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Explicit finite-difference scheme for the numerical
solution of the model equation of nonlinear hereditary

oscillator with variable-order fractional derivatives

ROMAN I. PAROVIK

The paper deals with the model of variable-order nonlinear hereditary oscillator based on
a numerical finite-difference scheme. Numerical experiments have been carried out to evaluate
the stability and convergence of the difference scheme. It is argued that the approximation,
stability and convergence are of the first order, while the scheme is stable and converges to the
exact solution.
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1. Introduction

The development of hereditary processes, i.e. processes with memory, has been re-
flected in a variety of applications in the last decade. V. V. Uchaikin [9] in his "Method
of Fractional Derivatives" devotes a whole chapter to such processes, including a de-
scription of hereditary oscillator proposed by Vito Volterra [10]. From the mathemat-
ical standpoint, hereditarity, or a memory effect of oscillator, can be demonstrated by
inserting integral operator with kernel, which is a memory function, into its model equa-
tions. If this kernel is represented by a power series form, the hereditary model equation
can be naturally transformed into differential equations with variable-order fractional
derivatives [4]. The theory of fractional calculus is quite well developed, and its main
provisions can be found in reference books [1, 8].

In this paper we consider the model of nonlinear hereditary oscillator with variable-
order derivatives. To do this, we construct an explicit finite-difference scheme for the
numerical solution of the corresponding Cauchy problem [2, 5], which will be explored
further.
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2. Problem

Consider the following Cauchy problem.

∂β(t)
0t x(τ)+λ∂γ(t)

0t x(τ)+ωβ(t) sin(x(t)) = f (t),
x(0) = x0, ẋ(0) = y(0),

(1)

where

∂β(t)
0t x(τ) =

t∫
0

ẍ(τ)dτ
Γ(2−β(τ))(t − τ)β(τ)−1 , ∂γ(t)

0t x(τ) =
t∫

0

ẋ(τ)dτ
Γ(1− γ(τ))(t − τ)γ(τ)

are the operators of variable-order fractional derivatives 1 < β(t) < 2 and 0 < γ(t) < 1,
Γ(x) is the Euler gamma function, λ, ω, x0 and y0 are the given parameters, f (t) is the
external stimulus, t ∈ [0,T ] is the process time; the dots over the decision function x(t)
mean the classical integer-value derivatives.

Note that problem (1) when β = 2 and γ = 1 transforms into the problem for clas-
sical nonlinear oscillator with friction and external force. Note also that the fractional
parameters β and γ represent any confined functions.

3. Solution method

The solution to the Cauchy problem (1) in the general case cannot be ob-tained in
an explicit form. Therefore, we will seek the solution to this problem using the theory
of finite-difference schemes [7]. Let us construct an explicit finite-difference scheme.
We divide the segment [0,T ] into N equal parts with a constant step τ. Then x(t j) = x j,
t j = jτ is the grid solution approximating the solution x(t) of the differential Cauchy
problem (1). The operators of the fractional variable-order derivatives are approximated
as follows [3].

∂β(t)
0t x(τ) =

j−1

∑
k=0

τ−βk

Γ(3−βk)

[
(k+1)2−β j − k2−β j

](
x j−k+1 −2x j−k + x j−k−1

)
+O

(
τ2) ,

∂γ(t)
0t x(τ) =

j−1

∑
k=0

τ−γk

Γ(2− γk)

[
(k+1)1−γ j − k1−γ j

](
x j−k+1 − x j−k

)
+O(τ) .

(2)
Substituting relation (2) into equation (1), after some transformations, we come to

the following explicit finite-difference scheme.
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x1 = τy0 + x0, j = 0,

x j+1 = A jx j −Bx j−1 −B
j−1

∑
k=1

τ−βk

Γ(3−βk)
p j

k

(
x j−k+1 −2x j−k + x j−k−1

)
−

−C
j−1

∑
k=1

τ−γk

Γ(2− γk)
q j

k

(
x j−k+1 − x j−k

)
−µsin(x j)+ξ f j,

A =
2A0 +B0

A0 +B0
, B =

A0

A0 +B0
, C =

λ
A0 +B0

,

µ =
ωβ j

A0 +B0
, ξ =

1
A0 +B0

, A0 =
τ−β0

Γ(3−β0)
, B0 =

λτ−γ0

Γ(2− γ0)
,

p j
k = (k+1)2−β j − k2−β j , q j

k = (k+1)1−γ j − k1−γ j , j = 1, . . . ,N −1.

(3)

Note that scheme (3) has in its internal points the second order of approximation
from the formulas (2); however, due to the approximation in the boundary points, the
order is reduced to unity. This can be eliminated by approximating the values in the
boundary points in a special way, for example, inserting a dummy node [6]. For the
purposes of this paper we do not need to improve scheme (3). We just investigate its
stability and convergence by means of a numerical experiment.

Consider the following example. It can be shown that the Cauchy problem with
homogeneous initial conditions

∂β(t)
0t x(τ)+λ∂γ(t)

0t x(τ) = f (t)

f (t) = ωβ(t) sin
(
t2)+2

t∫
0

dτ
Γ(3−β(τ))(t − τ)β(τ)−1 +2

t∫
0

τdτ
Γ(2− γ(τ))(t − τ)γ(τ) ,

x(0) = ẋ(0) = 0,
(4)

has an exact solution x(t) = t2. A.A. Samarskii [7] provides definitions of stability on
the right side of the equation and with initial data. The essence of these definitions can
be summarized as follows. The scheme is stable if a small perturbation introduced to the
right side or the initial data leads to a small change in the solution within the accuracy
of a constant.
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Let us carry out a numerical experiment. To do this we choose the following val-
ues of the control parameters of the Cauchy problem (4): N = 1000, λ = 1, ω = 2,
β(t) = 2− 0.006cos(3πt), γ(t) = 1− 0.003cos(3πt), ε = 104. We find the perturbed
and the unperturbed solutions to problem (4) according to scheme (3) and calculate their
maximum absolute value error. The results of the experiment are shown in Tabs 1 and 2.

Table 24: Stability with respect to the right side.

N Maximum error

10 1.05*10−5

50 1.2*10−5

250 1.3*10−5

500 1.3*10−5

1000 1.2*10−5

2000 1.2*10−5

2500 1.3*10−5

From Tab. 1 we can conclude that for the chosen values of the control parameters
and perturbation ε, explicit finite-difference scheme (3) is stable with respect to the right
side, since the maximum error does not exceed perturbation ε.

Table 25: Stability with respect to the initial data.

N Maximum error

10 1.633*10−4

50 1.634*10−4

250 1.633*10−4

500 1.633*10−4

1000 1.632*10−4

2000 1.636*10−4

2500 1.635*10−4

From Tab. 2 it can be concluded that the maximum error values do not practically
change with increasing the number of computational grid points N and are commensu-
rate with perturbation ε. Therefore, in this case scheme (3) is stable with respect to the
initial data. Let us demonstrate the convergence of scheme (3) for the Cauchy problem
through a numerical experiment.
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We choose the following values of the control parameters: N = 1000, λ= 100, ω= 2,
t ∈ (0,1) and β(t) = 1.8−0.001cos(3πt), γ(t) = 0.8−0.002cos(3πt) . We need to find
the maximum absolute value error between the numerical and exact solutions depending
on step as well as calculate the experimental convergence order of the numerical solution
to the exact one. The results of the experiment are shown in Tab. 3.

Table 26: The convergence of scheme (3) to the exact solution.

N τ Maximum error α

10 0.1 0.1172 0.93

20 0.05 0.0573 0.954

40 0.025 0.0219 1.035

80 0.0125 0.00075 1.11

From Tab. 3 it can be concluded that when reducing step τ of the computational grid,
the maximum error decreases, while the values of the experimental convergence order
α = ln(maximum error)/ ln(step) are close to unity. Therefore, we can infer that scheme
(3) converges to the exact solution with the first order (Fig.1).

4. Conclusion

We have studied the model of variable-order nonlinear hereditary oscillator based
on a numerical finite-difference scheme. The stability and convergence of the difference
scheme have been evaluated by numerical experiments. The results have shown that the
approximation, stability and convergence are of the first order, while the scheme is stable
and converges to the exact solution. Certainly, if necessary, scheme (3) can be improved
through proper approximation of the initial conditions. Also, using the double counting
method we can increase its accuracy. The next step in studying the hereditary nonlinear
model of an oscillating system will be the construction and analysis of phase trajectories,
as it was carried out in [3] for linear hereditary oscillators.
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Figure 1: The convergence of scheme (3) to the exact solution.
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