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MODIFIED COUPLE STRESS THEORY FOR MICRO-MACHINED
BEAM RESONATORS WITH LINEARLY VARYING THICKNESS

AND VARIOUS BOUNDARY CONDITIONS

This article employs the classical Euler–Bernoulli beam theory in connection
with Green–Naghdi’s generalized thermoelasticity theory without energy dissipation
to investigate the vibrating microbeam. The microbeam is considered with linearly
varying thickness and subjected to various boundary conditions. The heat and motion
equations are obtained using the modified couple stress analysis in terms of deflection
with only one material length-scale parameter to capture the size-dependent behavior.
Various combinations of free, simply-supported, and clamped boundary conditions
are presented. The effect of length-to-thickness ratio, as well as the influence of both
couple stress parameter and thermoelastic coupling, are all discussed. Furthermore,
the effect of reference temperature on the eigenfrequency is also investigated. The
vibration frequencies indicate that the taperedmicrobeammodeled bymodified couple
stress analysis causes more responses than that modeled by classical continuum beam
theory, even the thermoelastic coupled is taken into account.

1. Introduction

The classical couple stress analyses have been developed to describe size-
dependent effects [1–4]. In fact, the couple-stresses concept in continuum mechan-
ics is receiving greater attention by many researchers owing to its theoretical and
practical interest. Cosserat and Cosserat [1] have been considered as the first re-
searchers who developed a mathematical model to analyze materials with couple
stresses. The couple-stress analysis is an extended form of the continuum theory
that includes effects of a couple and shear forces per unit area. Later on, Toupin [2]
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has derived the associative constitutive equations for finite deformation of perfectly
elastic materials and Mindlin and Tiersten [3] have formulated a literalized theory
of couple stress elasticity. So, a couple stress analysis, using macro-rotation as true
kinematical rotation, has been discussed by Toupin [2], Mindlin and Tiersten [3],
Koiter [4], and others for different elastic continuums. Tiwari [5] has used Cosser-
ats equations [1, 3] to deduce the effect of couple stress on deflection produced in
a semi-infinite elastic body due to impulsive twist over bounding surface.

It is assumed, in linearized couple-stress analysis, that the couple-stresses are
proportional to the curvature, and a new material coefficient ϑ is introduced with
a dimension of length. Braun [6] has reformulated the linear couple-stress analy-
sis of Mindlin and Tiersten [3] to provide a systematic compilation of governing
differential equations. Yang et al. [7] have formed a modified couple stress the-
ory by reducing two higher-order material length-scale parameters to only one.
The purpose of this feature is to make modified couple stress analysis easier for
many applications. Recently, the modified couple stress analyses have been devel-
oped and extensively used in many aspects to discuss the mechanical behavior of
microstructures.

In fact, the modified couple stress theory that developed by Yang et al. [7] with
one internal length-scale parameter has been widely attracted interest. Park and
Gao [8, 9] have developed new model for bending of Euler–Bernoulli beam and
presented variational formulation by using modified couple stress analysis. Ma et
al. [10, 11] have studied microstructure-dependent Timoshenko’s beam theory and
non-classical Mindlin plate theory using modified couple stress analysis. Tsiatas
[12] and Yin et al. [13] have developed a Kirchhoff’s plate theory with modified
couple stress analysis for static and dynamic analyses of isotropic microscale plates
with arbitrary shapes. Fu and Zhang [14] have established a Timoshenko’s beam
model to study the size-effects of microtubules via the modified couple stress
analysis. Güven [15] has discussed the propagation of longitudinal stress waves
based on a Love rod theory taking into account the effects of lateral deformation.
Reddy and Arbind [16] have reformulated Euler–Bernoulli’s and Timoshenko’s
beam models using modified couple stress analysis for microstructure-dependent
functionally graded (FG) beams. Chen and Li [17] have developed a micro-scale
free vibration behavior of composite laminated Timoshenko’s beam theory based
on the new modified couple stress analysis. Gao et al. [18] have developed non-
classical third-order shear deformation plate theory using modified couple stress
analysis and variational formulation. Wang et al. [19] have proposed non-classical
Kirchhoff’s plate theory for axisymmetrically nonlinear bending analysis of circular
microplates subjected to uniform load based on modified couple stress analysis.
Chen and Li [20] have proposed newmodified couple stress analysis that containing
three material length-scale parameters for anisotropic elasticity.

Recently, Darijani and Shahdadi [21] have proposed a new 2-unknown shear
deformation plate theory for static and dynamic analyses of microplates using
modified couple stress analysis. Zeighampour and Beni [22] have obtained the for-
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mulation of thin cylindrical shell based onmodified couple stress analysis by taking
into account the effect of shear deformation and rotary inertia. Setoodeh et al. [23]
have analytically investigated the linear and nonlinear torsional free vibration anal-
yses of FG micro/nano-tubes based upon modified couple stress analysis. Sourki
and Hoseini [24] have investigated free vibration behavior of cracked microbeam
based on modified couple stress analysis using Euler–Bernoulli’s beam theory.
Additional researchers have performed their investigations on static and dynamic
behavior of microstructures based on modified couple stress analysis [25–38].

Nowacki [39] has presented some generalized theorems on the coupled ther-
moelasticity of a medium characterized by the displacement and rotation as in-
dependent vectors. He has derived the constitutive equations and the expanded
equation of heat conductivity for an isotropic medium based on the couple stress
theory. Rezazadeh et al. [40] have studied some expressions for quality factor of
thermoelastic damping with the application of modified couple stress analysis for
plane stress and strain conditions. Taati et al. [41] have derived size-dependent, ex-
plicit formulation for coupled thermoelasticity to address Timoshenko’smicrobeam
behavior. They have combined the modified couple stresses and non-Fourier heat
conduction to capture size-effects in the microscale. Kumar et al. [42] have dealt
with the plane wave propagations in homogeneous isotropic couple stress gener-
alized thermoelastic medium. Zhong et al. [43] have investigated size-dependent
thermoelastic damping in microplate resonators based upon modified couple stress
analysis. Kumar [44] has investigated equations of motion for modified couple
stress theory and heat conduction equation for coupled thermoelasticity are investi-
gated to model vibrations in homogeneous thin beam in a closed-form by applying
Euler–Bernoulli’s beam theory.

In this study, vibrational frequency analysis of a tapered microbeam resonator
is investigated via a generalized thermoelastic theory in connection with modified
couple stress analysis. The thickness is linearly varying and the microbeam mate-
rial is assumed to be size-dependent according to modified couple stress analysis,
and deformation is considered according the classical Euler–Bernoulli’s beam the-
ory. To study the effect of boundary conditions, four types of end conditions, i.e.,
clamped-clamped, supported-supported, clamped-supported and clamped-free, are
considered. Governing differential equations of tapered microbeams are formu-
lated. Several numerical results for tapered microbeams are graphically illustrated.
Additional results are tabulated to discuss the size-dependent vibration behavior
and the effect of the reference temperature.

2. Modified couple stress theory

A micro-machined beam with linear varying thickness [45–54] is considered
here. It is chosen to be homogenous, isotropic and thermally conducting. Shown
in Fig. 1 is the microbeam having dimensions of length L (0 6 x 6 L), width b
(−b/2 6 y 6 +b/2) and varying thickness (h/2) (0 6 z 6 +h/2) at x = 0, and h
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(−h/2 6 z 6 +h/2) at x = L. The x-axis is taken along the axis of the microbeam,
y-axis along the width, and z-axis along the thickness. The present microbeam is
unstrained, unstressed, and also kept at a uniform reference temperature T0 in the
equilibrium case.
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Figure 1: Schematic diagram for the tapered micro-machined beam.Fig. 1. Schematic diagram for the tapered micro-machined beam

Firstly, the following integral operator is appropriate to the present a tapered
microbeam

Lp (·) =

b/2∫
−b/2



h/2∫
0

(·)zpd z +
1
2

0∫
−h/2

(·)zpd z


dy. (1)

For example, the geometrical properties of taperedmicrobeam such as cross-section
area (A) and second moment of cross-section area (I) can be considered, with the
aid of Eq. (1), as

{A, I} = {L0(1),L2(1)} =
{

3
4

bh,
1
16

bh3
}
. (2)

The classical thin beam linear Euler-Bernoulli theory is appropriate to deal
with such tapered micro-machined beam. The displacements of such a theory are
presented as

u1(x, y, z, t) = u(x, z, t) = −z
∂w

∂x
, u2 = 0, u3(x, y, z, t) = w(x, t), (3)

where u represents the axial displacement,w represents the transverse displacement
(deflection) and t is the time. The constitutive relations for the present classical
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theory based upon the modified couple stress analysis will be reduced to

σx = −(λ + 2µ)z
∂2w

∂x2 − βθ,

mxy = −µϑ
2 ∂

2w

∂x2 ,

(4)

inwhichσx is the axial stress,mxy is the in-plane couple stress, θ = T−T0 represents
the excess temperature distribution, in which T0 is the environment (reference)
temperature and T (x, z, t) is the temperature at any point; β = (3λ + 2µ)αt is the
coupling parameter in which αt denotes the coefficient of linear thermal expansion;
λ and µ are Lamé’s parameters, and ϑ denotes the couple stress (material length-
scale) coefficient. The flexural moment of tapered microbeam can be illustrated as

M (x, t) = −L1(σx ) − L0(mxy). (5)

With the aid of Eq. (4), one gets

M (x, t) = (λ + 2µ)I
∂2w

∂x2 + βMT + µϑ
2 A
∂2w

∂x2 . (6)

Here MT represents the thermalmoment of the taperedmicrobeam and it is given by

MT = L1(θ(x, z, t)). (7)

For transversely vibration of tapered microbeams, the equation of motion
according to Euler–Bernoulli’s theory is given by

∂2M
∂x2 + ρA

∂2w

∂t2 = 0, (8)

where ρ is the material density. Substituting Eq. (6) into Eq. (8) gives the equation
of motion for the tapered microbeam as

[
(λ + 2µ)I + µϑ2 A

] ∂4w

∂x4 + β
∂2MT

∂x2 + ρA
∂2w

∂t2 = 0. (9)

In addition, the heat conduction equation in context of the Green-Naghdi’s
generalized thermoelasticity theory without energy dissipation and without con-
sidering the effect of any heat sources is given by

K∇2θ −
∂

∂t

[
ρCE

∂θ

∂t
− βT0z

∂3w

∂x2∂t

]
= 0, (10)

where CE represents specific heat per unit mass at constant strain and K denotes
thermal conductivity.
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3. Solution procedure

The system of Eqs. (9) and (10) governs the transverse vibrations in a thermoe-
lastic tapered micro-machined beam resonators. If we apply the integral operator
L1(·) to all terms of Eq. (10) and simplifying the outcomes, we obtain

∂2MT

∂x2 − b
(
θ��z=h/2 −

1
2
θ

���z=−h/2

)
+

1
2

bh
(
∂θ

∂z
���z=h/2 +

1
2
∂θ

∂z
���z=−h/2

)
−
∂

∂t

[
ζ
∂MT

∂t
−
βT0I

K
∂3w

∂x2∂t

]
= 0, (11)

where ζ = ρCE/K . For the present tapered microbeam, the upper and lower
surfaces are thermally isolated, it follows that

∂θ

∂z

�����z=−h/2
=
∂θ

∂z

�����z=h/2
= 0. (12)

In addition, one can assume that temperature increment has a cubic polynomial
variation through-the-thickness of tapered microbeam. So, the above postulate
tends to

MT =
h2b
20

(
θ��z=h/2 −

1
2
θ

���z=−h/2

)
. (13)

So, at this point Eq. (11) tends to

∂2MT

∂x2 −
20
h2 MT −

∂

∂t

[
ζ
∂MT

∂t
−
βT0I

K
∂3w

∂2x∂t

]
= 0. (14)

Now, we can improve Eqs. (9), (14) and (6) by introducing the following
dimensionless variables:

x ′ =
x
L
, {w′, ϑ′} =

1
h
{w, ϑ}, t ′ =

c
h

t,

M ′ =
h

Iλ
M, M ′T =

βh
Iλ

MT , c2 =
λ

ρ
,

(15)

to show that the dimensionless forms of the governing equations as well as the
flexural bending moment maybe simplified as (in what follows, the primes are
dropping for convenience)

A1
∂4w

∂x4 + A2
∂2MT

∂x2 +
∂2w

∂t2 = 0, (16)

∂2MT

∂x2 − A3MT −
∂

∂t

(
A4
∂MT

∂t
− A5

∂3w

∂x2∂t

)
= 0, (17)

M (xt) =
ϑ∗h2

L2
∂2w

∂x2 + MT , (18)
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where

A1 =
ϑ∗h4

12L4 , A2 =
h2

12L2 , A3 =
20L2

h2 , A4 =
ζc2L2

h2 ,

A5 =
β2T0
ρK

, ϑ∗ = 1 + 2µ(1 + 6ϑ2), µ =
µ

λ
.

(19)

In addition to the heat conditions (thermally isolated) that appear in Eq. (12),
the present problem can be completely solved by applying the boundary conditions.
The taperedmicrobeam is subjected to various combination of boundary conditions
at the edges x = 0, 1. Each edge may be simply-supported (S), clamped (C), or free
(F). That is

S : w = M = 0,

C : w =
∂w

∂x
= 0,

F : M =
∂w

∂x
= 0.

(20)

Now, it is assumed that both the bending moment M (xt) and deflection w(xt) are
harmonically changed to discuss vibration characteristics of tapered microbeam.
According to Eqs. (18), the thermal bending moment MT (xt) and bending moment
M (xt) have identical behavior. So, the following representations for deflection and
thermal bending moment are appropriate in the analysis of the thermal problem
(by invoking the dimensionless form):

{w, MT } =

N∑
n=1
{w∗n, M∗Tn}X (ξnx)eiωt, (21)

in which w∗n and M∗Tn represent arbitrary parameters, n denotes a mode number
and ω represents eigenfrequency. The function X (ξnx) can be deduced for any
combination of boundary conditions at side edges of the microbeam (x = 0, 1).
The forms of X (ξnx) for SS, CS, CC, and CF tapered microbeams are expressed
as [55]

SS : sin(ξnx) (22)

CS : sin(ξnx) − sh(ξnx) −
sh(ξn) + sin(ξn)
ch(ξn) + cos(ξn)

[cos(ξnx) − ch(ξnx)], (23)

CC : sin (ξnx) − sh(ξnx) −
sh(ξn) − sin (ξn)
ch(ξn) − cos (ξn)

[cos (ξnx) − ch(ξnx)], (24)

CF : sin (ξnx) − sh(ξnx) −
sh(ξn) + sin(ξn)
ch(ξn) + cos(ξn)

[cos(ξnx) − ch(ξnx)], (25)
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and the corresponding values of ξn for tapered microbeams subjected to various
boundary conditions are listed in Table 1. Substituting Eq. (21) into Eqs. (16) and
(17) gives

[A1ξ
4
nX (ξnx) − ω2X (ξnx)]w∗n + A2ξ

2
nX ′′(ξnx)M∗Tn = 0, (26)

− ω2 A5ξ
2
nX ′′(ξnx)w∗n + [ξ2

nX ′′(ξnx) − (A3 − ω
2 A4)X (ξnx)]M∗Tn = 0. (27)

Table 1.
Values of ξn according to various boundary conditions [55]

n
BS

SS CS CC CF
1 π 3.927 4.730 1.875
2 2π 7.069 7.853 4.694
3 3π 10.210 10.996 7.855
4 4π 13.352 14.137 10.996

> 5 nπ
(
n +

1
4

)
π

(
n +

1
2

)
π

(
n −

1
2

)
π

The nontrivial solution of the above system of equations may be easily given
if the two parameters w∗n and M∗Tn are nonzero. Integrating the above system along
the length of the tapered microbeam with respect to x from 0 to 1 one obtains
its determinant. The vanishing of this determinant leads to the following vibration
frequency equation

c4ω
4 + c2ω

2 + c0 = 0, (28)

where

c4 = A4η1 , c2 = η2ξ
2
n − A3η1 − ξ

4
n(A1 A4η1 + A2 A5η3),

c0 = (A3η1 − η2ξ
2
n) A1ξ

4
n,

(29)

in which

η1 =

1∫
0

[X (ξnx)]2dx, η2 =

1∫
0

X (ξnx)X ′′(ξnx)dx,

η3 =

1∫
0

[X ′′(ξnx)]2dx.

(30)

It is to be noted that outcomes of above integrals are independent of n since
X (ξnx) and their derivatives are normalized. Furthermore, some computations
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will be carrying out to compute the both absolute and real values of the smallest
root of the dimensionless eigenfrequency,

Ω =
L2

h2

√
λ

12ρ
ω. (31)

4. Numerical results

Let us consider in this section some numerical examples to put into evidence
the influence of couple stress parameter, mode number and the thermoelastic cou-
pling on the minimum eigenfrequency. The present tapered microbeam is made of
Silicon with material properties given in Table 2 [56]. The relations between the
engineering constants E and ν and the corresponding Lame’s constants λ and µ
are given by

λ =
Eν

(1 + ν)(1 − 2ν)
, µ =

E
2(1 + ν)

. (32)

Table 2.
Temperature-dependent mechanical and thermal properties of Silicon [56]

T0 (K) E (GPa) ρ (kg/m3) ν K (W/mK) CE (J/kgK) α (1/K)
400 163.1 2327 0.22 105 785 3.253 × 10−6

293 165.9 2330 0.22 156 713 2.59 × 10−6

200 166.9 2330 0.22 266 557 1.406 × 10−6

160 168.5 2330 0.22 375 456 0.689 × 10−6

120 169.0 2330 0.22 876 823 −0.057 × 10−6

80 169.2 2330 0.22 1360 188 −0.472 × 10−6

40 169.3 2330 0.22 3660 44.1 −0.164 × 10−6

Many values of the dimensionless couple stress coefficient ϑ are imposed. The
case of neglecting this coefficient (ϑ = 0) denotes the generalized thermoelasticity
theory of the tapered microbeam. The inclusion of the couple stress coefficient,
by using additional values of ϑ such that 0 < ϑ 6 1, will be referring to the
generalized thermoelasticity theory based on modified couple stress analysis.

The effects of couple stress parameter ϑ and mode number n on the vibration
frequency of tapered microbeams subjected to various boundary conditions are
presented in Table 3. The environmental temperature and the length-to-thickness
ratio are kept fixed asT0 = 293Kand L/h = 20. The absolute values of the vibration
frequencies increase as mode number n increases. However, real values of vibration
frequencies may be no longer increasing and vanished with the increasing of the
mode number or as L/h increases (see also, Figs 3, 4, 6, 7 and 8). The absolute
values of the vibration frequencies due to CF tapered microbeams are the smallest
frequencies, while those due to CC tapered microbeams are the largest ones.
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Table
3.

Effectofthe
couple

stressparam
eter

ϑ
and

m
ode

num
ber

n
on

the
naturalfrequencies

∗
Ω
oftapered

m
icrobeam

sw
ith

variousboundary
conditions

(L
/h
=

20,T0
=

293
K
)

ϑ
B
C

n

1
2

3
4

5

0.0

SS
1.08653

(0.71643)
2.26509

(1.15972)
3.85799

(1.12563)
5.52683

(0)
7.37766

(0)
C
S

1.36153
(0.88719)

2.58654
(1.29094)

4.29984
(1.25422)

6.47074
(0)

8.21923
(0)

C
C

1.64481
(1.06608)

2.92145
(1.42985)

4.76520
(1.41212)

7.39143
(0.69424)

9.16943
(0)

C
F

0.64646
(0.45884)

1.63316
(1.05052)

2.92168
(1.43217)

4.76518
(1.41216)

7.39158
(0.69423)

0.3

SS
1.17928

(0.78635)
2.45844

(1.34223)
4.18730

(1.60989)
6.69902

(1.70999)
10.06991

(1.74933)
C
S

1.47774
(0.97575)

2.80732
(1.50398)

4.66687
(1.79405)

7.34775
(1.99635)

10.89020
(2.21380)

C
C

1.78520
(1.17359)

3.17082
(1.67455)

5.17195
(2.00376)

8.02235
(2.31180)

11.73671
(2.68280)

C
F

0.70164
(0.49772)

1.77256
(1.15801)

3.17107
(1.67656)

5.17193
(2.00378)

8.02251
(2.31184)

0.5

SS
1.30437

(0.87959)
2.71920

(1.57373)
4.63144

(2.13310)
7.40957

(2.81718)
11.13801

(3.79291)
C
S

1.63448
(1.09362)

3.10509
(1.77263)

5.16187
(2.37723)

8.12711
(3.16475)

12.04530
(4.25997)

C
C

1.97456
(1.31654)

3.50714
(1.98169)

5.72053
(2.64627)

8.87327
(3.54017)

12.98160
(4.75218)

C
F

0.77606
(0.55019)

1.96057
(1.30074)

3.50742
(1.98343)

5.72051
(2.64628)

8.87345
(3.54024)

1.0

SS
1.64919

(1.13266)
3.43805

(2.16558)
5.85582

(3.31214)
9.36838

(4.93649)
14.08247

(7.17750)
C
S

2.06658
(1.41266)

3.92596
(2.45520)

6.52647
(3.69137)

10.27560
(5.45754)

15.22961
(7.84687)

C
C

2.49655
(1.70300)

4.43430
(2.75836)

7.23282
(4.09845)

11.21902
(6.00821)

16.41344
(8.54533)

C
F

0.98122
(0.69497)

2.47888
(1.68594)

4.43465
(2.75972)

7.23280
(4.09846)

11.21925
(6.00833)

∗Resultsbetw
een

parenthesesare
forrealfrequencies.
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The effects of environmental reference temperature T0 and couple stress pa-
rameter ϑ on the fundamental vibration frequencies of the tapered microbeams
subjected to various boundary conditions are presented in Table 4. The length-
to-thickness ration is kept fixed as L/h = 10. For all values of the couple stress
parameter ϑ and different boundary conditions, the frequencies increase as T0 de-
creases except the cases of T0 = 40 K and ϑ 6 0.5 for SS, CC, and CS tapered

Table 4.
Effect of the couple stress parameter ϑ and the temperature T0 on the fundamental frequencies ∗ Ω

of tapered microbeams with various boundary conditions (n = 1, L/h = 10)

ϑ T0 (K)
BC

SS CS CC CF

0.0

400 0.48291 (0.32375) 0.60933 (0.40528) 0.74202 (0.49215) 0.28470 (0.20191)
293 0.54811 (0.36188) 0.69159 (0.45189) 0.84219 (0.54827) 0.32314 (0.22936)
200 0.66721 (0.42493) 0.84188 (0.52736) 1.02521 (0.63841) 0.39336 (0.27969)
160 0.76614 (0.47024) 0.96671 (0.57959) 1.17722 (0.69986) 0.45168 (0.32170)
120 1.02925 (0.54285) 1.29870 (0.64558) 1.58150 (0.76871) 0.60680 (0.43465)
80 1.32081 (0.48552) 1.66657 (0.48311) 2.02948 (0.52214) 0.77869 (0.56234)
40 1.11779 (0) 1.31396 (0) 1.56465 (0) 1.43332 (1.08486)

0.3

400 0.52413 (0.35436) 0.66134 (0.44418) 0.80535 (0.53965) 0.30900 (0.21905)
293 0.59489 (0.39712) 0.75062 (0.49676) 0.91408 (0.60310) 0.35072 (0.24879)
200 0.72416 (0.46924) 0.91374 (0.58412) 1.11272 (0.70789) 0.42693 (0.30331)
160 0.83154 (0.52285) 1.04923 (0.64738) 1.27771 (0.78303) 0.49024 (0.34878)
120 1.11711 (0.62367) 1.40955 (0.75292) 1.71650 (0.90195) 0.65860 (0.47084)
80 1.43354 (0.62530) 1.80883 (0.69325) 2.20272 (0.79950) 0.84515 (0.60844)
40 1.32910 (0) 1.55856 (0) 1.85476 (0) 1.55566 (1.16609)

0.5

400 0.57972 (0.39529) 0.73149 (0.49613) 0.89078 (0.60304) 0.34178 (0.24217)
293 0.65799 (0.44410) 0.83024 (0.55651) 1.01104 (0.67606) 0.38792 (0.27502)
200 0.80098 (0.52798) 1.01066 (0.65913) 1.23074 (0.79963) 0.47222 (0.33519)
160 0.91974 (0.59211) 1.16052 (0.73625) 1.41323 (0.89190) 0.54224 (0.38535)
120 1.23560 (0.72688) 1.55906 (0.88814) 1.89856 (1.06892) 0.72845 (0.51975)
80 1.58560 (0.78774) 2.00069 (0.91980) 2.43636 (1.08680) 0.93480 (0.67080)
40 1.65568 (0) 1.93175 (0) 2.29602 (0) 1.72067 (1.27674)

1.0

400 0.73298 (0.50680) 0.92487 (0.63742) 1.12626 (0.77534) 0.43213 (0.30596)
293 0.83194 (0.57167) 1.04973 (0.71834) 1.27831 (0.87350) 0.49047 (0.34738)
200 1.01272 (0.68614) 1.27784 (0.86033) 1.55610 (1.04536) 0.59706 (0.42320)
160 1.16288 (0.77703) 1.46731 (0.97219) 1.78683 (1.18037) 0.68558 (0.48631)
120 1.56224 (0.99262) 1.97122 (1.23139) 2.40047 (1.49046) 0.92103 (0.65495)
80 2.00477 (1.17176) 2.52959 (1.42971) 3.08044 (1.71982) 1.18192 (0.84352)
40 3.05363 (0) 3.35471 (0) 3.94435 (0) 2.17555 (1.58626)

∗ Results between parentheses are for real frequencies.



54 ASHRAF M. ZENKOUR

microbeams. In such cases, the real frequencies are vanished. For fixed values of
T0, the eigenfrequencies increase as ϑ increases for all boundary conditions.

Figs 2–7 plot both the absolute and real values of the eigenfrequencies along
the length of the tapered microbeam subjected to various boundary conditions.
Fig. 2 presents the first-mode fundamental frequency Ω (n = 1) versus L/h for
different values of couple stress coefficient ϑ at T0 = 293 K. Both the absolute and
real frequency parameters Ω increase directly with the increase of the L/h ratio.
The vibration frequencies of tapered microbeam are very sensitive to the variation
of couple stress parameter ϑ, especially, at highest values of L/h ratio. Once again,
the eigenfrequency increases with the increase of ϑ for all boundary conditions.

Fig. 3 presents third-mode natural frequencies Ω (n = 3) versus L/h for dif-
ferent values of the couple stress coefficient ϑ at T0 = 293 K. It is clear that the
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Fig. 2. The first-mode frequency Ω vs. L/h of a tapered microbeam for different values of the couple
stress parameter ϑ at T0 = 293 K
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natural eigenfrequency Ω increases directly as ϑ increases only for CF tapered
microbeams. The same behaviors occur for SS, CC and CS tapered microbeams,
especially when ϑ > 0.2. Some dropping points occurred when ϑ 6 0.2 at which
the real frequencies tend to zero and the corresponding absolute frequencies may
have local maximums. These dropping points occurred for ϑ = 0 and ϑ = 0.2,
respectively, when L/h = 32.8 and 48.7 for SS microbeam; when L/h = 29.35
and 36.85 for CC microbeam; and when L/h = 30.35 and 39.95 for CS mi-
crobeam.
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Fig. 3. The third-mode frequency Ω vs. L/h of a tapered microbeam for different values of the
couple stress parameter ϑ at T0 = 293 K

Fig. 4 presents the fifth-mode natural frequencies Ω (n = 5) versus L/h for
different values of the couple stress coefficient ϑ at T0 = 293 K. Once again, the
natural eigenfrequencyΩ increases as ϑ increases with dropping points for tapered
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Fig. 4. The fifth-mode frequency Ω vs. L/h of a tapered microbeam for different values
of the couple stress parameter ϑ at T0 = 293 K

microbeams with various boundary conditions. Table 5 presents the positions of
the dropping points (the values of L/h) for the fifth-mode vibration frequencies of
tapered microbeams according to various boundary conditions at T0 = 293 K.

Table 5.
The positions of the dropping points (the values of L/h) for the fifth-mode vibration frequencies

of tapered microbeams according to various boundary conditions (T0 = 293 K)

ϑ
BS

SS CS CC CF
0.0 17.90 18.40 18.90 20.45
0.2 19.55 20.05 20.60 22.65
0.3 21.50 22.05 22.65 25.35
0.4 24.10 24.70 25.35 29.15
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Figs 5–7 present the fundamental and natural frequencies Ω versus L/h for
different values of the couple stress coefficient ϑ at T0 = 160 K. Once again, the
first-mode fundamental frequency Ω increases directly as ϑ increases, as shown in
Fig. 5.
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Fig. 5. The first-mode frequency Ω vs. L/h of a tapered microbeam for different values
of the couple stress parameter ϑ at T0 = 160 K

The dropping points maybe appeared for tapered microbeams with various
boundary conditions when n = 3 and n = 5. Table 6 presents the positions of the
dropping points (the values of L/h) for third- and fifth-mode vibration frequencies
of tapered microbeams according to various boundary conditions at T0 = 160 K.
Table 7 presents the positions of the dropping points (the values of L/h) for fifth-
mode vibration frequencies of tapered microbeams according to various boundary
conditions with ϑ = 0.2.
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Table 6.
The positions of the dropping points (the values of L/h) for the vibration frequencies of tapered

microbeams according to various boundary conditions (T0 = 160 K)

n ϑ
BS

SS CS CC CF

3

0.0 9.90 10.25 10.65 20.10
0.2 10.95 11.35 11.75 —
0.3 12.25 12.65 13.05 —
0.4 14.10 14.45 14.85 —

5

0.0 8.95 9.25 9.50 9.80
0.2 9.75 10.05 10.35 10.70
0.3 10.60 10.95 11.25 11.70
0.4 11.75 12.10 12.45 13.00
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Fig. 6. The third-mode frequency Ω vs. L/h of a tapered microbeam for different values
of the couple stress parameter ϑ at T0 = 160 K
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Table 7.
The positions of the dropping points (the values of L/h) for the fifth-mode vibration

frequencies of tapered microbeams according to various boundary conditions (ϑ = 0.2)

T0
BS

SS CS CC CF
120 5.40 5.60 5.70 5.80
200 12.85 13.25 13.60 14.30
400 25.75 26.40 27.00 31.75
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Fig. 7. The fifth-mode frequency Ω vs. L/h of a tapered microbeam for different values
of the couple stress parameter ϑ at T0 = 160 K

Finally, Fig. 8 presents the fifth-mode natural frequency Ω (n = 5) versus
L/h of tapered microbeams for different values of the reference temperature T0
with ϑ = 0.2. The real frequencies are vanished for all tapered microbeams when
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T0 = 40 K. The dropping points occurred at three different positions according to
the value of the reference temperature. Before and at the neighborhood of the first
dropping point (T0 = 120 K), the absolute frequencies increase as T0 decreases.
However, at the neighborhood and after the fourth dropping point (T0 = 400 K)
the absolute frequencies increase as T0 increases. It is interesting to see that the
maximum value of the real frequency is the same for the reference temperatures
T0 = 200 K and T0 = 400 K. Also, the dropping points represent the maximum
values of the absolute natural frequencies.
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Fig. 8. The fifth-mode frequency Ω vs. L/h of a tapered microbeam for different
temperatures with ϑ = 0.2
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5. Conclusions

This article presents numerical results for fundamental and natural frequencies
of tapered microbeams to serve as benchmarks for future comparisons with other
investigators. The real and absolute eigenfrequencies are presented for thermally-
insulated taperedmicrobeams under a combination of various boundary conditions.
The modified couple stress thermoelastic vibrations of tapered microbeams with
variable reference temperature are presented. The employed non-classical contin-
uum theory contains one material length-scale parameter, which can capture the
small-scale effect. Green-Naghdi’s generalized theory of thermoelasticity with-
out energy dissipation is appropriated to discuss such problem. The influences
of length-scale parameter on vibration behaviors of microbeams are discussed in
detail for clamped, free, and simply-supported edge conditions. It is clear that
the couple stress coefficient plays a significant role in fundamental and natural
eigenfrequency behaviors. The temperature invariant has also significant effects on
thermomechanical dynamical behaviors of tapered microbeams. The absolute and
real vibration frequencies of the tapered microbeams with various boundary condi-
tions are strongly dependent on the couple stress parameter. The results of standard
(without couple stress) thermoelasticity theory can be obtained as a limiting case
of the present study.

Manuscript received by Editorial Board, May 19, 2017;
final version, December 13, 2017.
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