WŁAŚCIWOŚCI SKAŁ NA PRĘDKOŚĆ WIERCENIA PRZY ZASTOSOWANIU 
METOD STATYSTYCZNYCH I INTELIGENTNYCH: STUDIUM PRZYPADKU: SZYB NAFTOWY 

W POŁUDNIOWO-ZACHODNIEJ CZĘŚCI IRANU

Rate of penetration (ROP) is one of the key indicators of drilling operation performance. The estimation 
of ROP in drilling engineering is very important in terms of more accurate assessment of drilling time 
which affects operation costs. Hence, estimation of a ROP model using operational and environmental 
parameters is crucial. For this purpose, firstly physical and mechanical properties of rock were derived 
from well logs. Correlation between the pair data were determined to find influential parameters on ROP. 
A new ROP model has been developed in one of the Azadegan oil field wells in southwest of Iran. The 
model has been simulated using Multiple Nonlinear Regression (MNR) and Artificial Neural Network 
(ANN). By adding the rock properties, the estimation of the models were precisely improved. The results 
of simulation using MNR and ANN methods showed correlation coefficients of 0.62 and 0.87, respectively. 
It was concluded that the performance of ANN model in ROP prediction is fairly better than MNR method.
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Prędkość wiercenia jest jednym z podstawowych parametrów charakteryzujących tempo prac wiert-
niczych. Oszacowanie prędkości wiercenia jest zagadnieniem kluczowym dla inżynierów wiertnictwa, 
gdyż pozwala na dokładne określenie czasu trwania prac, a co za tym idzie także kosztów operacyjnych. 
Szacowanie prędkości wiercenia odbywa się na podstawie modelu uwzględniającego parametry pracy 
oraz parametry środowiskowe. Pierwszy krok obejmuje pozyskanie danych o fizycznych i mechanicznych 
właściwościach skał na podstawie profilowania geofizycznego otworu. Zastosowano korelację odpowied-
nich par danych dla pokreślenie wpływu głównych czynników warunkujących prędkość wiercenia. Nowy 
model obliczania prędkości wiercenia opracowany został w okręgu naftowym Azadegan w południo -
wo-zachodniej części Iranu. Symulacje prowadzono w oparciu o metodę wielokrotnej regresji nieliniowej 
a także  przy wykorzystaniu sztucznych sieci neuronowych. Poprzez dodanie danych o właściwościach 
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skał, model został znacznie udoskonalony. Wyniki symulacji prowadzonych w oparciu o powyższe 
metody wykazały współczynniki korelacji na poziomie 0.62 i 0.87. Stwierdzono, że metoda wykorzy-
stująca sztuczne sieci neuronowe daje dokładniejsze szacunki prędkości wiercenia niż podejście bazujące 
wyłącznie na metodzie obliczania regresji nieliniowej.

Słowa kluczowe: prędkość wiercenia, właściwości skał, metoda wielokrotnej regresji nieliniowej, 
sztuczne sieci neuronowe

Nomenclature

ROP – Rate of Penetration (m/h),
D – Depth (m),
WOB – Weight on Bit (Klbf),
RPM – Revolution per Minute (rpm),
FR – Flow Rate (gal/min),
MW – Mud Weight (pcf),
BWC – Bit Wear Coefficient,
NPHI – Neutron Porosity Hydrogen Index (dec),
RHOB – Density (gm/cc),
FA – Friction Angle (Degree),
RT – Resistivity Logs (Ohmm),
GR – Gamma Ray (api),
DT – Sonic Travel Time Compressional (uSec/Ft),
UCS – Uniaxial Compressive Strength (Mpa),
DP – Differential Pressure (Pcf),
Pp – Pore pressure (MPa),
K – Drillability index.

1. Introduction

A great portion of cost at exploration and exploitation of oil and gas well is being allocated 
to drilling operations. In order to time management and drilling process optimization, obtaining 
a model which could accurately define the relationship between ROP and affecting environmen-
tal factors is very important. Various parameters have influence on ROP simultaneously which 
could be classified into operational and environmental parameters (Bourgoyne & Young, 1974). 
Operational or controllable factors are manipulated by human factors. While uncontrollable or 
environmental factors are related to formations properties especially the rock mechanical pa-
rameters. Drilling process could be improved by adding the rock properties to drilling operation 
simulation (Andrews et al., 2007).

Since nearly five decades ago, the necessity of optimizing the drilling operations was felt 
and several ROP models have been proposed (Bourgoyne & Young, 1974; Hareland & Rashidi, 
2010; Walker et al., 1986; Winters et al., 1987). This models were widely used, however, only 
some affecting factors have been considered in the mentioned models. Besides the existing 
models, various laboratory (Babatunde et al., 2011; Hoover & Middleton, 1981) and field stud-
ies (Bataee et al., 2010; Shirkavand & Hareland, 2009) have been conducted to determine the 
effect of parameters on ROP. In addition to the use of mathematical models, in some studies 
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neural networks were suggested due to their ability to solve nonlinear problems in the ROP 
modeling (Bataee & Mohseni, 2011; Esmaeili et al., 2012). Due to lack of access to database in 
these studies, often less attention have been paid to the rock properties. Studies indicated that 
among the operational parameters, weight on bit, rotational speed, bit wear, wellbore depth, mud 
weight and flow rate were crucial parameters (Bielstein, 1950; Cunningham and Eenink, 1959; 
Duklet & Bates, 1980; Paiaman et al., 2009). In this line, it was found that ROP increased with 
increasing weight on bit, rotational speed and mud flow rate. Also, ROP decreased when depth, 
bit wear and mud weight increased. This parameters is closely related to other drilling factors 
and it cannot be studied apart from other effective factors. 

Geomechanical parameters have a significant role on ROP (Gstalder & Raynal, 1966, 
Somerton, 1969; Walker et al., 1986). The most accurate method was obtained through labora-
tory testing available cores (Andrews et al., 2007). Due to sample preparation limitations and 
high cost of core sampling, the indirect methods were used to make a relationship between ROP 
and well log curves (Ma, 2011; Onyia, 1988). The well log curves were widely used to estimate 
the geomechanical properties at different depths. Consequently, well log data including poros-
ity, density, gamma, resistivity and sonic were used to estimate these properties (Chang et al., 
2006; Onyia, 1988). Studies showed that there is a close relationship between rock parameters 
including compressive strength, density and porosity with ROP. It is obvious that porous rocks 
as sandstone and shale have lower strength than the carbonate rocks. The conducted researches 
indicated the direct relationship between porosity and ROP (Howarth, 1987; Onyia, 1988). The 
rock density indicates rock minerals percentage and the specific weight of them. As the density of 
the carbonate rocks increases, the energy for a rotary drilling system will be increased; therefore, 
the drilling speed is reduced (Kahraman et al., 2000; Ma, 2011).

The compressive strength of the rock can be regarded as one of the most versatile mechanical 
properties of rocks. By increasing the strength, the volume of the crushed rock below the bit was 
reduced which decreases ROP (Shirkavand & Hareland, 2009). Despite the widespread use of 
the strength parameters in prediction of ROP, these parameters should not be used in this process 
merely. For example the Berea sandstone had the lower uniaxial compressive strength but because 
of the high internal friction angle, it had a high confined compressive strength (Prasad, 2009).

Pore pressure is one of the stresses in rock which cause breakout. Generally the term of dif-
ferential pressure was used to analyze the effect of this parameter on ROP. Differential pressure 
is the difference of drilling fluid pressure and the pore pressure in formation (Warren & Smith, 
1985). This factor was introduced as the effective stress at the bottom of the well. Differential 
pressure by influencing on rock failure mechanism and fragments detachment, affected ROP 
(Akbari et al., 2014; Bourgoyne et al., 1986). 

Other physical and mechanical parameters of rock like hardness, erosion, toughness and so 
on are important in the breakout process and drilling penetration rate (Al-muhailan et al., 2013; 
Gstalder & Raynal, 1966; Nauroy, 2011); but due to difficult access to the cores, more study is 
required to analyze the effect of these parameters.

The parameters used in this study were collected from the reservoir information of one 
of the wells in southwestern Iran. In order to complete the database factors affecting ROP, the 
geomechanical parameters were estimated using the petrophysical logs. Then, all parameters 
which had influence on ROP were classified in two classes of operational and environmental 
parameters and the effects of each one were measured, accordingly. Finally for estimating ROP, 
multivariate regression and neural networks methods were used due to their high performance 
in data modeling and model recognition.
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2. The introduction of the field and estimation 
of the geomechanical parameters 

Azadegan oil field in southwestern Iran is one of the largest oil fields with carbonate res-
ervoirs. Figure 1 shows the location of the mentioned field. Also the Lithostratigraphic column 
and the composition formations of the well are presented in figure 2. The shale part under the 
Ilam formation is known as Lafan Formation (Jadbavi, 2012).

Fig. 1. Geographical location of the study area

After identifying the geological structures, geomechanical studies are necessary. One of the 
effective ways to improve and accelerate the drilling process is  to have sufficient knowledge 
about the geomechanical conditions (Villalobos et al., 2005). Geomechanical parameters are im-
portant in the optimization methods of well stability and hydraulic fracturing analysis in reservoir 
(Zoback, 2007); However, these parameters are seldom used in estimating ROP and drillability.

Limited procedures have been developed to measure or calculate the mechanical properties 
of rocks. The most common of these methods is conducting the geomechanical tests on cores 
(Qiu et al., 2013) or estimating the mechanical properties of the rock from the petrophysical logs 
(Ameen et al., 2009; Fjaer et al., 2008; Yasar & Erdogan, 2004). Regarding limitations of this 
study, petrophysical logs were used to calculate the mechanical properties of the rock. The vari-
ous steps of estimating geomechanical parameters and calibration of them are discussed below.

Uniaxial compressive strength is essential parameter in determining the safe mud weight 
window and drillability (Afsari et al., 2009; Spaar et al., 1995). For estimating the uniaxial 
compressive strength from the logs data, usually three types of logs including sonic, neutron 
and density were used (Chang et al., 2006; Yasar & Erdogan, 2004). It should be noted that 
empirical relationships were provided for specific geological conditions and they should be 
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calibrated with laboratory tests (Fernandez-ibanez et al., 2010). According to (Li et al., 2012) the 
average uniaxial compressive strength of the rock in Sarvak formation in the North Azadegan 
field is about  27.5-34.5 MPa. Therefore, the equation 1 is the most appropriate correlation for 
the mentioned well.
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Internal friction angle of rock is another strength parameter. This parameter is one of the 
most important parameters in geomechanical applications like wellbore stability (Collins, 2002). 
Gholami et al (2014) used the equation 2 to estimate this parameter in carbonate formations of Iran.
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In this equation Vshale is the volume of the shale which is defined by the equation 3 at under 
8000 depths feet. In equation 3, GRmin is the gamma ray log in non-shaly sandstone and GRmax 
is the gamma ray log in shaly zone (Tiab & Donaldson, 2011).

Pore pressure as a geomechanical properties is another important parameter which has a 
considerable role in design, control, safety and omission of the drilling process problems of well 
(Zhang, 2011). The most commonly used method to predict the pore pressure is the Eaton equa-
tion (Eaton, 1975). The equation is as follow:
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In the equation 4, NCT is the normal compacted trend line obtained by fitting a linear or 
non-linear curve to compressional wave log data, OBG is the overburden pressure gradient, Png 
is hydrostatic pore pressure gradient and Ppg is the pore pressure gradient of formation. In order 
to determine the pore pressure, the calculated values in Eaton equation were calibrated by the 
values obtained from the DST test including the well tests. Fig. 2 

3. Data base

Factors database affecting ROP was formed based on gathered data from the mud logging, 
petrophysical logs and the daily drilling reports. Finally, the analysis was performed on 604 data 
that include operational and environmental parameters. The operating and controllable parameters 
included depth, weight on bit, rotation speed, flow rate, mud weight, bit wear coefficient and 
the environmental parameters included porosity, density, uniaxial compressive strength, internal 
friction angle and differential pressure. Since the geomechanical parameters are an indicator of 
petrophysical logs including sonic, resistivity and gamma, the relationship of these logs were 
analyzed as well. The data graph used in the study is presented in Figure 2.
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Fig. 2. Lithostratigraphic column, rock properties, operational parameters and rate of penetration

4. Methodology 

4.1. Regression analysis method 

Available data and mathematical models revealed that statistical analysis have crucial role in 
predicting behavior of processing in future (Bates & Watts, 2007). Statistical method of regres-
sion analysis investigates the relationship between variables. The multiple nonlinear regression 
is one of the methods that estimates Y dependent values based on the given independent values 
(X1, X2,..., Xn)(Tiryaki, 2008). In this study, twin-logarithmic method is used in the multivariate 
nonlinear regression analysis to estimate ROP (Choi, 1978). The equation is as follows:

 
1 2

1 2
nb b b
nY aX X X   (5)

Where Y is the dependent variable, a is the intercept, X1, X2 and the Xn are independent variables 
and b1, b2 and bn are the regression equation constants. Based on this method, 80% of data for 
creating the regression equation are considered. Then, the variance inflation factor (VIF) for the 
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polylinearity of the parameters was studied. Hence the parameters with lower VIF (VIF < 10) 
remain in the equation (Famini et al., 1992). Also the P-value was calculated at significant level 
of 5%. Finally the regression equation was tested with the remaining 20% of the data.

4.2. Neural Network

In the recent decades, the Artificial Neural Networks are known as suitable methods for 
modelizing existing complicated maps among various variable. In the studies related to oil and 
gas industry, using the neural network is considered as a helpful option in predicting ROP (Ra-
himzadeh et al., 2010). The feed-forward multilayer networks and the back propagation methods 
are used in this research. In order to network training, the Levenberg-Marquardt algorithm was 
used as the fastest training method. The use of these networks with sigmoid transfer function in 
the hidden layer and linear transfer function in output layer can predict any complicated function 
based on number of the neurons (Bontempi et al., 2001; Haykin, 1999). In the present study, 
various architectures were tested along with various numbers of neurons. Before entering data 
into the network, normalization is done in order to increase the network performance (Sivanan-
dam and Deepa, 2006). Finally 80% of data are entered into the network for training and 20% 
of them are used for testing.

4.3. Model assessments 

Model architecture was based on trial and error in regression analysis. To analysis the neural 
network, the number of hidden layers, neurons in layers, optimal repetitions and adjustment of 
related coefficients was performed based on the comparison of RMSE and R indices in various 
topologies. Thus the estimated values were compared with the recorded values of ROP. To evalu-
ate the model’s performance, the RMSE performance Indices (Mean Square Error) and R were 
used (Basarir et al., 2014; Rodgers & Nicewander, 1988).

5. Results

Considering the multiplicity of parameters, affecting ROP and the close relationship between 
these parameters, the correlation analysis was used to identify the relevant parameters. This 
correlation coefficient is between –1 and 1. Among the parameters, (UCS, RHOB, DT, NPHI), 
(BWC, D), (FA, GR) and (DP, MW), that the absolute correlation coefficients were upper than 
0.7 or lower than –0.7, must not be used simultaneously in equation (Table 1) (Pallant, 2010). 
Thus, parameters which had the highest absolute significant correlation coefficients with target 
parameter, was used in regression and neural network models.
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TABLE 1

Correlation between dependent and independent parameters
DP

DP 1 WOB
WOB 0.04 1 D

D 0.12 –0.08 1 RPM
RPM –0.16 –0.09 0.25 1 FR
FR 0.02 0.46 –0.1 0.04 1 MW

MW 0.95 0.05 –0.2 –0.2 0.03 1 MCW
MCW –0.18 0.02 0.9 0.37 0.01 –0.2 1 NPHI
NPHI –0.11 –0.39 –0.51 0.15 –0.05 –0.16 –0.44 1 RHOB
RHOB 0.14 0.39 0.42 –0.14 0.08 0.18 0.36 –0.87 1 FA

FA 0.2 0.05 0.3 –0.03 0.02 0.23 0.22 –0.41 0.38 1 RT
RT 0.02 0.45 0.17 0.04 0.3 0.01 0.32 –0.32 0.27 –0.09 1 GR
GR 0.12 0.22 0.01 –0.04 0.01 0.14 0.06 –0.2 0.15 –0.78 0.34 1 DT
DT –0.09 –0.26 –0.5 0.13 –0.04 –0.16 –0.49 0.91 –0.81 –0.4 –0.2 –0.1 1 UCS

UCS 0.11 0.28 0.58 –0.1 0.06 0.17 0.5 –0.92 0.81 0.44 0.3 0.11 –0.9 1 ROP
ROP –0.08 –0.07 –0.2 0.22 0.09 –0.02 –0.16 0.48 –0.44 –0.1 –0.1 –0.2 0.41 –0.4 1

5.1. Estimating the penetration rate using the multiple 
regression method 

In order to present ROP models, the best linear and non-linear combinations were evalu-
ated. In this assessments, the effect of first and second class of parameters and also interaction of 
parameters together, were investigated. The most relevant model was obtained between ROP and 
operational parameters, presented in equation 6 in Table 2. In this method, mud weight parameter 
was removed at low significance level. The rotational speed as the most effective parameter, 
coupling with fluid flow rate through its positive impact (while there is an excessive weight on 
bit), can improve performance of detached fragments transmission.

In the analysis of the effect of rock properties, relation between ROP and all parameters 
was studied separately. The results showed that the porosity and compressional wave velocity 

TABLE 2

The regression model between the operational and environmental parameters 
with the penetration rate

E
qu

at
io

n 
nu

m
be

r

Regression equation
Train Test Overall

R RMSE R RMSE R RMSE

(6)
23.8 2.64 0.001

9
0.4 1.64.9 10

WOBFR RPM eROP
WOB D

0.38 0.42 0.35 0.43 0.36 0.43

(7)
27.25 2.2 0.004 0.2

21
0.7 0.06 0.1 0.31.4 10

WOBFR RPM e NPHIROP
WOB BWC RT FA

0.63 0.36 0.61 0.36 0.62 0.61
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are directly related to ROP. On the other hand, other rock properties had significant reverse re-
lationship with ROP. Because of the omission of the highly correlated parameters, the VIF index 
of all parameters was obtained below 10. Therefore they could entered into the model. Finally 
the model achieved a general solidarity and added to the operational parameters. The final result 
of regression analysis between ROP dependent variable and independent variables (operational 
parameters and rock properties), are presented in Table 2.

Both operational and rock parameters are affected ROP in equation 7. The first part of the 
equation includes the operational parameters, in which the depth parameter was omitted with 
insignificance level (below 0.05). Then, the bit wear coefficient is entered into the equation. Rock 
properties at the second part of the equation can be considered as drillability index as follow:

 

0.2

0.1 0.3
NPHIK
RT FA

  (8)

In this equation the porosity factor was obtained from the neutron log that had the most 
impact on ROP. This factor is among rock properties that is closely related to the physical and 
mechanical properties. The presence of resistivity log in the equation indicated the importance 
of mentioned log in the porous formation of the reservoir. The resistivity was increased because 
of porosity reduction and tightness increase. Friction angle was used due to the lack of gamma 
significance in the equation.

The best obtained results of regression analysis of equations 6 and 7 are shown in Figure 3 
as an estimated and observed values diagram. Due to the addition of rock properties, data disper-
sion from the y = x line was reduced in Figure 3. 
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Fig. 3. The correlation between observed and estimated ROP by non-linear regression before 
and after adding rock properties

5.2. Estimating ROP using artificial neural network

In this part, in order to create a model to estimate ROP, the independent parameters which 
had the highest correlation with the target parameter, had entered network training. Hence, at 
first (D, WOB, RPM, FR, MW) were entered network training and then (NPHI, RT, GR, DP) 
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were added to them. DP is replaced, since MW has less correlation with target parameter. The 
network reached its lowest error level with the sigmoid transfer function in the hidden layer 
and linear transfer function in the output layer with 16 neurons. Results summary of the neural 
network is presented in Table 3. 

TABLE 3

Evaluation of Neural Network Model

Step
Train Test Overall

R RMSE R RMSE R RMSE
Operational parameters 0.76 0.041 0.75 0.013 0.75 0.013

Operational and Rock Parameters 0.88 0.008 0.86 0.0104 0.87 0.009

The results obtained from the networks presented the distribution between observed and 
estimated data in Figure 4. So the network had a correlation coefficient of 0.75 at the level of 
the effect of the operational parameters. After adding the rock properties to the model, this coef-
ficient became 0.87.
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Fig. 4. Correlation between observed and estimated ROP by neural network before 
and after adding rock properties

Figure 5 compared the estimated and observed ROP by the operational and rock parameters. 
This diagram paralleled the estimation of ROP through multivariate nonlinear regression analysis 
and the neural network with real values. The estimated regression and neural network showed 
the correlation of 0.62 and 0.87 with observed values, respectively. So the neural network had 
an important role in the improvement of the estimating ROP. It made a relationship between 
all input parameters and the target parameter, regarding its complicated algorithm in solving 
nonlinear problems.
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Fig. 5. A comparison between estimated ROP and the observed ROP in the regression analysis 
and neural network

7. Conclusion 

In this study, the factors affected rate of penetration were evaluated through focusing on 
environmental parameters. The database of operational and environmental parameters (physical 
and mechanical rock properties) was formed. The high correlation between rock properties and 
penetration rate indicate the importance of these factors in modelizing. By adding the physi-
cal and mechanical parameters of the rock to the operational parameters in regression model, 
porosity, resistivity and internal friction angle were introduced as drillability index. This index 
had important role in the improvement of the provided model of ROP. Then, regarding to the 
complicacy of the neural network maps in solving problems, this method was used to estimate 
ROP. The results indicated that accuracy of the neural network was enhanced by adding the rock 
properties to the operational parameters. Accordingly, two different methods results showed that 
neural network can better predict ROP values. Although this study conducted based on the restric-
tion of access to information in one of the wells in oil fields located southwestern Iran, it can be 
a step forward in the effectiveness of rock properties in optimizing the well drilling planning in 
other areas through verification.
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