
Archives of Control Sciences
Volume 27(LXIII), 2017

No. 2, pages 169–181

A fine-grained parallel algorithm for the cyclic flexible
job shop problem

WOJCIECH BOŻEJKO, JAROSŁAW PEMPERA and MIECZYSŁAW WODECKI

In this paper there is considered a flexible job shop problem of operations scheduling. The
new, very fast method of determination of cycle time is presented. In the design of heuristic
algorithm there was the neighborhood inspired by the game of golf applied. Lower bound of the
criterion function was used in the search of the neighborhood.

Key words: job shop, cyclic scheduling, parallel algorithm.

1. Introduction

Universal globalization, and thus increasing competition forces lowering of the cost
of production, which can be achieved through mass production. In practice, produc-
tion, in which a set of products is manufactured in large quantities, is carried out in a
cyclic manner. It is a very effective method because once fixed schedule is repeated over
many periods of time. Such method enables delivery of the batch of products, at pre-
determined intervals, resulting from the demand of consumers. It provides a systematic
replenishment of small inventories and generates a systematic demand for raw materials
and components from suppliers. In this way it is much easier to manage the logistics
of supply. Moreover, it is relatively easy to detect certain anomalies that may indicate a
deterioration of the operating parameters of the production system. New technologies,
materials and rapidly changing customers’ needs enable manufacturers to frequent mod-
ernization of the machinery. As a result of this process companies have machines with
different parameters. In this case, production planning requires determining of not only
the allocation of tasks to individual machines but also determining of the order of their
execution. This leads to a complex, strongly NP-hard optimization problems, in par-
ticular to, known in the literature, flexible job shop problem. Due to the large number
of decision variables and requirements of the above mentioned management methods it

W. Bożejko (corresponding author), and J. Pempera are with Department of Automatics, Mechatronics
and Control Systems, Faculty of Electronics, Wrocław University of Technology, Janiszewskiego 11-17,
50-372 Wrocław, Poland. E-mails: {wojciech.bozejko, jaroslaw.pempera}@pwr.edu.pl. M. Wodecki is with
Institute of Computer Science, University of Wrocław, Joliot-Curie 15, 50-383 Wrocław, Poland, e-mail:
mieczyslaw.wodecki@uwr.edu.pl

Received 15.12.2016. Revised 28.04.2017.

10.1515/acsc-2017-0010

170 W. BOŻEJKO, J. PEMPERA, M. WODECKI

is necessary to use advanced algorithms to support scheduling at the operational level.
Flexible production planning systems enable the implementation of challenges posed by
modern management methods such as JIT (just in time) or JIS (just in sequence). In the
work there is considered a flexible job shop problem in which a set of tasks to be per-
formed on machines grouped into production cells is given. One should assign tasks to
the appropriate machines and determine the order of their execution on each machine so
as to optimize some criterion (e.g. all tasks execution time Cmax). In most of the works
on a flexible job shop problem, as an optimization criterion there is completion date of
all tasks execution considered (Yan and Xu [11], Gonzales et al. [6], Pezella et al., [8],
Bożejko et al. [2]). Much less papers were devoted to the cyclic version of this problem.
In the works of Brucker and Kampmeyer [5] and Kampmeyer [7] there was presented a
cyclical job shop problem (i.e. a special case of the considered in this work problem in
which each slot contains only one machine). In turn, in the work by Bożejko et al. [4]
there were not only certain properties proved but also algorithms for solving the cyclic
job shop problem presented. The main problem that exists in the design of efficient al-
gorithms to solve NP-hard cyclic scheduling problems is time-consuming determination
of the cycle time. In this paper we present not only some properties of a cyclic job shop
problem but also an efficient method of determining the cycle time in which parallel pro-
cessing was used. They were applied in the algorithm which was described in Bożejko et
al. [4] where significant reduction of computation time was obtained, without worsening
of the quality of designated solutions.

2. Cyclic job shop problem

In the flexible job shop problem there are given: a set of tasks J = {1,2, . . . ,n} and a
set of multi-functional machines M = {1,2, . . . ,m} grouped into production slots. Each
machine at any time can execute at most one task. Task j ∈ J consists of o j operation
for a set J j = {l j +1, . . . , l j +o j} where l j = ∑ j−1

i=1 oi is the number of operations of the
first j−1 jobs. Operations included in the tasks are performed according to the order of
their numbering and form the so-called technological line. By O = {1,2, . . . ,o}, where
o = ∑ j−1

i=1 oi we denote the set of all operations. For each operation v ∈ O there is defined
a subset of machines M v ⊂M . The operation v ∈ O is to be executed on any k machine
from the set M v in time pv,k 0. Execution of operations on the machine cannot be
interrupted. In the cyclic production system a set of tasks (hereinafter referred to as
MPS-Minimal Part Set), is executed repeatedly. In each of the MPS on each machine
operations are performed in the same order. The problem consists in the allocation of jobs
to machines from the adequate type and the schedule of jobs execution determination on
each machine to minimize the cycle time. The following constrains have to be fulfilled:

(i) each job has to be executed on only one machine of a determined type in each
moment of time,

A FINE-GRAINED PARALLEL ALGORITHM FOR THE CYCLIC FLEXIBLE JOB SHOP PROBLEM 171

(ii) machines cannot execute more than one job in each moment of time,

(iii) there are no idle times (i.e. the job execution must not be broken),

(iv) the technological line has to be obeyed,

(v) each operation is performed in sequence after the cycle time is completed.

Constraints (i)-(iv) define known in the literature Flexible Job Shop problem (in short
denoted by FJS). If in addition we assume that each socket contains exactly one machine,
then it is a classical in task scheduling theory Job Shop problem (abbreviated to JS).
Descriptions of these problems and metaheuristic algorithms solving them is presented
in the works by Nowicki and Smutnicki [9], Barnes and Chambers [1], González et
al. [6], Yuan and Xu [11] and Bożejko et al. [3] and [4].

By µ = (µ1, . . . ,µo) we denote the assignment of operations to machines where µa ∈
M a is a machine assigned to perform the operation a ∈ O. The set

O l = {a ∈ O : µa = l} (1)

operations executed on the machine l ∈M , wherein ∪m
i=1O i = O.

Let permutation πl be a certain sequence of operations from the set O l on machine l
(|Ol|= nl) whereas Φl the set of all permutations of elements from O l . The sequence of
operations’ execution on the machines is determined by the composition m of permuta-
tion π = (π1,π2, . . . ,πm), where πi ∈Φi, i = 1,2, . . . ,m. Let Φ be the set of all such per-
mutations. Let us see that a permutation π ∈Φ unambiguously determines the allocation
of operations to machines and the order of operations’ execution of individual machines.
For the fixed sequence π ∈Φ (of solution to FJS) problem, let S k = (Sk

1,S
k
2, . . . ,S

k
o) be a

sequence of begining times of operations’ execution in the k-th MPS, where Sk
i denotes

the commencement date of operation i on machine µi in k-th cycle. We assumed that
time schedule of the system is cyclic (constraint (v)). This means that there is a constant
T (π) (the so-called cycle time) such that

Sk+1
π(i) = Sk

π(i)+T (π), i = 1, ...,o, k = 1,2, ... (2)

or equivalently

Sk+1
π(i) = S1

π(i)+(k−1)T (π), i = 1, ...,o, k = 1,2, ... (3)

Equality (2) is an implementation of the constraint (v). Undoubtedly, in a feasible sched-
ule there must be met also restrictions (i–iv) met, which can be written in the form of the
following inequities:

Sk
π(i) 0 i = 1,2, . . . ,o, k = 1,2, (4)

Sk
π(i)+ pπ(i),µ(π(i)) ¬ Sk

π(i+1), π(i),π(i+1) ∈ J j, j ∈ J , k = 1,2, . . . (5)

172 W. BOŻEJKO, J. PEMPERA, M. WODECKI

Sk
πl(j)+ pπl(j),µ(πl(j))+¬ Sk

πl(j+1), l ∈M , j = 1, ...,nl−1, k = 1,2, . . . (6)

Sk
πl(nl)

+ pπl(nl),µ(πl(nl)) ¬ Sk+1
πl(1)

, l ∈M , k = 1,2, . . . (7)

Inequity (5) is a realization of the constraint (iv), (6) of constraint (ii), whereas (7)
of constraint (v). For a fixed order of operations execution on machines π, the mini-
mum value of T (π), for which there is a feasible schedule that meets (2)–(7), will be
called minimal time cycle and denoted by Tmin(π). Since the order of operations for each
MPS is the same, it is enough just to determine the beginning moments of execution of
operations S1

1,S
1
2, . . . ,S

1
o for the first MPS and make the shift by the size of T (π). The

considered in this work flexible cyclic job shop problem (in short denoted by CFJS)
consists in determining a permutation π∗ ∈ Φ with a minimum value of cycle time, i.e.
such that

Tmin(π∗) = min{Tmin(π) : π ∈Φ}. (8)

3. Graph model

For a fixed sequence π = (π1,π2, . . . ,πm) (π∈Φ), of operations execution in a cyclic
flexible job shop problem and the first k-cycle of production (k = 1,2, . . . ,m+ 1) we
define a directed graph G(π,k) = (V ,T ∪E(π)∪C (π)) consisting of a set of vertices
V and three sets of arcs: T , E(π), C (π). The set V includes k · o vertices numbered
with successive natural numbers. Each operation is assigned to one vertex, wherein the
operation v ∈ O executed in x-th (x = 1, ...,k) MPS corresponds to the vertex vx(v) =
v+(x−1)o (x-th copy of vertex v) of weight pv,µ(v). In the further part we will identify
vertices of the graph with operations executed within the corresponding MPS. Sets of
arcs represent sequence constraints and are defined as follows:

(a) T =
k∪

x=1

n∪
j=1

l j−1+o j−1∪
v=l j−1+i

{(vx(v),vx(v+1))} , contains arcs representing the techno-

logical line (constraint (5)),

(b) E(π) =
k∪

x=1

m∪
l=1

nl−1∪
i=1
{(vx(πl(i)),vx(πl(i+1)))} , arcs connecting the operations

executed on the same machine (constraint (6)),

(c) C (π) =
k−1∪
x=1

m∪
l=1

{(
vx(πl(nl)),vx+1(πl(1))

)}
, arcs connecting the operations

executed on the same machine between the MPS (constraint (7)).

Theorem 1 If π ∈ Φ is the order of operations’ execution on the machines in CFJS
problem, then the graph G(π,k), k = 1,2, . . . ,m+1 does not contain cycles.

A FINE-GRAINED PARALLEL ALGORITHM FOR THE CYCLIC FLEXIBLE JOB SHOP PROBLEM 173

Proof Let permutation π ∈ Φ be the solution to CFJS problem. The first MPS is rep-
resented by a graph G(π,1). It is easy to see that this is also a graph solving the FJS
problem, whose acyclicality is easy to prove. For a fixed k (k = 2,3, . . . ,m+1) we con-
sider the graph G(π,k). It follows from definition of a set of vertices and arcs (a), (b)
that the graph is k-fold copy of the graph (components) G(π,1). It also includes arcs
between certain vertices belonging to the subsequent neighboring components (a set of
C (π)). Because the components are acyclic graphs and it is not possible to return to the
previous components (the definition of a set of arcs (c)), so the graph G(π,k) does not
contain cycles.

We consider the longest path in graph G(π,m+ 1) from a vertex v ∈ O in the first
MPS, to the same vertex in x-th MPS, i.e. vertex vx. By Lx

v we denote the length of
this path (the length does not include the weight of vertex vx). If S1

v is the moment
of beginning of execution of operation v in the first MPS, and Sx

v the moment of its
commencement (i.e. operation vx) in x-th MPS, then:

Sx
v S1

v +Lx
v. (9)

This inequity is a direct result of the constraints (i)-(v). Before the beginning of operation
vx all the operations lying on any path (including the longest) between v and vx must be
executed.

Let
Λ∗(π) = max

v∈O
max

x=2,...,m+1
{λv,x}, (10)

where
λv,x = Lx

v/(x−1), v ∈ O, x = 2,3, . . . ,m+1. (11)

Below we will prove two theorems showing the relationship between the minimum
cycle time Tmin(π), and the value Λ∗(π).

Theorem 2 If π ∈ Φ is allowable execution order of operations in a cyclic flexible job
shop problem, then the minimum cycle time Tmin(π)¬ Λ∗(π).

Proof Let

T ′(π) = Λ∗(π) = max
v∈O

max
x=2,...,m+1

{λv,x}= λa,t = Lt
a/(t−1).

We will show that the so defined T ′(π) is the cycle time for solution π. Let
(S1

π(1),S
2
π(2), . . . ,S

o
π(o)) be a sequence of the commencement moment of operations of

the first MPS. We will show that

Sk+1
π(i) = Sk

π(i)+(k−1)T ′(π), i = 1,2, . . . ,o, k = 2,3, . . . ,m+1,

174 W. BOŻEJKO, J. PEMPERA, M. WODECKI

are the beginning moments of separate operations in subsequent MPS, i.e. they meet the
constraints (3). By definition (10)

Sk+1
π(i) = S1

π(i)+(k−1)T ′(π) = S1
π(i)+(k−1)Λ∗(π) =

S1
π(i)+(k−1)(Lt

a/(t−1)) S1
π(i)+(k−1)(Lk

π(i)/(k−1)) = S1
π(i)+Lk

π(i).

The last inequity follows from the fact that λa,t = Lt
a/(t−1) is a maximum element,

thus λa,t λv, j (v = 1,2, . . . ,o, j = 2,3, . . . ,m+1). We have shown this way, that T ′(π)
is cycle time (i.e. it satisfies the inequity (3)), which completes the proof of the theorem.

Theorem 3 If π ∈ Φ is allowable execution order of operations in a cyclic flexible job
shop problem, then the minimum cycle time Tmin(π) Λ∗(π).

Proof For the solution Tmin(π), let π ∈ Φ, be minimum cycle time, whereas
(Sk

π(1),S
k
π(2), . . . ,S

k
π(o)) a sequence of beginning moments of operation in k-th MPS. Ac-

cording to (3)
Sk

π(i) = S1
π(i)+(k−1) ·Tmin(π), (12)

for i = 1,2, . . . ,o, k = 2,3, . . . ,m+1.
Let π(l) be any operation from the set O. Rusing from (9) and (12) we obtain

S1
π(i)+(k−1) ·Tmin(π) S1

π(i)+Lk
π(l),

hence
Tmin(π) Lk

π(l)/(k−1) = λk,π(l).

Since this inequality is valid for every l = 1,2, . . . ,o and k = 2,3, . . . ,m+1, then

Tmin(π)max{λk,π(l) : k = 1,2, . . . ,m, k = 1,2, . . . ,o}= Λ∗(π),

which completes the proof of the theorem.

Designation of the minimum value of the cycle time Tmin(π) (i.e. value Λ∗(π)) re-
quires the calculation of m · o values of the coefficients λi, j. In the work of Bożejko et
al. [4] there was a theorem proven enabling much faster calculation of minimum cycle
time.

Let
A = {v : v = πl(1), l ∈M }

be the set of all operations executed as first on the individual machines in the first MPS.

Theorem 4 For any solution π ∈Φ minimum cycle time

Tmin(π) = Λ∗(π) = max
v∈A

max
x=2,...,m+1

{λv,x}.

A FINE-GRAINED PARALLEL ALGORITHM FOR THE CYCLIC FLEXIBLE JOB SHOP PROBLEM 175

Proof See theorem 2 and 3.
Using this theorem the number of determined coefficients {λv,x} can be reduced from

m ·o to m ·m, where o is the number of operations and m the number of machines.
Determination of value λv,x dla x = 2, ...,m+ 1, v ∈ A requires construction of a

graph G(π,m+ 1) consisting of (m+ 1)o vertices and the same order of arcs. In turn,
to calculate the value {λv,x}, for a given v ∈ A , one must designate the length of the
longest paths from v to other vertices which requires O(mo) time. Ultimately, we get the
computational complexity designation Λ∗(π), |A |O(mo) = O(om2).

A path in a graph G(π,m+ 1), whose length Lx
v/(x− 1) = Λ∗(π) will be called a

critical path. In turn, the maximum subsequence of vertices of the path representing the
operations executed one after another on the same machine will be called a block. In case
of the considered in the work CJFS tasks problem, one can use the so-called a blocks
eliminating properties’. The theory was successfully used in the construction of the best
optimization algorithms for a wide class of scheduling problems with the criterion Cmax,
e.g. by Nowicki and Smutnicki [9] or Bożejko et al. [3].

Theorem 5 If the solution β ∈ Φ was generated from π ∈ Φ and T (β) < T (π) at least
one operation of at least one block of tasks is executed

(a) before the first operation of this block, or

(b) after the last operation of this block, or

(c) on another machine.

This theorem will be used when generating elements of the neighborhood in the tabu
search algorithm to solve the considered in the work problem.

4. Effective determination of cycle time

Currently the best optimization algorithms for a wide class of scheduling problems
are based on iterative methods of local search solution space. Quality of solutions de-
termined by these algorithms depends on the number of directly considered solutions,
which with the limited time of the algorithm action depends on the computational com-
plexity of the procedure for calculating the value of the criterion function. Described in
the previous chapter method for determining the cycle time has a computational com-
plexity of O(om2) and is O(m2) times bigger than the time of determination of the value
Cmax. Acceleration of calculations determining cycle time is possible by use of a parallel
processing. For this purpose, the method of parallel vector processing will be used.

We consider a graph G(π,1), π ∈ Φ corresponding to the first MPS. For any vertex
(operation) v ∈ O, by τ(v) i η(v) we successively denote two successors: technological
and sequential (in permutation π executed on the same machine). If the operation v has
not a corresponding successor, then after τ(v) or η(v) we assume zero. Since the graph

176 W. BOŻEJKO, J. PEMPERA, M. WODECKI

G(π,1) is directed acyclic and weakly consistent (i.e. for each pair of distinct vertices x,y
there exists the path from x to y or from y to x), so its vertices can be sorted topologically.
We can therefore number the vertices in such a way that the beginning of a given arc has
a smaller number than its end. In particular the successors τ(v) or η(v) of vertex v have
greater numbers than v. Sorting Algorithm topologically sorting vertices of the graph
G(π,1) has a complexity O(o).

If σ = (σ(1),σ(2), . . . ,σ(o)) is the topological order of the vertices of the graph
G(π,1), then it is easy to extend it to any of the graphs G(π,k), k = 2,3, . . . ,m+ 1. In
such a case vertex vi (from i-th MPS) is given the number of σ(v)+(i−1)o.

Procedure SeqTC
π - feasible solution;
σ - topological ordering of the vertices of the graph G(π,1);

1. For k = 1, . . . ,m do
2. Set Lx

i =−∞ for i ∈ O, x = 1, . . . ,m+1.
3. Set L1

πk(1)
= 0.

4. For x = 1, . . . ,m+1 do
5. For v = σ(1), . . . ,σ(o) do
6. Set Lx

v = Lx
v + pv, Lx

τ(v) = Lx
v and Lx

η(v) = Lx
v.

7. For l = 1, . . . ,m do Lx+1
πl(1)

= Lx
πl(nl)

8. For k = 1, . . . ,m and x = 1, . . . ,m+1 do
9. Set λk,x = Lx+1

πk(1)
−Lx

πk(1)
.

Figure 1: Sequential cycle time computing procedure.

Let π ∈ Φ be the order of operations’ execution on the machines in CFJS, problem,
whereas σ = (σ(1),σ(2), . . . ,σ(o)) topological order of vertices in the graph G(π,1).
Figure 1 depicts SeqTC procedure of the sequential determining the length of the
longest paths Lx

v in the graph G(π,m+ 1) used in the computation of coefficients λv,x
(formula(11)). On this basis we determine the value Λ∗ (10), i.e. minimum cycle time
Tmin(π). In the description of the procedure the sources are vertices of the graph G(π,1),
who are not the end of any arc (being the first operations executed on machines). The
length of paths L(x)

v , x = 1, . . . ,m+1, v ∈ O are to be interpreted in two ways. Until step
6 they are lower estimate of the length of the longest path coming out of the vertex being
the source to the vertex representing an operation v in x-th MPS (without the weight of
the vertex). The source is determined in Step 3. Then, in step 6 the exact value of the
length of the longest path to vertex v (with the weight of that vertex) are computed and
lower estimate of the length of the longest paths to vertices being successors v, i.e. τ(v)
and η(v). are updated. Finally, in step 7, the lower estimate of the length of the longest
paths to vertices representing the operations performed on the first machine, in the next
MPS are updated.

Based on the analysis of the code it is easy to see that the computational complexity
of the procedures for the designation of sequential cycle time SeqTC is O(om2). This

A FINE-GRAINED PARALLEL ALGORITHM FOR THE CYCLIC FLEXIBLE JOB SHOP PROBLEM 177

time can be significantly reduced by using techniques of parallel search based on the
vector processing. Then, in a vector processor cycle there are performed logical, arith-
metic operations or data movements, etc. on one or two multi-element vectors. Vector
operations are implemented in hardware in all modern processors, both desktops and
laptops, and above all, in programmable graphics cards.

Procedure ParTC
π - feasible solution;
σ - topological ordering of the vertices of the graph G(π,1);

1. Set
−→
Lx

v =−∞ for v ∈ O, x = 1, . . . ,m+1.
2. For k = 1, . . . ,m do

3. Set
−−−→
L1

πk(1)
(k) = 0.

4. For x = 1, . . . ,m+1 do
5. For v = σ(1), . . . ,σ(o) do
6. Set

−→
Lx

v =
−→
Lx

v +
−→pv,
−−→
Lx

τ(v) =
−→
Lx

v and
−−→
Lx

η(v) =
−→
Lx

v .

7. For l = 1, . . . ,m do
−−−→
Lx+1

πl(1)
=
−−−→
Lx

πl(nl)
.

8. For k = 1, . . . ,m and x = 1, . . . ,m+1 do

9. Set λk,x =
−−−→
Lx+1

πk(1)
(k)−−−−→Lx

πk(1)
(k).

Figure 2: Parallel cycle time computation.

In Figure 2 there is shown a diagram of ParTC procedure effectively determining
the cycle time using a vector parallel processing. Designations are the same as in the
sequential procedure. In the vector

−→
L(x)

i = (
−→
Lx

i (1),
−→
Lx

i (2), . . . ,
−→
Lx

i (m)) (13)

there is remembered the length of the longest path reaching to the vertex representing
operation i in x-th MPS. For various elements of the vector the values differ from one
another due to a different source vertex assigned to each vector element. The most time-
consuming are iterative instructions in row 4 and 5. Assuming that operations on vectors
are executed in one tact we get superior computational complexity O(om), in case of
CPU processors transforming m- element vectors.

5. Neighborhood viewing

In the algorithms of local search the adjacent solutions (neighborhood) can be viewed
in two ways, ie. by generating: (i) all neighboring solutions (ii) subset containing only
some solutions. Undoubtedly, the first method is much more time-consuming. However,
it usually enables determination of good solutions with fewer iterations of the whole

178 W. BOŻEJKO, J. PEMPERA, M. WODECKI

algorithm. Regardless of the method of the neighborhood viewing, for any solution there
should be the value of the objective function determined. In the algorithms viewing the
whole neighborhood, for many optimization problems, it is possible to construct the
accelerator. This ensures, with the use of partial results, a considerable reduction of
the computation time of goal function value for all solutions of the neighborhood. An
effective example of the accelerator use was described, among others, by Nowicki and
Smutnicki [9]. Below, we present a new two-phase neighborhood search method. In the
first phase, for each solution in the neighborhood, there is a lower bound of the value of
the objective function determined. At the beginning of the second phase there is created a
list of solutions ordered non-decreasingly in reference to lower bound (determined in the
first phase). Then, for solutions in the sequence they appear in the ordered list, there is the
exact value of the objective function calculated. The computation process is terminated,
as soon as the solution whose exact value of the objective function is determined, not
greater than the lower bound of the remaining on the solutions list. It is worth noting
that the better the lower bound of the objective function value, the less solutions will be
verified by calculating the exact value.

For the considered in this paper cyclic flexible job shop problem lower bound can be
determined by considering only the first MPS (i.e. graph G(π,1)), wherein as the lower
bound we assume:

LB(π) = max
v∈A
{λv,1}. (14)

The computational complexity of determining the value LB(π) is in sequential version
O(om), whereas in parallel O(o).

6. Computational experiments

In order to evaluate the acceleration of computations relating to the proposed neigh-
borhood viewing method and the use of vector processing there were computational
experiments carried out. The results of golf AGF algorithm presented in the work of
Bożejko et al. [4] and its two of modifications AS and AV were compared. In both al-
gorithms there was a two-phase search of neighborhood applied. In AS algorithm the
search was executed sequentially (procedure SeqTC), whereas in AV algorithm in paral-
lel (procedure ParTC). Algorithms were programmed in C++ in Visual Studio 2010. The
computations were performed on a PC with an Intel I7-core 2.4GHz on a single core of
the processor. Parallel processing was carried out on 128-bit registers using SSE2 com-
mands. Each of them was an 8-element vector consisting of 16-bit representations of the
data processed in parallel. Vector processing based on SSE instructions was used, among
many others, in the work of Smutnicki et al. [10]. Comparative studies of algorithms
were carried out on the instances presented in the works of Barnes and Chambers [1].
For all three algorithms the adopted number of iterations (stop condition) equaled 10
000, whereas the length of tabu list was 15.

A FINE-GRAINED PARALLEL ALGORITHM FOR THE CYCLIC FLEXIBLE JOB SHOP PROBLEM 179

Table 1: The operating times and acceleration of algorithms.

Instance n×m o t(AGF) t(AS)
t(AGF)
t(AS)

t(AV)
t(AS)
t(AV)

t(AGF)
t(AV)

setb4c9 15×11 150 19.59 4.91 4.0 1.49 3.3 13.1
setb4cc 15×12 150 30.22 6.63 4.6 1.97 3.4 15.3
setb4x 15×11 150 18.56 4.92 3.8 1.48 3.3 12.5
setb4xx 15×12 150 23.45 5.78 4.1 1.64 3.5 14.3
setb4xxx 15×13 150 69.33 6.19 11.2 1.73 3.6 40.1
setb4xy 15×12 150 7.47 5.38 1.4 1.63 3.3 4.6
setb4xyz 15×13 150 4.06 0.75 5.4 0.23 3.3 17.7
seti5c12 15×16 225 67.6 12.67 5.3 3.52 3.6 19.2
seti5cc 15×17 225 98.2 15.86 6.2 4.41 3.6 22.3
seti5x 15×16 225 62.86 12.09 5.2 3.38 3.6 18.6
seti5xx 15×17 225 77.13 14.09 5.5 3.81 3.7 20.2
seti5xxx 15×18 225 107.27 17.03 6.3 4.52 3.8 23.7
seti5xy 15×17 225 98.1 15.75 6.2 4.36 3.6 22.5
seti5xyz 15×18 225 121.14 17.97 6.7 4.81 3.7 25.2

In Table 1 there were the results on the time of computations of algorithms t(A),
A ∈ {AGF,AS,AV}. presented. The first column shows the name of example, in the sub-
sequent ones: the number of tasks (n), the number of machines (m) and the number of
operations (o). The next three columns include the running times of AGF and AS. algo-
rithms. In turn, in the last three columns there were the operating times of sequential
algorithms AGF and AS. compared with the running time of the parallel algorithm AV .

The results of experimental studies clearly indicate that the use of the two-phase
method of viewing the neighborhood significantly reduces computation times. For the
sequential version of the algorithm the running time is shorter - from 4.0 to 11.2 times
(the quotient of t(AGF)

t(AS)
). On the other hand, the use of parallel processing realized by

vector computing enables additional reduction of time from 3.3 to 3.8 times. Ultimately,
the simultaneous use of both methods of computation acceleration allows its users for
additional time reduction from 4.6 to 40.1 times.

The quality of solutions generated by AGF algorithm was presented in Table 2 (the
other two algorithms AS and AV determined the same solutions but in a much shorter
time). The cycle time of solutions generated by AGF algorithm were compared with the
best known values of the minimum execution time of all tasks Cmax. It should be noted
that Cmax is the lower bound on the length of cycle time for one of the cyclic models
considered in the work of Brucker and Kampmeyer [5]. For each example, based on a
minimum time of tasks execution of the first MPS Cmax and the length of the cycle time

180 W. BOŻEJKO, J. PEMPERA, M. WODECKI

Table 2: The values set by the algorithms of solutions.

Instance n×m o Cmax T ∗ PRD
setb4c9 15×11 150 914 903 1.20
setb4cc 15×12 150 907 887.67 2.13
setb4x 15×11 150 925 878 5.08
setb4xx 15×12 150 925 879 4.97
setb4xxx 15×13 150 925 1002 -8.32
setb4xy 15×12 150 910 845 7.14
setb4xyz 15×13 150 903 838 7.20
seti5c12 15×16 225 1174 1130 3.75
seti5cc 15×17 225 1136 1064.5 6.29
seti5x 15×16 225 1198 1141 4.76
seti5xx 15×17 225 1197 1100 8.10
seti5xxx 15×18 225 1197 1136.5 5.05
seti5xy 15×17 225 1136 1064.5 6.29
seti5xyz 15×18 225 1125 1052 6.49

T there was a relative percentage improvement determined

PRD =
Cmax−T

Cmax
100%. (15)

For 13 instances the cycle times determined by AGF algorithm were significantly lower
than the value Cmax. This improvement ranged from 1.2 to 8.1 %. In one case (example
setb4xxx) determined by AGF algorithm, cycle time length was about 8.32% worse than
the value Cmax.

Given the fact that the best solutions were determined after a small number of itera-
tions, it is possible to state that this algorithm can be successfully used to solve practical
examples of large sizes.

7. Summary

In the work there was a cyclical flexible job shop problem considered. A graph
model, for a fixed order of operations execution on individual machines was presented.
The theorems enabling efficient determination of the minimum cycle time and a lower
bound were proven. In order to speed up the calculations there was not only a two-phase
method of neighborhood searching proposed but also a parallel method of determin-
ing the cycle time for the established order of operations that used vector processing

A FINE-GRAINED PARALLEL ALGORITHM FOR THE CYCLIC FLEXIBLE JOB SHOP PROBLEM 181

proposed. Ultimately, the results of computational experiments, which confirmed a sig-
nificant acceleration of calculations, while maintaining the designated solutions were
presented. To sum up, on the basis of the obtained results it can be concluded that the
modified AMF algorithm designated in a short time fully accepted in practice solutions.

References

[1] J.W. BARNES and J.B. CHAMBERS: Flexible job shop scheduling by tabu search,
Graduate program in operations research and industrial engineering. The Univer-
sity of Texas at Austin, Technical Report Series: ORP96-09, 1996.

[2] W. BOŻEJKO, M. UCHROŃSKI and M. WODECKI: Parallel hybrid metaheuris-
tics for the flexible job shop problem. Computers & Industrial Engineering, 59(2),
(2010), 323-333.

[3] W. BOŻEJKO, M. UCHROŃSKI and M. WODECKI: Block approach to the cyclic
flow shop scheduling. Computers & Industrial Engineering, 81 (2015), 158-166.

[4] W. BOŻEJKO, J. PEMPERA and M. WODECKI: The golf algorithm for the cyclic
flexible job shop problem, (to appear).

[5] P. BRUCKER and T. KAMPMEYER: Cyclic job shop scheduling problems with
blocking. Annals of Operations Research, 159 (2008), 161-181.

[6] M.A. GONZÁLEZ, C.R. VELA and R. VARELA: Scatter search with path relinking
for the flexible job shop scheduling problem. European J. of Operational Research,
245(1), (2015), 35-45.

[7] T. KAMPMEYER: Cyclic Scheduling Problems. Ph.D. Thesis, University Osnabri-
ick, 2006.

[8] F. PEZZELLA, G. MORGANTI and G. CIASCHETTI: A genetic algorithm for
the flexible job-shop scheduling problem. Computers & Operations Research, 35
(2008), 3202-3212.

[9] E. NOWICKI and C. SMUTNICKI: A fast tabu serach algorithm for the job shop
problem. Management Scence, 42, (1996), 797-813.

[10] C. SMUTNICKI, J. PEMPERA, J. RUDY and D. ZELAZNY: A new approach for
multi-criteria scheduling. Computers & Industrial Engineering, 90 (2015), 212-
220.

[11] Y. YUAN and H. XU: Flexible job shop scheduling using hybrid differential evo-
lution algorithms. Computers & Industrial Engineering, 65(2), (2013), 246-260.

