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CONTRIBUTION OF SYMBOLIC GENERATION TO THE
SENSITIVITY ANALYSIS OF AUTOMOTIVE SUSPENSION

PARAMETERS

The purpose of the present research relates to the sensitivity analysis of road
vehicle comfort and handling performances with respect to suspension technological
parameters. The envisaged suspension being of semi-active nature, this implies first
to consider an hybrid modeling approach consisting of a 3D multibody model of
the full car – an Audi A6 in our case – coupled with the electro-hydraulic model
of the suspension dampers. Concerning parameter sensitivitie, the goal is to capture
them for themselves – and not necessarily for optimization purpose – because their
knowledge is of a great interest for the damper manufacturer.
An important issue of the research is to consider objective functions which are based
on complete time integrations along a given trajectory, the goal being – for instance
– to quantify the sensitivity of the carbody rms acceleration (comfort) or of the
vehicle overturning character (handling) with respect to suspension parameters. On
one hand, the accuracy of the various partial derivatives computation can be greatly
enhanced thanks to the symbolic capabilities of our ROBOTRAN multibody program.
On the other hand, the computational efficiency of the process also takes advantage
of the recursive formulation of the multibody equations of motion which must be
time integrated with respect to both the generalized coordinates and their partial
derivatives in case of the so-called direct method underlying sensitivity analysis.

1. Introduction

Research context

Within the framework of our collaboration with the Tenneco Automotive
Company which develops car suspension systems (MonroeTM dampers), it
recently appeared that the role or – more specifically – the precise impact of
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suspension parameters on comfort and handling performances needed to be
better quantified. For instance, in the course of a recent multibody modeling
project with Tenneco, it was shown by simulation that, among the 21 (!)
suspension parameters they have to deal with, some of them have – finally –
no (or very little) influence on specific dynamic performances of the car (an
Audi A6 in this case): this non-sensitive nature was, surprisingly for us, a
very fruitful result for them. As another more recent example which relates to
human subjective evaluation of car performances, it is obviously an accepted
fact that the increase of the carbody roll motion has a negative effect, while a
decrease does not necessarily have a positive one! This “unilateral” observa-
tion – which results only from human perceptions – allows us to illustrate the
context and the purpose of the present research: the development of a precise,
robust and efficient method to quantify suspension parameter sensitivity for
given parameter ranges and specific car trajectories and excitations.

Problem formulation

The applications to be dealt with consist of modern cars with multi-link
suspensions equipped with various possible morphologies of passive or semi-
active hydraulic dampers. Considering the complexity of such systems and
the fact that model validation is mandatory in such a collaborative research
(see Fig. 1 for example), the model must be sufficiently refined and accurate.
It consists of a 3D multibody model of the car, which includes multi-link
suspension kinematics, wheel/ground force models issuing from [5], and a
dynamic model of the suspension’s hydraulic system [6] taking oil compress-
ibility into account (see Fig. 2). Such a model and its experimental validation
have previously been presented [8], the emphasis having been placed on the
way to obtain an hybrid multibody-hydraulic model coupled at the equational
level, without resorting to co-simulation techniques.

Fig. 1. Model validation - left: Audi A6 on the shaker, right: the MBS simulation (wireframe

snapshot)
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For the present project, the relevant sensitivity analyses are already well
defined in terms of parameters p and objective functions f to be considered:
typically the former (p) denote suspension design parameters (orifice section,
pipe length, electro-valve current etc.); the latter (ψ(p, t)) mainly concern rms
– possibly filtered – accelerations, mean dissipated power, carbody yaw or
roll rates etc., thus requiring a time integration from t0 → t along pre-
scribed trajectories (combining straight/curved, smooth/uneven stretches of
road, etc.).
Further to our previous experience in vehicle dynamics, particular attention
will be paid to the non-linear character of the multibody-hydraulic equations,
with respect to both the generalized coordinates q and the envisaged para-
meters p, and to the computational cost of the objective function sensitivity
∂ψ(p, t)
∂p

. Indeed, the latter depends on full trajectories (from t0 to t) and

must be computed, not only around a nominal parameter value pk , but for a

range pin f < pk < psup, that is:
∂ψ(p, t)
∂p

|p=pk , k = 1...n.

Rather than investigating new sensitivity methods, the emphasis will primari-
ly be placed here on the problem formulation, by tackling numerical/symbolic
differentiation, time integrator accuracy and computer efficiency, within the
framework of the so-called direct method [4].

Fig. 2. Audi A6: R multibody-hydraulic model and time simulation
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2. Sensitivity analysis: formulation

In our case, we formulate the multibody dynamic equations in terms of
relative joint coordinates q for which possible constraints must be satisfied
at any time, as for instance to ensure body loop closure (ex.: car multi-link
suspension mechanisms). The general formulation of the equations of motion
can be written as:

M(q, δ) q̈ + c(q, q̇, f , δ) = J tλ (1)

h(q) = 0 (2)

ḣ(q, q̇) = J(q)q̇ = 0 (3)

ḧ(q, q̇, q̈) = J(q)q̈ + J̇ q̇(q, q̇) = 0 (4)

where:
• M is the generalized mass matrix of the unconstrained system;
• δ gathers the system parameters (dimensions, mass, inertia, etc.) together;
• f (q, q̇, δ) represents all the – internal and external – contributive forces

and torques acting on the system;

• J , ∂h
∂qt denotes the constraint Jacobian matrix;

• J̇ q̇(q, q̇) is the quadratic term (expression in q̇iq̇ j) of the constraints at
acceleration level;

• λ represents the Lagrange multipliers associated with the constraints.
As far as we are concerned, we have definitively opted for the Coordinate

Partitioning technique [1] in which the joint coordinates q – as well as the
constraint Jacobian matrix J – are partitioned as follows:

q =


u
v

 ; J =


Ju

Jv

 (5)

where u denotes the subset of independent coordinates and v the subset of
dependent coordinates. Based on this partitioning, it is possible to solve the
constraints at position∗, velocity and acceleration levels,

v = v(u) ; v̇ = −J−1v Ju u̇ ; v̈ = −J−1v

(
Juü + J̇ q̇

)
(6)

and to reduce the DAE system (1 – 4) into a pure ODE system [7] witch can
be synthetically written:

Mr(u, δ)ü + Fr(u, u̇, f , δ) = 0 (7)

∗ using an iterative Newton-Raphson algorithm: vk+1 = vk + ...
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This ODE system constitutes the equations of motion of the constrained
multibody system described in terms of the independent generalized coordi-
nates u. Finally, by solving this linear system (using for instance a Cholesky
decomposition of the reduced mass matrix Mr), the independent accelerations
ü can be explicitly computed:

ü = φ(u, u̇, f , δ) (8)

At this point, it is worth mentioning that for any MBS containing nonlinear
constraints (ex. resulting from closed-loops), ROBOTRAN is able to gener-
ate the explicit reduced form (8) in a fully symbolic way, including the loop
closure and the reduction process [2].
Thus for the explicit form (8), a unique function (in C, Matlab, ect.), gen-
erated by ROBOTRAN, computes the accelerations ü (and possible “sub-
products” such as the Lagrange multipliers λ and the dependent coordinates
v, v̇, v̈) according to Fig. 3. The input of such functions are:
• u, u̇: the generalized position and velocities (from the previous time step

for instance);
• δ, the system parameters;
• p, any parameter (or set of parameters) with respect to which a sensitivity

analysis is envisaged.

Fig. 3. Symbolic computation of the direct dynamics for constrained MBS

Let us emphasize that from a pure computational point of view, the avail-
ability of the explicit direct dynamics in symbolic form (based on recursive
formalisms) allows us to simulate better than real time full car models with
wheel/ground interactions and multi-link suspensions, in the SIMULINK
environment. This efficiency, mainly due to the simplification capabilities
of the ROBOTRON symbolic generator, obviously represents an interesting
“starting point” for the proposed sensitivity process, particularly costly com-
putationally speaking.
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In the multibody dynamic context, a typical objective function ψ(p) for sen-
sitivity analysis – or optimization – purpose (see [4], [3]) can be written
as:

ψ(p) = G1(t1, u1, u̇1, p) +

∫ t1

t0
F(t, u, u̇, ü, p) dt (9)

in which:
• t0 and t1 are the initial and final simulation time;
• G1 refers to the final state (ex. the configuration at t1 of a given body of

the system);
• F depends on the dynamic behavior of the system in the time interval

[t0, t1], such as the rms vertical acceleration of the car driver, the mean
power dissipated at the wheel/ground contact, etc.

For the general objective function (9), sensitivity analysis consists in com-

puting
dψ
dp

, that is:

dψ
dp

=
∂G1

∂u1 .
du
dp

∣∣∣∣∣
t1

+
∂G1

∂u̇1 .
du̇
dp

∣∣∣∣∣
t1

+
∂G1

∂p
+

∫ t1

t0

(
∂F
∂u

.
du
dp

+
∂F
∂u̇

.
du̇
dp

+
∂F
∂ü

.
dü
dp

+
∂F
∂p

)
dt (10)

Let us first point out that in our case the only state variables are the indepen-
dent coordinates u (and u̇). Indeed, the remaining variables v (and v̇) have
been eliminated from the model during the reduction process (from the DAE
(1 – 4) to the ODE (7) or (8)), v and v̇ being expressed in terms of u and u̇
according to the constraints solution.

Within expression (10), the unknown sensitivity matrices
du
dp

(t),
du̇
dp

(t) and

dü
dp

(t) can be computed via the so-called direct method [4] which consists

in solving the differential equations for sensitivity matrices simultaneously
with the equations of motion as explained here below.
Considering the semi-explicit form of the dynamic equations (7), any δp
yields a small change in the system response δu, δu̇ and δü and thus sen-
sitivity matrices can be calculated via the following equations in which, for
sake of simplicity, we have defined Γ(u, u̇, ü, δ) , Mr(u, δ)ü + Fr(u, u̇, f , p):

Mr .
dü
dp

+
∂Γ

∂u̇
.
du̇
dp

+
∂Γ

∂u
.
du
dp

+
∂Γ

∂p
= 0 (11)

This equation can be time integrated simultaneously with the equations of
motion (7). When using first order time integration schemes, second order
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derivatives ü and
dü
dp

can be gathered together to define a new auxiliary

variable y:

y =


y1

y2

,


u
u̇

 ;ẏ =


ẏ1

ẏ2

,


u̇
ü

 ;

and similarly for the sensitivities up:

yp =


y1

p

y2
p

 ,



du
dp
du̇
dp


; ẏp =


ẏ1

p

ẏ2
p

 ,



du̇
dp
dü
dp



The global system reads:

ẏ1 = y2

ẏ2 = −M−1r (y1, p)
(
Fr(y1, y2, f , p)

)

ẏ1
p = y2

p

ẏ2
p = −M−1r (y1, p)


∂Γ

∂u̇
.
dy2

p

dp
+
∂Γ

∂u
.
dy1

p

dp
+
∂Γ

∂p

 (12)

which has the following suitable form for first order integrators

ż = φ(z, t) where z ,


y
yp



As previously mentioned, the reduced mass matrix inversion in (12b, 12d)
will be advantageously replaced by a Cholesky decomposition process.
The computational cost of the equations of motion (12b) can be noticeably
reduced by means of the symbolic generation underlying the ROBOTRAN
program (factor 8 to 10) and, additionally, by using the explicit formula-
tion (8) (fully symbolic generation) instead of the semi-explicit one (7) (factor
2 to 4).

The main reason of the “symbolic versus numerical” benefit comes more
from the recursive nature of the dynamic equations which is at the root of
the recursive symbolic elimination of useless equations in ROBOTRAN (see
Section 3.2), than from the symbolic simplification of expressions, obviously
also performed by the program.
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3. Sensitivity analysis: symbolic computation

3.1. Introduction

Considering now the sensitivity equations (12)d , our goal is to generate
them also symbolically. First of all, it is worth noting that the complexity of
these equations mainly comes from the computation of the partial derivatives
∂Γ

∂u̇
and

∂Γ

∂u
for large multibody systems like those we have to deal with (full

car with 3D suspensions, full railway vehicles, etc.) and for which the direct
dynamics (12)b is far from being trivial for symbolic programs. Moreover, in
the context of the Coordinate Partitoning process, the computation of equa-
tions (12)d is also not trivial and the associated complexity strongly depends
on the availability of the various elements; in particular, if the constraints
h(q) are solved at position, velocity levels in distinct processes or “subrou-
tines” according to equations (6), the partial derivatives of the dependent

coordinates
dv
dp

and
dv̇
dp

will be needed explicitly, as well as those related to

the constraints and the Jacobian themselves, for the computation of
∂Γ

∂u̇
and

∂Γ

∂u
.

At position level for instance, we have to compute

dv
dp

= −J−1v
∂h
∂p

which requires the explicit computation of the constraints sensitivity
∂h
∂p

. The

same conclusion holds for constraints derivatives.
For these reasons, the explicit fully symbolic formulation (8) of the direct
dynamics (see Fig. 3), is perfectly suited to a recursive symbolic differentia-

tion process directly applied to the output ü, to produce
dü
∂p

straightforwardly.

This is the purpose of the two next Subsections.

3.2. Recursive symbolic generation in ROBOTRAN

To clarify the following explanations, we name a recursive scheme de-
notes any formalism (kinematic, dynamic, direct, inverse, ...) written as one
or more algorithmic loops covering the kinematic chains of bodies. Typical-
ly, the well-known Newton/Euler recursive formalism, which underlies the
ROBOTRAN symbolic generation of system (1) for unconstrained systems,
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represents a recursive scheme consisting of two algorithmic loops: one for
the forward kinematics, the second for the backward dynamics [7].
To illusttrate the recursive nature of these formalisms, let us consider, in the
forward kinematics, the relation which expresses the absolut angular velocity
of a given body 3 with respect to body 2, its parent body in the chain:

ω3 = ω2 + φ3q̇3 (13)

in which joint 3 is revolute along unit vector φ3. The matrix form of this
equation symbolically reads in the body 3 attached-frame {X̂3}:

OM13 = qd(3)+ OM12

OM23 = OM22*C3+OM32*S3 (14)
OM33 = -OM22*S3+OM32*C3

where OMij denotes the ith component of the jth body angular velocity in
frame {X̂ j}, qd(j) denotes q̇ j and Cj, Sj represent cos(q j), sin(q j) respectively.

In ROBOTRAN each recursive equation of type (15), once symbolically
evaluated, is stored in a dynamic list linked by C-pointers as indicated in
Fig. 4. By “symbolically evaluated”, we mean that the right hand side (RHS)
of each equation is a symbolic expression – previously simplified – stored
in the computer memory and located via C-pointers.

Fig. 4. C linked-list of recursive equations
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The process can be summarized in two tips:
1. A recursive equation LHS=RHS (ex.: OM33= −OM22*S3+OM32*C3) is

symbolically evaluated. The LHS (OM33) becomes a new auxiliary variable,
i.e. an elementary expression, which is generated as soon as the RHS is
evaluated.

2. The list is dynamically increased by one unit in which:
– pointer ptr previous links the unit to the previous one in the recursive

algorithm (ptr previous = NULL for the first element),
– pointer ptr next will link the unit to the next one (ptr next = NULL

for the last element),
– pointer ptr le f t points to the LHS leaf expression,
– pointer ptr right points to the RHS expression,
– The boolean flag print is a priori set to FALSE because the corre-

sponding expression do not a priori contribute to the expected results.

Elimination process
The linked list is complete as soon as all the final results have been

symbolically evaluated (ex.: M, c in equation (1) or ü in equation (8)).
Each result (ex. for the mass matrix: M(i, j), i = 1 : n, j = i : n) having the
same structure as the previous recursive equations (i.e. LHS = RHS) is also
stored in the list, but of course with a print flag set to TRUE. Once they have
been evaluated, the selection process can start by scanning the list from tail
to head, and can be summarized as follows:
1. Start from the tail element of the list (i.e. the last symbolically evaluated

equation (ex.: the first mass matrix element M(1,1)),
2. Analyze the contents of the equation:

– if the corresponding print flag is TRUE, then for each auxiliary vari-
able encountered in the RHS of the equation, find and mark, by setting
print to TRUE, the recursive equation in the list which symbolically
evaluates this variable,

– else, go directly to step 3, because the corresponding equation is
superfluous,

3. Go to the previous element of the list whose address is given by the
pointer ptr previous:
– if the address is the NULL pointer, the head has been reached and the

process is finished: go to step 4,
– else, return to step 2,

4. Print in the output file, by covering the list from head to tail, the equations
whose print flag has been set TRUE.
Figure 5 summarizes this process using an academic example.
Thanks to this recursive simplification process, we note that more than

30% of the equations are superfluous (for direct dynamics) which is far
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Fig. 5. Recusive elimination of superfluous equations

from being negligible. In terms of symbolic computation performances, the
multiple scanning of the list (required by step 2 in the process) can be quite
time consuming for large systems because string comparison is performed
thousands of times to find and mark interdependencies. The use of supple-
mentary flags in the list elements, not detailed here, allows us to find and
mark the useful equations in an immediate manner. This allows us to reduce
the elimination process to a few seconds, even for more than 200 d.o.f.
multibody systems.

3.3. Recursive symbolic differentiation

As mentioned in the Section 2, sensitivity analysis of large constrained
MBS led us to develop a specific procedure to symbollically differentiate
a given recursive scheme with respect to a given (set of) parameter(s) p.
In the context of differentiation, the equations produced by recursive multi-
body formalisms can be advantageously considered as interwoven functions
( f (g(h(...(x)))). However, if the corresponding differentiation rules are ap-
plied blindly to a recursive scheme, we have observed that they produce a

very large non-optimized symbolic output (ex.
dü
∂p

) even for medium-sized

multibody models: the interest of the recursive computation (see eqs. (13)
and Fig. 4) is thus completely lost. Therefore, we take advantage of the
elimination procedure described in the previous Section to solve this prob-
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lem. When evaluating a given recursive scheme, we assume –apriori– that
each equation depends, explicitly or not, on the set of system parameters or
variables (ex.: p1, p2, ...pk) with respect to which the differentiation must be
performed. For instance in the following equation:

AUXJ = AUXI + 2 * P (15)

AUXJ explicitly depends on the variable P via the second term. A priori, it may
also depend implicitly on P via the first term AUXI. We thus systematically
create and evaluate a new recursive variable, for instance AUXJ P, for the
partial derivative of the current equation with respect to P

AUXJ P = AUXI P + 2

even if, in the end, it appears that this new auxiliary variable is 0 or sim-
ply useless. If it is useless, the elimination process described previously
will detect it and remove the corresponding equation from the list, before
printing. Such a technique gives rise to a compact recursive computation of
the required derivatives. To illustrate this, let us consider in (16) and (17),

the symbolic evaluation of one element (J(3,1)) of the Jacobian matrix
dx
dq

of a position vector x(q) associated with a kinematic chain composed of
nine joints. In (16), the classical differentiation rule applied to x(q), i.e. the
resulting equation (J(3,1) = ...), is far more consuming in terms of operators
(220 {∗,+,−}) than when obtained via the proposed recursive differentiation
as (62 {∗,+,−}).

J(3,1) = q8*(C1*C7*(-C3*S4*C5+S3*S5)-S1*(S2*(S3*S4*(-C5*C7+S5*C6*S7)

+S7*(-C3*C5*C6+S3*C4*S6))+C7*(C2*C4*C5-S2*C3*S5))

+S7*(C1*(C3*C4*S6+C6*(C3*S4*S5+S3*C5))-S1*C2*(-C4*S5*C6+S4*S6)))

+D13*S1*S2+D14*(C1*S3+S1*S2*C3)+D15*(C1*S3+S1*S2*C3)

+D16*(C1*(C3*S4*S5+S3*C5)+S1*(C2*C4*S5-S2*(-C3*C5+S3*S4*S5)))

+D17*(C1*C6*(C3*S4*S5+S3*C5)+S1*(-S2*S3*(C4*S6+S4*S5*C6)

+C6*(C2*C4*S5+S2* C3*C5))+S6*(C1*C3*C4-S1*C2*S4))

+D18*(C1*S7*(C3*S4*C5-S3*S5)-S1*(S2*(S3*S4*(C5*S7+S5*C6*C7)

+C7*(-C3*C5*C6+S3*C4*S6))+S7*(-C2*C4*C5+S2*C3*S5))

+C7*(C1*(C3*C4*S6+C6*(C3*S4*S5+S3*C5))-S1*C2*(-C4*S5*C6+S4*S6)))

+D19*(C1*S7*(C3*S4*C5-S3*S5)-S1*(S2*(S3*S4*(C5*S7+S5*C6*C7)

+C7*(-C3*C5*C6+S3*C4*S6))+S7*(-C2*C4*C5+S2*C3*S5))

+C7*(C1*(C3*C4*S6+C6*(C3*S4*S5+S3*C5))

-S1*C2*(-C4*S5*C6+ S4*S6))); (16)
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RO22 = S1*S2; RO32 = -C1*S2; RO82 = -S1*C2; RO92 = C1*C2;

RO23 = RO22*C3+C1*S3; RO33 = RO32*C3+S1*S3; RO53 = -RO22*S3+C1*C3;

RO63 = -RO32*S3+S1*C3; RO54 = RO53*C4+RO82*S4; RO64 = RO63*C4+RO92*S4;

RO84 = -RO53*S4+RO82*C4; RO94 = -RO63*S4+RO92*C4; RO25 = RO23*C5-RO84*S5;

RO35 = RO33*C5-RO94*S5; RO85 = RO23*S5+RO84*C5; RO26 = RO25*C6+RO54*S6;

RO36 = RO35*C6+RO64*S6; RO27 = RO26*C7-RO85*S7; RO87 = RO26*S7+RO85*C7;

RL23 =RO22*D13 ; RL24 = RO23*D14; JT34 1 = RL23+RL24;

RL25 = RO23*D15 ; JT35 1 = JT34 1+RL25; RL26 = RO25*D16;

JT36 1 = JT35 1+RL26; RL27 = RO26*D17; RL28 = RO27*D18+RO87*q(8);

JT37 1 = JT36 1+RL27; JT38 1 = JT37 1+RL28; RL29 = RO27*D19;

J(3,1) = JT38 1+RL29; (17)

For larger models and in particular for the explicit direct dynamics (8) of
constrained multibody systems, the advantage of the recursive differentiation
is really significant. In fact, the explosive increase in the size of the classical
differentiation technique is quite understandable since it amounts to destroy-
ing the recursivity of the original scheme, leading to an in extenso formulation
like in example 16. Although the proposed recursive differentiation process
is very consuming in terms of both memory storage and symbolic CPU time
– because thousands of “potential” partial derivatives are computed –, these
drawbacks are negligible in ROBOTRAN since the storage requirement is
drastically controlled during the symbolic process [7].

4. Sensitivity analysis: illustrative results

A typical sensitivity analysis we propose to carry out is briefly illustrated
here below. The multibody model is based on the one previously shown in
Fig. (2), but involving semi-active suspensions. The force-velocity damper
relationship is function of an electro-valve current i: the valve section, when
reduced or enlarged, induces a higher or a lower damping coefficient of the
suspension.
Two sensitivity computations are proposed here:
1. The first one concerns passenger comfort and relates to the sensitivity of

the rms vertical acceleration with respect to the electro-valve current for
a given road excitation;

2. The second one deals with car handling and aims at showing the influ-
ence of the front anti-roll bar torsion stiffness (thus p = Karb) on the
under/oversteering character of the car, for a given pilot steering input.
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4.1. Comfort-oriented sensitivity

According to Fig. 2, the car is shaked on the 4-poster test bench (left/right
out-of-phase noisy sinusoidal input (1 Hz, Amplitude : ± 10mm). The accel-
eration of the carbody center of mass∗∗ is given in Fig. 6le f t for illustrative
purpose only. The rms value of the vertical acceleration can be computed

Fig. 6. Audi A6 on poster - Left: carbody acceleration, Right: carbody acceleration sensitivity

straightforwardly:

z̈rms ,
√

1
t f − ti

∫ t f

ti
[z̈(t)]2 dt = xxx

m
s2 for the present simulation case.

The sensitivity time history of the vertical acceleration z̈i for distinct damper
electro-valve currents i (thus p = i) is shown in Fig. 6right . While being more
“cosmetic than pragmatic”, this 3D plot contains relevant information for the
manufacturers.
First of all, with respect to time t, the envisaged future trajectories will
be composed of successive sections of different natures: smooth or uneven
surfaces, sections with potholes or transverse discontinuities, etc. which will
define successive time intervals for which dedicated objective function could
be evaluated (like rms values or mean dissipated power, etc...).
With respect to the parameter p itself, it is useful to observe the evolution of
the sensitivity with respect to some parameter range in order to make sure
of the “robustness” of the dynamic behavior with respect to some parameter
inaccuracy. Figure 7le f t shows, for instance the way the sensitivity of the rms
acceleration z̈rms

i changes with respect to the current i (range: 0.3 A to 1.5 A).
Since it is rather difficult to “feel” the meaning of the absolute value of z̈rms

i ,
the latter will be advantageously translated in some pragmatical “metric”, as
for instance the percentage of output variation for a given relative (ex. 1 %)
or absolute (ex. 0.1A) variation of the considered parameter.

∗∗ Other sensor points could easily be used, in particular considering the real passenger loca-
tion.
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Fig. 7. Carbody rms acceleration – Left: influence of the electro-valve current, Right: repercussion

of the numerical differentiation accuracy, down zoom of the middel figure

The purpose of Fig. 7right and down is completely different: it simply illustrates
the interest in using symbolical (i.e. analytical) differentiation technique,
instead of numerical differentiation whose accuracy unavoidably depends
on the parameter increment ∆p. Moreover, with respect to symbolic differ-
entiation, numerical approximation of gradients is unavoidably more time
consuming since it requires at least two function evaluations: this additional
cost is not negligible regarding the envisaged applications.

4.2. Handling-oriented sensitivity

In terms of car handling, lots of investigations can be carried out in
terms of sensitivity with respect to suspension design. Within the frame of
this paper, let us focus on the under/over-steering character of the car when
negotiating a curve. In the literature, one can find various way to quantify this
phenomenon, by comparing the so-called wheel slip angles of front and rear
wheels, by considering or not the instantaneous centripetal acceleration of
the car, etc. A simplest way – sufficient to illustrate our approach – consists
in using for the objective function a more global parameter: the carbody slip
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angle β illustrated in Fig. 8le f t . β is the angle between the car longitudinal

orientation
−→
X and the car instantaneous center of mass velocity

−→
V. the case

illustrated refers to an oversteering situation since the car turns “too much”
with respect to the normal trajectory T .
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Fig. 8. Cornering situation - Left: car slip angle β, Right: steering rack displacement (imposed)

Figure 8right represents the pilot steering input time history which is
introduced via the steering rack displacement in the model.

As regards the over/understeering behavior of a vehicle negotiating a curve,
a well-established observation is the following: increasing the roll stiffness K
of the front [resp. rear] suspension, via an anti-roll bar for instance, increases
[resp. decreases] the car understeering behavior. It is for instance possible to
transform an understeering car (as we are daily using) into an oversteering
one, simply by adding an anti-roll bar to the rear suspension. Without en-
tering into details, the reason of this phenomenon comes from the nonlinear
relationship between the lateral cornering force and the normal force: the
global lateral – or centripetal – force on a given suspension (featuring left
+ right wheels) decreases when the vertical load transfer increases, which is
the case when a stiffer anti-roll bar is used for that suspension.

For the proposed steering excitation, Fig. 9le f t shows the Audi A6 trajec-
tory for different values of the front suspension anti-roll bar torsions stiffness
K . Fig. 9right and 9down relates to the vehicle configuration in steady state
curving (line ’s-s’ in Figs. 8right and 9le f t). At this point, the vehicle – if
stable – reaches a given slip angle β corresponding to a given amount of
under/oversteer as shown in Fig. 9right . Its sensitivity βK with respect to the
front anti-roll bar stiffness K is plotted in Fig. 9down. On can observe a rather
smooth evolution, which will be not necessarily the case for situations in
which the lateral forces are for instance closer to their saturation point.
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Fig. 9. Vehicle cornering behavior – Left: car trajectory, Right: car slip angle β versus K , Down:

car slip angle sensitivity βK versus K

5. Conclusions

The present work deals with the sensitivity analysis of constrained multi-
body models, the main applications being road vehicles equipped with mod-
ern suspensions. Considering the size of those systems and the necessity
to use a rather refined multibody model to properly capture the required
dynamic behaviors, the symbolic approach underlying the ROBOTRAN pro-
gram is appealing for two reasons: the explicit and recursive computation
of the generalized accelerations (direct dynamics) which are necessary for
computing objective functions based on time integrations of the system (ex:
car following a trajectory, ...) and the explicit – and also recursive – genera-
tion of the partial derivatives of the direct dynamics, with respect to a given
(set of) parameter(s). All the process is based on the Coordinate Partitioning
approach whose well-known computational cost is strongly reduced thanks
to the symbolic simplification capabilities of the ROBOTRANprogram.
Direct method is used to compute and time integrate the multibody equations
of motion simultaneously with the sensitivity differential equations, the main
drawback with respect to other approaches (ex. the adjoint method) being the
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numerical cost. Once again, the symbolic generation allows us to minimize
this problem.
Additional applications – in the field of vehicle dynamics – will be carried
out in the next future to compare and quantify the process performances with
respect to the adjoint approach.
In terms of results interpretation, both the objective functions and the pa-
rameters can be of different nature (acceleration, force, power, etc.. for the
former; dimension, current, stiffness, etc. for the latter). Thus, it is proposed
to establish some sensitivity metric with the damper manufacturer, to decide
what is “acceptable or not” for a given vehicle dynamic situation.
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Wykorzystanie symbolicznego generowania równań w analizie wrażliwości zawieszenia
samochodowego na zmiany parametrów

S t r e s z c z e n i e

Cel przedstawionych badań jest związany z analizą wrażliwościową wpływu, jaki na komfort
jazdy i właściwości jezdne pojazdu drogowego mają parametry technologiczne jego zawieszenia.
Przewiduje się, że zawieszenie będzie miało charakter półaktywny, co implikuje podejście pole-
gające na modelowaniu hybrydowym, w którym wykorzystuje się trójwymiarowy model całego
samochodu – w konkretnym przypadku jest to Audi A6 – w połączeniu z elektro-hydraulicznym
modelem amortyzatorów zawieszenia. Wrażliwość modelu bada się, by określić wartości para-
metrów – a nie w celach optymalizacyjnych – gdyż znajomość tych wielkości jest ogromnie
interesująca dla producentów amortyzatorów.

Ważną kwestią w tych badaniach jest przyjęcie funkcji celu, które oparte są na całkowa-
niu pewnych wielkości podczas całego czasu realizacji zadanej trajektorii. Celem może być –
na przykład – określenie wrażliwości średniokwadratowego przyspieszenia nadwozia (komfort)
lub charakterystyki przewracania się samochodu (własności trakcyjne) na zmiany parametrów
zawieszenia. Z jednej strony, dokładność obliczeń różnych pochodnych cząstkowych może być
znakomicie zwiększona dzięki możliwościom programu do symulacji układów wieloczłonowych
ROBOTRAN, który wykorzystuje postać symboliczną równań. Z drugiej strony, korzystny dla
wydajność procesu obliczeniowego jest również fakt, że równania ruchu układu wieloczłonowego
są sformułowane w postaci rekursywnej. W przypadku tak zwanej metody bezpośredniej, która leży
u podstaw analizy wrażliwości, równania te muszą być całkowane w dziedzinie czasu względem
zarówno współrzędnych uogólnionych jak i ich pochodnych cząstkowych.


