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Abstract: In this article, the current distribution of an antenna array in the presence of mu-
tual coupling is calculated analytically by solving Pocklington’s integral equation. Block-
pulse and Galerkin’s functions are used for numerical solving of Pocklington’s integral
equation. In this work, the surface current distribution can be achieved for an antenna ar-
ray in receiving mode, with any arbitrary structure and various numbers of elements. In
all previous works, the authors have been tried to solve Pocklington’s integral equation
for a single half dipole antenna in transmitting mode. Pocklington’s equation is somehow
difficult to work with because of the singularity and existence of a sharp peak for a small
value of wire’s radius. In order to calculate surface current distribution, for thin wires, sin-
gularity part is extracted from the kernel in aforementioned integral. Hence, the kernel is
decomposed into singular and nonsingular parts. An inter-element mutual coupling effect
between array elements and self-coupling for each element are assumed in this case. The
validity of the proposed methodology is tested by numerical simulation results. The ac-
curacy of the proposed method is evaluated by the multiple signal classification (MUSIC)
algorithm for different scenarios to direction of arrival (DOA) estimation.

Key words: antenna array, current distribution, DOA estimation, MUSIC algorithm, mu-
tual coupling effect, Pocklington’s integral equation

1. Introduction

Recently in the telecommunication industry, researchers have focused on using antenna ar-
rays for applications in areas such as mobile communications, radar and sonar systems, medical
imaging and multiple-input multiple-output systems (MIMO). Antenna arrays in receiving mode
are capable of scanning the space and providing spatial information about signal sources. Direc-
tion of arrival (DOA) estimation of an arrival signal is an important application in the antenna
array in the receiving mode and is the base of most of adaptive array processing algorithms.
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Practically, these algorithms may often be seriously affected by mutual coupling between array
elements. The mutual coupling among the array elements can significantly degrade the perfor-
mance of DOA estimation techniques and signal processing algorithms [1–6]. Hereupon, this
undesired effect has been attractive for the researchers who study in the context of adaptive ar-
ray processing and DOA estimation. Several papers have also been published presenting differ-
ent algorithms such as a full-wave method, calibration method, conventional-mutual-impedance
method (CMIM), and receiving-mutual-impedance method (RMIM) for compensating and de-
coupling the mutual coupling effect [1–8]. The method which uses the mutual-impedance method
(MIM) is a new and interesting method that is worth investigating. The calculation of the mu-
tual impedance is based on an estimated current distribution on the antenna array excited by a
plane wave [5]. To the best of our knowledge previous researchers have mostly tried to solve
Pocklington’s integral equation for an antenna array in transmitting mode. In the present work,
the surface current distribution was achieved for an antenna array in receiving mode by solving
Pocklington’s integral equation.

Pocklington’s integral equation sets a relation between the current distribution on a wire
antenna and the affected by an electric field on its surface. One of the first digital computer
solutions of the Pocklington’s equation was reported in 1965 [9]. Pocklington’s integral equa-
tion has been applied to specify the current along a straight thin-wire segment embedded in a
homogeneous lossless dielectric [10]. A few researchers have solved the thin-wire current by
using the analytical method of Pocklington’s integral equation. Pocklington’s equation is some-
how difficult to work because of the singularity and existence of a sharp peak in an integral
kernel for a small value of wire’s radius. Richmond has presented a solution for this prob-
lem by a numerical method, while the analytical method for solving this problem has been
presented in [11] that are based on the decomposition of the kernel in the singular and non-
singular parts. Recently, the attention of researchers has been focused to a wavelet-based mo-
ment method for solving Pocklington’s integral equation [12–16]. In [12], Pocklington’s integral
equation is simply solved by an effective method proposed based on Haar wavelets. The aim
of utilizing these wavelets is to reduce Pocklington’s integral equation computational complex-
ity to algebraic equations. Moreover, the authors in [12] have investigated the performance of
their method for convergence and the sparseness of the resulted matrix equation by using nu-
merical examples. In all previous works, the authors have been trying to solve Pocklington’s
integral equation for a single half dipole antenna in transmitting mode. In [15, 16] a fast effi-
cient algorithm based on the method of moments (MOM) and Haar wavelets in order to obtain
the current distribution on the antenna is proposed. In order to generate a system of the ma-
trix equations for a transmitting dipole antenna from the thin-wire electric field integral equa-
tion (EFIE), applied a wavelet expansion from the Haar orthogonal wavelet. The result shows
a good convergence at the feeding point by using Pocklington’s integral equation. Acharjee A.
et al. [17] obtained current distributions for a half-wave and full-wave dipole antenna and a
three-element Yugi–Uda antenna array by solving Pocklington’s integral equation. By using
current distribution, they obtained and analyzed a radiation pattern and input impedance of
a wire antenna.

A new formulation of Pocklington’s equation for thin wires has been presented in [18]. This
formulation for improper integrals was performed using the exact kernel. The results of apply-
ing exact kernel in solving Pocklington’s integral equation leads to numerically stable and good
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convergence with a pulse function point matching solution. In [19], the current distribution of
a dipole antenna is considered as the sinusoidal structure for finite diameter wires. To find a
more accurate current distribution on a barrel shaped wire, Pocklington’s integral equation is
suggested. Therefore, by knowing the voltage at the feed terminals of a dipole antenna and find
the current distribution by solving Pocklington’s integral equation, the input impedance and ra-
diation pattern can be acquired. In [20] Hallen and Pocklington’s integral equations were solved
by using a method of moments which is a numerical technique. So that, calculated current dis-
tribution of the antenna, MOM has been used on Pocklington’s and Hallen integral equations
for a transmitting antenna, by point matching and Galerkin functions. Due to the calculation of
the surface current distribution in thin wires, different basis functions are used to solve Pock-
lington’s and Hallen integral equations. Orthogonal piecewise constant basis functions, such
as a block-pulse function [21] and Haar-wavelet function [12] were used to solve the integral
equations.

In the majority of papers on the calculation of current distribution, the single antenna was
considered in transmitting mode, whereas in this research, the antenna array in receiving mode
in the presence of mutual coupling is evaluated. The novelty of this paper is to calculate the
surface current distribution of antenna array elements by analytical solving of Pocklington’s
integral equation. Due to the analytical solution of Pocklington’s integral equation, the kernel
is decomposed into non-singular and singular parts. The non-singular part due to slow changes
could be calculated numerically and the singular part must be calculated analytically. In this way,
all mutual coupling effects between the array elements are taken into account. The array is used
in receiving mode with arbitrary array element arrangement and an optional number.

As far as the excitations of the transmitting and receiving arrays are different, they have dif-
ferent mechanisms that cause mutual coupling. Consequently, the mutual-coupling effect for an
antenna array in the transmitting and receiving modes are two different problems, which should
be treated differently [19]. For analyzing a mutual coupling effect on antenna arrays in both
transmitting and receiving mode, current distribution on the antenna elements needs to be calcu-
lated. The calculation of current distribution can be done both by solving integral equations or by
utilizing available software such as FEKO [8] or NEC [22]. Since different studies are available
in transmitting mode on analytical solving of Pocklington’s integral equation in spite of avail-
ability of different software applications, it was decided to show its practicality for calculating
current distribution by solving integral equations in an antenna array in the presence of mutual
coupling in receiving mode. On the other hand, the compensation of mutual coupling effects of
antenna arrays, using signal processing algorithms, is highly dependent on the accurate compu-
tation of current distribution on the body of antenna elements. Therefore, in order to make sure
of the accuracy, we carried out the computation independently, by solving Pocklington’s integral
equations.

The rest of the paper is organized as follows: in section 2, Pocklington’s integral equation
and a mutual coupling effect are introduced. Kernel decomposition and calculation of current
distribution on the antenna array in the presence of the mutual coupling effect are presented
in section 3. In section 4, modeling the load impedance ZL at the terminals of the dipole ele-
ments are introduced. Simulation results of the surface current distribution for a four-element
uniform linear array (ULA) are presented in section 5. Finally, the conclusion is discussed in
section 6.
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2. Pocklington’s integral equation and mutual coupling effect

Pocklington’s equation is a principle of thin-wire antenna analysis and appears in lots of
researches and books [23–26]. The geometry from which Pocklington’s integral equation can
be achieved is shown in Fig. 1. As it can be seen in Fig. 1, the wire antenna is located along
the x-axis. The current distribution is limited to the central line of the wire antenna and directed
along the z-axis [27].

Fig. 1. Integral equation formulation [27]

A brief explanation of the integral usage can be offered by supposing a traditional model
that assumes an antenna made of a perfect thin conductor compared with the wavelength of the
electromagnetic field. The Pocklington approach assumes that the surface current distribution
can be simulated by a current string parallel to the antenna axis. Pocklington’s equation for a
wire of length L centered and directed along the z-axis is given as follows:(

∂ 2

∂ z2 + k2
)

A(z) =− jωµε E i
z(z). (1)

In Equation (1), k = 2π/λ (λ wavelength) is the wave number, ω (rad/s) is the angular
frequency, ε is the permittivity of the medium, and E i

z(z) is an external plane wave excitation.
According to the current distribution in the surface conductor of antenna, the vector potential,
A(z), for a dipole can be written as:

A(z) =
µ
4π

L/2∫
−L/2

IZ(z′)G(z,z′)dz′. (2)

In Equation (2), L is the length of dipole and G(z,z′) is the thin-wire kernel:

G(z,z′) =
e− jkR

R
. (3)

In order to investigate coupling effects of an array, the parameter R can be calculated differ-
ently for each state of self and mutual effects. To calculate self-coupling between two segments
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of a dipole, R, is [28].

R =
√
(z− z′)2 + r2 . (4)

To calculate mutual coupling, the distance between two segments of two antennas, R, is:

R =
√

(z− z′)2 +((p−1)d)2 , p = 1, 2, . . . , P. (5)

In Equation (4), z and z′ belong to a dipole, while in Equation (5) they belong to two different
dipoles. In the above equation, r is the radius of the dipole and P is a total number of array
elements and d is the distance between each element of the array. Substituting Equation (2) into
Equation (1), one obtains.

µ
4π

L/2∫
−L/2

IZ(z′)
(

∂ 2

∂ z2 G(z,z′)+ kG(z,z′)
)

dz′ =− jωµεE i
z(z). (6)

The achieved term from the second order derivative of the kernel is denoted by K(z,z′).

K(z,z′) =
(

∂ 2

∂ z2 + k2
)

G(z,z′). (7)

Therefore, Equation (1) could be rewritten as:

µ
4π

L/2∫
−L/2

IZ(z′)K(z,z′)dz′ =− jωµεE i
z(z). (8)

A solution of Equation (8) in the MOM formulation requires a block-pulse function and
Galerkin function as a basis function and weight function, respectively. Iz(z′) is an unknown
function in the left-hand side of Equation (8) which can be extended in term of a basis func-
tions fn(z′).

IZ(z′) =
PM

∑
n=1

an fn(z′). (9)

M is the total segment number of each array element, PM is the total number of array seg-
ments, an is the current envelope coefficient and fn(z′) is the basis function that is defined in
section 3. By using the basis function, fn(z′), and weight functions, fm(z′), in Equation (8) and
using Equation (9), one obtains.

µ
4π

PM

∑
n=1

an

∫
fm

fm(z)
∫
fn

fn(z′)K(z,z′)dz′ dz =−
∫
fm

fm(z) jωµε E i
z(z)dz. (10)

Both operators
∫

fm and
∫

fn indicate integration over a range of real numbers, for fm(z) ̸= 0
and fn(z) ̸= 0, respectively. The matrix form of Equation (10) is as follows:

Z a = b. (11)
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In Equation (11), vector a is the unknown columned vector of size PM ∗ 1 which contains
the samples related to the current distribution over the all antenna elements and vector b is the
known columned vector of size PM ∗1 and matrix Z with size PM ∗PM indicates the coefficient
matrix, which zmn represents the coupling between two differential segments of the antenna array.
Equation (11) may be solved numerically for a, and hence yields an approximate solution to
Equation (9). Matrix Z in Equation (11) can be obtained for m = 1, 2,. . . , PM, n = 1, 2, . . . ,
PM [6]:

zmn =
∫
fm

fm(z)
∫
fn

fn(z′)K(z,z′)dz′ dz. (12)

For m ̸= n the entry zmn in Equation (12) of the coefficient matrix Z can be evaluated by
using the numerical quadrature rule [29]. When m = n the integrand of Equation (12) is very
sharply peaked, particularly for a small value of r. Therefore, applying the kernel decomposition
is advantageous to extract and isolate the singularity.

In the next section, a procedure is presented to calculate surface current distribution for a thin
wires antenna array and a singularity part is extracted from the kernel in Pocklington’s integral
equation. The results of the modified kernel may be applied to considerable improvement of the
computational efficiency of certain moment method formulation.

3. Kernel decomposition and calculation of current distribution
on the antenna array in the presence of mutual coupling effect

In this section kernel decomposition, a block pulse basis function and Galerkin weight func-
tions are introduced. Richmond in [9] presents a specific form of Pocklington’s integral equation
which is evaluated by MOM [28, 30]. Since the field point is located in neighborhood of a source
point, the kernel has a sharp peak, calculations require significant care. Due to avoiding this mat-
ter, Richmond has proposed a method in [9] which suggested changing of variables. Another
approach eliminates singularity part of the kernel by decomposing the kernel into two parts. One
part that can be integrated numerically and another part is the singular part which can be inte-
grated analytically [11]. From the aspect of computational, using the kernel is advantageous in
extracting and isolation the singularity. So K(z,z′) is as follows:

K(z,z′) =
e− jkR

R5

[
(1+ jkR)(2R2 −3a2)+(kRa)2] . (13)

This can be done by decomposition Equation (13) of the form:

K(z,z′) = K(n)(z,z′)+K(s)(z,z′). (14)

In this equation, K(s)(z,z′) and K(n)(z,z′) represent the singular and non-singular parts of
kernel K(z,z′), respectively.

K(z,z′) =

[
e− jkR + jkR−1

][
(1+ jkR)(2R2 −3a2)+(kRa)2

]
R5 +

+

R2/2
[(

2+
(

ka/
2
)2

(kR)2
)
− (3+ j2kR)(kR)2

]
R5 ,

(15)
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K(s)(z,z′) =
k2

R

[
1− 1

8
(ka)2

]
+

2
R3

[
1− 1

4
(ka)2

]
− 3a2

R5 . (16)

By using Equation (14), we can express Equation (12) as:

zmn = z(n)mn + z(s)mn. (17)

In Equation (17), z(n)mn and z(s)mn are non-singular and singular parts give as:

z(n)mn =
∫
fm

fm(z)
∫
fn

fn(z′)K(n)(z,z′)dzdz′, (18)

z(n)mn =
∫
fm

fm(z)
∫
fn

fn(z′)K(s)(z,z′)dzdz′. (19)

The block-pulses are the orthogonal functions that are defined as:

B(z) =

 1
n−1

N
L ≤ z ≤ n

N
L

0 otherwise
. (20)

Galerkin and point matching or collocation choices are two interesting choices of weight
functions. Weighting functions in the Galerkin method are assumed to be the same as a block-
pulse function [28]. By assuming a block pulse as a basis function and Galerkin as a weight
function, Equations (18) and (19) can be written as:

z(n)mn =

Tm+1∫
Tm

Tn+1∫
Tn

K(n)(z,z′)dzdz′, (21)

z(s)mn =

Tm+1∫
Tm

Tn+1∫
Tn

K(s)(z,z′)dzdz′. (22)

The integrand of the integral in Equation (21) is well behaved and, as a consequence may be
efficiently and accurately evaluated numerically. The integrand of the integral in Equation (20)
contains a singularity and can be evaluated analytically as fol1ows [12]:

z(s)mn = h(τn+1,τm+1)−h(τn+1,τm)−h(τn,τm+1)+h(τn,τm), (23)

∂ 2h(z,z′)
∂ z∂ z′

= K(s)(z,z′). (24)

By using Equations (16) and (22), h(z,z′) could be achieved as:

h(z,z′) =
(
−1

8
k4a2 +

3
2

k2
)

R− 1
R
+

+

(
−1

8
k4a2 + k2

)
(z ln(−z+ z′+R)+ z′ ln(z− z′+R)).

(25)
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Consider the problem, as the arbitrary array, consisting of P dipole elements, with an arbi-
trary separation, d. When the array is under external plane wave excitation, the surface current
distribution on each dipole element must be compatible with Equation (1) for an antenna array in
receiving mode. The dipoles are considered as thin wires with perfect conductivity of length L,
having a circular cross section of radius r and parallel to the z-axis, so that L ≫ r, λ ≫ r. Due to
the MOM manner and using the approximation of the thin wire antenna, each dipole element is
subdivided into M equal segments, hence, the length of each dipole will be equal to dz = L/M.
The incident wave over the length of the wire E i

zp(z
′), is the incident wave over the length of

pth wire element, so z′ varies in [−L/2, L/2] interval. For a plane wave excitation arriving from
(θ ,φ), where φ and θ are the azimuth and elevation angles, respectively, E i

zp(z) is written as [6]:

E i
zp(z

′) = E0 sinθ e jk(xp sinθ cosφ+yp sinθ sinφ+z′ cosφ), p = 1, 2, . . . , P. (26)

In Equation (26), E0 represents the electric field intensity associated with an incident plane
wave, and xp and yp are the x and y coordinates of the pth wire element. In Equation (9),
Equations 1 to M correspond to Pocklington’s integral equation for the first element, and equa-
tions (p−1)M to pM correspond to Pocklington’s integral equation for the pth element, where
p = 1, 2, . . . , P. The nth element of the right-hand side of Equation (11), b, is:

bn =− j4πωε
∫
fm

fm(z)E i
zp(z)dz , (p−1)M+1 ≤ n ≤ pM. (27)

So by applying the Galerkin weight function, Equation (27) could be written as follows:

bn =− j4πωε
τm+1∫
τm

E i
zp(z)dz, (p−1)M+1 ≤ n ≤ pM. (28)

Thus, for the unknown vector a, i.e., the current distribution on all of the wire elements of
the antenna is obtained as follows:

a = Z−1b. (29)

4. Modeling the load impedance ZL at the terminals of the dipole elements

So far all wire elements in the array are assumed to be continuous, that is short circuited at
their central segments. In practice, the elements are connected to receiving stages. Assume the
equivalent input impedance of the line and receiver stage, connected to the pth element, is Zp

L ,
p = 1, 2, . . . , P (here P = 4). In this case, the boundary condition over the middle differential
segment of each wire element, which is connected to Zp

L , as in Fig. 2, is written as:

E i
z(z)+Es

z (z) =
vt

∆z
=

Zp
L it
∆z

. (30)

Here, the terminal voltage, vt , i.e. the voltage drop on Zp
L , is taken into account. E i

z(z) and
Es

z (z) are the incident and scattered fields, ∆z is the length of the middle differential segment of
the wire element, and it is the current at the input terminals of the element.
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Fig. 2. Modeling the input impedance of the receiver at the terminals
of the pth antenna element, Zp

L , p = 1, 2, . . . ,P [6]

By adding Zp
L it/∆z terms to Hallen’s integral equation and following Galerkin’s testing pro-

cedure, with testing functions fm(z), a double integral term is added to some elements of the
coefficient matrix Z, as:

Zm,(2p−1)(M−1)/2 → Zm,(2p−1)(M−1)/2 +
Zp

L
2η∆z

∫∫
fm(z′) f(M−1)/2(z

′)e− jk|z−z
′ | dz′ dz, (31)

M = (p−1)M+1, (p−1)M+2, . . . , pM, where, p = 1, 2, . . . , P. The double-integral term
represents the load impedance Zp

L , connected to the terminals of the pth wire element. Obviously,
if the element is short-circuited, the term vanishes [6].

5. Simulation

In this section, the proposed methodology, outlined in the previous section, is implemented
using the MATLAB software. In this method, all mutual coupling effects are considered to cal-
culate surface current distribution in an antenna array. To evaluate the surface current distribution
in an antenna array of the suggested method, two scenarios are presented.

In the first scenario, Pocklington’s integral equation for the single element is considered for
two wire lengths with L = λ/2 and L = λ . The parameters of the single dipole are defined as
following: frequency f = 3e8 Hz, applied thin wire radius a = 0.005λ , the wavelength of the in-
cident signal is λ = c/ f , c = 299792458, β = 2π/λ , ω = (6π/λ )×108 and ε0 = 8.854×10−12.
In both wire lengths, we considered rectangular pulse for E i

z(z) as follow:

E i
z(z) =


1

2∆

∣∣∣∣z− L
2

∣∣∣∣< ∆

0 otherwise
. (32)

In this equation ∆ = 0.001λ . Current distribution Iz(z′) for L = λ/2 and L = λ with N = 100,
500 was calculated by using Equation (9). The absolute value of normalized current distribution
Iz(z′)/∥Iz(z′)∥2 are plotted in Figs. 3 and 4 for L = λ/2 and L = λ respectively. As can be seen in
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Figs. 3 and 4, the solution of Pocklington’s integral equation converges rapidly with increasing
the value of N. The Haar wavelets method presented in [12, 15, 16] has limitations in selecting the
number of segments, whereas, the proposed approach doesn’t have any limitation in choosing the
number of segments. Therefore, the value of N can be chosen as arbitrary. It can be concluded that
using such techniques, leads to reduction of process time and computation rather than previous
methods [12, 15, 16].

Fig. 3. Absolute value of normalized current distribution on
single element for case L = λ/2

Fig. 4. Absolute value of normalized current distribution on
single element for case L = λ

In the second scenario, a uniform linear antenna array consisting of four dipoles was consid-
ered as located in x− z coordinate as shown in Fig. 5. The dipoles are considered as thin wires
with perfect conductivity and the length of dipole is equal to L = λ/2, from z =−L/2 to z = L/2,
having a circular cross section of radius r = 0.005λ , so that L ≫ r, λ ≫ r, and they are parallel
to the z-axis. Each dipole is divided into M = 500 equal segments of length dz = L/M. The array
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excited by two incident plane waves from azimuth angles φ = 45◦, φ = 60◦ and an elevation
angle θ = 90◦. The separation between the dipoles is d = λ/2. The incoming signal parameters
are presented in Table 1.

Fig. 5. Illustration of four dipole antennas array

Table 1. Incoming signal parameters

Parameters First signal Second signal

frequency 300 MHz 300 MHz

polarization vertical vertical

signal to noise ratio (SNR) 10 dB 10 dB

electric field intensity 1 V/m 1 V/m

direction of arrival (DOA) φ = 45◦ φ = 60◦

The absolute value of each array’s segment current distribution are plotted in Figs. 6 and 7 for
two azimuth angles φ = 45◦, φ = 60◦, respectively. As can be seen in Figs. 6 and 7 the calculated
current distribution depends on the direction of arrival of an incident signal to the array and by

Fig. 6. Absolute value of normalized current distribution in an
antenna array for signal DOA φ = 45◦
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changing the direction of arrival, the peak of each curve will be changed. The results of the
surface current distribution calculated from four dipoles with azimuth angles φ = 45◦, φ = 60◦

by the suggested method are listed in Table 2. To prove the correctness and accuracy of the
calculated current distribution, the gained data has been evaluated by the MUSIC algorithm for
DOA estimation of incident signals. Spatial spectrum of the MUSIC algorithm in Figs. 8 and 9
has a maximum value of about φ = 45◦ and φ = 60◦, respectively. As can be seen in Figs. 8
and 9, the measured DOA from the MUSIC algorithm has little different values in comparison
to the real DOA. This proves that the current distribution obtained from the proposed method
is correct. This difference is derived from the mutual coupling effects in antenna arrays, which
can be reduced or eliminated by using compensation methods, such as the open circuit voltage
method, receiving mutual impedance method and minimum norm method.

Fig. 7. Absolute value of normalized current distribution in an
antenna array for signal DOA φ = 60◦

Table 2. Comparisons of current distribution obtained from four dipoles with azimuth angles
φ = 45◦, φ = 60◦

Dipole
RadiusElement # DOA length

in λλλ
Current distribution

in λλλ

Element #1 φ = 45◦ 0.5λ 0.005λ 1.24239732921767+ j 0.246572680556934

Element #2 φ = 45◦ 0.5λ 0.005λ −1.43967834114108− j 1.38180684460279

Element #3 φ = 45◦ 0.5λ 0.005λ −0.893385348994451+ j 1.78763209824354

Element #4 φ = 45◦ 0.5λ 0.005λ 1.09066636091737− j 0.652397934197564

Element #1 φ = 60◦ 0.5λ 0.005λ 1.46907882964834+ j 0.209584324991737

Element #2 φ = 60◦ 0.5λ 0.005λ −0.0222146309132732− j 1.6109282355556

Element #3 φ = 60◦ 0.5λ 0.005λ −1.60799532140858− j 0.079833803622s893

Element #4 φ = 60◦ 0.5λ 0.005λ 0.161131122673406+ j 1.48117771418671
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Fig. 8. Spatial spectrum of the MUSIC algorithm for direction
of arrival detection of an incident signal from azimuth angles

φ = 45◦ and elevation angle θ = 90◦

Fig. 9. Spatial spectrum of the MUSIC algorithm for direction
of arrival detection of an incident signal from azimuth angles

φ = 60◦ and elevation angle θ = 90◦

6. Conclusions

The novelty of this paper is the calculation of the surface current distribution on antenna
array elements in receiving mode by analytical solving of Pocklington’s integral equation. Inter-
element mutual coupling effects are taken into account to calculate surface current distribution.
It is shown that the utilization of the MUSIC algorithm to the achieved current distribution by
the proposed method leads to the proper performance of direction of arrival estimation, in terms
of resolution and accuracy. By using a block-pulse function, the processing time and computa-
tional complexity have been decreased. The analytical solving of Pocklington’s integral equation
by the proposed method does not need consideration of boundary conditions, so the proposed
method has less computation than Hallen’s integral equation method to get surface current dis-
tribution. Therefore, the proposed method can be preferred over other methods to achieve the
surface current distribution of an antenna array as a receiver in the presence of a mutual coupling
effect.



78 N. Parhizgar Arch. Elect. Eng.

References

[1] Gupta I.J., Ksienski A.A., Effect of mutual coupling on the performance of adaptive arrays, IEEE
Transactions on Antennas and Propagation, vol. 31, no. 5, pp.785–791 (1983).

[2] Wallace J.W., Jensen M.A., Mutual coupling in MIMO wireless system: a rigorous network theory
analysis, IEEE Transactions on Wireless Communications, vol. 3, no. 4, pp. 1317–1325 (2004).

[3] Pasala K.M., Friel E.M., Mutual coupling effects and their reduction in wideband direction of arrival
estimation, IEEE Transactions on Aerospace and Electronic Systems, vol. 30, no. 4, pp. 1116–1122
(1994).

[4] Parhizgar N., Alighanbari A., Masnadi Shirazi M.A., Sheikhi A., Mutual Coupling Compensation for
a Practical VHF/UHF Yagi-Uda Antenna, ET Microwaves, Antennas & Propagation, vol. 7, no. 13,
pp. 1072–1083 (2013).

[5] Lui H.S., Hui H.T., Effective mutual coupling compensation for direction-of-arrival estimations using
a new, accurate determination method for the receiving mutual impedance, Journal of Electromagnetic
Waves and Applications, vol. 24, no. 2–3, pp. 271–281 (2010).

[6] Parhizgar N., Alighanbari A., Masnadi Shirazi M.A., Sheikhi A., A modified decoupling scheme for
receiving antenna arrays with application to DOA estimation, International Journal of RF and Mi-
crowave Computer-Aided Engineering, vol. 23, no. 2, pp. 246–259 (2013).

[7] Parhizgar N., Masnadi-Shirazi M.A., Alighanbari A., Sheikhi A., Adaptive nulling of a linear dipole
array in the presence of mutual coupling, International Journal of RF and Microwave Computer-Aided
Engineering, vol. 24, no. 1, pp. 30–38 (2014).

[8] Hui H.T., A practical approach to compensate for the mutual coupling effect in an adaptive dipole
array, IEEE Transactions on Antennas and Propagation, vol. 52, no. 5, pp. 1262–1269 (2004).

[9] Richmond J.H., Digital computer solutions of the rigorous equations for scattering problems, Pro-
ceedings of the IEEE, vol. 53, no. 8, pp. 796–804 (1965).

[10] Pocklington H.C., Electrical oscillations in wires, Proceedings of the Cambridge Philosophical Soci-
ety, vol. 9, no. 7, pp. 324–332 (1897).

[11] Werner D.H., Werner P.L., Breakall J.K., Some computational aspects of Pocklington’s electric field
integral equation for thin wires, IEEE Transactions on Antennas and Propagation, vol. 42, no. 4,
561–563 (1994)

[12] Shamsi M., Razzaghi M., Nazarzadeh J., Shafiee M., Haar wavelets method for solving Pocklington’s
integral equation, Kybernetika, vol. 40, no. 4, pp. 491–500 (2004).

[13] Wang G., Application of wavelets on the interval to the analysis of thin-wire antennas and scatterers,
IEEE Transactions on Antennas and Propagation, vol. 45, no. 5, pp. 885–893 (1997).

[14] Wagner R., Chew W., A study of wavelets for the solution of electromagnetic integral equations, IEEE
Transactions on Antennas and Propagation, vol. 43, no. 5, pp. 802–810 (1995).

[15] Bayjja M., Boussouis M., Touhami N.A., Zeljami K., Comparison between solution of Pocklington’s
and Hallen’s integral equations for thin wire antennas using method of moments and Haar wavelet,
International Journal of Innovation and Applied Studies, vol. 12, no. 4, pp. 931–942 (2015).

[16] Mohamed B., Moubadir M., Boussouis M., Touhami N.A., Analysis of dipole antennas using moment
methods and Haar wavelet, International Conference on Wireless Networks and Mobile Communica-
tions (WINCOM), pp. 1–6 (2015).

[17] Acharjee B., Matin Md. A., Analysis of Wire Antennas by Solving Pocklington’s Integral Equation Us-
ing Wavelets, 5th International Conference on Electrical and Computer Engineering (ICECE) Dhaka,
Bangladesh, pp. 778–782 (2008).



Vol. 67 (2018) Calculating surface current distribution in antenna array 79

[18] Forati E., Mueller A.D., Yarandi P.G., Hanson G.W., A new formulation of Pocklington’s equation for
thin wires using the exact kernel, IEEE Transactions on Antennas and Propagation, vol. 59, no. 11,
pp. 4355–4360 (2011).

[19] Balanis C.A., Antenna Theory: Analysis and Design, John Wiley & Sons (2008).
[20] Harrington R.F., Field Computation by Moment Methods, IEEE Press (1993).
[21] Deb A., Sarkar G., Sen S.K., Block pulse functions, the most fundamental of all piecewise constant

basis functions, International Journal of System Science, vol. 25, no. 2, pp. 351–363 (1994).
[22] Ludick D.J., Maaskant R., Davidson D.B., Jakobus U., Mittra R., de Villiers D., Efficient analysis

of large aperiodic antenna arrays using the domain Green’s function method, IEEE Transactions on
Antennas and Propagation, vol. 62, no. 4, pp. 1579-1588 (2014).

[23] Wu T.T., Introduction to linear antennas, Antenna Theory, Part I, Collin, R.E., Zucker, F.J. (eds.),
Chapter 8, McGraw-Hill (1969).

[24] Stutzman W.L., Thiele G.A., Antenna theory and design, John Wiley & Sons (2012).
[25] Balanis C., Advanced engineering electromagnetics, John Wiley & Sons (1999).
[26] Elliot R.S., Antenna theory & design, John Wiley & Sons (2006).
[27] Rawle W.D., The method of moments: A numerical technique for wire antenna design, High Frequency

Electronics, vol. 5, pp. 42–47 (2006)
[28] Richmond J., A wire-grid model for scattering by conducting bodies, IEEE Transactions on Antenna

Propagation, vol. 14, no. 6, pp. 782–786 (1966).
[29] Sidi A., Numerical quadrature rules for some infinite range integrals, Mathematics of Computation,

vol. 38, no. 157, pp. 127–142 (1982).
[30] Thiele G.A., Wire Antennas, Computer Techniques for ElectroMagnetics, Mittra, R. (ed.), Chapter 2,

Elmsford, Pergamon Press (1973).


