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AN IMPROVED XFEM FOR THE POISSON EQUATION WITH
DISCONTINUOUS COEFFICIENTS

Discontinuous coefficients in the Poisson equation lead to the weak discontinuity
in the solution, e.g. the gradient in the field quantity exhibits a rapid change across
an interface. In the real world, discontinuities are frequently found (cracks, material
interfaces, voids, phase-change phenomena) and their mathematical model can be
represented by Poisson type equation. In this study, the extended finite element method
(XFEM) is used to solve the formulated discontinuous problem. The XFEM solution
introduce the discontinuity through nodal enrichment function, and controls it by
additional degrees of freedom. This allows one to make the finite element mesh
independent of discontinuity location. The quality of the solution depends mainly
on the assumed enrichment basis functions. In the paper, a new set of enrichments
are proposed in the solution of the Poisson equation with discontinuous coefficients.
The global and local error estimates are used in order to assess the quality of the
solution. The stability of the solution is investigated using the condition number of the
stiffness matrix. The solutions obtained with standard and new enrichment functions
are compared and discussed.

1. Introduction

Discontinuous problems can appear in different areas of engineering and solv-
ing them is still a challenging task for engineers and material sciences community.
A challenging field where an accurate description of discontinuity is of vital im-
portance is the modelling of failure in machine design. The failure may be a result
of crack propagation in material, what is an example of a problem with strong
discontinuity, e.g., the problem where the field quantity exhibits a rapid change
across an interface. The problem where a weakdiscontinuity is observed is the
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phase-change phenomena. The phase-change problem plays an important role in a
number of industrial and natural processes. In this case, the discontinuity is present
in the gradient of temperature. Another examples where proper modelling of weak
discontinuity is important is the occurrence of the material interfaces, inclusions
or holes.

The problem can be solved approximately using a wide range of numerical
techniques. The overview of themeshfreemethods can be found in [1] and [2]. In [3]
authors present the implementation of the extended isogeometric analysis (IGA)
which incorporates enrichment functions through the partition of unity method
(PUM). In this paper, the solution of the Poisson equation with discontinuous
terms using extended finite element method (XFEM) is considered. The XFEM
was first used by Belytschko & Black [4] to study crack propagation in materials.
Merle & Dolbow [5] and Chessa et al. [6] apply the XFEM to solve phase-change
problems. The analysis of the one-dimensional physically non-linear phase-change
problem is considered in [7].

The XFEM solution introduce the discontinuity through nodal enrichment
function, and controls it by additional degrees of freedom. This allows one to make
the finite element mesh independent of discontinuity location. The quality of the
solution depends mainly on the assumed enrichment basis functions. However, the
additional enrichment results in higher condition number of the stiffness matrix in
comparison to the standard finite element approximation. To remedy the resulting
poor conditioning, various approaches have been suggested in the literature, the
review can be found in [8] . In the context of weak discontinuities, Hansbo et al. [9]
andWadbro et al. [10] improve the conditioning of the system by adding additional
volume terms to the weak formulation of the problem. This results in increase of
the solution error around the discontinuity. In [11] and [12] the authors developed
the SGFEM (Stable Generalised Finite Element Method), for which the condition
number is bounded and independent of the position of the interface. In general,
the ill-conditioned system matrix of the XFEM solution is still a challenging
issue.

In the paper, the new enrichment functions are proposed. The global and local
error estimates are used in order to assess the solution error. The stability of the
solution is investigated using the condition number of the stiffness matrix. The
solution obtained with standard and the new enrichment functions are compared
and discussed.

The outline of the paper is as follows. In Section 2, the problem considered
throughout the paper is defined for one-dimensional space. In Section 3, the main
futures of the XFEM are briefly recalled and a new sets of enrichment functions
for one-dimensional case are defined. The solutions for one-dimensional example
problem is presented and discussed in Section 4. The problem is extended to
two-dimensional space in Section 5. Finally, the numerical solutions for two-
dimensional example problems are presented in Section 6 and 7. The solution
error, condition number of a system and the convergence rates are analysed.
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2. One-dimensional problem formulation

Let us consider a one-dimensional domain Ω partitioned into subdomains, ΩL

and ΩR, respectively (Fig. 1). The subdomains are separated from each other by
the interface ΓI at the point ξ. The Dirichlet condition is prescribed at the point
ΓD , while the Neumann condition is defined at ΓN . The problem is described by
Poisson ODE equation in the form

d
dx

(
k (x)

d
dx

u(x)
)
+ f (x) = 0 in Ω (1)

with boundary conditions
u(x) = uD at ΓD (2)

k
d
dx

u(x) = qN at ΓN . (3)

It is assumed that the coefficient k (x) and function f (x) are explicitly discontinuous
across the interface boundary ΓI , which can be written as follows

k (x) =



kL (x) in ΩL

kR (x) in ΩR

(4)

f (x) =



fL (x) in ΩL

fR (x) in ΩR .
(5)

 

Fig. 1. One-dimensional domain Ω split intoΩL and ΩR by the interface ΓI

The weak form of the problem is derived by multiplying the equation (1) by a
test function v(x) and integrating separately in each domain. As a result, we obtain
the following weak form: find u ∈ S such that(

k (x)
d
dx

u(x),
d
dx

v(x)
)
= ( f (x), v(x)) − (v(x), qN )ΓN ∀v ∈ V (6)

with S = {u \ u ∈ H1(Ω), u|ΓD = uD } and V = {v \ v ∈ H1(Ω), v |ΓD = 0}, where
S is the space of the trial solution, V is the space of the test function, and H1 is
the first order Sobolev space. In the above expression, (·,·) denotes the L2 inner
product over the domain Ω.
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3. Extended finite element method

The finite element formulation of (6) is: find uh ∈ Sh such that(
k (x)

d
dx

uh,
d
dx

vh

)
= ( f , vh) − (vh, qN )ΓN ∀v ∈ V (7)

where Sh and Vh are finite element subspaces of S and V , respectively. After the
basic functions are introduced in Sh and Vh, equation (7) can be written in the
matrix form

Ku = f − q (8)

where u is a vector of nodal unknowns, and K and f are the stiffness matrix and
load vector, respectively. Their global counterparts are computed through the usual
assembly procedure.

In the XFEM, the special functions reflecting the discontinuous field are in-
troduced locally in the finite element approximation, which makes it possible to
describe weak and strong discontinuities independent of the finite element mesh.
The enriched area is limited only to elements cut by discontinuity interface, which
does not increase the size of the problem significantly.

A solution characteristic of the problem is introduced by adding the enrichment
term uh (x, ξ)E to the standard finite element approximation uh (x)C

uh (x, ξ) = uh (x)C = uh (x, ξ)E (9)

where
uh (x)C =

∑
j∈I

Nj (x)u j (10)

and u is arbitrary quantity. The enrichment term uh (x, ξ)E combines the enrichment
functions Ψα(x, ξ) with a partition of unity (PU) functions Nj (x) (usually element
shape functions)

uh (x, ξ)E =
∑
j∈I

m∑
α=1

Nj (x)Ψα(x, ξ)aα
j (11)

where J is the set of nodes enriched by Ψα(x, ξ), aα
j are the additional degrees of

freedom, I is the set of all nodes, and m is the number of enrichment functions and
ξ denotes the discontinuity location in the element.

It should be pointed out that the standardXFEMapproximation does not satisfy
the Kronecker property. This condition can be achieved by applying shifted-basis
approximation [13], [14] to modify the enrichment function Ψα(x, ξ)

Ψ
α
j (x, ξ) = Ψα(x, ξ) − Ψα(x j, ξ) (12)

which leads to the desired property uh (x j )E = 0 and uh (x j ) = u j .
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The finite element mesh comprises standard elements, elements cut by the
interface (reproducing elements), and elements that contain both the enriched
and non-enriched nodes (blending elements). The approximation in the blending
elements does not form a partition of unity; as a result, the convergence rate
and accuracy of the method are reduced. In order to improve accuracy of the
method, Tarancòn [15] suggests a fixed enrichment area, also known as geometrical
enrichment. Fries [16] uses a ramp function over the transition layer so that the
partition of unity property can be satisfied everywhere.

In this study, two approaches are considered. In the first, the standard abs-
enrichment function with shifted-basis approximation is utilized

Ψj (x, ξ) = |x − ξ | − |x j − ξ |. (13)

In this approach, the enriched part of approximation in blending elements is not
active, [17]. The equivalent approximation can be achieved using the function
proposed by Moës et al. [18] or Babuska & Banerjee [11]. In both cases, the
enriched part of approximation is represented by a bilinear function which vanishes
in blending elements. Example functions are presented in Fig. 2.

 

Fig. 2. Shifted-basis enrichment functions Ψ1(x, ξ) and PU function N (x)

In the second case, a new enrichment functions are proposed. The standard
approximation (13) is extended to the fallowing

Ψ
1
j (x, ξ) = Ψj (x, ξ)

Ψ
2
j (x, ξ) = |x − ξ |g(x, x j ) − |x j − ξ |.

(14)

Four cases of the function g(x, x j ) are considered, namely:

Case 1: g(x, x j ) =



N1(x j ) if x < ξ

N2(x j ) if x > ξ
(15)

Case 2: g(x, x j ) =



N1(x) if x < ξ

N2(x j ) if x > ξ
(16)

Case 3: g(x, x j ) =



N1(x) if x < ξ

N2(x) if x > ξ
(17)
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Case 4: g(x, x j ) =



N1(x j ) if x < ξ

N2(x) if x > ξ
(18)

In Fig. 3, the functions for all cases are presented graphically. Thus, the en-
richment term is defined by two functions Ψ1

j (x, ξ) and Ψ2
j (x, ξ).

 

Fig. 3. Proposed enrichment functions Ψ2(x, ξ) for the cases 1, 2, 3 and 4

The two-node finite element is used with standard C0 continuity shape func-
tions of the form

N(x) =
[
1 −

x
l

x
l

]
(19)

where l is the length of the element and xe ∈ [0, l] is the local coordinate.
The element’s degrees of freedom for the standard approach uS and the new

approach uN are defined, respectively

uS = {u1 u2 a1 a2} (20)

uN = {u1 u2 a1
1 a1

2 a2
1 a2

2}. (21)

It should be noted that, when K and f are calculated, the integrands are discontin-
uous at the point ξ. In order to integrate properly these matrices and vectors, the
domain of integration is partitioned into subdomains separated by the interface.
The partitioning of enriched elements is done solely for the purpose of numerical
integration. The element contribution to K and f are as follows

K =
l∫

0

kBT
XBXdx (22)
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f =
l∫

0

NT
X f dx (23)

where
NX = [N NΨ] (24)

BX =
d
dx

NX (25)

and

NX =




NS =
[
N1 N2 N1Ψ

1
1 N2Ψ

1
2

]

NN =
[
N1 N2 N1Ψ

1
1 N2Ψ

1
2 N1Ψ

2
1 N2Ψ

2
2

] (26)

BX =




BS =
d
dx

NS

BN =
d
dx

NN

(27)

The subscripts S and N denote the standard and the new approximations, re-
spectively. In the one-dimensional case, the location of discontinuity is represented
by a single point, thus the explicit treatment does not cause any difficulties.

4. One-dimensional numerical example

Let us analyse the equation (1) in Ω = 〈0, 1〉 with the following discontinuous
terms:

k (x) =



kL = 2 in ΩL

kR = 1 in ΩR

(28)

f (x) =



fL (x) = 100x2 in ΩL

fR (x) = 0 in ΩR

(29)

where subdomains ΩL and ΩR are separated at the point ξ = 0.5. The boundary
conditions are defined as follows

u(x = 0) = 0 (30)

k
d
dx

u(x = 1) = −1. (31)

The solutions are obtained for the meshes which deliberately do not align with
discontinuity. For the first considered mesh, the domain is divided into five equal-
length finite elements. Discontinuity goes across element 3, so nodes 3 and 4 are
enriched. The enriched nodes are marked with square, Fig. 4.
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Fig. 4. An example mesh with enriched nodes

First, the problem is solved using standard enrichment functions (13). The
solution is presented in Fig. 5. From the actual solution, there should not be any
jump in k

d
dx

u(x) at the interface point. This quantity can thus be treated as a local
measure of analysis error. The proper estimation of the jump at the interface is of
crucial interest in several physical problems, e.g., phase-change phenomena, where
the movement of the interface depends on the jump in the heat flux at the interface.
The quantity is calculated according to the formula

q = kL
d
dx

u(x)
�����ΓL
− kR

d
dx

u(x)
�����ΓR

. (32)

The analysis with standard enrichment gives q = 0.76 for five equal-length el-
ements. As can be seen from Fig. 5, the approximation of the derivative is not

 

Fig. 5. Standard X-FEM solution u(x) and its derivative k
d
dx

u(x)
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optimal in the enriched element. This example demonstrates the inability of the
standard XFEM approximation to accurately predict the solution in enriched ele-
ment. It is due to the fact, that the higher order terms appear in the smooth part
of approximation and cannot be compensated by regular FE shape functions. The
similar problem occurs if original (non-shifted) approximation is applied, except
that the spurious terms appears also in blending elements, [17].

The calculations are repeated for the enrichment functions (14). The results are
presented in Fig. 6. The jump in derivative in this case is reduced to q = 0.097. The
additional enrichment functions makes it possible to mitigate spurious deviation of
the derivative in the element containing the interface. However, for the case 1 of the
approximation, the stiffness matrix is severely ill-conditioned (∼ 1015). The results
obtained for other cases are presented in Table 1. As can be seen, the enrichment
functions for the case 2 mimic the local behaviour of the unknown solution of the
underlying variational problem with minimal error, and the condition number is
reduced over ten orders of magnitude in comparison to the case 1. The calculated
condition number is based on L2 norm.

We now solve the problem again, using several different mesh spacing h, in
order to assess the convergences of the method. In Fig. 7 and 8 the jump at the
interface and the condition number are presented for all cases, respectively. The

 

Fig. 6. Modified XFEM solution u(x) and its derivative k
d
dx

u(x)
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Table 1.
Solution error and condition number for different approximations tested

XFEM Condition
Error q

Approximation number
Standard 0.76 624.079
Case 1 0.097 4.886 · 1015

Case 2 0.027 7.425 · 104

Case 3 0.074 4.309 · 104

Case 4 0.097 1.472 · 105

logarithmic scales are used for axes. As can be seen, the standard approximation
allows for the least condition number of the stiffness matrix, however, the calculated
error excides considerably the error for other cases. The influence of the position

 

Fig. 7. Convergence rates for the calculated jump q at the interface

 

Fig. 8. Condition number of the stiffness matrix according to L2 norm
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Fig. 9. Condition number in relation to the interface position ξ

of the interface on the condition number is shown in Fig. 9, where the log scales
are used for vertical axes. As can be observed, the condition number increases
considerably if the position of the interface approaches to the element’s boundaries.
This phenomena is well-known in the XFEM, and can be treated by removing
enrichment for the nodes if they are too close to the interface [19].

5. Extension to two-dimensional case

The PDE of Poisson type represents the problem in two-dimensional space
∂

∂x

(
kx (x, y)

∂

∂x
u(x, y)

)
+

∂

∂y

(
ky (x, y)

∂

∂y
u(x, y)

)
+ f (x, y) = 0. (33)

The Dirichlet and Neumann boundary conditions take the form

u(x, y) = uD at ΓD (34)



134 PAWEŁ STĄPÓR

[
kx (x, y)

∂

∂x
u(x, y) ky (x, y)

∂

∂y
u(x, y)

]
n = qN at ΓN, (35)

where n denotes the normal vector to the boundary Γ, (Fig. 10).

 

Fig. 10. Two-dimensional domain Ω split into ΩL and ΩR by the interface ΓI

As for the one-dimensional case, it is assumed that the coefficients kx (x, y),
ky (x, y) and function f (x, y) are explicitly discontinuous across the interface
boundary ΓI

kx (x, y) =



kx
L (x, y) in ΩL

kx
R (x, y) in ΩR

(36)

ky (x, y) =



ky
L (x, y) in ΩL

ky
R (x, y) in ΩR

(37)

f (x, y) =



fL (x, y) in ΩL

fR (x, y) in ΩR .
(38)

In the two-dimensional case the explicit description of discontinuity becomes
cumbersome. The most popular approach to tackle this problem is implicit way of
defining the position of discontinuity using level set method. In the level set method
the position of the interface ΓI is defined as a zero-level set of a higher-dimensional
surface φ such that

ΓI = {x : φ(x, y) = 0} (39)

where vector x denotes the coordinates (x, y) of a point.
The level set function φ is generally regarded as a signed distance function

φ(x, y) = ± min
x I ∈ΓI

| |x − ξ| | ∀x ∈ Ω (40)

where ξ is the vector representing coordinates of a point at the interface ΓI . The
vectors normal to the interface front at any point of the domain can thus be
calculated as follows

nI (x, y) =
∇φ(x, y)
| |∇φ(x, y) | |

. (41)
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The level set function allows us to address in a simple way the most important
XFEM issues, namely: defining the position of the interface, defining the enrich-
ment functions directly, and deciding where the enrichment should be carried
out.

As the nodal values of the level set function φ(xi) are known, the set of enriched
nodes J can be easily found according to

J = {k ∈ {1, . . . , e} : min
i∈Iek

(φ(xi)) max
i∈Iek

(φ(xi)) < 0} (42)

where Iek is the set of nodes belonging to the element e.
The approximation formula (9) written in the matrix form for two-dimensional

case is
uh (x) = NU (x, ξ)uX (43)

where NU and uX are the extended shape function vector and the extended degrees
of freedom vector, respectively; they are defined as

NU (x, ξ) = [N(x) N(x)Ψj (x, ξ)]

uX =



u
aj



(44)

The extension of the XFEM approximation to the two-dimensional space re-
quires definition of the enrichment function for the two-dimensional finite element.
Four-node (rectangular) finite elements with bi-linear shape functions are used in
discretisation. In order to allow accurate integration of discontinuous functions
in two-dimensions, an a-split scheme is adopted according to Delaunay triangula-
tion.

In the study, the standard abs-enrichment with shifted-basis approximation

Ψj (x) = |φ(x) | − |φ(xj ) | (45)

is compared to the enrichment functions proposed by Moës et al. [18]

Ψ
M (x) = N(x) |φ| − |N(x)φ| (46)

and the new set of enrichment functions proposed by authors

Ψ
1(x) = ΨM (x) (47)

Ψ
2
j (x) = ΨM (x)

1 + H (x)H (xj )
2N(x) |φ|

+
1 − H (x)H (xj )

2
(48)

where

H (x) =



−1 if φ(x) < 0
+1 if φ(x) > 0.

(49)
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The proposed enrichment functions (47) and (48) combine the arbitrary func-
tion with the constant terms. The graphical representation of the functions (48) for
an four node finite element and an arbitrary discontinuity is presented in Fig. 11.
The Heaviside function is used in order to eliminate a part of the approximation
in one region. This allows one to construct the enrichment term using two kinds
of functions, ensuring continuity of the function at the interface. They are incor-
porated to the final shape function in the same way as in the equation (26). For
both (46) and (47)-(48) cases, the enrichment vanishes in blending elements so the
optimal convergence rates are expected.

 

Fig. 11. The graphical representation of the enrichment functions Ψ2
j (x) for a four node finite

element

6. Two-dimensional numerical example with straight interface

The example presents a basic two-dimensional discontinuous problem defined
on the domain (x, y) ∈ Ω = [0, 1]2 with a straight vertical interface [20]. The
Dirichlet boundary conditions are prescribed at the boundaries

u|x=0 = u|y=0 = u|y=1 = 0 and u|x=1 = sin(πy) (50)
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The level set function becomes zero at the vertical line x = 2/3

φ(x, y) = −x +
2
3
. (51)

We choose the forcing term f = 0 and the coefficients such that

kx =



1 if φ(x) < 0
10 if φ(x) > 0

(52)

ky =



1 if φ(x) < 0
1 if φ(x) > 0.

(53)

The analytical solution is then [20]

u(x, y) =



2A sin(πy) sinh(αx) if φ(x) < 0

B sin(πy)
[(

eβx − eβ(2−x)
)
+ eβ(1−x)

]
if φ(x) > 0

(54)

where α = π, β = −
√
π2

10
, A = 0.1074 and B = 0.5625. The solution is based

on the calculated numbers A and B, thus the formula (54) is treated as a reference
solution rather than the exact solution.

The numerical XFEM solution obtained for 8×8 element mesh is presented in
Fig. 12. Four-node, bi-linear finite elements are used in the discretisation. The error
distribution calculated as the difference of the analytical and numerical solutions
is shown in Fig. 13, 14 and 15 for three enrichments considered, namely: standard
abs-enrichment (45), Moës et al. enrichment (46) and the proposed enrichment

 

Fig. 12. The XFEM solution for a weak vertical discontinuity problem (8×8 quadrilateral element
mesh)
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Fig. 13. Error distribution for a weak vertical discontinuity problem (8×8 quadrilateral element
mesh) and standard abs-enrichment

 

Fig. 14. Error distribution for a weak vertical discontinuity problem (8×8 quadrilateral element
mesh) and special enrichment proposed by Moës et al. [18]

 

Fig. 15. Error distribution for a weak vertical discontinuity problem (8×8 quadrilateral element
mesh) and enrichment proposed
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(47)-(48). The rates of convergence of the norm for the obtained solutions and
condition numbers of the stiffness matrix are shown in Fig. 16 and 17, respectively.
The L2 norm is defined as the size of the error between the exact and XFEM
solutions

L2 = | |u(x) − uXFEM (x) | |. (55)

 

Fig. 16. Convergence results for L2 norm (abbreviations: stand. – standard abs-enrichment, prop. –
proposed by author)

 

Fig. 17. Condition number of the stiffness matrix

As can be observed, the Moës and proposed enrichment functions allows for
reducing the error in L2 norm and improving the rate of convergence. The same
reduction in convergence rate is also observed for triangular elements.

Fig. 18, 19 and 20 compare the exact derivative
∂

∂x
u(x, y = 0.5) with computed

derivative using 4×4 elementmesh and three considered approximations. The rough
mesh used in the calculation shows an ability of the considered approaches tomimic
local behaviour of the solution.

The local error (32) calculated along the interface line is shown in Fig. 21 and
22. The proposed enrichment functions allows for reducing the error considerably
for each considered mesh. The maximum values are observed in the middle point
of the interface line. As in the one – dimensional case the improvement is obtained
at the cost of higher condition number of the stiffness matrix.
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Fig. 18. Derivative
∂

∂x
u(x, y = 0.5) for the 4×4 element mesh and standard abs-enrichment

 

Fig. 19. Derivative
∂

∂x
u(x, y = 0.5) for the 4×4 element mesh and enrichment proposed by Moës et

al. [18]

 

Fig. 20. Derivative
∂

∂x
u(x, y = 0.5) for the 4×4 element mesh and proposed enrichment
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Fig. 21. Local error estimate q along the interface line for the 16×16 element mesh

 

Fig. 22. Local error estimate q along the interface line for the 32×32 element mesh

7. Two-dimensional numerical example with multiple, curved interfaces

In the previous section, the method was applied to the problem with a straight
vertical discontinuity, where the interface could be exactly represented by the FE
representation of the level set function. With curved discontinuity this is no longer
the case. In this section, we consider a problemwith a curved and circular interfaces.
The multiple interfaces can be easily handled with the level set function. In order
to describe the interface between the domains, the continuous level set function is
introduced

φ(x, y) = min (φ1(x, y), φ2(x, y)) (56)

where

φ1(x, y) =
√

(x = 0.25)2 + (y − 0.25)2 − 0.15 (57)

represents the circular inclusion and

φ2(x, y) =

√
2

2
−

√
2

8
y2 − x (58)

represent the curved open interface. The FE representation of the zero-level for the
function (56) is shown in Fig. 23 for the 20×20 element mesh.
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Fig. 23. FE representation of the level set function for the 20×20 element mesh

It is assumed that the source term is non-zero for the negative value of the level
set function

f (x, y) =



100 if φ(x) < 0
0 if φ(x) > 0

(59)

and the parameters represent isotropic material

kx = ky =



15 if φ(x) < 0
1 if φ(x) > 0

(60)

The boundary conditions remains unchanged. The steady-state solution is presented
in Fig. 24. For this example, the condition number increase is investigated, Fig. 25.
As for the previous example, a similar relation is observed. The problem shows the
possibility of the level set approach to construct the arbitrary multiple interfaces.

 

Fig. 24. Steady-state XFEM solution of the problem with a circular and curved interface for the
20×20 element mesh
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Fig. 25. Condition number of the stiffness matrix for the problem with multiple interfaces

8. Conclusions

In the paper, the solution to a boundary problem with discontinuous coeffi-
cients using XFEM is considered. The method is tested on the example of the
Poisson equation in one and two-dimensional space. The standard XFEM approxi-
mation is extended to the new set of functions. The proposed improvements reduce
considerably the analysis error in comparison to the standard approach. The rates
of convergence for all considered cases of approximation are not disturbed as for
both the and energy norms. However, the improvement in the calculated field quan-
tity and its derivative is achieved at the cost of higher condition number of the
underlying stiffness matrix.

Manuscript received by Editorial Board, June 04, 2016;
final version, January 16, 2017.
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