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Abstract: The paper presents a new method of constructing equidistant map projections 
of a triaxial ellipsoid as a function of reduced coordinates. Equations for x and y 
coordinates are expressed with the use of the normal elliptic integral of the second 
kind and Jacobian elliptic functions. This solution allows to use common known and 
widely described in literature methods of solving such integrals and functions. The main 
advantage of this method is the fact that the calculations of x and y coordinates are 
practically based on a single algorithm that is required to solve the elliptic integral of 
the second kind. Equations are provided for three types of map projections: cylindrical, 
azimuthal and pseudocylindrical. These types of projections are often used in planetary 
cartography for presentation of entire and polar regions of extraterrestrial objects. The 
paper also contains equations for the calculation of the length of a meridian and a parallel 
of a triaxial ellipsoid in reduced coordinates. Moreover, graticules of three coordinates 
systems (planetographic, planetocentric and reduced) in developed map projections are 
presented.  The basic properties of developed map projections are also described. The 
obtained map projections may be applied in planetary cartography in order to create 
maps of extraterrestrial objects. 

Keywords: map projection, triaxial ellipsoid, reduced coordinates, geocentric 
coordinates, planetocentric coordinates

1. Introduction

A triaxial ellipsoid is often used as a reference surface in map projections of irregular 
extraterrestrial objects. Subject literature provides numerous examples of such map 
projections. Bugayevsky (1987, 1991) developed the conformal cylindrical projection 
of a triaxial ellipsoid. Snyder (1985) presented the triaxial equivalent of the Mercator 
projection. Different versions of conformal projections of a triaxial ellipsoid were 
created by Nyrtsov (2014), who developed such a projection with use of elliptical 
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coordinates. Fleis et al. (2013) presented a conformal projection that maintained the 
angle between parallels and meridians. Nyrtsov at al. (2013) presented an equal-
area map projection of a triaxial ellipsoid. Bugaevsky (1999) created a cylindrical 
equidistant along meridians map projection of a triaxial ellipsoid. The equations used 
to calculate the lengths of meridians were in a form of trigonometric series. Nyrtsov 
at al. (2012) also presented cylindrical and azimuthal equidistant along meridians map 
projections of a triaxial ellipsoid. Equations for calculating the lengths of meridians 
were in a form of elliptic integrals (not in the canonical forms) and the method of 
numerical integration was proposed.

Planetocentric and planetographic coordinates are often used to describe 
a triaxial ellipsoid and their map projections (Fleis et al., 2013; Nyrtsov at al., 2012; 
Nyrtsov, 2013; 2014). In literature, the term “geocentric” is sometimes used instead 
of planetocentric and geodetic or geographic instead of planetographic coordinates 
(Bektaş, 2014; 2015). However, such term with the “geo-” prefi x should refer only to 
the terrestrial ellipsoid. As far as the ellipsoids of extraterrestrial objects are concerned, 
the “planeto-” prefi x should be used instead of “geo-“. Equations for a triaxial ellipsoid 
in planetographic coordinates may be found in (Nyrtsov at al., 2007) and with the use 
of planetocentric coordinates in (Nyrtsov, 2015). These equations enable to calculate 
3D Cartesian coordinates on the basis of planetocentric and planetographic coordinates. 
Nyrtsov (2012) provided the defi nitions of both coordinates systems. Bektaş (2015) 
in turn presented the defi nition of geodetic coordinates on a triaxial ellipsoid, which 
is convergent with Nyrtsov’s (2012) defi nition of planetographic coordinates.  He 
also presented the differences between graticules in geodetic coordinate systems 
on a triaxial and on an oblated ellipsoid. Planetocentric coordinates are often used 
in sets of data, e.g. data of surface models of extraterrestrial objects, available on 
NASA website (sbn.psi.edu/pds/archive/sat.html). Also on the IAU (International 
Astronomical Union) website (planetarynames.wr.usgs.gov) there is a gazetteer of 
planetary nomenclature with sets of data with planetocentric coordinates. On the other 
hand, the heights of points are determined from the surface along normal vector. Hence 
planetographic coordinates are important to create maps of extraterrestrial objects, 
too. As the descriptions of planetographic and planetocentric coordinate systems in 
literature are suffi cient, the author decided not to publish their characteristics. Readers 
can fi nd more information about coordinate systems of a triaxial ellipsoid in the papers 
(Bektaş, 2014; Bektaş, 2015; Ligas, 2012). Using other ways of parameterization of 
a triaxial ellipsoid may simplify the process of creating map projections and enable 
a more aesthetic form of the functions. For example Nyrtsov (2014) used ellipsoidal 
coordinates to create conformal projection of a triaxial ellipsoid and Bugayevsky 
(1991) used isometric coordinates for the same purpose. The author of this paper 
propose to use reduced coordinates in equidistant map projections. Presentation of 
the equation of a triaxial ellipsoid in reduced coordinates provides the opportunity 
to derive simple equations for the calculation of lengths of meridians and parallels 
and to construct map projections with use of the normal elliptic integrals of the 
second kind and Jacobian elliptic functions. In practice, the task that is necessary in 
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the application of this type of mapping is to carry out the transformation between 
coordinate systems of a triaxial ellipsoid. Well-known and relatively simple equations 
allow to make such calculations. The transformation between planetographic, 
planetocentric and reduced coordinate systems is carried out according to 
the following scheme:

 

vu,  ZYX ,, LB,  
 

,    

where: X, Y, Z – 3D Cartesian coordinates, u – a reduced latitude, v – a reduced 
longitude, φ – a planetocentric latitude, λ – a planetocentric longitude, B – a 
planetographic latitude, L.– a planetographic longitude. According to the scheme in 
order to transform the coordinates from one system to another, the latitudes and 
longitudes are transformed to 3D Cartesian coordinates X, Y, Z fi rst and then to 
latitudes and longitudes in the other system. So it is necessary to know the equations 
for direct and inverse transformation between planetographic, planetocentric, reduced 
coordinate systems and the 3D Cartesian coordinate system.

The main aim of the paper is to present the construction of equidistant map 
projections of a triaxial ellipsoid with use of reduced coordinates. The equations for 
the lengths of meridians and parallels are expressed by means of the normal elliptic 
integrals of the second kind and Jacobian elliptic functions.

The article starts with a presentation of the reduced coordinate system of a triaxial 
ellipsoid. This section contains the equations of transformations to 3D Cartesian 
coordinates and properties of a graticule. The next section demonstrates the derivation 
of equations for lengths of meridians and parallels with use of the normal elliptic 
integrals of the second kind and Jacobian elliptic functions. The subsequent section 
describes equidistant along meridians map projections of a triaxial ellipsoid in reduced 
coordinates and presents the images of graticules of a triaxial ellipsoid. The developed 
projections may be applied to create maps of extraterrestrial objects.

2. Reduced coordinates

The reduced coordinates on an oblated ellipsoid are commonly known in geodesy. 
This section describes how to generalize them to a triaxial ellipsoid. The term 
“reduced” latitude is used in case of an oblated ellipsoid and planetocentric, 
planetographic and reduced latitudes are distinguished as different coordinates. 
However, as far as an oblated ellipsoid is concerned, the longitude is the same 
for these three systems. In case of a triaxial ellipsoid there are differences both in 
latitudes and longitudes between those three coordinate systems. So in this paper, 
the authors use the term “reduced” for latitude and longitude in case of a triaxial 
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ellipsoid and consider them a generalization of reduced coordinates of an oblated 
ellipsoid to a triaxial ellipsoid. In literature, reduced coordinates on a triaxial ellipsoid 
are sometimes referred to as parametric coordinates (Bektaş, 2015) and equations of 
a triaxial ellipsoid in reduced coordinates are known as a Gaussian parametric form 
(Bektaş,2015).

The relationship between the 3D Cartesian coordinates and the reduced coordinates 
of a triaxial ellipsoid is represented by equations (Bektaş, 2015):

 
vuaX coscos  

vubY sincos  
ucZ sin  

 (1)

where:
a, b, c are the semi-axes of a triaxial ellipsoid,
u is the reduced latitude,
v is the reduced longitude.
The dependence that enables to determine the reduced coordinates on the basis of the 
3D Cartesian coordinates has the following form:

 c
Zu arcsin , 

Xb
Yav arctan . 

 (2)

The view of the reduced coordinate graticule on a triaxial ellipsoid is shown 
in fi g. 1. Parallels are drawn with an interval Δu = 10o, meridians also with 
Δv = 10o. Meridians in a reduced coordinates system are ellipses with the length 
of the polar semi-axis equal to c and the length of the equatorial semi-axis varying 
from a to b depending on the parameter v. Parallels are also ellipses with the length 
of the fi rst semi-axis equals to a consu and the second equals to b consu. Meridians 
v = const and parallels u = const are not orthogonal (Bektaş, 2015). They are shown 
in Figure 1.
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Fig. 1. View of the reduced coordinate graticule on a triaxial ellipsoid in perspective. 
Parallels are drawn with interval Δu = 10o, meridians also with Δv = 10o. 

3. The lengths of meridians and parallels of a triaxial ellipsoid in reduced 
coordinates

In order to construct an equidistant along meridians and parallels map projections the 
equations for the lengths of meridians and parallels are required. On a triaxial ellipsoid 
the parallels u =const are ellipses. On a parallel the coordinate v changes. The length 
of arc of parallel is calculated from the central meridian to any other meridian. On 
a triaxial ellipsoid meridians v =const are ellipses too. On a meridian the coordinate 
u changes. The length of the arc of a meridian is calculated from the equator to any 
other parallel. Equations are derived basing on the equation of a triaxial ellipsoid in 
the form (1) where reduced coordinates are used.

3.1 Derivation of equations for the lengths of meridians between the equator 
and a parallel

The length of the arc of a meridian sm between the equator u = 0 and the parallel 
u = ui on a triaxial ellipsoid described by equation (1)  is expressed by the equation:
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(3)

where the partial derivatives are in the form:

vua
du
dX cossin  

vub
du
dY sinsin  

uc
du
dZ cos  

and they are obtained by differentiation of (1). In that case the reduced latitude u is 
variable and the reduced longitude v is constant.  After substituting partial derivatives 
to (3) some modifi cation is introduced: 
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Finally the equation for the length of a meridian is obtained, in the form of:

m

u

mm cIduuncs
i

1
0

22 sin1 , 

where:

1sincos
2

2222
2

c
vbvanm . 

If a > b > c then nm
2 > 0 and according to (Byrd and Friedmann, 1954) the integral 

I1m can be presented in the form of:
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mmm IkI 21 '  

where:
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and the integral I2m  has the following form (Byrd and Friedmann, 1954):
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where: 

mm kE ,   is the normal elliptic integral of the second kind,
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snϑm and cdϑm are Jacobian elliptic functions.

Finally, the equation for the length of a meridian arc is as follows:
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3.2 Derivation of the equations for the lengths of parallels between the central 
meridian and any other meridian

The equation for the length of the parallel arc sp between central meridian v = 0 and 
meridian v = vi on a triaxial ellipsoid described by equation (1) is as follows:
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where the partial derivatives are in the form:p

vua
dv
dX sincos  

vub
dv
dY coscos  

0
dv
dZ  

and they are obtained by differentiation of (1). In that case the reduced longitude v is 
variable and the reduced latitude u is constant.  After substituting partial derivatives 
to (5) some modifi cation is introduced:
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Finally the equation for length of a parallel is obtained, in the form of:

p

v

pp bIdvvnubs
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where:

12

2
2

b
anp . 

If a > b then np
2 > 0 and the integral I1p, similarly as for a meridian can be presented 

in the form of  (Byrd and Friedmann, 1954):

ppp IkI 21 '

where:
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and integral I2p  has the following form (Byrd and Friedmann, 1954):
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where:

pp kE ,   is the normal elliptic integral of the second kind,
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psn  and pcd  are Jacobian elliptic functions.

Finally, the length of the parallel’s arc can be expressed using the equation:

 ppppp
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where:

pp kE ,   is the normal elliptic integral of the second kind,
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3.3 The results of calculations of the lengths of meridians

Due to the fact that the meridians and parallels in a reduced coordinate system 
are ellipses, similar algorithms may be used to calculate the lengths of their arcs. 
Equations (4) and (6) differ slightly, so the author decided to test only the algorithm 
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for the calculation of lengths of meridians. Moreover, this algorithm may be used to 
calculate the lengths of meridians in other coordinate systems, i.e. planetographic and 
planetocentric, because they are also ellipses but located on different planes. In that 
case it is required to transform the coordinates from planetographic or planetocentric 
system to the reduced coordinate system and then the lengths of meridians may be 
calculated. Thus, it is possible to control the results obtained with use of equation (4) 
by using the equation for the length of a meridian on a triaxial ellipsoid expressed by 
planetocentric or planetographic coordinates.

Using the derived equation (4) calculations were performed for 1/8 part of 

a triaxial ellipsoid, where 
2

,0u , 
2

,0v . The other parts of an ellipsoid 

are symmetrical. For the purposes of calculations the following lengths of the 
semi-axis were assumed: a = 267.5 m, b = 147 m, c = 104.5 m for a triaxial ellipsoid 
as a reference surface for asteroid 25143 Itokawa (Nyrtsov at al., 2014). First of all, 
the reduced and planetocentric coordinates were calculated for 16 points located on 
a triaxial ellipsoid. Points were located on 4 meridians v = 0, 30, 60 and 90 and 
four parallels u = 0, 30, 60 and 90 and the coordinates were given in reduced 
coordinate system. Then planetocentric coordinates were calculated for these points. 
This means that fi rst the 3D Cartesian coordinates were calculated using equation (1) 
and then the planetocentric coordinates were calculated using equations (7) obtained 
on the basis of  equation of a triaxial ellipsoid given in (Nyrtsov at al., 2007). The 
results are presented in Table 1 in columns 1–5. 

 Zsin ,  (7)

 X
Ytan . 

 
where:

222 ZYX

X, Y, Z – 3D Cartesian coordinates, φ is a planetocentric latitude, λ – a planetocentric 
longitude.

Then the lengths of the arcs of meridians between points from table 1 were 
calculated. It means that the lengths of 12 arcs of meridians v = 0, 30, 60 and 90 
(3 arcs for every meridian between the equator u= 0 and parallels u = 30, 60 and 
90) were calculated. For this calculation equations (4) were used. The results are 
presented in the 7th column of Table 1. The lengths of these arcs of meridians were 
verifi ed by their calculation using numerical integration with alternative following 
equations  (http://geocnt.geonet.ru/en/3_axial):
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where:
φ is a planetocentric latitude,
λ is a planetocentric longitude,
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1 / abae , 2222 / eleld dcde , 
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1 cos1 e
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The arcs of meridians were calculated basing on the planetocentric coordinates from 
column 4 and 5 of Table 1 and equation (8). The results are listed in the 8th column 
of Table 1. So the lengths of meridians were determined in two coordinate systems 
(with different longitudes) but located on the same appropriate planes. The arcs of the 
same ellipses were calculated with the use of different equations.
The results are shown in Table 1. The length of arcs of meridians was calculated with 
use of equations 4 and 8.

Table 1. The results of calculations of coordinates and lengths of meridians for a triaxial ellipsoid

points reduced coordinates planetocentric coordinates line

lengths of 
meridians
in reduced 
coordinates

[m]

lengths of 
meridians in 

planetocentric 
coordinates

[m]
u v φ λ

1 2 3 4 5 6 7 8
P1 0 0 0 0
P2 30 0 12.71006 0 P1P2 65.930 65.930
P3 60 0 34.08358 0 P1P3 171.620 171.620
P4 90 0 90 0 P1P4 306.369 306.369
P5 0 30 0 17.60282
P6 30 30 13.94137 17.60282 P5P6 63.860 63.860
P7 60 30 36.67595 17.60282 P5P7 161.296 161.296
P8 90 30 90 17.60282 P5P8 283.915 283.915
P9 0 60 0 43.58592
P10 30 60 18.09440 43.58592 P9P10 59.394 59.394
P11 60 60 44.42789 43.58592 P9P11 137.720 137.720
P12 90 60 90 43.58592 P9P12 231.482 231.482
P13 0 90 0 90
P14 30 90 22.31468 90 P13P14 56.953 56.953
P15 60 90 50.91795 90 P13P15 123.651 123.651
P16 90 90 90 90 P13P16 198.940 198.940 
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There are signifi cant differences between the calculated coordinates in the two 
coordinate systems: planetocentric and reduced. The meridians and parallels of these 
systems do not coincide with each other because they refl ect different coordinate 
systems. Meridians in both coordinate systems are ellipses located on different planes 
but it was found that such longitudes where meridians were located on the same 
ellipses, which enabled us to perform calculations.  The same results were obtained 
for the calculation (with millimeter accuracy) of the lengths of the arcs of meridians 
using two equations (4) and (8). Thus, the derived equations (4) can be considered 
correct.

4. Equidistant map projections in reduced coordinates

In this section equidistant along meridians and parallels map projections of a triaxial 
ellipsoid are described. First of all, the cylindrical projection is presented. This type 
of projection may be used to present entire extraterrestrial objects. In such projection 
meridians are projected as straight parallel lines, while parallels are projected as 
curves. If the assumed equatorial eccentricity is equal to 0 then the commonly known 
cylindrical projection of an oblated ellipsoid is obtained. Then pseudocylindrical 
projection is described. This type of projection may also be used to present entire 
extraterrestrial objects. It is similar to pseudocylindrical projection of a oblated 
ellipsoid. In this projection, the parallels (lines of constant reduced latitudes) are 
projected as straight parallel lines. If the assumed equatorial eccentricity is equal to 
0 then the result is a pseudocylindrical projection of an oblated ellipsoid.  In the end 
an azimuthal projection of a triaxial ellipsoid is presented. This type of projection 
may be used to present the polar regions of extraterrestrial objects. In this projection, 
the meridians are projected as straight radiant lines intersecting at a single point, 
while parallels are projected as curves (not circles as in the azimuthal projections 
of an oblated ellipsoid). If the assumed equatorial eccentricity is equal to 0 then the 
commonly known azimuthal projection of an oblated ellipsoid is obtained. All the 
discussed projections are based on the previously derived equations (4) and (6) for 
lengths of meridians and parallels. 

4.1 Cylindrical map projection equidistant along meridians

Cylindrical map projections of a triaxial ellipsoid are different from cylindrical map 
projections of an oblated ellipsoid or a sphere. Meridians (lines of constant reduced 
longitudes) are projected as straight parallel lines, while parallels are projected as 
curves, except the equator, which is projected as a straight line and is perpendicular 
to the images of meridians. The spacing of meridians is preserved along the image of 
the equator. The general equation for a cylindrical projection of a triaxial ellipsoid is 
as follows:
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 ufx 1 , vfy 2 .  

The equidistant along meridians cylindrical map projections is constructed basing 
on the assumption that the x coordinate is equal to the length of meridian which is 
provided by equation (4) and that the y coordinate is equal to the length of the equator 
which is the result of equation (6) with u = 0. As a result of the second assumption, 
the equator is projected with preserved spacing of meridians.

Using equations (4) and (6), respectively, for the lengths of meridians and parallels, 
the cylindrical equidistant map projection equations can be written as:
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The graticules of the reduced coordinates of the entire and of a fragment of a triaxial 
ellipsoid in the developed map projection are shown in Figure 2.
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Fig. 2. The graticule of reduced coordinates of the entire and 1/8 triaxial ellipsoid in the developed 
map projection

Images of meridians and parallels of reduced coordinates in a cylindrical equidistant 
along meridians projection are not orthogonal to each other. Images of meridians 
form straight lines parallel to the x-axis of the Cartesian coordinate system. They 
have different lengths. The distances between the images of meridians are variables 
and they correspond to the distances between the meridians along the equator on an 
ellipsoid. The lengths of meridians are variables, so the graticule limited by curves 
to the south and north. The images of parallels are curves except the equator, which 
is projected as straight line. Figure 2 presents the graticule of reduced coordinates 
on a triaxial ellipsoid. However, such graticule is not used in practice. Planetocentric 
or planetographic graticules are typically used on maps of extraterrestrial objects. 
So such graticules were drawn. In the developed map projection, the graticules of 
reduced, planetographic and planetocentric coordinates are shown in Figure 3. 
Meridians in three coordinate systems are projected as parallel straight lines but they 
don’t overlap except meridians with v, L and λ equal to 0°, 90°, -90°, -180°. The 
lengths are preserved in meridional direction. Parallels of three coordinates systems 
are projected as differently shaped curves, except the equator which is projected as 
a straight line and the poles which are projected as overlapping curves.

 

Fig. 3. Graticules in a cylindrical map projection, left – reduced coordinates, middle – planetographic 
coordinates, right – planetocentric coordinates
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4.2 Pseudocylindrical map projection equidistant along parallels (lines of constant 
reduced latitudes)

Another interesting map projection based on equations (4) and (6) for the lengths of 
meridians and parallels derived in this paper, is the pseudocylindrical projection. In 
this type of projection of a triaxial ellipsoid the parallels are projected on a plane as 
straight lines and their lengths are preserved, while the meridians are projected as 
curves. General equations for coordinates x and y have the following form:

 ,1 ufx vufy ,2 .  

To construct equidistant along parallels pseudocylindrical map projection it was 
assumed that the x coordinate is equal to length of central meridian which is provided 
by equation (4) with v = 0 and that the y coordinate is equal to the length of parallel 
which is provided by equation (6). As a result of the fi rst assumption, the central 
meridian is projected with preserved spacing of parallels.

Using equations (4) and (6), respectively, to calculate the lengths of meridians and 
parallels pseudocylindrical equidistant along parallels map projection can be written 
as:

 
mmmmm

m

kkE
k

cx cdsn,
'

1 2 ,  (10)

where: 

21' mm kk , 2

2
2

1 m

m
m n

n
k , 12

2
2

c
anm ,

un
un

m

m
m 22

22

sin1
sin1

sn ,

mm

m
m k 22

2

sn1
sn1

cd , 
un
un

m

m
m 22

22

sin1
sin1

arcsin , 

and 

ppppp
p

kkE
k

uby cdsn,
'

1cos 2 , 

where: 

21' pp kk , 2

2
2

1 p

p
p n

n
k , 12

2
2

b
an p ,

vn

vn

p

p
p 22

22

sin1

sin1
sn ,

pp

p
p k 22

2

sn1

sn1
cd

vn

vn

p

p
p 22

22

sin1

sin1
arcsin . 

The graticule in pseudocylindrical projection is shown in Figure 4.
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Fig. 4. The graticule in pseudocylindrical projection of the entire triaxial ellipsoid

This projection has an interesting property: the parallels u = const are projected on 
straight lines parallel to the y axis. Their lengths are preserved, as well as the distances 
between images of parallels along the central meridian. On the other hand, meridians 
are projected as curves. Figure 5 shows the graticules of three coordinate systems 
(reduced, planetographic, planetocentric) in a pseudocylindrical projection. Meridians 
in three coordinate systems are projected as curves with similar shapes but they don’t 
overlap except meridians with v, L and λ equal to 0°, 90°, -90°, -180°. Parallels of 
planetocentric and planetographic coordinate systems are projected as curves with 
different shapes. The images of parallels of reduced coordinate system are projected 
as straight parallel lines. The equator in these three coordinate systems is projected as 
a straight line and the poles as points.

 
 

Fig. 5. Graticules of three coordinate systems in pseudocylindrical projection, left – reduced 
coordinates, middle – planetographic coordinates, right – planetocentric coordinates
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4.3 Azimuthal map projection equidistant along meridians

Another map projection, which can be constructed on the basis of the derived 
equation (4) for the lengths of meridians, is an equidistant along meridians azimuthal 
projection. In the azimuthal projection of a triaxial ellipsoid the meridians are 
projected as straight lines intersecting at a single point, while parallels are projected 
as curves. It has the following general form:

 vvux cos, , vvuy sin, .  

To construct equidistant along meridians azimuthal map projections it was assumed 
that the function ρ is equal to length of meridians calculated from pole to parallel. 
In that case the length of the arc of a meridian given by equation (4) has to be 

subtracted from the length of entire meridian which is equal to 
'

,
2

m

m

k

kcE
  according 

to (4) substituting 
2

u .. Using equations (4) for lengths of meridians cylindrical 
equidistant map projection equations can be written as:

 vx cos , vy sin  (11)

where:
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The image of the reduced coordinate graticule will have the form shown in Figure 6.
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Fig. 6. Reduced coordinate graticule in azimuthal equidistant projection

The graticule consists of images of meridians which are straight lines and images 
of parallels which are curves. Images of parallels are not elliptical. In order to 
obtain images of parallels as ellipses, the projection functions must be modifi ed by 
substituting λ in the place of v:

 cosx , siny ,  (12)

where:

v
a
b tantan . 

Then the graticules will take such form as shown in Figure 7. So in that case of 
projection meridians are projected as straight lines and parallels as ellipses. In these 
three coordinate systems (planetocentric, planetographic and reduced) the meridians 
and parallels do not overlap except meridians with v, L and λ equal to 0°, 90°, -90°, 
-180° and the equator. 

 

Fig. 7. Graticules in an equidistant along meridians azimuthal map projection of the half of a triaxial 
ellipsoid, left – reduced coordinates, middle – planetographic coordinates, right – planetocentric 

coordinates
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5. Conclusions

A triaxial ellipsoid is used as a reference surface for celestial objects with irregular 
shapes. Commonly used map projections of a triaxial ellipsoid are usually expressed 
as functions of planetographic or planetocentric coordinates. In this paper the authors 
used reduced coordinates to describe a triaxial ellipsoid and map projections. It 
allowed us to express map projections with use of the normal elliptic integral of the 
second kind and elliptic functions. The main advantage of this method is the fact that 
the calculations of x and y coordinates are practically based on a single algorithm that 
is required to solve the elliptic integral of the second kind. Equations for lengths of 
meridians and parallels are in a similar form. So the main problem in this algorithm 
is to calculate this kind of integral. There are numerous articles that present certain 
methods of solving such integral, e.g. (Byrd and Friedmann, 1954) or (Prudnikov, 
Brychkov, Marichev, 1986). Additional diffi culties may occur in connection with the 
transformation of coordinates, so the equations for transformations should be known. 
Since the planetocentric and planetographic coordinates are most commonly used in 
practice, the paper presents the graticules of these coordinate systems of a triaxial 
ellipsoid in designed map projections.
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