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Abstract

This paper models income distribution in four Central and Eastern European
(CEE) countries (the Czech Republic, Hungary, Poland and the Slovak
Republic) in 1990s and 2000s using parametric models of income distribution.
In particular, we use the generalized beta distribution of the second kind
(GB2), which has been found in the previous literature to give an excellent
fit to income distributions across time and countries. We have found that
for Poland and Hungary, the GB2 model fits the data better than its nested
alternatives (the Dagum and Singh-Maddala distributions). However, for Czech
Republic and Slovak Republic the Dagum model is as good as the GB2 and
may be preferred due to its simpler functional form. The paper also found
that the tails of parametric income distribution in the Czech Republic, Poland
and the Slovak Republic have become fatter in the course of transformation to
market economy, which provides evidence for growing income bi-polarization in
these societies. Statistical inference on changes in income inequality based on
parametric Lorenz dominance suggests that, independently of inequality index
used, income inequality in the Czech Republic, Poland and the Slovak Republic
has increased during transformation. For Hungary, there is no Lorenz dominance
and conclusions about the direction of changes in income inequality depend on
the cardinal inequality measure used.
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1 Introduction
Parametric statistical models have been used to model income distributions since
the times of Vilfredo Pareto (1897). The models applied in the distributional
literature have grown in complexity. After the one-parameter Pareto model, the
two-parameter models such as the log-normal model (Gibrat 1931), the gamma
(Salem and Mount 1974), and the Weibull model (Bartels and Van Metele 1975)
were introduced. In the mid-1970s, the three-parameter models appeared, such as
the generalized gamma (Taille 1981), Singh-Maddala (Singh and Maddala 1976) and
Dagum (Dagum 1977). In 1984, McDonald (1984) introduced the four-parameter
models known as the generalized beta of the first and second kind (GB1 and GB2).
The GB1 and GB2 models include all of the previously mentioned distributions as
special or limiting cases. Parker (1999) has presented a theoretical model in which firm
optimizing behaviour under uncertainty leads to wages that follow a GB2 distribution.
Empirically, it was shown that the GB2 distribution fits income distribution data
better than the alternative models that it encompasses (the Singh-Maddala, Dagum,
generalized gamma, log-normal and Weibull) (Bordley et al. 1996, Bandourian et al.
2003, Dastrup et al. 2007, McDonald and Ransom 2008). McDonald and Xu (1995)
have proposed a 5-parameter generalized beta (GB) distribution, which encompasses
both GB1 and GB2 distributions. However, empirically this distribution does not
seem to improve the fit to data. This was also confirmed in our empirical experiments
(not reported). Kleiber and Kotz (2003, p. 232) called the GB distribution "a curious
theoretical generalization".
Using parametric models of income distribution is associated with several advantages.
Fitting parametric models allows one to represent the entire income distribution
through means of a small number of estimated parameters (Brachman et al. 1996).
The estimated parameters may be then used to reconstruct the entire income
distribution, if, for example, income distribution data released in future are published
in grouped form (Hajargasht et al. 2012) or if available micro data are censored or "top
coded" (Burkahuser et al. 2012). This kind of reconstruction can be also achieved with
the help of a reliable parametric model, when for a given income distribution only
empirical estimates of poverty and inequality measures are available (as published
for example by the Eurostat or other statistical agency), with no direct access to
the underlying micro-data (Graf and Nedyalkova 2013). In addition, a reliable
parametric model can be used for poverty and inequality analysis in computable
general equilibrium micro-simulation models (Boccanfuso et al. 2013).
The parameters of theoretical models often possess also economic interpretation,
which allows, for example, to gain insights about the causes of the evolution of income
distribution over time or interpret the differences between income distributions across
countries. Moreover, once a given parametric model is fitted to a data set, one
can straightforwardly compute inequality and poverty measures, which are analytical
functions of the parameters of the model. It is also possible to use estimated
parameters to perform stochastic dominance testing (Kleiber and Kotz 2003), which
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allows for robust inference on inequality and welfare differences between distributions.
Finally, estimated parameters may be used in empirical modelling of the impact of
macroeconomic conditions (e.g. GDP growth, unemployment and inflation rates, etc.)
on the evolution of the personal income distribution (Jäntti and Jenkins 2010).
The present paper models income distribution in four Central and Eastern European
(CEE) countries (the Czech Republic, Hungary, Poland and the Slovak Republic)
using parametric models of income distribution. In particular, we use the GB2
distribution as it has been found in the previous literature to give an excellent fit
to income distributions across time and countries. We perform goodness-of-fit and
model selection tests to verify if the GB2 model is a better fit to CEE data than
the simpler models (the Singh-Maddala and Dagum) that it encompasses. We also
compute inequality indices and perform statistical dominance tests using fitted GB2
models to evaluate changes in income inequality in CEE countries in the period of
economic transformation to market economy. Moreover, we analyze and interpret
economically the evolution of the GB2 parameters estimates over time.
The paper is related to the previous empirical literature on parametric modelling of
income distribution in CEE countries. Kordos (1990) argued that the two-parameter
log-normal distribution reasonably describes Polish data on wages until 1980. The log-
normal model has been also found to be fitted well to the income distribution of the
Polish poor in 2003 and 2006 by Jagielski and Kutner (2010). These authors also found
that the income distribution of the middle class and the rich is fitted well by the Pareto
model. Domanski and Jedrzejczak (2002) have compared several parametric models
(the Dagum, Singh-Maddala, gamma and lognormal) using data on Polish wages in
1990s. They found that the Dagum model best described their data. Lukasiewicz and
Orlowski (2004) compared the Dagum and Singh-Maddala models for the distribution
of individual incomes in Poland in 2000. The Dagum model gave a slightly better fit
to data in their study. Dastrup et al. (2007) provided an extensive comparison of
parametric models of income distribution for several countries (including Poland as
the only CEE country) roughly in the period from 1980s to 1990s and using several
"income" concepts: gross (pre-tax and pre-transfer) household income, disposable
(post-tax and post-transfer) household income and earnings. The data used were in
grouped format. The authors found that in general the GB2 model gives the best fit
to Polish data for each of the income definition used. In particular, the GB2 model
seemed to describe Polish data better than its nested alternatives (Dagum and Singh-
Maddala), although the differences between these models were not always statistically
significant.
Bandourian et al. (2003) provided a comparison of parametric models of income
distribution for 23 countries (including Poland, Czech Republic, Hungary and Slovak
Republic) in the period from 1970s to the mid-1990s. The main income concept
used in gross (pre-tax and pre-transfer) household income, grouped in twenty equal
probability intervals. In the context of CEE countries, the results of Bandourian’s
et al. (2003) study suggest that for Czech Republic in 1992 and 1996, Hungary in

209 M. Brzezinski
CEJEME 5: 207-230 (2013)



Michał Brzeziński

1991 and Poland in 1985, 1992 and 1995, the GB2 model gives the best fit. However,
the advantage of the GB2 over alternatives is only statistically significant for Czech
Republic in 1992 and Poland in 1986. For Slovak Republic the GB1 has a small
advantage over the GB2, but the difference is not statistically significant.
Most of the existing studies on parametric modeling of income distributions suffer
from some limitations. Many of them use rather grouped data (data in the form of
income classes or income proportions) than individual income data. Other studies
do not include newer models like the GB2 distribution, or do not test rigorously for
goodness of fit or model selection. The present paper removes these drawbacks by
using individual income data and by applying rigorous statistical methods to the GB2
model and its closest rivals.
The paper is structured as follows. The next Section presents the definition and
statistical properties of the GB2 model, while Section 3 describes statistical methods
used for parametric estimation, goodness-of-fit and model selection testing, as well
as tools for testing for stochastic dominance with parametric models. Section 4
introduces the data used. Empirical results and discussion follow in Section 5. The
last section concludes.

2 The GB2 distribution – definition and properties
The four-parameter (a, b, p, q) GB2 model was introduced by McDonald (1984). The
probability density function for the model takes the form:

f (x; a, b, p, q) = axap−1

bapB (p, q) [1 + (x/b)a]p+q , x > 0, (1)

where B(u,v) = Γ(u) Γ(v)/Γ(u + v) is the Beta function, and Γ(.) is the Gamma
function. All four parameters are positive with b being the scale parameter and a, p
and q being the shape parameters. The a parameter governs the overall shape of the
distribution, while p and q affect the shape of, respectively, the left and the right tail.
In particular, the larger the value of a, the thinner the both tails of the GB2 density
(Kleiber and Kotz 2003). The larger the value of p, the thinner the left tail and the
larger the value of q, the thinner the right tail. Therefore, the smaller values of ap
and aq increase density at the, respectively, lower and upper tail. When both ap and
aq decrease simultaneously, both tails of the GB2 become fatter. In economic terms,
this can be interpreted as an evidence in favour of larger income bi-polarization. The
concept of polarization, which is related to but different from inequality, aims at
capturing separation or distance between clustered groups in a distribution (Esteban
and Ray 1994, 2011, Foster and Wolfson 2010). For the GB2 model, we may interpret
the simultaneous decrease in the estimates of ap and aq as growing bi-polarization in
the sense of tighter clustering around two income poles – the poor and the rich.
The relative values of p and q affect the skewness of the GB2 distribution. The
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cumulative distribution function (cdf) of the GB2 distribution does not have an
explicit form as it involves an infinite series, but it can be approximated using
functions implemented in most of popular statistical packages (see, e.g., Jenkins 2007,
Graf and Nedyalkova 2012).
The often used in the income distribution literature three-parameter models of Singh-
Maddala and Dagum are the special cases of the GB2 model. In particular, the Singh-
Maddala model is the GB2 model with p = 1, while the Dagum model is the GB2
model with q = 1. Also, the log-normal model can be obtained from the GB2 model
assuming that q goes to infinity and a goes to 0, see McDonald and Xu (1995) for
a full characterization of families of distributions nested within the GB1 and GB2
models.
The moment of order k (existing for ap < k < aq) for the GB2 is defined as follows:

E
(
Xk
)

=
bkB(p+ k

a , q − k
a )

B(p, q) . (2)

Parametric modelling of income distributions is often performed in order to make
inferences about income inequality. For this purpose, one can use cardinal inequality
indices such as the most popular Gini index of inequality (for a review of various
inequality measures, see, e.g., Cowell 2000) or one can test for Lorenz dominance,
which provides an unambiguous ranking of distribution in terms of their inequality.
The relationship of Lorenz dominance is based on the concept of the Lorenz curve
(see, e.g., Kleiber 2008), which is a plot of the cumulative income shares against
cumulative population shares, with units (e.g., individuals, households) ordered in
ascending order of income. If the Lorenz curve for a distribution y1 lies nowhere
below and at least somewhere above the Lorenz curve of the distribution y2, then y1
Lorenz dominates y2. It is worth noting here that the popular Gini index of inequality
is equal to the twice the area between the Lorenz curve and the 45% degree line of
perfect equality. Any inequality index satisfying popular axioms like anonymity and
the Pigou-Dalton transfer principle will in this case display less inequality for the
distribution y1 than for y2 (Atkinson 1970).
For the GB2 model and its nested models, the relationship between model parameters
and popular inequality indices is complex. McDonald (1984) has derived the analytical
formula for the Gini coefficient of the GB2, which, however, takes a rather complicated
form:

G =
2B
(
2p+ 1

a , 2q − 1
a

)
pB (p, q)B

(
p+ 1

a , q − 1
a

) ·

·
{

1
p 3F2

[
1, p+ q, 2p+ 1

a ; ; p+ 1, 2 (p+ q) ; ; 1
]

− 1
p+ 1

a
3F2

[
1, p+ q, 2p+ 1

a ; ; p+ 1
a + 1, 2 (p+ q) ; ; 1

]}
.

(3)
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The generalized hypergeometric function 3F2involves an infinite series and present
computational difficulties. For the purposes of the present paper, the Gini coefficient
for the GB2 distribution has been implemented in Stata using an algorithm for
computing the 3F2 function proposed by Wimp (1981).
The Gini index of inequality is most sensitive to income differences around the mode
of distribution and therefore is it not suitable to detecting distributional changes
that occur in the bottom or in the top of distribution. For this purpose, a family
of distribution-sensitive generalized entropy inequality measures GE(γ) has been
designed (Shorrocks 1984). The more positive parameter γ is, the more sensitive
GE(γ) is to income differences at the top of the distribution; the more negative it is,
the more sensitive is GE(γ) to income differences at the bottom of the distribution.
The most popular members of the GE family include the mean logarithmic deviation,
GE(0), the Theil index, GE(1) and the half the square of the coefficient of variation,
GE(2). In this paper, we are especially interested in the GE(2) inequality measure, as
it has been shown that inequality measures are particularly sensitive to the presence
of extremely large income observations (Cowell and Flachaire 2007). Generalized
entropy inequality measures for the GB2 distribution have been recently derived by
Jenkins (2009). The GE(2) index for the GB2 model takes the form:

GE (2) = −1
2 +

Γ (p) Γ (q) Γ
(
p+ 2

a
)

Γ
(
q− 2

a
)

2Γ2
(
p+ 1

a
)

Γ2
(
q− 1

a
) . (4)

The appropriate expressions for all indices presented above in the cases of the Singh-
Maddala and Dagum distributions can be obtained by setting, respectively, the
parameter p to 1 and parameter q to 1.
Kleiber (1999) showed that for two GB2 distributions, Xi ∼ GB2(ai, bi, pi, qi), i = 1, 2,
if a1 6 a2, a1p1 6 a2p2, and a1q1 6 a2q2, then distribution X2 Lorenz-dominates
(is less unequal than) distribution X1. Notice that Kleiber’s conditions are sufficient,
but not necessary. Therefore there may be some practical cases in which it will be
impossible to verify Lorenz dominance on the basis of these conditions. Necessary
conditions for Lorenz dominance were derived by Wilfling (1996): if distribution
X2 Lorenz-dominates (is less unequal than) distribution X1, then a1p1 6 a2p2, and
a1q1 6 a2q2.

3 Methods

3.1 Parameter estimation, goodness of fit and model selection
techniques

All models analyzed in this paper were fitted to individual income data using the
maximum likelihood estimation (MLE). The expressions for the log-likelihoods of the
GB2 and its nested models (the Singh-Maddala and Dagum) are given in Kleiber and
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Kotz (2003). MLE methods for the GB2 model with sampling weights is carefully
discussed in Graf and Nedyalkova (2013). Hajargasht et al. (2012) developed an
optimal GMM estimator for fitting the GB2 and its nested models to grouped
data (i.e. data available in n income classes). For fitting models to data, we
use Stata programs developed by Stephen Jenkins (Jenkins 2007). The programs
maximize the likelihoods numerically using the modified Newton–Raphson algorithm,
or optionally Berndt–Hall–Hall–Hausman, Davidon–Fletcher–Powell or Broyden–
Fletcher–Goldfarb–Shanno algorithms. For an implementation of GB2 maximum
likelihood estimation in R, see Graf and Nedyalkova (2012). Parameter variances
are based on the negative inverse Hessian. Inequality and poverty indices implied by
a fitted GB2 model, and their associated standard errors computed using the delta
method, can be obtained using the gb2dist Stata command developed by the author.
The command can be obtained from the author’s webpage. The implementation
covers also poverty indices for this distribution, which have been recently derived by
Chotikapanich et al. (2013).
The plausibility of models’ fit to data should be in principle assessed using goodness-
of-fit tests like the Kolmogorov-Smirnov (KS) or Anderson-Darling (AD) tests (see,
e.g., Stephens 1986), with p-values determined using a nonparametric bootstrap
approach. The distributions of the goodness-of-fit tests based on the empirical
distribution function (as the KS and the AD tests are) depend on the assumption that
the data are drawn from the known (fixed) distributions. In our case, the distributions
are fitted by the maximum likelihood procedure and hence they are not fixed. For
this reason, the nonparametric bootstrap procedure should be used (see Clauset et al.
2009). However, our experiments have shown that for our data sets the goodness-of-fit
tests always reject the hypothesis that the data follow even the best model selected
by model selection tests (see below). This is not surprising as it often happens in the
literature on fitting parametric models to income distribution data and in other large-
sample settings (McDonald 1984), when even small deviations from a model result in
model rejection. For this reason, often graphical and numerical methods for assessing
goodness of fit are used (see, e.g., Graf and Nedyalkova 2013). The most popular
graphical method is the quantile-quantile (q-q) plot, which for a given model plots
the theoretical quantiles versus empirical quantiles of a variable. If the estimated
model fits the data perfectly, the resulting q-q plot would coincide with the 45-degree
line. The numerical approach to assessing goodness of fit relies on comparing the
numerical values of theoretical and sample indicators such as the mean, the median,
the standard deviation, the Gini index, the poverty rate, and others. In Section 4, we
use both graphical and numerical methods in evaluating our fitted models.
In order to compare the fit of the GB2 model and its nested alternatives (the Singh-
Maddala and Dagum), we use the likelihood ratio test. The likelihood ratio statistics
takes the form:

LR = 2
(
l̂u − l̂r

)
∼ χ2(h), (5)
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where l̂u and l̂r are, respectively, the log-likelihood values corresponding to the
unconstrained (GB2) and restricted or nested models (Singh-Maddala and Dagum),
and h is the difference in the number of parameters in the two compared models
(equal to 1 in our setting). The differences between GB2 and its nested alternatives
can be thus compared using a chi-square distribution with one degree of freedom.

3.2 Testing for Lorenz dominance with the GB2 model
As pointed out in Section 2, Kleiber (1999) showed that for two GB2 distributions,
Xi ∼ GB2(ai, bi, pi, qi), i = 1, 2, if a1 6 a2, a1p1 6 a2p2, and a1q1 6 a2q2„
then distribution X2 Lorenz-dominates (is less unequal than) distribution X1. After
the GB2 model is fitted to data, the set of conditions implying Lorenz dominance
can be tested using parameter estimates and their variances. In order to test
equality of the Lorenz curves for two GB2 distributions with vectors of parameters
θi = (ai, bi, pi, qi)T , i = 1, 2, we may use the following Wald test (Prieto-Alaiz 2007):

W =
[
H
(
θ̂1

)
−H(θ̂2)

]T
Ω̂−1

12

[
H
(
θ̂1

)
−H(θ̂2)

]
, (6)

where θ̂ is the MLE of θ, H () is the 3 × 1 vector of nonlinear functions of the GB2
parameters, which state the Lorenz dominance:

H(θ) = [h1(θ), h2(θ), h3(θ)]T = [a, ap, aq]T .

The W statistics is distributed as chi-square with three degrees of freedom. Assuming
independence between compared distributions, i = 1, 2, the matrix Ω̂12 is given by:

Ω̂12 =
(
D̂Σ̂1D̂

T /n1

)
+
(
D̂Σ̂2D̂

T /n2

)
, (7)

where n1 and n2 are the sample sizes for respective distributions, Σ̂ is the covariance
matrix of MLE evaluated at θ̂ and D̂ is the (3 × 4) matrix with elements defined as
follows:.

D̂ij =
[
∂hi(θ)
∂θj

]
θ=θ̂

, i = 1, 2, 3; ; j = 1, 2, 3, 4. (8)

If the equality of the Lorenz curves is rejected, then if Kleiber’s (1999) conditions are
satisfied for a pair of GB2 distributions, Xi ∼ GB2(ai, bi, pi, qi), i = 1, 2, that is if
a1 6 a2, a1p1 6 a2p2, and a1q1 6 a2q2, then we may conclude that distribution X2
Lorenz-dominates (is less unequal than) distribution X1.

4 Data
We use individual income data taken from two sources. For Poland, we use yearly
data for the period 1993-2010 coming from the Household Budget Survey (HBS) study
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conducted by the Polish Central Statistical Office. Data for other countries analysed
in this paper (the Czech Republic, Hungary, the Slovak Republic) was obtained from
the Luxembourg Income Study (LIS) database (see www.lisdatacenter.org for a
detailed description of the LIS database.) LIS data is available in roughly 5-year
intervals; this paper uses all data sets available for our choice of countries since the
early 1990s to the most recent year available.
The main income variable that is modelled in the paper is disposable (post-tax and
post-transfer) household income, equivalized using the square root equivalence scale.
In order to obtain personal income distributions, in all our estimations we have used
weights defined as a product of the household sampling weights and the number
of household members. Income is measured in real (inflation-corrected) national
currency units. Observations with negative and zero incomes were excluded from
the analysis, but this affected less than 1% of all observations for all of our data sets.
Table 1 presents descriptive statistics for the income variable used in our empirical
analyses.

Table 1: Descriptive statistics for the real equivalent household disposable income
variable

Data set Mean Median Std. Dev. Max. No. of households
Czech Republic

1992 103135.6 95509.62 49028.06 1271468 16234
1996 152586.8 134757.8 87317.75 3741595 28148
2004 177948.3 154467.5 107963 3095899 4351

Hungary
1991 1209948 1073457 749995.7 8275354 2019
1994 1032074 864613 764597.3 2.03e+07 1936
1999 993708.6 854647 620465.9 7423942 1636
2005 1219921 1042275 859600.5 2.26e+07 2035

Poland
1993 864.7 750.6 604.2 20127.1 32108
1998 1138.1 1003.0 778.3 21338.6 31745
2004 1102.7 949.4 847.0 27578.9 32214
2010 1503.6 1254.3 1741.1 181072.3 37127

Slovak Republic
1992 115519.7 108743.8 46462.17 1208909 15990
1996 142847 132141.9 73055.85 1319030 16336
2004 156054.5 140326.3 94531.2 1844909 5147
2010 7299.088 6594.618 4759.55 291874.1 5198
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5 Empirical results
5.1 Fitting models to CEE data
Tables 2-9 present our estimates of models’ parameters together with their standard
errors. We also give the values of log-likelihoods and the results of likelihood ratio
tests for the fitted models. Results of the likelihood ratio tests for Poland, presented
in Table 3, suggest that the GB2 model for Poland is preferred to the Singh-Maddala
and Dagum models for all years under study. The results of model selection for other
countries are less straightforward. In the case of the Czech Republic, at least one
nested model seems to be as good as the GB2 for each studied year. For Hungary, the
GB2 model is a better fit to data in all years except 1999. For the 1999 Hungarian

Table 2: Maximum likelihood estimates of models’ parameters for Poland

Parameter estimates Singh-Maddala Dagum GB2
1993

a 3.660 (0.031) 3.652 (0.0293) 5.463 (0.1990
b 739.7 (6.058) 769.6 (6.087) 749.4 (4.841)
p - 0.955 (0.018) 0.575 (0.027)
q 0.951 (0.018) - 0.564 (0.027)
Log-likelihood -235121.2 -235121.6 -235047.4

1998
a 3.391 (0.028) 3.695 (0.031) 4.673 (0.167)
b 1041.2 (9.672) 1066.6 (8.531) 1044.0 (7.727)
p - 0.860 (0.016) 0.638 (0.030)
q 1.093 (0.022) - 0.710 (0.034)
Log-likelihood -241793.3 -241771.5 -241746.8

2004
a 2.991 (0.024) 3.396 (0.029) 4.330 (0.159)
b 1018.6 (10.84) 1040.5 (8.858) 1011.7 (8.189)
p - 0.814 (0.015) 0.600 (0.028)
q 1.161 (0.024) - 0.702 (0.035)
Log-likelihood -246737.2 -246703.7 -246678.7

2010
a 3.289 (0.026) 3.220 (0.024) 4.014 (0.131)
b 1226.1 (10.69) 1255.5 (11.03) 1238.7 (9.582)
p - 1.004 (0.018) 0.752 (0.033)
q 0.946 (0.017) - 0.726 (0.032)
Log-likelihood -295975.1 -295979.6 -295954.5

Standard errors are given in parentheses.

sample, the three models are empirically indistinguishable. Similar conclusion applies
do the Slovak Republic in 1992, but in 1996 the GB2 fits the data better than the
alternatives. For both 2004 and 2010 Slovakian samples, the Dagum model is as good
as the GB2. In general, the GB2 model fits the data best in 8 out of 15 analyzed
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data sets. However, there are stark differences between countries. The GB2 model is
clearly the best model for Polish data. It seems also to be the best model for Hungary.
For the Czech Republic and the Slovak Republic, the Dagum model is often as good as
the GB2 and may be preferred in practical applications due to its simpler functional
form.

Table 3: Likelihood ratio test for Poland

Year Singh-Maddala vs. GB2 Dagum vs. GB2
LR p-value LR p-value

1993 147.6 0.000 148.4 0.000
1998 93.0 0.000 49.4 0.000
2004 117.0 0.000 50.0 0.000
2010 41.1 0.000 50.2 0.000

Table 4: Maximum likelihood estimates of models’ parameters for Czech Republic

Parameter estimates Singh-Maddala Dagum GB2
1992

a 5.373 (0.064) 4.811 (0.055) 5.823 (0.274)
b 90938.49 (709.664) 91353.39 (877.08) 91574.01 (757.937)
p - 1.157 (0.034) 0.885 (0.060)
q 0.845 (0.022) - 0.762 (0.048)
Log-likelihood -192443.57 -192450.99 -192441.99

1996
a 4.146 (0.040) 3.782 (0.033) 3.776 (0.133)
b 129775.2 (1080.466) 128804.7 (1198.58) 128810 (1206.311)
p - 1.151 (0.026) 1.153 (0.061)
q 0.882 (0.019) - 1.002 (0.052)
Log-likelihood -350202.42 -350198.63 -350198.63

2004
a 3.902 (0.093) 3.711 (0.083) 3.864 (0.372)
b 152841 (3406.206) 153019.8 (3587.802) 152764.1 (3513.3)
p - 1.072 (0.060) 1.014 (0.140)
q 0.929 (0.051) - 0.941 (0.131)
Log-likelihood -54971.207 -54971.296 -54971.202
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Table 5: Likelihood ratio test for Czech Republic

Singh-Maddala vs. GB2 Dagum vs. GB2
LR p-value LR p-value

1992 3.16 0.075 18.0 0.000
1996 7.58 0.006 0.000 1
2004 0.01 0.920 0.188 0.665

Table 6: Maximum likelihood estimates of models’ parameters for Hungary

Parameter estimates Singh-Maddala Dagum GB2
1991

a 3.176 (0.099) 3.912 (0.135) 5.096 (0.685)
b 1203528 (48852.41) 1221943 (34794.49) 1177459 (33980.01)
p - 0.725 (0.050) 0.525 (0.088)
q 1.295 (0.109) - 0.676 (0.123)
Log-likelihood -29239.886 -29234.724 -29232.439

1994
a 2.908 (0.097) 3.314 (0.108) 5.455 (0.912)
b 930855.5 (41540.52) 963970.8 (31761.01) 898641.1 (26572.51)
p - 0.799 (0.055) 0.445 (0.087)
q 1.148 (0.096) - 0.489 (0.105)
Log-likelihood -28132.567 -28128.831 -28123.03

1999
a 3.719 (0.146) 3.309 (0.116) 4.005 (0.574)
b 791106.6 (28950.39) 800571 (33804.23) 796783.6 (29573.6)
p - 1.159 (0.104) 0.896 (0.182)
q 0.833 (0.071) - 0.756 (0.149)
Log-likelihood -23594.707 -23595.511 -23594.561

2005
a 3.548 (0.117) 3.549 (0.114) 5.065 (0.700)
b 1035360 (34819.89) 1073059 (35182.79) 1049593 (28627.22)
p - 0.958 (0.071) 0.609 (0.109)
q 0.959 (0.073) - 0.603 (0.109)
Log-likelihood -29729.559 -29729.542 -29725.822

Table 7: Likelihood ratio test for Hungary

Year Singh-Maddala vs. GB2 Dagum vs. GB2
LR p-value LR p-value

1991 14.894 0.000 4.57 0.033
1994 19.074 0.000 11.60 0.001
1999 0.292 0.589 1.9 0.168
2005 7.474 0.006 7.44 0.006
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Table 8: Maximum likelihood estimates of models’ parameters for Slovak Republic

Parameter estimates Singh-Maddala Dagum GB2
1992

a 5.351 (0.063) 5.364 (0.065) 5.734 (0.269)
b 108484.6 (897.56) 109062.6 (920.735) 108848.1 (886.55)
p - 0.987 (0.028) 0.901 (0.061)
q 0.994 (0.028) - 0.906 (0.060)
Log-likelihood -190613.23 -190613.16 -190612.06

1996
a 3.032 (0.030) 5.107 (0.064) 8.109 (0.432)
b 180820 (2979.55) 166536.4 (1143.753) 153834.3 (1280.921)
p - 0.488 (0.010) 0.293 (0.017)
q 2.123 (0.073) - 0.502 (0.035)
Log-likelihood -203463.67 -203232.53 -203177.56

2004
a 3.383 (0.066) 4.107 (0.093) 4.413 (0.389)
b 156102.5 (3777.48) 156104.4 (2832.94) 154814.9 (3048.3)
p - 0.752 (0.035) 0.686 (0.081)
q 1.301 (0.069) - 0.898 (0.113)
Log-likelihood -64425.834 -64421.299 -64420.94

2010
a 3.099 (0.058) 4.402 (0.098) 4.811 (0.382)
b 8266.501 (239.84) 7873.509 (122.922) 7724.4 (164.85)
p - 0.616 (0.026) 0.554 (0.055)
q 1.690 (0.102) - 0.868 (0.104)
Log-likelihood -49330.235 -49313.165 -49312.467

Table 9: Likelihood ratio test for Slovak Republic

Year Singh-Maddala vs. GB2 Dagum vs. GB2
LR p-value LR p-value

1992 2.34 0.126 2.2 0.138
1996 572.22 0.000 109.94 0.000
2004 9.788 0.002 0.718 0.396
2010 35.536 0.000 1.396 0.237

Goodness of fit is assessed using both visual and numerical methods. Figures 1-2
show quantile-quantile plots for Poland in 1993 and 2010. We have also included a
log-normal model in Figures 1-2 in order to show how the three-parameter models
improve the fit in comparison with a two-parameter model. We do not provide
quantile-quantile plots for the Czech Republic, Hungary and the Slovak Republic
as the data for these countries were taken from LIS, which is a remote-execution
data access system not allowing for producing graphs. It can be easily seen that for
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Poland, the GB2 model gives the best fit to data. Other models are visibly worse,
especially for higher quantiles. It can be also observed that the two-parameter log-
normal model gives a significantly worse fit to Polish data than the three-parameter
Singh-Maddala and Dagum models. Goodness of fit is also evaluated numerically

Figure 1: Quantile-quantile plots, Poland, 1993
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in Tables 10-13, by comparing the sample values of chosen distributional indicators
with their counterparts implied by the fitted models. For brevity, the analyses are
performed only for the last available year for each country. The results suggest that
for most of the indices, the best fitting models produce indices’ values that are often
in a close agreement with the corresponding sample values. The two exceptions are
the top-sensitive inequality index, GE(2), and the poverty rate. The poverty rate
here is defined as the proportion of the population that has an income lower or equal
to the 60% of the median income. The GE(2) index for Poland for the best fitting
GB2 distribution differs by about as much as 54% from its sample counterpart. For
Slovak Republic, the respective difference is also large and reaches about 33%. These
facts reflect the high sensitivity of some inequality indices to the presence of extremely
large incomes (Cowell and Flachaire 2007). The estimates implied by fitted parametric
models seem to be much less sensitive to extreme observations than sample estimates.
It is worth stressing here that both types of estimates (the sample estimates and

M. Brzezinski
CEJEME 5: 207-230 (2013)

220



Parametric Modelling of Income Distribution ...

Figure 2: Quantile-quantile plots, Poland, 2010
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estimates implied by the fitted model) for the most popular inequality measure – the
Gini index – differ in our analyses by no more than 1.1%. This suggests that the
GB2 model is quite successful in describing the inequality of income distribution in
the CEE countries, at least if one is focusing on the Gini index.

The differences between sample estimates and estimates implied by fitted models for
poverty rates in Hungary and Slovak Republic are also rather big and reach 10-12%.
This suggests that, at least in some cases, the parametric distributions may have
troubles in modelling also the lower tails of income distributions.
Figure 3 plots the evolution of the estimated GB2 parameters over time. The scale
parameter, b, has increased markedly throughout the analyzed period in all countries,
except for Hungary, representing the increase in mean income during the transition
to market economies. The parameter b is proportional to the mean of the GB2
distribution (see equation 2). There are no visible trends in other parameters’
behaviour for Hungary. For the Slovak Republic, the values of all three shape
parameters – a, p, and q – have fallen over 1992-2010. This means that both tails
of the fitted GB2 distribution have become fatter in the period under study. As
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Table 10: Numerical goodness of fit, Czech Republic, 2004

Empirical Percentage difference
value between empirical value

and value implied by a fitted model
GB2 Singh-Maddala Dagum

Mean 177948.3 0.2 0.2 0.3
Std. Dev. 107963 4.8 4.6 6.0
Median 154467.5 -1.6 -1.6 -1.6
Gini index 0.267 0.5 0.4 0.7
GE(2) index 0.184 10.0 8.7 11.2
P90/P10 3.212 1.0 1.1 1.0
P75/P25 1.801 1.1 1.1 0.9
Poverty rate 0.115 -0.9 -0.9 -1.4

P90/P10 and P75/P25 denote, respectively, the ratio of the 90th percentile to the 10th percentile and the
ratio of the 75th percentile to the 25th percentile.

Table 11: Numerical goodness of fit, Hungary, 2005

Empirical Percentage difference
value between empirical value

and value implied by a fitted model
GB2 Singh-Maddala Dagum

Mean 1219921 0.1 0.6 1.1
Std. Dev. 859600.5 0.3 8.8 12.6
Median 1042275 -1.0 -1.0 -1.2
Gini index 0.291 0.2 1.1 2.2
GE(2) index 0.248 0.5 16.0 21.8
P90/P10 3.311 -5.4 -6.1 -6.1
P75/P25 1.845 0.6 -1.5 -1.5
Poverty rate 0.125 -11.6 -10.4 -12.1

Table 12: Numerical goodness of fit, Poland, 2010

Empirical Percentage difference
value between empirical value

and value implied by a fitted model
GB2 Singh-Maddala Dagum

Mean 1503.7 0.7 1.0 1.5
Std. Dev. 1741.15 32.4 36.6 39.0
Median 1254.3 -0.1 -0.1 -0.3
Gini index 0.319 1.1 1.9 2.7
GE(2) index 0.670 53.7 59.0 61.7
P90/P10 3.847 -1.1 -1.5 -1.6
P75/P25 1.955 0.3 -1.0 -1.1
Poverty rate 0.157 -0.2 -1.3 -2.1
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Table 13: Numerical goodness of fit, Slovak Republic, 2010

Empirical Percentage difference
value between empirical value

and value implied by a fitted model
GB2 Singh-Maddala Dagum

Mean 7299.088 0.5 0.6 0.7
Std. Dev. 4759.55 18.6 22.6 20.3
Median 6594.618 -1.1 -0.7 -1.1
Gini index 0.265 0.0 0.8 0.5
GE(2) index 0.213 33.3 39.3 35.7
P90/P10 3.253 -4.6 -5.1 -4.7
P75/P25 1.814 -0.4 -2.6 -0.9
Poverty rate 0.134 -14.7 -12.6 -12.1

suggested in Section 2, this can be interpreted as evidence for growing income bi-
polarization in the Slovakian society. The bi-polarization process, which concentrates
incomes around two distributional poles (grouping the poor and the rich), shrinks the
size of the middle class and in this way it can have significant negative consequences
for economic growth and social stability. Recent theoretical literature has linked
polarization to the intensity of social conflicts (Esteban and Ray 1994, 2011).
There was a notable fall in the value of a parameter for Poland and the Czech
Republic. At the same time, the values of p and q for these countries have increased.
These trends are similar to those reported for household income in Germany for
1984–93 by Brachmann et al. (1996), and for 1970–1990 for the US family income as
reported by Bordley et al. (1996). For Poland and the Czech Republic, the fall in a,
which is making both tails of the GB2 distribution fatter is combined with increases
in both p and q, which have opposite effects on, respectively, the left and the right tail
of income distributions. The conclusions with respect to changes in bi-polarization
depend therefore on the joint changes in ap and aq, which is investigated in the next
section.

5.2 Inference on changes in income inequality
In this section, we perform statistical tests on Lorenz dominance, which allow to
make robust (independent of the choice of inequality measure) inferences on changes
in income inequality. Table 14 presents sample estimates of four widely used inequality
indices: the Gini index, the GE(2) index, and the two percentile ratios. According
to these estimates, income inequality during the transformation to market economy
has increased substantially in the Czech Republic, Poland and the Slovak Republic.
For Hungary, the Gini and the GE(2) indices suggest that the inequality increased,
but the percentile ratios suggest otherwise. The scale of the inequality increase in the
Czech Republic, Poland and the Slovak Republic depends on the particular cardinal
inequality measure used, but all of them suggest that income inequality has risen.
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Figure 3: The evolution of the GB2 parameters over time (b measured on the right
axis)
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However, we cannot be sure that this conclusion would remain valid for other cardinal
inequality indices that could be used. Testing for Lorenz dominance allows one to
reach a conclusion that is valid for a wide range of popular inequality measures (see
Section 2). Moreover, as shown in Section 3.2, parametric Lorenz dominance can be
tested statistically and thus provide a conclusion, which is statistically significant.
Statistical inference on inequality changes could be, of course, also conducted using
tests based on sampling variances for particular inequality indices. However, such
tests would have to be performed for all (possibly many) inequality measures used.
The results of the tests for Lorenz curves equality for chosen pairs of years are
presented in Table 15. For Hungary, the fall in both a and q combined with a rise
in p implies that the necessary conditions for Lorenz dominance are not satisfied
and neither distribution Lorenz-dominates the other one (see Section 2). Therefore,
the conclusions about the direction of inequality changes in Hungary depend on a
particular cardinal inequality measure applied. It is notable that for Hungary the ap
index, which regulates the fatness of the GB2 left tail, has increased over time. It
means that the left tail of the Hungarian income distribution has become thinner;
this had an inequality-reducing effect according to some inequality indices (including
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the percentile ratios, see Table 14).

Table 14: Inequality indices for the CEE countries, sample estimates

Data set Inequality index
Gini GE(2) P90/P10 P75/P25

Czech Republic
1992 0.206 0.112 2.360 1.548
1996 0.256 0.163 2.974 1.765
2004 0.267 0.184 3.212 1.801

Hungary
1991 0.283 0.186 3.355 1.873
1994 0.321 0.273 4.138 1.970
1999 0.292 0.195 3.432 1.888
2005 0.291 0.248 3.311 1.845

Poland
1993 0.284 0.239 3.312 1.808
1998 0.286 0.220 3.469 1.856
2004 0.313 0.259 4.000 1.981
2010 0.319 0.670 3.847 1.955

Slovak Republic
1992 0.189 0.081 2.251 1.519
1996 0.250 0.131 3.038 1.716
2004 0.268 0.179 3.286 1.810
2010 0.265 0.213 3.253 1.814

For the Czech Republic, Poland and the Slovak Republic, the conditions of the Lorenz

Table 15: Test results for equality of the Lorenz curves

Combinations of estimated parameters and test statistics
a p q ap aq χ2 p-value

Czech Republic
1992 5.823 0.885 0.762 5.153 4.437 63.49 0.000
2004 3.864 1.014 0.941 3.918 3.636

Hungary
1991 5.096 0.525 0.676 2.6754 3.445 - -
2005 5.065 0.609 0.603 3.085 3.045

Poland
1993 5.463 0.575 0.564 3.141 3.081 114.63 0.000
2010 4.014 0.752 0.726 3.019 2.914

Slovak Republic
1992 5.734 0.901 0.906 5.166 5.195 278.24 0.000
2010 4.811 0.554 0.868 2.665 4.176

p-values in the last column are Sidak-adjusted.

dominance for the GB2 model are fulfilled. In particular, we observe that in these
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countries a fall in a over time is combined with a fall in both ap and aq. Therefore,
income distributions observed in these countries in early 1990s Lorenz-dominate (are
less unequal than) income distributions observed in the respective countries in the
mid- or late-2000. P-values from the chi-square test confirm that these conclusions
are statistically significant. The fall in both ap and aq means also that Poland and
the Czech Republic have experienced a rise in income bi-polarization, similar to that
occurring in the Slovak Republic. This confirms earlier results on changes in income
polarization in Poland, obtained in a non-parametric framework (Kot 2008, Brzezinski
2011).

6 Conclusions
The objective of this paper was to model income distributions in four Central and
Eastern European (CEE) countries (the Czech Republic, Hungary, Poland and the
Slovak Republic) in 1990s and 2000s using parametric statistical models proposed in
the theoretical literature. In particular, we have used the generalized beta distribution
of the second kind (GB2) and the models that it encompasses (the Singh-Maddala and
Dagum distributions). The models were fitted to micro-data on household incomes
using the maximum likelihood estimation. We have found that for Poland, and to
somewhat lesser extent for Hungary, the GB2 model fits the data better than the
considered alternatives. For the Czech Republic and the Slovak Republic, the Dagum
model is often in practice as good as the GB2 and may be preferred in empirical
research due to its greater simplicity.
The paper also found that the tails of the fitted GB2 models for the Czech Republic,
Poland and the Slovak Republic have become fatter over time. This can be interpreted
as an evidence in favour of the view that the process of transformation to market
economies in these countries has brought growing income bi-polarization – incomes
began to cluster around the poles situated around the tails of the distribution. Our
analysis for Hungary suggests that this country is the only one in our sample for
which the left tail has become thinner – some of the probability mass has shifted to
the middle or to the right tail of the distribution.
We have also provided statistical inference on changes in income inequality based
on parametric Lorenz dominance. The results show that for a wide class of popular
inequality indices, the period of economic transformation since the early 1990s to the
mid- or late-2000s has brought unambiguously an increase in income inequality in
the Czech Republic, Poland and the Slovak Republic. There is no Lorenz dominance
in case of Hungary – income inequality has increased in this country according to
some measures, but decreased according to others. Overall, this paper has shown
that parametric modelling is a useful tool to describe the shape and the evolution
of income distributions in the CEE countries. The results of this paper concerning
the best fitting parametric model for a given country can be used in applying the
model to study more specific economic problems involving income distribution – for
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example, to study the effect of economic reforms on income distribution in general
equilibrium modelling.
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