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Abstract. Specific emitter identification (SEI) is a technique for recognizing different emitters of the same type which have the same modu-
lation parameters. Using only the classic modulation parameters for recognition, one cannot distinguish different emitters of a same type. To 
solve the problem, new features urgently need to be developed for recognition. This paper focuses on the common phenomenon of frequency 
drift, defines geometric features of frequency drift curve and, finally, proposes a practical algorithm of specific emitter identification using the 
geometric features. The proposed algorithm consists of three processes: instantaneous frequency estimation based on the adaptive fractional 
spectrogram, feature extraction of frequency drift curve based on geometric methods for describing a curve and recognition process based on 
support vector machine. Simulation results show that the identification rate is generally more than 98% above –5 dB of signal to noise ratio 
(SNR), and real data experiment verifies the practical performance of the proposed algorithm.
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can be called “fingerprint” or unintentional modulation features 
[10, 12, 13]. The causes of unintentional modulation features 
include amplitude variation, phase noise and frequency drift, in 
which the features of amplitude variation are usually unstable 
because of an unknown influence from transmission channel 
[10‒15]. An SEI technique using amplitude features generated 
by the nonlinearity of the power amplifiers in single-hop and 
relaying scenarios is presented in [11], and the proposed algo-
rithm is also applicable in fading channels, which makes the 
work particularly remarkable. Using pulse envelope as the in-
dividual feature of an emitter in digital channelized receivers is 
presented in [15], which is another amplitude-based SEI algo-
rithm. Using the features of phase noise for SEI has also been 
subject to studies and some good results have been achieved 
[10, 14]. A comparison of using phase features and frequency 
features in modulation domain for SEI is discussed in [10]. An 
SEI algorithm using radio frequency features extracted from 
time-frequency-energy distribution based on Hilbert-Huang 
transform is proposed in [12]. A new feature group developed 
from PDW features based on regression analysis is presented 
in [13] and the performance of the proposed SEI algorithm is 
impressive. All the methods mentioned above are mainly tradi-
tional time-domain or frequency-domain methods.

Nonlinear dynamics of RF power amplifiers and oscillators 
can produce nonlinear dynamics characteristics. SEI methods 
based on nonlinear dynamics features are proposed in [16, 17] 
and the results show that the proposed SEI algorithms are prac-
tical. A fractal method using an improved fractal filter for signal 
filtering and fractal dimension for identification is proposed 
in [16]. An SEI algorithm using normalized permutation en-
tropy is presented in [17]. Another nonlinear dynamics method 
using fractal features constructed by iterated function system 
(IFS) from basic radar signal parameters is proposed in [18]. 

1.	 Introduction

Specific emitter identification (SEI) is a practical technique 
applied in both modern electronic warfare and many civilian 
scenarios [1‒3]. In the early identification of radar emitters, 
researchers primarily focused on the intra-pulse and inter-pulse 
features, such as the pulse descriptor word (PDW), which can 
be called intentional modulation characteristics [4, 5]. To avoid 
being intercepted and recognized, the latest radar emitters are 
designed with modulation parameters randomly varying [6‒8], 
which brings new serious challenges for emitter identification. 
Modulation parameters used for recognition can be intentionally 
changed by the emitter operators, so they are generally classi-
fied as intentional modulation features. If only intentional mod-
ulation features are used for identification, it is difficult or theo-
retically impractical to identify more than two emitters of which 
modulation parameters are changed into the same [9]. SEI is 
an advanced approach to identify different same-type emitters 
with the same intentional modulation parameters. SEI is mainly 
based on some unintentional modulation signatures caused by 
the physical components embedded in a specific emitter, which 
the emitter cannot change by itself, such as frequency drift and 
phase noise [10, 11]. Unfortunately unintentional modulation 
features used for SEI have not attracted enough attention of 
researchers.

In specific emitter identification application, once the emitter 
is activated, the signals sent from the emitter have unique char-
acteristics that can be used to clearly identify the emitter, which 
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The methods mentioned above are mainly nonlinear dynamics 
methods.

A fast-decision identification algorithm method for SEI is 
proposed in [19], playing an important role in expert databases. 
A hybrid fusion method for specific radar emitter identification 
based on the kernel canonical correlation analysis (KCCA) and 
the ambiguity function (AF) description is proposed in [20]. 
An SEI algorithm using graphical representation of the dis-
tribution of radar signal parameters is proposed in [9]. Using 
the slice of a quadratic time-frequency distribution as the rec-
ognition features for SEI is presented in [21] and using the 
cumulants of the intercepted signal for SEI is presented by [22]. 
The methods mentioned above are mainly database-based or 
statistics methods.

In the research area of SEI, Kawalec and Dudczyk are 
known as authors of numerous works [4, 9, 13, 18, 19]. Their 
work on SEI can date back to 2004, and it is a continuation 
of the pioneer studies on emitter recognition of Kawalec be-
fore 2004. Their subsequent SEI research mainly develops new 
methods fully using the abundant traditional pulse parameters 
results, which makes the whole work remarkable.

SEI aims at finding a specific view and representation of 
emitters, and there are different views of emitters in different 
domains, such as the time domain. A schematic timing dia-
gram of a receiver and an emitter is shown in Fig. 1. There are 
three time length levels in a receiver working process, which 
are pulse level, slice level and observing time window (OTW) 
level. An observing time window consists of many compact 
time slices and generally costs tens of minutes. During a time 
slice, the receiver receives several pulses of the emitting signal. 
The period of the time slice is usually several seconds and its 
width is less than one second. Most of the references mentioned 
above mainly focus on inter-pulse or intra-pulse information 
[4, 5, 9, 13, 17, 18, 20, 22, 23], which pertain to pulse level, 
not long enough in the time dimension. The features used for 
classification are generally extracted from several continuous 
pulses. So most of the methods mentioned above are relatively 
microcosmic and continuous in the time dimension.

There is a phenomenon of frequency drift occurring in an 
emitter start-up process, mainly caused by temperature in-
creasing, and the warming up procedure usually takes tens of 

minutes. The frequency drift, mainly from the local oscillator of 
the emitter, makes the instant carrier frequency of the emitted 
signals vary in a range depending on the temperature before 
temperature stabilization. So the frequency drift curve should 
be fluctuating first, and the fluctuating range decreases as the 
temperature increases, but the frequency drift curve will fluc-
tuate in a small range when the temperature is finally stable.

This paper studies specific emitter identification using the 
unintentional modulation characteristics of frequency drift 
during the emitter start-up process. The proposed SEI algorithm 
is usually applied in an ELINT system, which always keeps 
receiving the electronic signals in a long continuous period, so 
assuming that the start-up process can be covered completely 
is reasonable. The proposed algorithm corresponds to the slice 
level shown in Fig. 1, which is a novel view of electronic emit-
ters, and apparently it is relatively macroscopic and intermittent 
in the time dimension as compared with the methods mentioned 
before. The proposed algorithm mainly defines a group of geo-
metric features of the frequency drift curve, which can represent 
individual geometric differences. At the same time, this paper 
proves that the extracted features are stable and practical for 
emitter recognition.

This paper is organized as follows: signal modeling modu-
lated with unintentional modulation characteristics of frequency 
drift is presented in Section 2; the proposed algorithm for feature 
extraction from frequency drift curve obtained by the adaptive 
fractional spectrogram method is presented in Section 3; simula-
tion results and the analysis are presented in Section 4; Section 5 
summarizes simulation results and includes the conclusions.

2.	 Signal modeling

To establish the signal model, the principle behind the uninten-
tional modulation of frequency drift is reviewed and analyzed. 
The common phenomenon of frequency drift is mainly caused 
by the instability of an emitter due to the temperature changes 
and the current changes along with power increasing, which 
leads to a working frequency deviating from the required fre-
quency [24]. Generally speaking, temperature affects the fre-
quency drift mostly, so this paper mainly focuses on frequency 
drift along with temperature varying.

Based on experimental results, frequency drift models 
of three different emitters for simulation with temperature 
changing are shown in Fig. 2(a). Assuming that the temperature 
of the three emitters varies from 25°C to 65°C when they are 
started up from a standby state to a detecting state, the tem-
perature varying rate is different because of a different start-up 
power. A higher power start-up (HPS) takes 10 minutes and 
another lower power start-up (LPS) takes 12 minutes before the 
temperature increasing procedure is finished. Assuming that the 
energy of emitter is gradually linearly increasing and the energy 
dissipation power is approximately constant, the temperature 
is proportional to the time in a certain range until the working 
heat power equals the energy dissipation to make the tempera-
ture static, which is called a stable detecting state. In fact, the 
assumption of the relationship between temperature and time Fig. 1. The schematic timing diagram of a receiver and an emitter
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Fig. 1. The schematic timing diagram of a receiver and an emitter 
SEI is mainly to find a specific view and 

representation of emitters, and there are different views of 
emitters in different domains, such as the time domain. A 
schematic timing diagram of a receiver and an emitter is 
shown in Fig. 1. There are three time length levels in a 
receiver working process, which are pulse level, slice 
level and observing time window (OTW) level. An 
observing time window consists of many compact time 
slices and generally costs tens of minutes. During a time 
slice, the receiver receives several pulses of the emitting 
signal. The period of the time slice is usually several 
seconds and its width is less than one second. Most of the 
references mentioned above mainly focus on inter-pulse 
or intra-pulse information[4, 5, 9, 13, 17, 18, 20, 22, 23], 
which are in pulse level and not long enough in the time 
dimension. The features used for classification are 
generally extracted from several continuous pulses. So 
most of the methods mentioned above are relatively 
microcosmic and continuous in the time dimension.  

There is a phenomenon of frequency drift occurring in 
an emitter start-up process, mainly caused by temperature 
increasing, and the warming up procedure usually costs 
tens of minutes. The frequency drift, mainly from the 
local oscillator of the emitter, makes the instant carrier 
frequency of the emitted signals varies in some range 
depending on the temperature until the temperature is 
stable. So the frequency drift curve should be fluctuating 
firstly and the fluctuating range decreases as the 
temperature increases along, but the frequency drift curve 
will fluctuate in a small range when the temperature is 
stable finally.  

This paper studies the specific emitter identification 
using the unintentional modulation characteristics of 
frequency drift during the emitter start-up process. The 
proposed SEI algorithm is usually applied in an ELINT 
system, which always keeps receiving the electronic 
signals in a long continuous period, so assuming that the 
start-up process can be covered completely is reasonable. 
The proposed algorithm is in the slice level shown in Fig. 
1, which is a novel view of electronic emitters, and 
apparently it is relatively macroscopic and intermittent in 
the time dimension comparing with the methods 
mentioned before. The proposed algorithm mainly defines 
a group of geometric features of the frequency drift curve, 
which can represent  the individual geometric differences. 
At the same time, this paper proves that the extracted 
features are stable and practical for emitter recognition.  

The rest structure of this paper is organized as follows: 
the signal modeling, modulated with unintentional 
modulation characteristics of frequency drift, is presented 
in Section II; the proposed algorithm, for feature 
extraction from frequency drift curve obtained by the 
adaptive fractional spectrogram method, is presented in 
Section III; the simulation results and analysis, is 
presented in Section IV; Section V is the conclusion, and 
makes a summary of the results from the simulation and 
the whole work of this paper. 

2. Signal modeling 

To establish the signal model, the principle behind the 
unintentional modulation of frequency drift is reviewed 
and analyzed. The common phenomenon of frequency 
drift  is mainly caused by the instability of an emitter due 
to the temperature changes and the current changes along 
with power increasing, which leads to a working 
frequency deviating phenomenon from the required[24]. 
Generally speaking, temperature affects the frequency 
drift mostly, so this paper mainly focuses on frequency 
drift along with temperature varying.  

Observing from experimental results, frequency drift 
models of three different emitters for simulation with 
temperature changing are shown in Fig. 2(a). Assuming 
that the three emitters’ Celsius temperature varies from 25 
degrees to 65 degrees when they are started up from a 
standby state to a detecting state, the temperature varying 
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does not matter much, which will be explained in the following 
part. Over a period of start-up time, temperature increases to 
65 centigrade, assuming that then the emitter will work stably, 
heat generating and radiating will be balanced, the temperature 
will keep constant as shown in Fig. 2(b). The two polylines with 
different colors in Fig. 2(b) represent different trends of tem-
perature changing over time of the same type emitter operating 
with two different powers. The higher the power is, the faster 
the temperature will change to reach a steady operation state 
and then keep stable during the normal working state.

Frequency drifts over time of three emitters of the same 
type, working with two different powers, are shown in Fig. 2(c), 
obtained from the relationship among temperature, time and 
frequency drift in Fig. 2(a) and Fig. 2(b). Fig. 2 shows that 
the greater the power is, the more rapidly the frequency shift 
changes, when the emitter works normally, the frequency shift 
is gradually being stable.

In practical application, it is unpractical to measure the tem-
perature of emitters. What a receiver can obtain is the relation-
ship between frequency drift and time as shown as Fig. 2(c). 
The frequency drift curves stretch in t dimension along with the 
different start-up power condition, which can be called a t-flex-
ibility property and is a challenge for emitter identification. So 
the specific feature extraction and classification method should 
be insensitive to the t-flexibility changes made by a different 
start-up power and classify the emitter frequency drift curves 
with different powers of the same emitter into the same class, 
which can be called anti-t-flexibility ability.

The assumption of the relationship between temperature and 
time is for the convenience of analysis. Nonlinear correlation 
can be piecewise approximation by linear functions with dif-
ferent piecewise slope. The proposed SEI algorithm can extract 
the features without measurement the temperature because of 
the anti-t-flexibility ability, which means the relationship be-
tween temperature and time does not affect the specific feature 
extraction and classification as long as the temperature keeps 
increasing during the start-up process.

Generally speaking, it takes tens of minutes to increase the 
temperature and more time to cool the emitters down, so it takes 
hours to finish a complete measurement period of a start-up 
process. Considering that it takes too much time to get enough 
samples, and the experiment conditions, such as SNR, are not 
easy to be set in real-data measurement, so for algorithm de-
velopment, this paper builds six frequency drift models of three 
different emitters with two different start-up powers based on 
experimental results, as shown in Fig. 2(c). The simulations in 
the following parts of this paper are theoretical, but all the pa-
rameters are based on real signal sources measurement results, 
and the real data verification experiment will prove the practical 
performance of the proposed algorithm.

The signal source sfd(t) modulated from pure signal s(t) with 
the frequency shift fd can be expressed as

	 sfd(t) = s(t)£exp( j2π fdt). � (1)

The frequency drift curve is abbreviated to FD-curve in the 
subsequent parts of this paper.

Fig. 2. The relationship among frequency drift, temperature, and time, 
(a) curves of frequency drift with temperature changes of three emit-
ters, (b) emitters’ temperature changes over time under two different 
start-up power conditions, (c) frequency drift curves of emitter 1, 2 

and 3 with two different start-up powers
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linear functions with different piecewise slope. The 
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measurement the temperature because of the anti-t-
flexibility ability, which means the relationship between 
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extraction and classification as long as the temperature 
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increase the temperature and more time to cool the 
emitters down, so it needs hours to finish a complete 
measurement period of a start-up process. Considering 
that it takes too much time to get enough samples, and the 
experiment conditions, such as SNR, is not easy to be set 
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this paper builds six frequency drift models of three 
different emitters with two different start-up powers base 
on experimental results, as shown as in Fig. 2(c). The 
simulations in the following parts of this paper is 
theoretical, but all the parameters are based on real signal 
sources measurement  results, and the real data 
verification experiment will prove the practical 
performance of the proposed algorithm.  
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dimension along with the different start-up power 
condition, which can be called a t-flexibility property and 
is a challenge for emitter identification. So the specific 
feature extraction and classification method should be 
insensitive to the t-flexibility changes made by a different 
start-up power and classify the emitter frequency drift 
curves with different powers of the same emitter into the 
same class, which can be called anti-t-flexibility ability.   

The assumption of the relationship between 
temperature and time is for the convenience of analysis. 
Nonlinear correlation can be piecewise approximation by 
linear functions with different piecewise slope. The 
proposed SEI algorithm can extract the features without 
measurement the temperature because of the anti-t-
flexibility ability, which means the relationship between 
temperature and time doesn’t affect the specific feature 
extraction and classification as long as the temperature 
keeps increasing during the start-up process.  

Generally speaking, it takes about tens of minutes to 
increase the temperature and more time to cool the 
emitters down, so it needs hours to finish a complete 
measurement period of a start-up process. Considering 
that it takes too much time to get enough samples, and the 
experiment conditions, such as SNR, is not easy to be set 
in real-data measurement, so for algorithm development, 
this paper builds six frequency drift models of three 
different emitters with two different start-up powers base 
on experimental results, as shown as in Fig. 2(c). The 
simulations in the following parts of this paper is 
theoretical, but all the parameters are based on real signal 
sources measurement  results, and the real data 
verification experiment will prove the practical 
performance of the proposed algorithm.  

The signal source sfd(t) modulated from pure signal 
s(t) with the frequency shift fd can be expressed as 
      exp 2fd ds t s t j f t    (1) 
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To develop an algorithm of specific emitter identification 
using the unintentional modulation features of frequency drift 
curve, the three problems to be solved are:
●	 instantaneous frequency estimation process adapted to mul-

ticomponent interference is needed;
●	 FD-curve stretches in the dimension of time in different 

start-up power conditions, which the feature extraction pro-
cess and recognition process should be insensitive to;

●	 the start-up process of an emitter is not fully covered by the 
observation time window, which causes the incompleteness 
of an FD-curve.
The algorithm developed in this paper is mainly focused on 

the first two problems, and the second one is discussed in the 
most important part of this paper.

3.	 The proposed algorithm

The process flow of the algorithm proposed in this paper 
is shown in Fig. 3, which shows instantaneous frequency esti-
mation, FD-curve feature extraction and a recognition process 
based on support vector machine.

More detailed information about the instantaneous fre-
quency estimation algorithm can be found in [25‒27].

Every frequency drift curve needs a long observing time 
window of tens of minutes to process. An observing time 
window consists of many compact time slices. Over a period 
of observing time, a receiver receives several pulses of the emit-
ting signal in every time slice. During every time slice, the 
receiver extracts time-frequency distribution of every pulse and 
gets the instantaneous frequency of the pulse with the method 
based on adaptive fractional spectrogram. At the same time, 
the receiver separates all the pulses into different type emitters. 
During an observing time window, the receiver combines all the 
pulse instantaneous frequency of every same type emitter suc-
cessively from every time slice. Finally, the receiver obtains all 
the specific frequencies of every emitter during the observing 
time window and connects the specific frequencies into a curve.

3.2. Feature extraction process of an FD-curve. For different 
emitters, due to incomplete consistency of physical device, 
their FD-curves are physically different and with different 
stretching features. But for the same emitter operated with dif-
ferent powers, different stretched FD-curves in time dimension 
of frequency drift can be observed, which should be classified 
into the same emitter. Through the proposed feature extraction 
method of an FD-curve, the receiver can identify the different 
stretched characteristic curves of frequency shift caused by 
different start-up powers as the same emitter with particularly 
defined features, which means the proposed feature extraction 
method is insensitive to time dimensional stretching. Hence the 
principle of the feature extraction algorithm of an FD-curve 
proposed in this paper.

The basic feature extraction idea of an FD-curve is to find the 
characteristic points to represent the FD-curve. This paper aims 
to find some characteristic points according to specific rules 
of an FD-curve to decompose and represent the curve. First, 
authors attempt to find a specific point to divide the curve into 
two sub-curves, and then look for another feature points on the 
divided curves to divide the sub-curves again. After repeating the 
division several times, a group of feature points on an FD-curve 
can be obtained and used to represent the curve [28, 29]. Finally, 
a feature vector defined from the group of feature points can be 
obtained, and used to identify different emitters.

For example, as the curve AB shown in Fig. 4 defines the 
first splitting point or feature point on the curve AB as point C, 

Fig. 4. Feature points extraction of an FD-curve
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3.1 Instantaneous frequency estimation process.  The 
instantaneous frequency estimation process used in this 
paper is mainly inspired by the impressive work of Nabeel 
Ali Khan and Boualem Boashash [25]. The proposed 
algorithm by [25] is a multicomponent analysis method 
using time-frequency distributions based on the adaptive 
fractional spectrogram. 

The adaptive fractional spectrogram is developed from 
the short time Fourier transform, which is defined as 
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 ,h    is a Gaussian window expressed as equation (3), 
which has two adaptive parameters, the standard deviation 
of the Gaussian window σ and the rotation order of a 
fractional Fourier transform α.  
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More detailed information about the instantaneous 
frequency estimation algorithm can be found in [25-27]. 

Every frequency drift curve needs a long observing 
time window of tens of minutes to process. An observing 
time window consists of many compact time slices. Over 
a period of observing time, a receiver receives several 
pulses of the emitting signal in every time slice. During 
every time slice the receiver extracts time-frequency 
distribution of every pulse and gets the instantaneous 
frequency of the pulse with the method based on adaptive 
fractional spectrogram. At the same time, the receiver 
separates all the pulses into different type emitters. During 
an observing time window, the receiver combines all the 
pulse instantaneous frequency of every same type emitter 
successively from every time slice. Finally the receiver 
obtains all the specific frequencies of every emitter during 
the observing time window and connects the specific 
frequencies into a curve.  
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physical device, their FD-Curves are physically different 
and with different stretching features. But for the same 
emitter operated with different powers, different stretched 
FD-Curves in time dimension of frequency drift can be 
observed, which should be classified into the same emitter. 
Through the proposed feature extraction method of an 
FD-Curve by this paper, the receiver can identify the 
different stretched characteristic curves of frequency shift 
caused by different start-up powers as the same emitter 
with the particular defined features, which means the 
proposed feature extraction method is insensitive to time 
dimensional stretching. The following is the principle of 
the feature extraction algorithm of an FD-Curve proposed 
in this paper.  

The basic feature extraction idea of an FD-Curve is to 
find the characteristic points to represent the FD-Curve. 
This paper tries to find some characteristic points 
according to specific rules of an FD-Curve to decompose 
and represent the curve. Firstly this paper find a specific 
point to divide the curve into two sub-curves, and then 
look for another feature points on the divided curves to 
divide the sub-curves again. After repeating the division 
several times, a group of feature points on an FD-Curve 
can be obtained and used to represent the curve[28, 29]. 
Finally, a feature vector defined from the group of feature 
points can be obtained, and used to identify different 
emitters. 

D

E

0 x

y

 1 1,A x y

2M 3M

1M

 2 2,B x y

 3 3,C x y

 
Fig. 4. Feature points extraction of an FD-Curve 

Fig. 3. Process flow of the proposed SEI using FD-curve features

4 

The frequency drift curve is abbreviated to FD-Curve 
in the following parts of this paper. 

To develop an algorithm of specific emitter 
identification using the unintentional modulation features 
of frequency drift curve, the three problems needed to be 
solved are 

 An instantaneous frequency estimation process 
adapted to multicomponent interference is needed. 

 FD-Curve stretches in the dimension of time in 
different start-up power conditions, which the 
feature extraction process and recognition process 
should be insensitive to.  

 The start-up process of an emitter is not fully 
covered by the observation time window, which 
causes the incompleteness of an FD-Curve. 

The algorithm developed by this paper is mainly 
focused on the first two problems and the second one is 
the most important part of this paper. 

3. The proposed algorithm 

The process flow of the algorithm proposed by this 
paper is shown in Fig. 3, which consists of instantaneous 
frequency estimation, FD-Curve feature extraction and a 
recognition process based on support vector machine. 

Instantaneous
Frequency
Estimation

Input
Signal FD-Curve

Features
Extraction

SVM

Recognition
Result

 
Fig. 3 Process flow of the proposed SEI using FD-Curve features 

 
3.1 Instantaneous frequency estimation process.  The 
instantaneous frequency estimation process used in this 
paper is mainly inspired by the impressive work of Nabeel 
Ali Khan and Boualem Boashash [25]. The proposed 
algorithm by [25] is a multicomponent analysis method 
using time-frequency distributions based on the adaptive 
fractional spectrogram. 

The adaptive fractional spectrogram is developed from 
the short time Fourier transform, which is defined as 
       2

, ,STFT , j ft f s h t e d 
         (2) 

 ,h    is a Gaussian window expressed as equation (3), 
which has two adaptive parameters, the standard deviation 
of the Gaussian window σ and the rotation order of a 
fractional Fourier transform α.  

  
 2 2 2

2

cos 2
2

sin 2
, sin

u uj ujeh e du
j

   


 
  



 



   (3) 

The adaptive fractional spectrogram is finally defined 
as 

      
, ,

,, ,

2
2

,AFS , max
t f t f

t f t f

j ft f s h t e d
 

 
         (4)   

More detailed information about the instantaneous 
frequency estimation algorithm can be found in [25-27]. 

Every frequency drift curve needs a long observing 
time window of tens of minutes to process. An observing 
time window consists of many compact time slices. Over 
a period of observing time, a receiver receives several 
pulses of the emitting signal in every time slice. During 
every time slice the receiver extracts time-frequency 
distribution of every pulse and gets the instantaneous 
frequency of the pulse with the method based on adaptive 
fractional spectrogram. At the same time, the receiver 
separates all the pulses into different type emitters. During 
an observing time window, the receiver combines all the 
pulse instantaneous frequency of every same type emitter 
successively from every time slice. Finally the receiver 
obtains all the specific frequencies of every emitter during 
the observing time window and connects the specific 
frequencies into a curve.  

 
3.2 Feature extraction process of an FD-Curve.  For 
different emitters, due to incomplete consistency of 
physical device, their FD-Curves are physically different 
and with different stretching features. But for the same 
emitter operated with different powers, different stretched 
FD-Curves in time dimension of frequency drift can be 
observed, which should be classified into the same emitter. 
Through the proposed feature extraction method of an 
FD-Curve by this paper, the receiver can identify the 
different stretched characteristic curves of frequency shift 
caused by different start-up powers as the same emitter 
with the particular defined features, which means the 
proposed feature extraction method is insensitive to time 
dimensional stretching. The following is the principle of 
the feature extraction algorithm of an FD-Curve proposed 
in this paper.  

The basic feature extraction idea of an FD-Curve is to 
find the characteristic points to represent the FD-Curve. 
This paper tries to find some characteristic points 
according to specific rules of an FD-Curve to decompose 
and represent the curve. Firstly this paper find a specific 
point to divide the curve into two sub-curves, and then 
look for another feature points on the divided curves to 
divide the sub-curves again. After repeating the division 
several times, a group of feature points on an FD-Curve 
can be obtained and used to represent the curve[28, 29]. 
Finally, a feature vector defined from the group of feature 
points can be obtained, and used to identify different 
emitters. 

D

E

0 x

y

 1 1,A x y

2M 3M

1M

 2 2,B x y

 3 3,C x y

 
Fig. 4. Feature points extraction of an FD-Curve 

3.1. Instantaneous frequency estimation process. The in-
stantaneous frequency estimation process used in this paper 
is mainly inspired by the impressive work of Nabeel Ali Khan 
and Boualem Boashash [25]. The algorithm proposed in [25] is 
a multicomponent analysis method using time-frequency distri-
butions based on the adaptive fractional spectrogram.

The adaptive fractional spectrogram is developed from the 
short time Fourier transform, which is defined as
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where hα, σ(τ) is a Gaussian window expressed as , which has 
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which has the maximum distance CM1 from the straight line 
through point A and point B, called chord AB, and then point 
C divides the curve AB into sub-curve AC and sub-curve CB, 
which is the first segmentation shown in Fig. 4. Then point D 
and point E on the sub-curves of AC and CB are found. They 
have the maximum distance from chord AC and CB as well, 
and DM2 and EM2 denote corresponding maximum distance, 
respectively. Point C, point D and point E divide the original 
curve into sub-curve AD, sub-curve DC, sub-curve CE and sub-
curve EB, which is the second segmentation. Then the curve 
AD, DC, CE and EB is split, respectively, and the points having 
the farthest distance from the straight line AD, DC, CE and EB 
on the curve AD, DC, CE and EB are found. The segmentation 
processing is repeated until the distance from a feature point 
to its chord is smaller than a specific value. When two or more 
feature points are found at the same time, the point with the 
smallest abscissa value is selected as the final feature point.

Define the feature value of a feature point as

	 h = j y3 + d
ay1 + by2 + d j� (5)

where a, b, and d is constants. h is defined as the characteristic 
distance ratio.

The characteristic distance ratio defined by equation (5) is 
only related to the ordinate value of the endpoints and the fea-
ture point, so it is possible that the characteristic distance ratio 
is insensitive to the FD-curve stretching in time dimension. If 
the feature point C is also constant no matter how the FD-curve 
stretches in time dimension, the defined characteristic distance 
ratio is completely stable for the recognition algorithm.

To prove that the feature point is always constant no matter 
how the FD-curve stretches in time dimension, is to prove 
that the feature point still has the maximum distance after 
stretching.

Point A and point B denote the two endpoints of an FD-
curve, point C on the curve has the maximum distance from the 
straight line AB, which is recorded as CM and shown in Fig. 5. 
The length of CM according to the formula of distance from 
point to the straight line is

	 jCM j = 
s
jACj2 ¡  AC   ∙ AB

jABj

2

.� (6)

Substituting the coordinate values, the length of CM can 
be simplified as

	 jCM j = 
jx2 y ¡ x2 y1 ¡ x1y ¡ xy2 + xy1 + x1y2j

(x2 ¡ x1)
2 + (y2 ¡ y1)

2
. � (7)

If the FD-curve is stretched by a factor m, point A, B and 
C are transferred to the new point A′, B′ and C′ as shown in 

Fig. 5. The problem is transformed into whether point C′ has 
the farthest distance to the straight line A′B′. The distance from 
point C′ to the straight line A′B′ is

	 jC′M ′j = 
1
m jx2 y ¡ x2 y1 ¡ x1y ¡ xy2 + xy1 + x1y2j

(x2 ¡ x1)
2 + (y2 ¡ y1)

2
. � (8)

The denominator of the distance expression of any point on 
the FD-curve to straight line is the same as the denominator of 
(8), so the distance is the biggest one as long as the numerator 
is the biggest one. The numerator of equation (8) is almost the 
same as equation (7) except the stretching factor m. It is easy to 
see that C′ is the new feature point to make the distance jC′M ′j 
the biggest when the previous feature point C makes the length 
of CM the biggest.

That is to say, the feature point in the new FD-curve keeps 
the same position relatively after a horizontal stretching. Due 
to the characteristic distance ratio defined by (5), only related 
to the ordinate value and the ordinate value of the feature 
point which remains the same after stretching, the character-
istic distance ratio remains constant whether the FD-curve is 
stretched or not. So the defined characteristic distance ratio 
is completely insensitive to the FD-curve stretching in time 
dimension.

The defined characteristic distance ratio, insensitive to the 
FD-curve stretching in time dimension, makes it possible to 
be used for specific emitter identification. If an emitter starts 
up with a different power, the characteristic distance ratio of 
the feature points extracted from the FD-curve remains the 
same. In contrast, the characteristic distance ratio of the feature 
points extracted from different emitters’ FD-curves is origi-
nally different because the emitters are physically different. 
Those properties make it perfect for specific emitter identi-
fication using the unintentional modulation characteristics of 
frequency drift curve.

The procedure of the proposed algorithm for feature ex-
traction of an FD-curve is the following.
1)	 Mark the two end points of an FD-curve AB as the initial 

left and right end points P and Q, the abscissa of initial end 

M

Fig. 5. The endpoints and feature point with horizontal stretching
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For example, as the curve AB shown in Fig. 4, define 
the first splitting point or feature point on the curve AB as 
point C, which has the maximum distance CM1 from the 
straight line through point A and point B, called chord AB, 
and then point C divides the curve AB into sub-curve AC 
and sub-curve CB, which is the first segmentation and 
shown in Fig. 4. Then find the point D and point E on the 
sub-curves of AC and CB, which have the maximum 
distance from chord AC and CB as well, and DM2 and 
EM2 are respectively corresponding maximum distance. 
Point C, point D and point E divide the original curve into 
sub-curve AD, sub-curve DC, sub-curve CE and sub-curve 
EB, which is the second segmentation. Then split the 
curve AD, DC, CE and EB respectively, find the points 
having the farthest distance from the straight line AD, DC, 
CE and EB on the curve AD, DC, CE and EB, repeat the 
segmentation processing until the distance from a feature 
point to its chord is smaller than a specific value. When 
two or more feature points are found at the same time, the 
point with the smallest abscissa value is selected as the 
final feature point. 

Define the feature value of a feature point as 
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where a, b, and d is constants. h is defined as the 
characteristic distance ratio.  

The characteristic distance radio defined by equation 
(5) is only related to the ordinate value of the endpoints 
and the feature point, which makes it possible that the 
characteristic distance radio is insensitive to the FD-Curve 
stretching in time dimension. If the feature point C is also 
constant no matter how the FD-Curve stretches in time 
dimension, the defined characteristic distance radio is 
completely stable for the recognition algorithm. 

To prove that the feature point is always constant no 
matter how the FD-Curve stretches in time dimension, is 
to prove that the feature point still has the maximum 
distance after stretching.  
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Point A and point B denote the two endpoints of an 

FD-Curve, point C on the curve has the maximum 
distance from the straight line AB, which is recorded as 
CM and shown in Fig. 5. The length of CM according to 
the formula of distance from point to the straight line is 
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can be simplified as 
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If the FD-Curve is stretched by a factor m, point A, B 
and C are transferred to the new point A , B and C as 
shown in Fig. 5. The problem is transformed into whether 
point C has the farthest distance to the straight line A B  . 
The distance from point to the straight line  is 

 
   

2 2 1 1 2 1 1 2

2 22
2 1 2 1

1

/

x y x y x y xy xy x y
mC M

x x m y y

    
  

  
  (8) 

The denominator of the distance expression of any 
point on the FD-Curve to straight line is the same as the 
denominator of equation (8), so the distance is the biggest 
one as long as the numerator is the biggest one. The 
numerator of equation (8) is almost the same as equation 
(7) except the stretching factor m. It is easy to see that  
is the new feature point to make the distance C M   
biggest when the previous feature point C makes the 
length of CM biggest. 

That is to say, the feature point in the new FD-Curve 
keeps the same position relatively after a horizontal 
stretching. Due to the characteristic distance radio defined 
by equation (5) only related to the ordinate value and the 
ordinate value of the feature point keeping the same after 
stretching, the characteristic distance radio remain 
constant whether the FD-Curve is stretched or not. So the 
defined characteristic distance radio is completely 
insensitive to the FD-Curve stretching in time dimension.  

The defined characteristic distance radio, insensitive to 
the FD-Curve stretching in time dimension, makes it 
possible to be used for specific emitter identification. If an 
emitter starts up with a different power, the characteristic 
distance radio of the feature points extracted from the FD-
Curve remains the same. In contrast, the characteristic 
distance radio of the feature points extracted from 
different emitters’ FD-Curves is originally different 
because the emitters are physically different. Those 
properties make it perfect for specific emitter 
identification using the unintentional modulation 
characteristics of frequency drift curve. 

The procedure of the proposed algorithm for feature 
extraction of an FD-Curve is given by 

1) Mark the two end points of an FD-Curve AB as the 
initial left and right end points P and Q, the abscissa of 
initial end points are denoted as p and q. Segmentation 
times k is initially assigned by 1, the number of sub-FD-
Curve is denoted as i, initially assign the value of 
constants a, b and d. 
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points are denoted as p and q. Segmentation times k is ini-
tially assigned by 1, the number of sub-FD-curve is denoted 
as i, initially assign the value of constants a, b and d.

2)	 Find the feature point O on the FD-curve PQ, which has the 
maximum distance to the straight line PQ. If there is more 
than one feature point at the same time, select the leftmost 
point which has the smallest abscissa value, and the abscissa 
is denoted as o. Then the FD-curve PQ is divided into two 
sub-curves by the feature point O, and the characteristic 
distance ratio determined by the point O is

	 hki = j y(o) + d
ay(p) + by(q) + d j� (9)

where y(g)is the specific frequency series. 
3)	 Split the FD-curve AB for the k-th time, and 2k ¡ 1 feature 

points can be obtained in the 2k sub-FD-curves. In the k-th seg-
mentation, a feature sub-vector hk = (hk, 1, hk, 2, L, hk, 2k ¡ 1)T  
can be obtained. In the sub-FD-curve of i (i = 1, 2, …, 2k), 
mark the two end points of each sub-FD-curve as the ini-
tial left and right end points P and Q, and then execute 
step 2 processing. Finally, the selected feature points of 
the k-th segmentation split the FD-curve into 2k + 1 sub-
FD-curves;

4)	 k = k + 1, repeat Step 3 until the characteristic distance ra-
tio is less than a preset threshold or the segmentation times 
reache a preset threshold.

5)	 Compose all the characteristic distance ratio into a feature 
vector for the final recognition, noted as v = [h1, L, hk].
Finally, a specific feature vector can be obtained by the 

proposed feature extraction process.
The parameters a, b and d in (9) are designed to optimize 

the feature vector based on Fisher’s discriminant ratio (FDR) 
rule, and the FDR is defined as (10).

	 FDR(ij)(a, b, d) =  l= i, j
∑ p(l)


E(v(i)) ¡ E(v( j)) 

2

l= i, j
∑ p(l)D(v(l)) 

, � (10)

where l is the label of emitter, i and j is the class index number, 
p is the probability of different emitters, function E denotes the 
expectation and function D denotes the variance. The probabil-
ities of different emitters are assumed to be the same.

The values of a, b and d can be found by solving the opti-
mization problem

	
max FDR(ij)(a, b, d),  i  6= j

s.t.  0 ∙ a, b ∙ 1, 0 ∙ d ∙ max(y)
� (11)

which is an important further topic in the future and is not dis-
cussed in this paper. The values used in this paper are empirical, 
and they are given in the simulation section.

3.3. Recognition process. The recognition technique used in 
this paper is support vector machine (SVM), which is a ma-
chine intelligence algorithm based on the statistical learning 
theory [30].

The classification function (decision function) for linear 
separable data is defined as

	 f (x) = 
l

i =1
∑ liαihxi, xi + b � (12)

where αi is the Lagrange multiplier, which is always positive, 
h∙, ∙i represents the inner product, b/kwk is the perpendicular 
distance from the hyperplane to the origin with w included in 
∑l

i=1 yiαihxi, xi, and k∙k denotes the Euclidean norm. The clas-
sification function for nonlinear separable data is defined as

	 f (x) = 
l

i =1
∑ liαiK(xi, x) + b � (13)

where K(xi, x) is the kernel function to transform a nonlinear 
separable problem to a linear separable problem.

For l = 2, li is always assigned with {–1, 1} and (12) or (13) 
can be rewritten as

	 f ̂ (x) =  sgn[ f (x)], � (14)

where sgn is the signum function.
More detailed information about the SVM recognition al-

gorithm can be found in [30]. The SVM used in this paper is 
a multiclass SVM. The training and identification procedures 
of the recognition process are the following.

Training procedure:
1)	 Modulate the emitter signal s(t) using (1) with frequency 

drift values one by one indicated in Fig. 2(c), which means 
one point value in in Fig. 2(c) is for one independent sig-
nal pulse and one FD-curve is for one group of pulses. So 
a group of modulated pulses is a sample of an emitter. Let 
n be the number of samples of an FD-curve and the total 
amount of samples is N, so N is 6n in this paper.

2)	 Calculate the instantaneous frequency of every pulse using 
AFS and connect all the specific frequencies of each emitter 
in each group of pulses into a curve.

3)	 Extract the feature vector v of each FD-curve using the fea-
ture extraction process presented in Section 3.2.

4)	 Set the training percentage, denoted as β, and let {vi, li}, 
i = 1, …, βNN, be the set of training data with li 2 {1, L, E} 
as the label of each class and input the training data set into 
the SVM classifier for training. E is the number of emitters. 
Then the optimized αi , i = 1, L, E, and b is obtained.

Identification procedure:
5)	 Classify the test data denoted as {vi}, i = 1, …, (1 ¡ β)N, 

using the trained SVM classifier.
6)	 For E = 2, vi is labelled as 1 if f (vi) < 0, otherwise it is la-

belled as 2; For E > 2, the decision function cannot obtain 
the result directly. A one-versus-one technique and a max-
win voting mechanism are applied. The class winning the 
most votes is considered as the identification result.
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4.	 Simulation results and analysis

The simulation is organized by obtaining the curve with fre-
quency drift, extracting curve feature vectors and recognition 
of the emitters.

4.1. Obtaining the curves with frequency drift. Let us make 
linear frequency modulated (LFM) radars an example of emit-
ters, and the pure signal can be written as

	 s(t) = Aexp( j(2π ( f0t + 0.5kt2))� (15)

where the amplitude A is 1, the initial frequency f0 is 22 MHz, 
the chirp rate k is 0.04 MHz per microsecond, the chirp period 
and the pulse width are the same, which is 100 µs. So the signal 
frequency is modulated from 22 MHz to 26 MHz, which means 
the signal bandwidth is 4 MHz.

Modulate the chip signal with the different frequency drift 
shown in Fig. 2(c) and transmit the signals through a channel 
with additive white Gaussian noise. The receiver receives sev-
eral continuous pulses in every time slice and process the pulses 
using the proposed algorithm.

Then the received signal can be written as

	 r(t) = sfd(t) + n(t), � (16)

where n(t) is the Gaussian white noise.
Define the middle frequency of the chirp signal as the in-

stantaneous frequency and calculate the instantaneous frequency 
of the continuous received pulses with the instantaneous fre-
quency estimation process. Calculate the average instantaneous 
frequency of the several received signal pulses as the stable 
frequency in a time slice and connect the stable frequencies 
between time slices into an FD-curve.

When the signal to noise ratio (SNR) is 0 dB, the obtained 
FD-curves with frequency drift are presented in Fig. 6. As 
the error range of frequency measurement is much smaller 
than the frequency drift range, the FD-curves can easily be 
extracted automatically by detecting the frequency varying 
range.

The results shown in Fig. 6 indicate that the empirical re-
sults of frequency do not differ much from the theoretical values 
within an acceptable range, proving that the proposed instanta-
neous frequency estimation process based on the adaptive frac-
tional spectrogram method is quite effective in the analysis of 
time-frequency distribution. In Fig. 6, the empirical FD-curves 
is the results of computer simulation experiments, and the theo-
retical FD-curves is the same as the emitters in Fig. 2(c), which 
are regarded as theoretical values.

4.2. Extracting FD-curve feature vectors. Analyze the curves 
with frequency drift of three emitters working at higher powers 
and lower powers by the specific feature extraction algorithm 
of curve in the condition of Gaussian white noise of 0 dB, set 
a, b and d as 0.5, 0.2 and 0 respectively in (5); let the preset 

Fig. 6. The FD-curves to be identified when SNR = 0 dB, (a) results 
of the FD-curve of emitter 1, (b) results of the FD-curve of emitter 2, 

(c) results of the FD-curve of emitter 3

7 

winning the most votes is considered as the identification 
result. 

4. Simulation results and analysis 

The simulation is organized by obtaining the curve 
with frequency drift, extracting curve’s feature vectors 
and recognition of the emitters. 

 
4.1 Obtaining the curves with frequency drift.  Make 
linear frequency modulated (LFM) radars an example of 
emitters, and the pure signal can be written as 
   2

0exp( (2 ( 0.5 ))A j f t ks t t    (15) 
where the amplitude A is 1, the initial frequency f0 is 
22MHz, the chirp rate k is 0.04MHz per microsecond, the 
chirp period and the pulse width are the same, which is 
100μs. So the signal’s frequency is modulated from 
22MHz to 26MHz, which means the signal’s bandwidth is 
4MHz. 

Modulate the chip signal with the different frequency 
drift shown in Fig. 2(c) and transmit the signals through a 
channel with additive white Gaussian noise. The receiver 
receives several continuous pulses in every time slice and 
process the pulses using the proposed algorithm. 

Then the received signal can be written as 
      +fdr t s t n t   (16) 

where  n t  is the Gaussian white noise. 
Define the middle frequency of the chirp signal as the 

instantaneous frequency and calculate the instantaneous 
frequency of the  continuous received pulses with the 
instantaneous frequency estimation process. Calculate the 
average instantaneous frequency of the several received 
signal pulses as the stable frequency in a time slice and 
connect the stable frequencies between time slices into an 
FD-Curve.  

When the signal to noise ratio (SNR) is 0dB, the 
obtained FD-Curves with frequency drift are presented in 
Fig. 6. As the error range of frequency measurement is 
much smaller than the frequency drift range, the FD-
Curves can easily extracted automatically by detecting the 
frequency varying range. 

(a)  

(b)  

(c)  

Fig. 6. The FD-Curves to be identified when SNR=0dB, (a) results of the 
FD-Curve of emitter 1, (b) results of the FD-Curve of emitter 2, (c) 

results of the FD-Curve of emitter 3 
The results shown in Fig. 6 indicates that the empirical 

results of frequency only has little difference with the 
theoretical values within an acceptable range, proving that 
the proposed instantaneous frequency estimation process 
based on the adaptive fractional spectrogram method is 
quite effective in the analysis of time-frequency 
distribution. In Fig. 6, the empirical FD-Curves is the 
results of computer simulation experiments, and the 
theoretical FD-Curves is the same as the emitters in Fig. 
2(c), which are regarded as theoretical values. 

 
4.2 Extracting FD-Curves’ feature vectors.  Analyze 
the curves with frequency drift of three emitters working 
at higher powers and lower powers by the specific feature 
extraction algorithm of curve in the condition of Gaussian 
white noise of 0dB, set a, b and d as 0.5, 0.2 and 0 
respectively in equation (5) and the preset threshold of the 
segmentation times is 5. Then the feature vectors of 
fifteen elements can be obtained for recognition. The 
fifteen feature elements of the emitters’ respective FD-
Curves are shown in Table 1. 
Table 1 Empirical characteristics of the FD-Curves of  emitter 1, 2, and 3 

with two different start-up powers 

Feature  
number 

Emitter 1 Emitter 2 Emitter 3 

HPS LPS HPS LPS HPS LPS 
1 1.4204  1.4204  1.4240  1.4240  1.4252  1.4253  

2 1.4226  1.4227  1.4294  1.4332  1.4314  1.4315  

3 1.4347  1.4347  1.4345  1.4344  1.4346  1.4346  

4 1.4307  1.4306  1.4316  1.4303  1.4295  1.4296  

5 1.4272  1.4272  1.4300  1.4299  1.4316  1.4314  

0 2 4 6 8 10 12
23.9

24

24.1

24.2

24.3

t/min

f/M
H
z

 

 
HPS Empirical
HPS Theoretical
LPS Empirical
LPS Theoretical

0 2 4 6 8 10 12

24

24.05

24.1

24.15

24.2

24.25

24.3

t/min

f/M
H
z

 

 
HPS Empirical
HPS Theoretical
LPS Empirical
LPS Theoretical

0 2 4 6 8 10 12

24

24.05

24.1

24.15

24.2

24.25

24.3

t/min

f/M
H
z

 

 
HPS Empirical
HPS Theoretical
LPS Empirical
LPS Theoretical

t/min

24.3

24.2

24.1

24

23.9
0 2 4 6 8 10 12

f/
M

H
z

(a)

t/min

7 

winning the most votes is considered as the identification 
result. 

4. Simulation results and analysis 

The simulation is organized by obtaining the curve 
with frequency drift, extracting curve’s feature vectors 
and recognition of the emitters. 

 
4.1 Obtaining the curves with frequency drift.  Make 
linear frequency modulated (LFM) radars an example of 
emitters, and the pure signal can be written as 
   2

0exp( (2 ( 0.5 ))A j f t ks t t    (15) 
where the amplitude A is 1, the initial frequency f0 is 
22MHz, the chirp rate k is 0.04MHz per microsecond, the 
chirp period and the pulse width are the same, which is 
100μs. So the signal’s frequency is modulated from 
22MHz to 26MHz, which means the signal’s bandwidth is 
4MHz. 

Modulate the chip signal with the different frequency 
drift shown in Fig. 2(c) and transmit the signals through a 
channel with additive white Gaussian noise. The receiver 
receives several continuous pulses in every time slice and 
process the pulses using the proposed algorithm. 

Then the received signal can be written as 
      +fdr t s t n t   (16) 

where  n t  is the Gaussian white noise. 
Define the middle frequency of the chirp signal as the 

instantaneous frequency and calculate the instantaneous 
frequency of the  continuous received pulses with the 
instantaneous frequency estimation process. Calculate the 
average instantaneous frequency of the several received 
signal pulses as the stable frequency in a time slice and 
connect the stable frequencies between time slices into an 
FD-Curve.  

When the signal to noise ratio (SNR) is 0dB, the 
obtained FD-Curves with frequency drift are presented in 
Fig. 6. As the error range of frequency measurement is 
much smaller than the frequency drift range, the FD-
Curves can easily extracted automatically by detecting the 
frequency varying range. 

(a)  

(b)  

(c)  

Fig. 6. The FD-Curves to be identified when SNR=0dB, (a) results of the 
FD-Curve of emitter 1, (b) results of the FD-Curve of emitter 2, (c) 

results of the FD-Curve of emitter 3 
The results shown in Fig. 6 indicates that the empirical 

results of frequency only has little difference with the 
theoretical values within an acceptable range, proving that 
the proposed instantaneous frequency estimation process 
based on the adaptive fractional spectrogram method is 
quite effective in the analysis of time-frequency 
distribution. In Fig. 6, the empirical FD-Curves is the 
results of computer simulation experiments, and the 
theoretical FD-Curves is the same as the emitters in Fig. 
2(c), which are regarded as theoretical values. 

 
4.2 Extracting FD-Curves’ feature vectors.  Analyze 
the curves with frequency drift of three emitters working 
at higher powers and lower powers by the specific feature 
extraction algorithm of curve in the condition of Gaussian 
white noise of 0dB, set a, b and d as 0.5, 0.2 and 0 
respectively in equation (5) and the preset threshold of the 
segmentation times is 5. Then the feature vectors of 
fifteen elements can be obtained for recognition. The 
fifteen feature elements of the emitters’ respective FD-
Curves are shown in Table 1. 
Table 1 Empirical characteristics of the FD-Curves of  emitter 1, 2, and 3 

with two different start-up powers 

Feature  
number 

Emitter 1 Emitter 2 Emitter 3 

HPS LPS HPS LPS HPS LPS 
1 1.4204  1.4204  1.4240  1.4240  1.4252  1.4253  

2 1.4226  1.4227  1.4294  1.4332  1.4314  1.4315  

3 1.4347  1.4347  1.4345  1.4344  1.4346  1.4346  

4 1.4307  1.4306  1.4316  1.4303  1.4295  1.4296  

5 1.4272  1.4272  1.4300  1.4299  1.4316  1.4314  

0 2 4 6 8 10 12
23.9

24

24.1

24.2

24.3

t/min

f/M
H
z

 

 
HPS Empirical
HPS Theoretical
LPS Empirical
LPS Theoretical

0 2 4 6 8 10 12

24

24.05

24.1

24.15

24.2

24.25

24.3

t/min

f/M
H
z

 

 
HPS Empirical
HPS Theoretical
LPS Empirical
LPS Theoretical

0 2 4 6 8 10 12

24

24.05

24.1

24.15

24.2

24.25

24.3

t/min

f/M
H
z

 

 
HPS Empirical
HPS Theoretical
LPS Empirical
LPS Theoretical

24.3

24.2

24.25

24.15

24.1

24.05

24

0 2 4 6 8 10 12

f/
M

H
z

(b)

7 

winning the most votes is considered as the identification 
result. 

4. Simulation results and analysis 

The simulation is organized by obtaining the curve 
with frequency drift, extracting curve’s feature vectors 
and recognition of the emitters. 

 
4.1 Obtaining the curves with frequency drift.  Make 
linear frequency modulated (LFM) radars an example of 
emitters, and the pure signal can be written as 
   2

0exp( (2 ( 0.5 ))A j f t ks t t    (15) 
where the amplitude A is 1, the initial frequency f0 is 
22MHz, the chirp rate k is 0.04MHz per microsecond, the 
chirp period and the pulse width are the same, which is 
100μs. So the signal’s frequency is modulated from 
22MHz to 26MHz, which means the signal’s bandwidth is 
4MHz. 

Modulate the chip signal with the different frequency 
drift shown in Fig. 2(c) and transmit the signals through a 
channel with additive white Gaussian noise. The receiver 
receives several continuous pulses in every time slice and 
process the pulses using the proposed algorithm. 

Then the received signal can be written as 
      +fdr t s t n t   (16) 

where  n t  is the Gaussian white noise. 
Define the middle frequency of the chirp signal as the 

instantaneous frequency and calculate the instantaneous 
frequency of the  continuous received pulses with the 
instantaneous frequency estimation process. Calculate the 
average instantaneous frequency of the several received 
signal pulses as the stable frequency in a time slice and 
connect the stable frequencies between time slices into an 
FD-Curve.  

When the signal to noise ratio (SNR) is 0dB, the 
obtained FD-Curves with frequency drift are presented in 
Fig. 6. As the error range of frequency measurement is 
much smaller than the frequency drift range, the FD-
Curves can easily extracted automatically by detecting the 
frequency varying range. 

(a)  

(b)  

(c)  

Fig. 6. The FD-Curves to be identified when SNR=0dB, (a) results of the 
FD-Curve of emitter 1, (b) results of the FD-Curve of emitter 2, (c) 

results of the FD-Curve of emitter 3 
The results shown in Fig. 6 indicates that the empirical 

results of frequency only has little difference with the 
theoretical values within an acceptable range, proving that 
the proposed instantaneous frequency estimation process 
based on the adaptive fractional spectrogram method is 
quite effective in the analysis of time-frequency 
distribution. In Fig. 6, the empirical FD-Curves is the 
results of computer simulation experiments, and the 
theoretical FD-Curves is the same as the emitters in Fig. 
2(c), which are regarded as theoretical values. 

 
4.2 Extracting FD-Curves’ feature vectors.  Analyze 
the curves with frequency drift of three emitters working 
at higher powers and lower powers by the specific feature 
extraction algorithm of curve in the condition of Gaussian 
white noise of 0dB, set a, b and d as 0.5, 0.2 and 0 
respectively in equation (5) and the preset threshold of the 
segmentation times is 5. Then the feature vectors of 
fifteen elements can be obtained for recognition. The 
fifteen feature elements of the emitters’ respective FD-
Curves are shown in Table 1. 
Table 1 Empirical characteristics of the FD-Curves of  emitter 1, 2, and 3 

with two different start-up powers 

Feature  
number 

Emitter 1 Emitter 2 Emitter 3 

HPS LPS HPS LPS HPS LPS 
1 1.4204  1.4204  1.4240  1.4240  1.4252  1.4253  

2 1.4226  1.4227  1.4294  1.4332  1.4314  1.4315  

3 1.4347  1.4347  1.4345  1.4344  1.4346  1.4346  

4 1.4307  1.4306  1.4316  1.4303  1.4295  1.4296  

5 1.4272  1.4272  1.4300  1.4299  1.4316  1.4314  

0 2 4 6 8 10 12
23.9

24

24.1

24.2

24.3

t/min

f/M
H
z

 

 
HPS Empirical
HPS Theoretical
LPS Empirical
LPS Theoretical

0 2 4 6 8 10 12

24

24.05

24.1

24.15

24.2

24.25

24.3

t/min

f/M
H
z

 

 
HPS Empirical
HPS Theoretical
LPS Empirical
LPS Theoretical

0 2 4 6 8 10 12

24

24.05

24.1

24.15

24.2

24.25

24.3

t/min

f/M
H
z

 

 
HPS Empirical
HPS Theoretical
LPS Empirical
LPS Theoretical

t/min

24.3

24.2

24.25

24.15

24.1

24.05

24

0 2 4 6 8 10 12

f/
M

H
z

(c)



106

Y. Zhao, L. Wu, J. Zhang, and Y. Li

Bull.  Pol.  Ac.:  Tech.  66(1)  2018

threshold of the segmentation times be 5. Then the feature vec-
tors of fifteen elements can be obtained for recognition. The 
fifteen feature elements of the emitters’ respective FD-curves 
are shown in Table 1.

Table 1 
Empirical characteristics of the FD-curves of emitters 1, 2, and 3 

with two different start-up powers

Feature
number

Emitter 1 Emitter 2 Emitter 3

HPS LPS HPS LPS HPS LPS

11 1.4204 1.4204 1.4240 1.4240 1.4252 1.4253 

12 1.4226 1.4227 1.4294 1.4332 1.4314 1.4315 

13 1.4347 1.4347 1.4345 1.4344 1.4346 1.4346 

14 1.4307 1.4306 1.4316 1.4303 1.4295 1.4296 

15 1.4272 1.4272 1.4300 1.4299 1.4316 1.4314 

16 1.4356 1.4355 1.4293 1.4273 1.4295 1.4295 

17 1.4248 1.4248 1.4237 1.4237 1.4244 1.4244 

18 1.4289 1.4289 1.4303 1.4293 1.4286 1.4286 

19 1.4285 1.4285 1.4286 1.4286 1.4283 1.4283 

10 1.4272 1.4272 1.4287 1.4236 1.4279 1.4279 

11 1.4290 1.4290 1.4292 1.4292 1.4290 1.4291 

12 1.4267 1.4267 1.4234 1.4287 1.4287 1.4288 

13 1.4319 1.4317 1.4299 1.4299 1.4287 1.4287 

14 1.4237 1.4237 1.4256 1.4251 1.4246 1.4246 

15 1.4242 1.4242 1.4312 1.4310 1.4321 1.4321 

The feature elements shown in Table 1 show that the feature 
vectors of the same emitter with different startup powers is al-
most the same, which proves the anti-t-flexibility ability of the 
proposed feature extraction process of an FD-curve.

4.3. Recognition of the emitters. In the recognition experi-
ment of the three emitters, the SNR is set from 0 dB down to 
–7 dB and other parameters stay unchanged. Each simulation 
is repeated 1000 times in each SNR condition. Calculate the 
feature vectors of the FD-curves extracted from three different 
emitters of the same type working with two different powers. 
A sample group of 1000 feature vectors for each emitter with 
each start-up power is obtained in each SNR condition, respec-
tively. Then this paper processes the recognition by support 
vector machine with the first 20% samples for training and 
the remaining samples for testing. The recognition results are 
shown in Fig. 7.

In Fig. 7, the feature number is the number of elements used 
for emitter identification. For example, if the feature number 
is 5, then the corresponding identification rate in the abscissa 
value 5 is the result of the identification rate only using the 

first 5 elements of the feature vectors. Figure 7 shows that the 
identification rate generally increases as the feature number 
increases or the SNR increases. For the frequency drift models 
built in this paper, the feature number 4 or 5 is appropriate 
enough for identification, which means the performance of the 
proposed algorithm is excellent. There are mainly two reasons: 
firstly, the defined feature can directly and efficiently reflect 
the geometric signatures of different emitters’ FD-curves; sec-
ondly, the emitter frequency drift models’ individual difference 
is apparent enough. Predictably the feature number needed for 
identification increases as the signal frequency drift models’ 
individual difference decreases, and the computation needed 
for identification processing increases at the same time, which 
means the proposed algorithm is flexible.

The results in Fig. 7 show that the identification rate is gen-
erally more than 98% above –5 dB of SNR, which is excellent 
enough for most applications. The proposed algorithm is novel; 
the time length level in Fig. 1 the proposed algorithm focuses on 
is different from other references, which is a novel view of elec-
tronic emitters, so it is inaccurate and unpractical to compare 
with other algorithms. The identification performance shows 
that the proposed algorithm is valuable.

5.	 Real data verification

To verify the performance and practicality of the proposed al-
gorithm, this paper samples the emitted signals from two real 
devices. One of them is an E4438C made by Agilent, which 
has been used for more than 10 years and has some significant 
unintentional modulation features; another one is a radar sim-
ulator, which has been used for about 3 years and has weaker 
unintentional modulation features. To suppress the additional 
unintentional modulation from the sampling equipment, this 
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condition. Calculate  the feature vectors of the FD-Curves 
extracted from three different emitters of the same type 
working with two different powers. A sample group of 
1000 feature vectors for each emitter with each start-up 
power is got respectively in each SNR condition. Then 
this paper processes the recognition by support vector 
machine with the first 20 percent  samples for training and 
the rest samples for testing. The recognition results are 
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paper, the feature number 4 or 5 is appropriate enough for 
identification, which means the performance of the 
proposed algorithm is excellent. There are mainly two 
reasons: firstly, the defined feature can directly and 
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has been regulated in less than one year, to sample the 
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Fig. 8 Real signal sampling experiment, (a)sampling the E4438C, 
(b)signal sampling and signal processing diagram 

After all the measuring instruments are started up and 
stable, the signal sources are started up with preset 
configuration. The continues sampling time is about 35 
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paper uses M9703A, which is made by Keysight and has been 
regulated in less than one year, to sample the signal sources. 
The real signal sampling experiment is shown in Fig. 8.

After all the measuring instruments are started up and stable, 
the signal sources are started up with preset configuration. The 
continues sampling time is about 35 minutes, after which the 
signal sources are powered off and cooled down with an addi-
tional fan in about 25 minutes. The internal Celsius temperature 
of E4438C varies from about 25 degrees to about 55 degrees 
and the radar simulator varies from about 25 degrees to about 
50 degrees. The temperature increasing rate changes with 
different signal power output are not obvious enough, which 
makes the FD-curve stretching in the dimension of time in dif-
ferent start-up power conditions not convenient to be observed. 
As shown in Fig. 8(b), all the real data is processed offline by 
another personal computer.

Fig. 8. Real signal sampling experiment, (a) sampling the E4438C, (b) signal sampling and signal processing diagram
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Fig. 9. The FD-curves of E4438C and a radar simulator
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and cooled down with an additional fan in about 25 
minutes. The internal Celsius temperature of E4438C 
varies from about 25 degrees to about 55 degrees and the 
radar simulator  varies from about 25 degrees to about 50 
degrees. The temperature increasing rate changes with 
different signal power output are not obvious enough, 
which makes the FD-Curve stretching in the dimension of 
time in different start-up power conditions not convenient 
to be observed. As shown in Fig. 8(b), all the real data is 
processed offline by another personal computer. 

The carrier frequency is 425MHz, the modulation 
bandwidth is 2MHz, and the pulse width is 130μs. The 
sampling rate is 2GHz, and the digital down conversion 
process moves the spectrum to the intermediate frequency 
25MHz. The FD-Curves of the two emitters in some start-
up process are shown in Fig. 9. 

  
Fig. 9 The FD-Curves of E4438C and a  radar simulator 

As shown in Fig. 9, the final stable frequencies of the 
two emitters is different slightly, but the frequency drift 
curves are different obviously, which proves the years of 
use affects the unintentional modulation characteristics of 
an emitter much. We get 200 start-up processes of 
E4438C and the radar simulator  each in about a month. 
The identification rate of the two emitters is 100%, which 
proves the practical performance of the proposed 
algorithm. 

6. Conclusions 

In this paper, a geometric method for specific emitter 
identification is proposed by analyzing the unintentional 
modulation characteristic of frequency drift. Firstly, 
frequency drift models based on physical phenomenon is 
established and the frequency drift parameters are 
modulated into the pure signal of a typical radar; Secondly, 
a proposed algorithm for specific emitter identification, 
consisting of an instantaneous frequency estimation 
process, a feature extraction process of FD-Curves and a 
recognition process based on SVM, is presented; Finally 
the simulation results and analysis are given, and the real 
data verification proves the practical performance.  

As we can see in Fig. 9, the frequency accuracy is 
relatively a litter high than general applications. The 
frequency measurement accuracy is decided by the 

sampling rate and the sampled signal length. A higher 
accuracy need more computation cost and more time. The 
achieved frequency accuracy in this paper is about 4kHz. 
The proposed algorithm with high accuracy can be 
applied in ELINT systems, information forensics and 
security systems, etc., which computation resources are 
relatively abundant. The identification performance of the 
proposed algorithm is excellent enough for most 
applications, which is generally more than 98% above -
5dB of SNR. The contribution of the excellent 
performance is mainly from the accurate instantaneous 
frequency estimation process and the effective feature 
extraction process. Another important advantage of the 
proposed algorithm is the flexibility that the identification 
rate can be increased by increasing the frequency 
estimation accuracy and increasing the feature number 
used for identification in the cost of increasing 
computational complexity. Any application can find a 
balance between identification performance and 
computational complexity.  
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FD-curves of the two emitters in some start-up process are 
shown in Fig. 9.

As shown in Fig. 9, the final stable frequencies of the two 
emitters slightly differ, but the frequency drift curves are ob-
viously different, which proves the years of use affect the un-
intentional modulation characteristics of an emitter a lot. We 
have obtained 200 start-up processes of E4438C and the radar 
simulator each in about a month. The identification rate of the 
two emitters is 100%, whichprovethe practical performance of 
the proposed algorithm.

6.	 Conclusions

In this paper, a geometric method for specific emitter identi-
fication is proposed by analyzing the unintentional modula-
tion characteristic of frequency drift. Firstly, frequency drift 
models based on physical phenomenon are established and the 
frequency drift parameters are modulated into the pure signal 
of a typical radar. Secondly, a proposed algorithm for specific 
emitter identification, consisting of an instantaneous frequency 
estimation process, a feature extraction process of FD-curves 
and a recognition process based on SVM, is presented. Finally, 
the simulation results and analysis are given, and the real data 
verification proves the practical performance.

As we can see in Fig. 9, the frequency accuracy is relatively 
higher than general applications. The frequency measurement 
accuracy is decided by the sampling rate and the sampled signal 
length. A higher accuracy requires more computation costs and 
more time. The achieved frequency accuracy in this paper is 
about 4 kHz. The proposed algorithm with high accuracy can 
be applied in ELINT systems, information forensics and secu-
rity systems, etc., where computation resources are relatively 
abundant. The identification performance of the proposed al-
gorithm is excellent enough for most applications, which is 
generally more than 98% above –5 dB of SNR. The contribu-
tion of the excellent performance is mainly from the accurate 
instantaneous frequency estimation process and the effective 
feature extraction process. Another important advantage of the 
proposed algorithm is its flexibility: the identification rate can 
be increased by increasing the frequency estimation accuracy 
and increasing the feature number used for identification in the 

The carrier frequency is 425 MHz, the modulation band-
width is 2 MHz, and thepulse width is 130 µs. The sampling 
rate is 2 GHz, and the digital down conversion process moves 
the spectrum to the intermediate frequency 25 MHz. The 
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cost of increasing computational complexity. Any application 
can find a balance between identification performance and com-
putational complexity.
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