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DUAL QUATERNIONS AS A TOOL FOR RIGID BODY MOTION
ANALYSIS: A TUTORIAL WITH AN APPLICATION TO

BIOMECHANICS

Dual quaternions and dual quaternion interpolation are powerful mathematical
tools for the spatial analysis of rigid body motions. In this paper, after a review of
some basic results and formulas, it will be presented an attempt to use these tools for
the the kinematic modeling of human joints. In particular, the kinematic parameters
extracted from experimentally acquired data are compared with those theoretically
computed from dual quaternions rigid body motion interpolation.

1. Introduction

Rigid body spatial rotations and screw motions can be described by
means of different mathematical entities such as matrices, quaternions, dual
vectors and dual quaternions [1, 2].

In this paper the use of dual quaternions for the description of screw dis-
placements will be discussed with an application to human motion analysis.

The mathematical definition of relative motion between human body
segments is a complex task. This is due to the peculiar shape of the kinematic
elements forming cartilagineous and synovial joints. For this reason, in the
development of mathematical models, a common approach is the replacement
of such joints with those whose modeling is simplified. For instance, the knee
joint is usually substituted by an hinge joint, as shown in Fig. 11∗.

This investigation has the purpose of exploring the use of rigid motion
interpolation for the mathematical modeling of elbow joints.

∗ Dipartimento di Ingegneria Meccanica Università Roma Tor Vergata via del Po-
litecnico, 1, 00133 Roma, Italy. E-mail: pennestri@mec.uniroma2.it; E-mail: valenti-
ni@ing.uniroma2.it

∗ 1Adapted from http://www.shockfamily.net/skeleton/JOINTS.HTML
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Fig. 1. Kinematic modeling of a knee-joint

In particular, the approach herein presented can be applied to locate the
rotation axis of the relative motion between human segments. The method
is valid for a three dimensional motion and does not require the hypothesis
of planar motion, as those proposed in [3, 4].

This paper is mainly divided into the following parts:
• tutorial on dual quaternions with the definition of the main algebraic

operations;
• review and numerical comparison of some algorithms of rigid motion

interpolation based on dual quaternions;
• application of these algorithms to human motion analysis.

2. Dual quaternion operators

Quaternions are four terms real numbers
(

qr qx qy qz

)
which in-

clude a three-term vector with components qx, qy and qz. Quaternions are
usually represented in the form

Q = qr + qx~i + qy~j + qz~k = qr + ~q (1)

where qr and ~q are the real and vector parts, respectively, and ~i, ~j and ~k are
the unit vectors associated with the axes of a Cartesian coordinate system.

The use of quaternions for the description of spatial rotation is reported
in several bibliographical sources (e.g. Ref.[5, 6]).

A dual quaternion can be used to define a rigid body rotation of an angle
θ about an axis ~u through the origin

Q = cos
θ

2
+ ux sin

θ

2
~i + uy sin

θ

2
~j + uz sin

θ

2
~k = cos

θ

2
+ ~u sin

θ

2
(2)
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Fig. 2. Translation and rotation of a rigid body

Dual quaternions are mathematical entities [7, 8] whose four components
are dual numbers. Therefore, introduced the dual unit ε such that ε2 = ε3 =

. . . = 0, they can be expressed as follows

Q̂ = Q + εQO , (3)

where

Q = qr + ~q , (4)
QO = qrO + ~qO , (5)

Alternatively, dual quaternions can also be interpreted as a quaternion whose
four terms are dual numbers

Q̂ = q̂r + q̂x~i + q̂y~j + q̂z~k . (6)

By letting q̂r = 0, a dual quaternion is transformed into a dual vector. Dual
numbers, and dual vectors are special cases of a dual quaternion. In fact a
dual number is a dual quaternion with zero vector part. A dual vector is a
dual quaternion with zero scalar part. The dual quaternions follow the rules
of quaternion algebra with the condition ε2 = 0. As it will be discussed in
this paper, dual quaternions allow a coincise representation of a screw rigid
body motion.

Through the scalar part q̂r of the dual quaternion one can express the
rotation angle θ and the translation distance s along the screw axis ~h as
follows:

θ̂ = 2 cos−1 q̂r = θ + εs (7)
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Fig. 3. Screw motion of a rigid body

From the dual vector part of Q̂

Vec(Q̂) = q̂x~i + q̂y~j + q̂z~k (8)

one can retrieve the screw axis ~h and the vector ~p pointing from the origin
to any point of such axis (see Fig. [3]).

In particular, with reference to the geometry of Fig. [2], these two mo-
tions are respectively characterized by the following quaternions [6]:
• Translation:

Q̂T =
(
2 + ε~d

)
, (9)

where ~d is the vector oriented from the origin of the fixed Cartesian
coordinate system F to the origin of the moving one M;

• Rotation

Q̂R =

(
cos

θ

2
+ ~u sin

θ

2

)
= e0 + e1~i + e2~j + e3~k , (10)

with e0, e1, e2 and e3 the set of Euler parameters.
Denoting with ∗ the product between quaternions, the dual number quaternion
which describe the combined screw motion is

Q̂ = Q̂T ∗ Q̂R (11)
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whose components are

q̂r =2 cos
θ

2
− ε~u · ~d sin

θ

2

q̂x =2ux sin
θ

2
+ ε

[
dx cos

θ

2
− sin

θ

2

(
uydz − dyuz

)]

q̂y =2uy sin
θ

2
+ ε

[
dy cos

θ

2
− sin

θ

2
(uzdx − dzux)

]

q̂z =2uz sin
θ

2
+ ε

[
dz cos

θ

2
− sin

θ

2

(
uxdy − dxuy

)]

Unit dual quaternions represent rigid body motions only if the following
constraint is satisfied [5]

Q̂ · Q̂ = 1 , (12)

therefore the components need to be normalized such that

q̂2
r + q̂2

x + q̂2
y + q̂2

z = 1 (13)

If we interpret Q̂ as a point in the four dimension dual space, the equation
[12] represents a dual hypersphere. From these components one immediately
obtains, by means of equation [7], the dual rotation angle θ̂ and the line
versor which defines the spatial location and direction of the screw axis

ĥ =
Vec(Q̂)

sin θ̂
2

= ~h + ε ~p × ~h =
{

ĥx ĥy ĥz

}T
(14)

whose components are

ĥx =
q̂x

sin θ̂
2

, ĥy=
q̂y

sin θ̂
2

, ĥz =
q̂z

sin θ̂
2

(15)

Given the dual quaternion Q̂, Q̂T and Q̂R can be retrieved,respectively, as
follows [6]:

Q̂T = Q̂ ∗ Q∗ (16a)

Q̂R =
1

Q ∗ Q∗
Q (16b)

where Q∗ is the conjugate of the quaternion Q (see Appendix).
Since any spatial finite motion is decomposed into a translation and

rotation of an angle θ about an axis ~h, dual quaternions can be used as a
operators to describe a sequence of finite motions.
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Fig. 4. Numerical example: Nomenclature

Numerical Example
A rigid body is subjected first to a translation of a vector ~d =

{
2 2 1

}
and then to a rotation of 90◦

about a vertical axis ~u =
{

0 0 1
}
passing through the origin of the Cartesian coordinate system attached

to the body. We want compute the screw parameters of the overall finite motion by means of dual quaternions.
From [11], [7] and [14] one, respectively, obtains:

Q̂ = (1.4142 − ε0.7071) + ε2.8284~i + (1.4142 + ε0.7071)~k

θ̂ = 1.570796 + ε

ĥ = ~k + ε2~i

Hence the screw axis ~h is parallel to ~u and contains the point ~p =
{

0 2 0
}

(see Fig. 4). The translation

displacement of the body along the screw axis is s = 1.

3. Coordinate tranform by means of dual quaternions

In this section it will be discussed how to transform the coordinates
of points and line vectors attached to a rigid body whose screw motion is
defined by the dual quaternion Q̂.

Let the vector {r0} ≡
{

r0x r0y r0z 1
}T

contain the homogeneous
coordinates of a generic point on a rigid body in its initial position.
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Given Q̂ by means of [16], [9], [10] one can extract ~d, e0, e1, e2 and e3.
Thus the transform matrix

[
1
0A

]
=



e2
0 + e2

1 − e2
2 − e2

3 2 (e1e2 − e0e3) 2 (e0e2 + e1e3) dx

2 (e0e3 + e1e2) e2
0 + e2

2 − e2
1 − e2

3 2 (e2e3 − e0e1) dy

2 (e1e3 − e0e2) 2 (e0e1 + e2e3) e2
0 + e2

3 − e2
1 − e2

2 dz

0 0 0 1


(17)

of real elements can be formed.
The vector of homogeneous coordinates of the point in its final position

is
{r1} =

[
1
0A

]
{r0} (18)

where {r1} ≡
{

r1x r1y r1z 1
}T

.

Fig. 5. Definition of line vector (left) and screw displacement of a line vector (right)

With reference to the geometry of Fig. 5, a line vector ~v can be repre-
sented by means of the dual vector

v̂ = ~v + ε
(
~p × ~v) (19)

where ~p is the vector joining the origin of the Cartesian reference system
with any point of the line.

The new line vector v̂1 of a line vector v̂0 after a screw motion defined
by a dual quaternion Q̂ is obtained through the matrix product

v̂1 =
[
1
0 Â

]
v̂0 (20)

where

[
1
0 Â

]
=



q̂2
r + q̂2

x − q̂2
y − q̂2

z 2
(
q̂xq̂y − q̂r q̂z

)
2
(
q̂r q̂y + q̂xq̂z

)

2
(
q̂r q̂z + q̂xq̂y

)
q̂2

r + q̂2
y − q̂2

x − q̂2
z 2

(
q̂yq̂z − q̂r q̂x

)

2
(
q̂xq̂z − q̂r q̂y

)
2
(
q̂r q̂x + q̂yq̂z

)
q̂2

r + q̂2
z − q̂2

x − q̂2
y


(21)

is an orthogonal matrix.
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4. How to obtain screw parameters from point coordinates

Dual algebra can be conveniently used to retrieve the screw parameters
of a rigid body motion from the measurement of point coordinates [9, 10].

Let us denote with ~r0i and ~ri (i = 1, 2, . . . , n), (n ≥ 4) respectively, the
initial and final coordinates of points attached to a body subjected to a screw
motion. These coordinates can be collected through different experimental
techniques such as photogrammetry, magnetic sensors, laser sensors, etc. The
initial and final positions of the centroid of the points are given by

~c0i =
1
n

∑

i

~r0i (22a)

~ci =
1
n

∑

i

~ri . (22b)

The initial and final positions of line vectors attached to the moving body
are expressed, respectively, by the following dual vectors

r̂0i = ~r0i − ~c0i + ε~c0i × (
~r0i − ~c0i

)
(23a)

r̂i = ~ri − ~ci + ε~ci × (
~ri − ~ci

)
(23b)

In the absence of errors, the following equality would hold:
[
1
0 Â

]
r̂0i = r̂i (24)

with
[
1
0 Â

]
expressed by [21]. However, due to the presence of measurement

errors [
1
0 Â

]
r̂0i ≈ r̂i , (25)

where
[
1
0 Â

]
is in this case an unknown matrix to be computed trying to

minimize the differences with the least squares optimality criterion.
In this section a two step method is proposed:

1. After forming the matrices
[
R̂0

]
=

[
r̂01 r̂02 . . . r̂0n

]
(26a)

[
R̂1

]
=

[
r̂1 r̂2 . . . r̂n

]
(26b)

a dual tranform
[
1
0 Â

]
matrix is simply obtained as follows

[
1
0 Â

]
=

[
R̂1

] [
R̂0

]+
(27)
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where
[
R̂0

]+
denotes the pseudoinverse of

[
R̂0

]
.

Then the dual QR decomposition is applied
[
1
0 Â

]
=

[
Q̂
] [

R̂
]

(28)

and we let [
1
0 Â

]
=

[
Q̂
]
. (29)

In this way it is ensured that
[
1
0 Â

]
is orthogonal.

Under ideal conditions the matrix
[
R̂
]

will result into an identity matrix.
Hence, its elements can be used as a rough estimate of the deviation from
rigid body condition.

2. From
[
1
0 Â

]
the screw motion parameters θ̂ and ĥ are then retrieved [10].

Numerical Example
Let us denote respectively with

{r01} =
{

1 0 0
}T

, {r02}=
{

1 2 0
}T

,

{r03} =
{

1 2 1
}T

, {r04}=
{

0 2 1
}T

.

{r1} =
{

2 3 1
}T

, {r2}=
{

0 3 1
}T

,

{r3} =
{

0 3 2
}T

, {r4}=
{

0 2 2
}T

.

the initial and final positions of four points attached to a body. These data refer to the motion shown in Fig. 4.
Since the data are not affected by errors, the matrix

[
R̂
]

is the identity matrix and directly from [27]
follows the transform matrix

[
1
0 Â

]
=



−ε −1 2ε
1 −ε −2ε
2ε 2ε 1



The screw motion parameters coincide with those obtained in the previous numerical example.

5. Rigid body motion interpolation techniques

In this section some basic dual quaternions interpolation algorithms are
presented.

5.1. Screw linear interpolation

This is a generalization of the well known Spherical Linear Interpolation
(SLERP) scheme. Let denote by Q̂1 and Q̂2 two dual quaternions expressing
the initial and final pose of a rigid body, respectively.
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The ScLERP function (Screw Linear Interpolation) is defined as follows

ScLERP
(
t; Q̂1, Q̂2

)
= Q̂1 ∗

(
Q̂−11 ∗ Q̂2

)t
(30)

with t ∈ [0, 1].
A kinematic interpretation of this interpolation scheme is presented in

Refs. [11, 12]. Since Q̂−11 ∗ Q̂2 represents the finite screw motion between
the initial and final pose of the rigid body, the product

(
Q̂−11 ∗ Q̂2

)t
= cos

t θ̂2

 + sin
t θ̂2

 û (31)

defines a screw motion of a dual angle tθ̂ along the screw axis.

Algorithm 1 sDLB: Simple Dual quaternion Linear Blending

1: procedure SDLB(Q̂1, Q̂2, t)

2: SDLB
(
t; Q̂1, Q̂2

)
=

(1 − t) Q̂1 + tQ̂2∥∥∥∥(1 − t) Q̂1 + tQ̂2

∥∥∥∥
3: end procedure

5.2. Dual quaternion linear blending

The dual quaternion linear blending interpolation scheme (DLB) is de-
fined as follows

DLB
(
t; Q̂1, Q̂2

)
=

(1 − t) Q̂1 + tQ̂2∥∥∥∥(1 − t) Q̂1 + tQ̂2

∥∥∥∥
(32)

This can be extended to the interpolation of several poses as follows

DLB
(
t; Q̂1, . . . , Q̂n

)
=

w1(t)Q̂1 + . . . + wn(t)Q̂n∥∥∥∥w1(t)Q̂1 + . . . + wn(t)Q̂n

∥∥∥∥
(33)

In Refs. [12, 13] the weights are assumed to be convex(i.e. wi ≥ 0 and
n∑

i=1

wi = 1).

In this investigation, the weights are made coincident with the coefficients
of the classical Lagrange’s interpolating polynomials

w j(t) =

n∏

k = 1
k , j

t − tk
t j − tk

(34)
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Algorithm 2 DLB: Extension of the Dual quaternion Linear Blending

1: procedure DLB(Q̂1, . . . , Q̂n, t)
2: Compute weights wi (i = 1, . . . , n)

3: DLB
(
t; Q̂1, . . . , Q̂n

)
=

w1(t)Q̂1 + . . . + wn(t)Q̂n∥∥∥∥w1(t)Q̂1 + . . . + wn(t)Q̂n

∥∥∥∥
4: end procedure

There are different possibilities for the choice of the t value [6]. In this
investigation the value of t coincides with the Euclidean distance between
the coordinates of origins of the moving Cartesian coordinate system in the
different poses.

5.3. Dual quaternion iterative blending

If in the DLB algorithm the lengthy normalization is avoided, then the
resulting dual quaternion does not necessarily belong to the hypersphere. A
refinement of DLB is the Dual quaternion iterative blending proposed in Ref.
[13].

The steps of the improved algorithm are outlined in Algorithm 3

Algorithm 3 DIB: Dual quaternion Iterative Blending

procedure DIB(Q̂1, . . . , Q̂n, t) B̂ = DLB(Q̂1, . . . , Q̂n, t)

repeatX̂ =

n∑

i=1

wi log
(
B̂−1 ∗ Q̂i

)
B̂ = B̂ ∗ exp

(
X̂
)

until
∥∥∥∥X̂

∥∥∥∥ ≤ h
end procedure

6. Numerical tests on dual quaternion interpolation

In this section we will report the numerical results obtained with the in-
terpolating schemes previously described. In particular, we will prescribe the
poses of a rigid body compute the intermediate poses through interpolation.

The numerical results obtained with the algorithms herein considered
have been summarized in Tab. 1. In particular, with the bold characters
are denoted the numerical data defining the prescribed poses Q̂1, . . . , Q̂n.
The coincidence between the numerical results of the ScLERP and DIB
algorithms is due to the simmetry of the intermediate pose with respect to
the first and last one.
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Table 1.
Numerical results

ScLERP sDLB

t ~u ~d θ (rad)

0 {0, 0, 1}T {0, 0, 0}T 0.000000

0.2 {0, 0, 1}T {0, 0, 2}T 0.157080

0.4 {0, 0, 1}T {0, 0, 4}T 0.314159

0.6 {0, 0, 1}T {0, 0, 6}T 0.471239

0.8 {0, 0, 1}T {0, 0, 8}T 0.628319

1.0 {0, 0, 1}T {0, 0, 10}T 0.785398

t ~u ~d θ (rad)

0 {0, 0, 1}T {0, 0, 0}T 0.000000

0.2 {0, 0, 1}T {0, 0, 1.925100}T 0.155128

0.4 {0, 0, 1}T {0, 0, 3.962077}T 0.313176

0.6 {0, 0, 1}T {0, 0, 6.037923}T 0.472222

0.8 {0, 0, 1}T {0, 0, 8.074900}T 0.630270

1.0 {0, 0, 1}T {0, 0, 10}T 0.785398

DLB

t ~u ~d θ (rad)

0 {0, 0, 1}T {0, 0, 0}T 0.000000

0.2 {0, 0, 1}T {0, 0, 2.036640}T 0.158043

0.4 {0, 0, 1}T {0, 0, 4.018432}T 0.314643

0.5 {0, 0, 1}T {0, 0, 5}T 0.392699

0.6 {0, 0, 1}T {0, 0, 5.981568}T 0.470756

0.8 {0, 0, 1}T {0, 0, 7.963360}T 0.627355

1.0 {0, 0, 1}T {0, 0, 10}T 0.785398

DIB

t ~u ~d θ (rad)

0 {0, 0, 1}T {0, 0, 0}T 0.000000

0.2 {0, 0, 1}T {0, 0, 1.999999}T 0.157080

0.4 {0, 0, 1}T {0, 0, 4.000002}T 0.314159

0.5 {0, 0, 1}T {0, 0, 5}T 0.392699

0.6 {0, 0, 1}T {0, 0, 5.999998}T 0.471239

0.8 {0, 0, 1}T {0, 0, 8.000001}T 0.628318

1.0 {0, 0, 1}T {0, 0, 10}T 0.785398

7. Biomechanic analysis by means of rigid body motion interpolation

In the current investigation the application of motion interpolation tech-
niques to the mathematical description of human body motion is attempted.

Motion capture systems supply the user with numerical data regarding
the cartesian coordinates of markers on a body. Through dual algebra, given
these coordinates, one can compute the pose of the body [10, 14, 15].

Our aim is to describe the relative motion between two adjacent anatomi-
cal segments through a limited finite numbers of poses of the two bodies. The
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missing poses are estimated by means of the dual quaternion interpolation
techniques mentioned in the previous section.

7.1. Experimental human motion analysis

The motion capture system OptiTrack has been used for the experimental
tracking of markers positions. In our analysis four passive markers for each
body segment (arm and forearm) are used.

Since we are interested in the relative motion forearm.vs.arm, the arm is
kept still and only the forearm is moved.

OptiTrack allows to associate a set of at least three markers with a rigid
body. The pattern of the markers must be different. For each rigid body the
software returns:
– the absolute coordinates of the baricenter of the markers;
– the Euler parameters of Cartesian system framed to the moving body (see

Fig. 9).
The motion of the markers is monitored with eight FLEX:V100 cameras

acquiring at 100 frames per second. The positions of the cameras is such
that the markers are always visible at least by four cameras.

The markers positions on the body segments are shown in Fig. 6.

Fig. 6. Positions of the markers

The angle of rotation θ of the forearm with respect to the arm, as obtained
from the Euler parameters computed by the Optitrack software is plotted in
Fig. 7.

In particular, at each frame, from the values provided by the Optitrack
system, the dual quaternions (9), (10) and (11) are readily obtained.

Let Q̂0 and Q̂i the dual quaternions at the beginning of the acquisition
and at the ith frame. One can transform these quaternions into the materices[
Â0

]
and

[
Âi

]
, respectively.
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The dual matrix describing the relative motion is

[
i
0 Â

]
=

[
Â0

]−1 [
Âi

]
(35)

From this matrix the motion parameters can be obtained [10].

7.2. Human motion interpolation by means of dual quaternions

The motion of the forearm has been reproduced through dual quaternion
motion interpolation.

In particular three dual quaternions have been interpolated by means of
the DLB algorithm. The rotation angle θ of the forearm with respect to the
arm can be estimated from the interpolated dual quaternions.

Fig. 7. Experimental rotation angle θ forearm w.r.t. arm

Fig. 8. Rotation angle θ forearm w.r.t. arm from dual quaternion interpolation
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The quality of interpolation depends strongly on the law of variation of
parameter t. A linear variation of t (i.e. of θ) has been discarded because
would result in a linear increase and decrease of the rotation angle θ. Ob-
serving the experimental plot of Fig. 7 one immediately conclude that the
linear law is not appropriate for θ.

In our analysis a cycloidal variation of t has been applied. This choice is
supported by the experimental evidence. Furthermore in biomechanics several
authors hinted that skilled human movements are associated with a decrease
in jerk ([4], p.207). In the field of cam design, due to the minimization of
jerk, the cycloidal law is often adopted for the cam profiles.

In particular, the following function has been prescribed for the t para-
meter:

t =



1
π

[
π

ih
i − 1

2
sin

(
2π
ih

i
)]

0 ≤ i < ih

1
π

[
π

n − ih
(i − ih) − 1

2
sin

2π
n − ih

(i − ih)
]

ih ≤ i ≤ n

(36)

where n is the total number of frames monitored and ih the frame where the
motion inversion begins. In our case n = 450 and ih = 211.

Fig. 9. Euler parameters of the forearm from experimental data
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The plot of angle θ obtained from the interpolation and a variation of
t according to (36) is shown in Fig. 8. The values of Euler parameters
computed from the interpolated dual quaternions are plotted in Fig. 10.

Fig. 10. Euler parameters of the forearm from dual quaternion interpolation

8. Conclusions

In this paper some preliminary results regarding the application of dual
quaternion interpolation to biomechanics have been presented.

Although some issues remain open these results are encouraging. The
choice of the cycloidal law for the variation of the t parameter seems appro-
priate, although other choices need to be evaluated. The possibility of using
the dual quaternion iterative blending (DIB) interpolation scheme with n ≥ 3
is currently under test.

Our impression is that the matching between experimental and theoretical
analyses could be improved through the filtering of data and by reducing the
acquisition frequency of the cameras.

In this field it is very important the availability of a simple analytical
criterion for the evaluation of differences between experimental motion and
theoretically computed rigid body features. There are some scientific contri-



DUAL QUATERNIONS AS A TOOL FOR RIGID BODY MOTION ANALYSIS: A TUTORIAL . . . 203

butions toward the development of such criterion, but it seems that there is
not a general consensus.

Manuscript received by Editorial Board, December 14, 2009;
final version, February 02, 2010.
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[6] B. Jüttler, Visualization of moving objects using dual quaternion curves. Computers & Graph-

ics, 18(3), 315-326, 1994.
[7] A. McAulay, Octonions - A Development of Clifford’s Bi-Quaternions. Cambridge University

Press, 1898.
[8] A. T. Yang, Application of Quaternion Algebra and Dual Numbers to the Analysis of Spatial

Mechanisms. PhD thesis, Columbia University, 1963.
[9] E. Pennestrı̀, R. Stefanelli, Linear algebra and numerical algorithms using dual numbers.

Multibody System Dynamics, 18, 323-344, 2007.
[10] E. Pennestrı̀, and P.P. Valentini, Linear dual algebra algorithms and their Application to

Kinematics. In C.L. Bottasso, editor, Multibody Dynamics Computational Methods and Ap-
plications, Vol. 12, Springer Verlag, 2008.

[11] K.R. Etzel, and J.M. McCarthy, Spatial motion interpolation in an image space of so(4). In
Proceedings of The 1996 ASME Design Engineering Technical Conference and Computers
in Engineering Conference, 96-DETC/MECH-1164, 1996.

[12] L. Kavan,and S. Collins, and C. O’Sullivan, and J. Zara, Dual Quaternions for Rigid Trans-
formation Blending. Technical Report TCD-CS-2006-46, The University of Dublin, Trinity
College, 2006.

[13] L. Kavan, and S. Collins, and Zara, and C. O’Sullivan, Geometric Skinning with Approximate
Dual Quaternion Blending. ACM Transaction on Graphics, 27, 105, 2008.

[14] K.K. Teu, and W. Kim, Estimation of the axis of a screw motion from noisy data—A new
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9. Appendix: Basic dual quaternion operations

For a presentation of algebraic operations on dual numbers and dual vectors the reader may
refer to Refs. [16, 17, 18, 9, 10].

A dual quaternion is a vector of the form

Q̂ =



d̂
â
b̂
ĉ


(37)

where the components d̂, â, b̂ and ĉ are dual numbers. In order to express in a compact notation
the basic algebrai operations of dual quaternions, it is convenient to split the dual quaternion in a
dual scalar part d̂ and dual vector part v̂ = â ~i + b̂ ~j + ĉ ~k as follows

Q̂ = d̂ + v̂ (38)

1. Sum
Q̂1 + Q̂2 = d̂1 + d̂2 + v̂1 + v̂2 (39)

2. Product

Q̂1 ∗ Q̂2 =


d̂1d̂2 − 〈̂v1, v̂2〉

d̂1v̂2 + d̂2v̂1 + v̂1 × v̂2

 (40)

where 〈̂v1, v̂2〉 and v̂1 × v̂2 denote the dot and vector products, respectively.
3. Conjugation

Q̂∗ = d̂ − v̂ (41)

4. Norm
∥∥∥∥Q̂

∥∥∥∥ =

√
Q̂ ∗ Q̂∗ = ‖QO‖ + ε

〈Q,QO〉
‖QO‖

=

√
d̂ 2 + â 2 + b̂ 2 + ĉ 2 (42)

5. Inverse

Q̂−1 =
Q̂∗∥∥∥∥Q̂

∥∥∥∥
2 (43)

6. Exponential

exp
(
Q̂

)
= exp

(
d̂
)


cos
(∥∥∥̂v

∥∥∥
)

v̂∥∥∥̂v
∥∥∥ sin

(∥∥∥̂v
∥∥∥
)

 (44)

The extension of Euler’s identity to dual quaternions is expressed by the following unit dual
quaternion

exp
̂u θ̂2

 = cos
θ̂

2
+ sin

θ̂

2
û (45)

7. Logarithm

ln
(
Q̂

)
=



ln
(∣∣∣∣Q̂

∣∣∣∣
)

v̂∥∥∥̂v
∥∥∥arccos


d̂∥∥∥∥Q̂
∥∥∥∥




(46)
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If Q̂ is a unit dual quaternion expressed by (45), then

ln
(
Q̂

)
= û

θ̂

2
(47)

8. Power
Q̂t = exp

(
ln

(
Q̂

)
t
)

(48)

Kwaterniony dualne jako narzędzie analizy ruchu ciał sztywnych.
Przykład zastosowań w biomechanice

S t r e s z c z e n i e

Kwaterniony dualne i interpolacja z użyciem kwaternionów dualnych stanowią silne narzędzia
matematycznye wykorzystywane analizy ruchu przestrzennego ciał sztywnych. W artykule przed-
stawiono przegląd podstawowych wzorów i wyników, a następnie zaprezentowano próbę użycia
tych narzędzi do modelowania kinematyki stawów w ciele człowieka. W szczególności, parametry
kinematyczne wyznaczone na podstawie danych eksperymentalnych porównano z wyliczonymi
teoretycznie na podstawie interpolacji ruchu ciał sztywnych z użyciem kwaternionów dualnych.


