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Dual hesitant pythagorean fuzzy Hamacher aggregation
operators in multiple attribute decision making

GUIWU WEI and MAO LU

In this paper, we investigate the multiple attribute decision making (MADM) problem
based on the Hamacher aggregation operators with dual Pythagorean hesitant fuzzy informa-
tion. Then, motivated by the ideal of Hamacher operation, we have developed some Hamacher
aggregation operators for aggregating dual hesitant Pythagorean fuzzy information. The promi-
nent characteristic of these proposed operators are studied. Then, we have utilized these opera-
tors to develop some approaches to solve the dual hesitant Pythagorean fuzzy multiple attribute
decision making problems. Finally, a practical example for supplier selection in supply chain
management is given to verify the developed approach and to demonstrate its practicality and
effectiveness.

Key words: multiple attribute decision making (MADM); dual Pythagorean hesitant fuzzy
values; dual hesitant Pythagorean fuzzy Hamacher hybrid average (DHPFHHA) operator; dual
hesitant Pythagorean fuzzy Hamacher hybrid geometric (DHPFHHG) operator; power aggre-
gation operators.

1. Introduction

Atanassov [1,2] introduced the concept of intuitionistic fuzzy set (IFS) character-
ized by a membership function and a non-membership function, which is a general-
ization of the concept of fuzzy set [3] whose basic component is only a membership
function. Xu [4] developed the intuitionistic fuzzy weighted averaging (IFWA) operator,
intuitionistic fuzzy ordered weighted averaging (IFOWA) operator and the intuitionistic
fuzzy hybrid aggregation (IFHA) operator. Xu [5] developed some geometric aggre-
gation operators, such as the intuitionistic fuzzy weighted geometric (IFWG) operator,
the intuitionistic fuzzy ordered weighted geometric (IFOWG) operator, and the intu-
itionistic fuzzy hybrid geometric (IFHG) operator and gave an application of the IFHG
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operator to multiple attribute group decision making with intuitionistic fuzzy informa-
tion. Xu and Yager [6] investigated the dynamic intuitionistic fuzzy multiple attribute
decision making problems and developed some aggregation operators such as the dy-
namic intuitionistic fuzzy weighted averaging (DIFWA) operator and uncertain dynamic
intuitionistic fuzzy weighted averaging (UDIFWA) operator to aggregate dynamic or un-
certain dynamic intuitionistic fuzzy information. Wei [7] proposed some dynamic geo-
metric aggregation operators such as the dynamic intuitionistic fuzzy weighted geomet-
ric (DIFWG) operator and uncertain dynamic intuitionistic fuzzy weighted geometric
(UDIFWG) operator to aggregate dynamic or uncertain dynamic intuitionistic fuzzy in-
formation. Wei [8] proposed two new aggregation operators: induced intuitionistic fuzzy
ordered weighted geometric (I-IFOWG) operator and induced interval-valued intuition-
istic fuzzy ordered weighted geometric (I-IIFOWG) operator. Wei and Zhao [9] devel-
oped two new aggregation operators: induced intuitionistic fuzzy correlated averaging
(I-IFCA) operator and induced intuitionistic fuzzy correlated geometric (I-IFCG) op-
erator. Yu et al. [10] proposed some intuitionistic fuzzy aggregation operators such as
the intuitionistic fuzzy prioritized weighted average (IFPWA) operator, the intuitionistic
fuzzy prioritized weighted geometric (IFPWG) operator. Xu [11] developed a series of
operators for aggregating intuitionistic fuzzy numbers and established various properties
of these power aggregation operators. Xu and Chen [12] proposed an aggregation tech-
nique called the intuitionistic fuzzy Bonferroni mean for aggregating intuitionistic fuzzy
information. Xu and Xia [13] studied the induced generalized aggregation operators un-
der intuitionistic fuzzy environments. The intuitionistic fuzzy set has received more and
more attention since its appearance[14-28].

More recently, Pythagorean fuzzy set (PFS) [29-30] has emerged as an effective tool
for depicting uncertainty of the MADM problems. The PFS is also characterized by the
membership degree and the non-membership degree, whose sum of squares is less than
or equal to 1, the PFS is more general than the IFS. In some cases, the PFS can solve the
problems that the IFS cannot, for example, if a DM gives the membership degree and
the non-membership degree as 0.8 and 0.6, respectively, then it is only valid for the PFS.
In other words, all the intuitionistic fuzzy degrees are a part of the Pythagorean fuzzy
degrees, which indicates that the PFS is more powerful to handle the uncertain problems.
Zhang and Xu[31]provided the detailed mathematical expression for PFS and introduced
the concept of Pythagorean fuzzy number (PFN). Meanwhile, they also developed a
Pythagorean fuzzy TOPSIS (Technique for Order Preference by Similarity to Ideal So-
lution) for handling the MCDM problem within PFNs. Peng and Yang [32] proposed the
division and subtraction operations for PFNs, and also developed a Pythagorean fuzzy
superiority and inferiority ranking method to solve multicriteria group decision making
problem with PFNs. Afterwards, Beliakov and James [33] focused on how the notion
of "averaging" should be treated in the case of PFNs and how to ensure that the aver-
aging aggregation functions produce outputs consistent with the case of ordinary fuzzy
numbers. Reformat and Yager [34] applied the PFNs in handling the collaborative-based
recommender system.
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In this paper, we introduce dual hesitant Pythagorean fuzzy set (DHPFS), which is a
new extension of PFS and dual hesitant fuzzy set(DHFs) [35]. It’s clear that the DHPFSs
consist of two parts, that is, the membership degrees function and the non-membership
degrees function, supporting a more exemplary and flexible access to assign values for
each element in the domain, and we have to handle two kinds of degrees in this situation.
For example, in a multiple attribute decision-making problem, some decision makers
consider as possible values for the membership degree of into the set a few different
values 0.4, 0.5, and 0.6, and for the non-membership degrees 0.1, 0.2 and 0.3 replacing
just one number or a tuple. So, the certainty and uncertainty on the possible values are
somehow limited, respectively, which can reflect the original information given by the
decision makers as much as possible. Utilizing DHPFSs can take much more information
into account, the more values we obtain from the decision makers, the greater epistemic
certainty we have, and thus, compared to the existing sets, DHPFS can be regarded as
a more comprehensive set, which supports a more flexible approach when the decision
makers provide their judgments.

Hamacher t-conorm and t-norm, which are the generalization of algebraic and Ein-
stein t-conorm and t-norm [36], are more general and more flexible. There is important
significance to research aggregation operators based on Hamacher operations and their
application to MADM problems. However, all the above approaches are unsuitable to
aggregate these dual hesitant Pythagorean fuzzy numbers on the basis of the Hamacher
operations [37]. Thus, based on the Hamacher operations, how to aggregate these dual
hesitant Pythagorean fuzzy numbers is an interesting topic. To solve this issue, in this
paper, we shall develop some dual hesitant Pythagorean fuzzy Hamacher aggregation
operators on the basis of the traditional Hamacher operations [37-42]. In order to do so,
the remainder of this paper is set out as follows. In the next section, we introduce some
basic concepts related to Pythagorean fuzzy set, dual hesitant Pythagorean fuzzy set and
their operational laws. In Section 3, we shall propose some dual hesitant Pythagorean
fuzzy Hamacher aggregation operators. In Section 4, we shall propose some dual hesi-
tant Pythagorean fuzzy Hamacher power aggregation operators. In Section 5, based on
these operators, we shall propose some models for multiple attribute decision making
problems with dual hesitant Pythagorean fuzzy information. In Section 6, we present a
numerical example for supplier selection in supply chain management with dual hesitant
Pythagorean fuzzy information in order to illustrate the method proposed in this paper.
Section 7 concludes the paper with some remarks.

2. Preliminaries

2.1. Pythagorean fuzzy set

The basic concepts of PFSs [29-30] are briefly reviewed in this section. Afterwards,
novel score and accuracy functions for PFNs are proposed. Furthermore, a new compar-
ison method for PFNs is developed.
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Definition 1 [29-30] Let X be a fix set. A PFS is an object having the form

P = {⟨x,(µP (x) ,νP (x))⟩ |x ∈ X } (1)

where µP : X → [0,1] the function defines the degree of membership and the function νP :
X → [0,1] defines the degree of non-membership of the element x ∈ X to P, respectively,
and, for every x ∈ X, it holds that

(µp (x))
2 +(νp (x))

2 6 1. (2)

Definition 2 [31] Let ã1 = (µ1,ν1), ã2 = (µ2,ν2), and ã = (µ,ν) be three Pythagorean
fuzzy numbers, and some basic operations on them are defined as follows:

(1) ã1 ⊕ ã2 =

(√
(µ1)

2 +(µ2)
2 − (µ1)

2(µ2)
2,ν1ν2

)
;

(2) ã1 ⊗ ã2 =

(
µ1µ2,

√
(ν1)

2 +(ν2)
2 − (ν1)

2(ν2)
2
)

;

(3) λã =

(√
1− (1−µ2)λ,νλ

)
,λ > 0;

(4) (ã)λ =

(
µλ
√

1− (1−ν2)λ
)
,λ > 0;

(5) ãc = (ν,µ) .

2.2. Dual hesitant Pythagorean fuzzy set

In this section, we introduce dual hesitant Pythagorean fuzzy set (DHPFS), which
is a new extension of PFS and dual hesitant fuzzy set [35]. It is clear that the DHPFSs
consist of two parts, that is, the membership hesitancy function and the non-membership
hesitancy function, supporting a more exemplary and flexible access to assign values
for each element in the domain, and we have to handle two kinds of hesitancy in this
situation.

Definition 3 Let X be a fixed set, then a dual hesitant Pythagorean fuzzy set (DHPFS)
on X is described as:

D = (⟨x,hP (x) ,gP (x)⟩ |x ∈ X ) (3)

in which hp(x) and gp(x) are two sets of some values in [0,1], denoting the possible
membership degrees and non-membership degrees of the element x ∈ X to the set D
respectively, with the conditions:

γ2 +η2 6 1

where γ ∈ hP (x) , η ∈ gP (x), for all x ∈ X. For convenience, the pair d (x) =
(hP (x) ,gP (x)) is called a dual hesitant Pythagorean fuzzy number (DHPFN) denoted
by d = (h,g), with the conditions: γ ∈ h, η ∈ g, 0 6 γ, η 6 1, 0 6 γ2 +η2 6 1.
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To compare the DHPFNs, in the following, we shall give the following comparison
laws:

Definition 4 Let d = (h,g) be a DHPFNs, s(d) = 1
2

(
1+ 1

#h ∑γ∈h γ2 − 1
#g ∑η∈g η2

)
the

score function of d, and p(d) = 1
#h ∑γ∈h γ2 + 1

#g ∑η∈g η2 the accuracy function of d,
where #h and #g are the numbers of the elements in h and g respectively, then, let
di = (hi,gi) (i = 1,2) be any two DHPFNs, we have the following comparison laws:

• If s(d1)> s(d2), then d1 is superior to d2, denoted by d1 ≻ d2;

• If s(d1) = s(d2), then

(1) If p(d1) = p(d2), then d1 is equivalent to d2, denoted by d1 ∼ d2;

(2) If p(d1)> p(d2), then d1 is superior to d2, denoted by d1 ≻ d2.

Example 1 Let d1 = { { 0.3,0.4} ,{ 0.6} } , d2 = { { 0.4,0.5} ,{ 0.3,0.4)} by Definition
4, we can get:

s(d1) =
1
2

(
1+

1
2
(
0.32 +0.42)−0.62

)
= 0.3825

s(d2) =
1
2

(
1+

1
2
(
0.42 +0.52)− 1

2
(
0.32 +0.42))= 0.5400

Thus, s(d2)> s(d1), so d2 ≻ d1. Then, we define some new operations on the DHPFNs
d, d1 and d2:

(1) dλ = ∪γ∈h,η∈g

{{
γλ} ,{√1− (1−η2)λ

}}
,λ > 0;

(2) λd = ∪γ∈h,η∈g

{{√
1− (1− γ2)λ

}
,
{

ηλ}} ,λ > 0;

(3) d1 ⊕d2 = ∪γ1∈h1,γ2∈h2,η1∈g1,η2∈g2

{{√
(γ1)

2 +(γ2)
2 − (γ1)

2(γ2)
2
}
,{η1η2}

}
;

(4) d1 ⊗d2 = ∪γ1∈h1,γ2∈h2,η1∈g1,η2∈g2

{
{γ1γ2} ,

{√
(η1)

2 +(η2)
2 − (η1)

2(η2)
2
}}

.

2.3. Hamacher operations of dual hesitant Pythagorean fuzzy set

Based on the traditional Hamacher operations [36], in the following, we shall define
the Hamacher operations on the DHPFNs d, d1 and d2.

(1) dλ = ∪γ∈h,η∈g

{{
√γ(γ1)

λ√
(1+(γ−1)(1−(γ1)

2))
λ
+(γ−1)(γ1)

2λ

}
,
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(1+(γ−1)(η1)

2)
λ−(1−(η1)

2)
λ

(1+(γ−1)(η1)
2)

λ
+(γ−1)(1−(η1)

2)
λ

}}
, λ > 0;

(2) λd = ∪γ∈h,η∈g

{{√
(1+(γ−1)(γ1)

2)
λ−(1−(γ1)

2)
λ

(1+(γ−1)(γ1)
2)

λ
+(γ−1)(1−(γ1)

2)
λ

}
,

{
√γ(η1)

λ√
(1+(γ−1)(1−(η1)

2))
λ
+(γ−1)(η1)

2λ

}}
, λ > 0

(3) d1 ⊕d2 = ∪γ1∈h1,γ2∈h2,η1∈g1,η2∈g2

{{√
(γ1)

2+(γ2)
2−(γ1)

2(γ2)
2−(1−γ)(γ1)

2(γ2)
2

1−(1−γ)(γ1)
2(γ2)

2

}
,{

η1η2√
γ+(1−γ)((η1)

2+(η2)
2−(η1)

2(η2)
2)

}}
, λ > 0

(4) d1 ⊗d2 = ∪γ1∈h1,γ2∈h2,η1∈g1,η2∈g2

{{
γ1γ2√

γ+(1−γ)((γ1)
2+(γ2)

2−(γ1)
2(γ2)

2)

}
,

{√
(η1)

2+(η2)
2−(η1)

2(η2)
2−(1−γ)(η1)

2(η2)
2

1−(1−γ)(η1)
2(η2)

2

}}
, λ > 0

3. Dual hesitant Pythagorean fuzzy Hamacher aggregation operators

3.1. Dual hesitant Pythagorean fuzzy Hamacher arithmetic aggregation operators

In the following, we shall propose some dual hesitant Pythagorean fuzzy Hamacher
arithmetic aggregation operator based on the Hamacher operations of DHPFNs.

Definition 5 Let d̃ j ( j = 1,2, · · · ,n) be a collection of DHPFNs, then we define the dual
hesitant Pythagorean fuzzy Hamacher weighted average (DHPFHWA) operator as fol-
lows:

DHPFHWAω

(
d̃1, d̃2, · · · , d̃n

)
=

n
⊕
j=1

(
ω jd̃ j

)
(4)

where ω = (ω1,ω2, · · · ,ωn)
T be the weight vector of d̃ j ( j = 1,2, · · · ,n), and ω j > 0,

n
∑
j=1

ω j = 1.

Based on the operations of the dual hesitant Pythagorean fuzzy values described and
mathematical induction method, we can drive the Theorem 1.
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Theorem 1 Let d̃ j ( j = 1,2, · · · ,n) be a collection of DHPFNs, then their aggregated
value by using the DHPFHWA operator is also a DHPFN, and

DHPFHWAω

(
d̃1, d̃2, · · · , d̃n

)
=

n
⊕
j=1

(
ω jd̃ j

)

= ∪γ j∈h j,η j∈g j



√√√√√√√

n
∏
j=1

(
1+(γ−1)(γ j)

2
)ω j

−
n
∏
j=1

(
1− (γ j)

2
)ω j

n
∏
j=1

(
1+(γ−1)(γ j)

2
)ω j

+(γ−1)
n
∏
j=1

(
1− (γ j)

2
)ω j

 ,


√γ

n
∏
j=1

(η j)
ω j√

n
∏
j=1

(
1+(γ−1)

(
1− (η j)

2
))ω j

+(γ−1)
n
∏
j=1

(η j)
2ω j





(5)

where ω = (ω1,ω2, · · · ,ωn)
T be the weight vector of d̃ j ( j = 1,2, · · · ,n), and ω j > 0,

n
∑
j=1

ω j = 1, γ > 0.

Now, we can discuss some special cases of the DHPFHWA operator with respect to
the parameter γ.

• When γ = 1, DHPFHWA operator reduces to the dual hesitant Pythagorean fuzzy
weighted average (DHPFWA) operator as follows:

DHPFWAω

(
d̃1, d̃2, · · · , d̃n

)
=

n
⊕
j=1

(
ω jd̃ j

)
= ∪γ j∈h j,η j∈g j

{{√
1−

n

∏
j=1

(
1− (γ j)

2
)ω j

}
,

{
n

∏
j=1

(η j)
ω j

}} (6)
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• When γ = 2, DHPFHWA operator reduces to the dual hesitant Pythagorean fuzzy
Einstein weighted average (DHPFEWA) operator as follows:

DHPFEWAω

(
d̃1, d̃2, · · · , d̃n

)
=

n
⊕
j=1

(
ω jd̃ j

)

= ∪γ j∈h j,η j∈g j



√√√√√√√

n
∏
j=1

(
1+(γ j)

2
)ω j

−
n
∏
j=1

(
1− (γ j)

2
)ω j

n
∏
j=1

(
1+(γ j)

2
)ω j

+
n
∏
j=1

(
1− (γ j)

2
)ω j

 ,


√

2
n
∏
j=1

(η j)
ω j√

n
∏
j=1

(
2− (η j)

2
)ω j

+
n
∏
j=1

(η j)
2ω j





(7)

Definition 6 Let d̃ j ( j = 1,2, · · · ,n) be a collection of DHPFNs, then we define the dual
hesitant Pythagorean fuzzy Hamacher ordered weighted average (DHPFHOWA) opera-
tor as follows:

DHPFHOWAw

(
d̃1, d̃2, · · · , d̃n

)
=

n
⊕
j=1

(
w jd̃σ( j)

)

= ∪γσ( j)∈hσ( j),ησ( j)∈gσ( j)



√√√√√√√

n
∏
j=1

(
1+(γ−1)

(
γσ( j)

)2
)w j

−
n
∏
j=1

(
1−
(
γσ( j)

)2
)w j

n
∏
j=1

(
1+(γ−1)

(
γσ( j)

)2
)w j

+(γ−1)
n
∏
j=1

(
1−
(
γσ( j)

)2
)w j

 ,


√γ

n
∏
j=1

(
γσ( j)

)w j

√
n
∏
j=1

(
1+(γ−1)

(
1−
(
γσ( j)

)2
))w j

+(γ−1)
n
∏
j=1

(
γσ( j)

)2w j




(8)

where (σ(1) ,σ(2) , · · · ,σ(n)) is a permutation of 1,2, · · · ,n, such that d̃σ( j−1) > d̃σ( j)

for all j = 2, · · · ,n, and w = (w1,w2, · · · ,wn)
T is the aggregation-associated weight vec-

tor such that w j ∈ [0,1] and
n
∑
j=1

w j = 1, γ > 0.

Now, we can discuss some special cases of the DHPFHOWA operator with respect
to the parameter γ.
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• When γ= 1, DHPFHOWA operator reduces to the dual hesitant Pythagorean fuzzy
ordered weighted average (DHFOWA) operator as follows:

DHPFOWAw

(
d̃1, d̃2, · · · , d̃n

)
=

n
⊕
j=1

(
w jd̃σ( j)

)
= ∪γσ( j)∈hσ( j),ησ( j)∈gσ( j)

{{√
1−

n

∏
j=1

(
1−
(
γσ( j)

)2
)w j

}
,

√
2

n
∏
j=1

γ j
ω j√

n
∏
j=1

(
2− (γ j)

2
)ω j

+
n
∏
j=1

(γ j)
2ω j





(9)

• When γ= 2, DHPFHOWA operator reduces to the dual hesitant Pythagorean fuzzy
Einstein ordered weighted average (DHPFEOWA) operator as follows:

DHPFEOWAw

(
d̃1, d̃2, · · · , d̃n

)
=

n
⊕
j=1

(
w jd̃σ( j)

)

= ∪γσ( j)∈hσ( j),ησ( j)∈gσ( j)



√√√√√√√

n
∏
j=1

(
1+
(
γσ( j)

)2
)w j

−
n
∏
j=1

(
1−
(
γσ( j)

)2
)w j

n
∏
j=1

(
1+
(
γσ( j)

)2
)w j

+
n
∏
j=1

(
1−
(
γσ( j)

)2
)w j

 ,


√

2
n
∏
j=1

(
ησ( j)

)ω j

√
n
∏
j=1

(
2−
(
ησ( j)

)2
)ω j

+
n
∏
j=1

(
ησ( j)

)2ω j




(10)

From Definitions 5 and 6, we know that the DHPFHWA operator weights the dual
hesitant Pythagorean fuzzy argument itself, while the DHPFHOWA operator weights the
ordered positions of the dual hesitant Pythagorean fuzzy arguments instead of weight-
ing the arguments themselves. Therefore, weights represent different aspects in both
the DHPFHWA and DHPFHOWA operators. However, both the operators consider only
one of them. To solve this drawback, in the following we shall propose a dual hesitant
Pythagorean fuzzy Hamacher hybrid average (DHPFHHA) operator.
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Definition 7 A dual hesitant Pythagorean fuzzy Hamacher hybrid average (DHPFHHA)
operator is defined as follows:

DHPFHHAw,ω

(
d̃1, d̃2, · · · , d̃n

)
=

n
⊕
j=1

(
w j

˙̃dσ( j)

)

= ∪γ̇σ( j)∈hσ( j),η̇σ( j)∈gσ( j)



√√√√√√√

n
∏
j=1

(
1+(γ−1)

(
γ̇σ( j)

)2
)ω j

−
n
∏
j=1

(
1−
(
γ̇σ( j)

)2
)ω j

n
∏
j=1

(
1+(γ−1)

(
γ̇σ( j)

)2
)ω j

+(γ−1)
n
∏
j=1

(
1−
(
γ̇σ( j)

)2
)ω j

 ,


√γ

n
∏
j=1

(
η̇σ( j)

)ω j

√
n
∏
j=1

(
1+(γ−1)

(
1−
(
η̇σ( j)

)2
))ω j

+(γ−1)
n
∏
j=1

(
η̇σ( j)

)2ω j




(11)

where w = (w1,w2, · · · ,wn) is the associated weighting vector, with w j ∈ [0,1],
n
∑
j=1

w j =

1, and ḣσ( j) is the j-th largest element of the dual hesitant Pythagorean fuzzy arguments
˙̃d
( ˙̃d = nω jd̃ j, j = 1,2, · · · ,n

)
, ω= (ω1,ω2, · · · ,ωn) is the weighting vector of dual hes-

itant Pythagorean fuzzy arguments d̃ j ( j = 1,2, · · · ,n), with ωi ∈ [0,1],
n
∑

i=1
ωi = 1, and

n is the balancing coefficient, γ > 0. Especially, if w =
(
1
/

n,1
/

n, · · · ,1
/

n
)T , then DH-

PFHA is reduced to the dual hesitant Pythagorean fuzzy weighted average (DHPFWA)
operator; if , then DHPFHA is reduced to the dual hesitant Pythagorean fuzzy ordered
weighted average (DHPFOWA) operator.

From Definition 7, we know that:

(1) The DHPFHHA operator first weights the given arguments, and then reorders the
weighted arguments in descending order and weights these ordered arguments by
the DHPFHHA weights, and finally aggregates all the weighted arguments into a
collective one.

(2) The DHPFHHA operator generalizes both the DHPFHWA and DHPFHOWA op-
erators, and reflects the importance degrees of both the given arguments and their
ordered positions.

Now, we can discuss some special cases of the DHPFHHA operator with respect to
the parameter γ.



DUAL HESITANT PYTHAGOREAN FUZZY HAMACHER AGGREGATION OPERATORS
IN MULTIPLE ATTRIBUTE DECISION MAKING 375

• When γ = 1, DHPFHHA operator reduces to the hesitant Pythagorean fuzzy hy-
brid average (DHPFHA)operator as follows:

DHPFHAw,ω

(
d̃1, d̃2, · · · , d̃n

)
=

n
⊕
j=1

(
w j

˙̃dσ( j)

)
= ∪γ̇σ( j)∈hσ( j),η̇σ( j)∈gσ( j)

{{√
1−

n

∏
j=1

(
1−
(
γ̇σ( j)

)2
)w j

}
,

{
n

∏
j=1

(
η̇σ( j)

)w j

}} (12)

• When γ = 2, DHPFHHA operator reduces to the dual hesitant Pythagorean fuzzy
Einstein hybrid average (HPFEHA) operator as follows:

DHPFEHAw,ω

(
d̃1, d̃2, · · · , d̃n

)
=

n
⊕
j=1

(
w j

˙̃dσ( j)

)

= ∪γ̇σ( j)∈hσ( j),η̇σ( j)∈gσ( j)



√√√√√√√

n
∏
j=1

(
1+
(
γ̇σ( j)

)2
)w j

−
n
∏
j=1

(
1−
(
γ̇σ( j)

)2
)w j

n
∏
j=1

(
1+
(
γ̇σ( j)

)2
)w j

+
n
∏
j=1

(
1−
(
γ̇σ( j)

)2
)w j

 ,


√

2
n
∏
j=1

(
η̇σ( j)

)ω j

√
n
∏
j=1

(
2−
(
η̇σ( j)

)2
)ω j

+
n
∏
j=1

(
η̇σ( j)

)2ω j




(13)

3.2. Dual hesitant Pythagorean fuzzy Hamacher Geometric Aggregation Operators

Based on the dual hesitant Pythagorean fuzzy Hamacher arithmetic aggregation op-
erators and the geometric mean, here we define some dual hesitant Pythagorean fuzzy
Hamacher geometric aggregation operators:

Definition 8 Let d̃ j ( j = 1,2, · · · ,n) be a collection of DHPFNs, then we define the dual
hesitant Pythagorean fuzzy Hamacher weighted geometric (DHPFHWG) operator as
follows:

DHPFHWGω

(
d̃1, d̃2, · · · , d̃n

)
=

n
⊗
j=1

(
d̃ j

)ω j
(14)

where ω = (ω1,ω2, · · · ,ωn)
T be the weight vector of d̃ j ( j = 1,2, · · · ,n), and ω j > 0,

n
∑
j=1

ω j = 1, γ > 0.

Based on the operations of the dual hesitant Pythagorean fuzzy values described and
mathematical induction methods, we can drive the Theorem 2.
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Theorem 2 Let d̃ j ( j = 1,2, · · · ,n) be a collection of DHPFNs, then their aggregated
value by using the DHPFHWG operator is also a DHPFN, and

DHPFHWGω

(
d̃1, d̃2, · · · , d̃n

)
=

n
⊗
j=1

(
d̃ j

)ω j

= ∪γ j∈h j,η j∈g j




√γ

n
∏
j=1

γ j
ω j√

n
∏
j=1

(
1+(γ−1)

(
1− (γ j)

2
))ω j

+(γ−1)
n
∏
j=1

(γ j)
2ω j

 ,


√√√√√√√

n
∏
j=1

(
1+(γ−1)(η j)

2
)ω j

−
n
∏
j=1

(
1− (η j)

2
)ω j

n
∏
j=1

(
1+(γ−1)(η j)

2
)ω j

+(γ−1)
n
∏
j=1

(
1− (η j)

2
)ω j




(15)

where ω = (ω1,ω2, · · · ,ωn)
T be the weight vector of d̃ j ( j = 1,2, · · · ,n), and ω j > 0,

n
∑
j=1

ω j = 1, γ > 0.

Now, we can discuss some special cases of the DHPFHWG operator with respect to
the parameter γ.

• When γ = 1, DHPFHWG operator reduces to the dual hesitant Pythagorean fuzzy
weighted geometric (DHPFWG) operator as follows:

DHPFWGω

(
d̃1, d̃2, · · · , d̃n

)
=

n
⊗
j=1

(
d̃ j

)ω j

= ∪γ j∈h j,η j∈g j

{{
n

∏
j=1

(γ j)
ω j

}
,

{√
1−

n

∏
j=1

(
1− (η j)

2
)ω j

}} (16)
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• When γ = 2, DHPFHWG operator reduces to the dual hesitant Pythagorean fuzzy
Einstein weighted geometric (DHPFEWG) operator as follows:

DHPFEWGω

(
d̃1, d̃2, · · · , d̃n

)
=

n
⊗
j=1

(
d̃ j

)ω j

= ∪γ j∈h j,η j∈g j




√

2
n
∏
j=1

γ j
ω j√

n
∏
j=1

(
2− (γ j)

2
)ω j

+
n
∏
j=1

(γ j)
2ω j

 ,


√√√√√√√

n
∏
j=1

(
1+(η j)

2
)ω j

−
n
∏
j=1

(
1− (η j)

2
)ω j

n
∏
j=1

(
1+(η j)

2
)ω j

+
n
∏
j=1

(
1− (η j)

2
)ω j




(17)

Definition 9 Let d̃ j ( j = 1,2, · · · ,n) be a collection of DHPFNs, then we define
the dual hesitant Pythagorean fuzzy Hamacher ordered weighted geometric (DH-
PFHOWG?operator as follows:

DHPFHOWGw

(
d̃1, d̃2, · · · , d̃n

)
=

n
⊗
j=1

(
d̃σ( j)

)w j

= ∪γσ( j)∈hσ( j),ησ( j)∈gσ( j)




√γ

n
∏
j=1

(
γσ( j)

)ω j

√
n
∏
j=1

(
1+(γ−1)

(
1−
(
γσ( j)

)2
))ω j

+(γ−1)
n
∏
j=1

(
γσ( j)

)2ω j

 ,


√√√√√√√

n
∏
j=1

(
1+(γ−1)

(
ησ( j)

)2
)w j

−
n
∏
j=1

(
1−
(
ησ( j)

)2
)w j

n
∏
j=1

(
1+(γ−1)

(
ησ( j)

)2
)w j

+(γ−1)
n
∏
j=1

(
1−
(
ησ( j)

)2
)w j




(18)
where (σ(1) ,σ(2) , · · · ,σ(n)) is a permutation of (1,2, · · · ,n), such that d̃σ( j−1) > d̃σ( j)

for all j = 2, · · · ,n, and w = (w1,w2, · · · ,wn)
T is the aggregation-associated weight vec-

tor such that w j ∈ [0,1] and
n
∑
j=1

w j = 1, γ > 0.

Now, we can discuss some special cases of the DHPFHOWG operator with respect
to the parameter γ.
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• When γ = 1, DHPFHOWG operator reduces to the dual hesitant Pythagorean
fuzzy ordered weighted geometric (DHPFOWG) operator as follows:

DHPFOWGw

(
d̃1, d̃2, · · · , d̃n

)
=

n
⊗
j=1

(
d̃σ( j)

)w j

= ∪γσ( j)∈hσ( j),ησ( j)∈gσ( j)

{{
n

∏
j=1

(
γσ( j)

)w j

}
,

{√
1−

n

∏
j=1

(
1−
(
ησ( j)

)2
)w j

}} (19)

• When γ = 2, DHPFHOWG operator reduces to the dual hesitant Pythagorean
fuzzy Einstein ordered weighted geometric (DHPFEOWG) operator as follows:

DHPFEOWGw

(
d̃1, d̃2, · · · , d̃n

)
=

n
⊗
j=1

(
d̃σ( j)

)w j

= ∪γσ( j)∈hσ( j),ησ( j)∈gσ( j)




√

2
n
∏
j=1

(
γσ( j)

)ω j

√
n
∏
j=1

(
2−
(
γσ( j)

)2
)ω j

+
n
∏
j=1

(
γσ( j)

)2ω j

 ,


√√√√√√√

n
∏
j=1

(
1+
(
ησ( j)

)2
)w j

−
n
∏
j=1

(
1−
(
ησ( j)

)2
)w j

n
∏
j=1

(
1+
(
ησ( j)

)2
)w j

+
n
∏
j=1

(
1−
(
ησ( j)

)2
)w j




(20)

From Definitions 8 and 9, we know that the DHPFHWG operator weights the dual
hesitant Pythagorean fuzzy argument itself, while the DHPFHOWG operator weights the
ordered positions of the dual hesitant Pythagorean fuzzy arguments instead of weighting
the arguments themselves. Therefore, weights represent different aspects in both the
DHPFHWG and DHPFHOWG operators. However, both the operators consider only
one of them. To solve this drawback, in the following we shall propose a dual hesitant
Pythagorean fuzzy Hamacher hybrid geometric (DHPFHHG) operator.
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Definition 10 A dual hesitant Pythagorean fuzzy Hamacher hybrid geometric (DH-
PFHHG) operator is defined as follows:

DHPFHHGw,ω

(
d̃1, d̃2, · · · , d̃n

)
=

n
⊗
j=1

( ˙̃dσ( j)

)w j

= ∪γ̇σ( j)∈hσ( j),η̇σ( j)∈gσ( j)




√γ

n
∏
j=1

(
γ̇σ( j)

)ω j

√
n
∏
j=1

(
1+(γ−1)

(
1−
(
γ̇σ( j)

)2
))ω j

+(γ−1)
n
∏
j=1

(
γ̇σ( j)

)2ω j

 ,


√√√√√√√

n
∏
j=1

(
1+(γ−1)

(
η̇σ( j)

)2
)ω j

−
n
∏
j=1

(
1−
(
η̇σ( j)

)2
)ω j

n
∏
j=1

(
1+(γ−1)

(
η̇σ( j)

)2
)ω j

+(γ−1)
n
∏
j=1

(
1−
(
η̇σ( j)

)2
)ω j




(21)

where w = (w1,w2, · · · ,wn) is the associated weighting vector, with w j ∈ [0,1],
n
∑
j=1

w j =

1, and ḣσ( j) is the j-th largest element of the dual hesitant Pythagorean fuzzy arguments
˙̃d
( ˙̃d =

(
d̃ j

)nω j
, j = 1,2, · · · ,n

)
, ω = (ω1,ω2, · · · ,ωn) is the weighting vector of dual

hesitant Pythagorean fuzzy arguments d̃ j ( j = 1,2, · · · ,n), with ω j ∈ [0,1],
n
∑
j=1

ω j = 1,

and n is the balancing coefficient, γ > 0. Especially, if w =
(
1
/

n,1
/

n, · · · ,1
/

n
)T , then

DHPFHHG is reduced to the dual hesitant Pythagorean fuzzy weighted geometric (DH-
PFHWG) operator; if ω =

(
1
/

n,1
/

n, · · · ,1
/

n
)
, then DHPFHHG is reduced to the dual

hesitant Pythagorean fuzzy ordered weighted geometric (DHPFHOWG) operator.

From Definition 10, we know that:

• When γ = 1, DHPFHHG operator reduces to the dual hesitant Pythagorean fuzzy
hybrid geometric (DHPFHG) operator as follows:

DHPFHGw,ω

(
d̃1, d̃2, · · · , d̃n

)
=

n
⊗
j=1

( ˙̃dσ( j)

)w j

= ∪γ̇σ( j)∈hσ( j),η̇σ( j)∈gσ( j)

{{
n

∏
j=1

(
γ̇σ( j)

)w j

}
,

{√
1−

n

∏
j=1

(
1−
(
η̇σ( j)

)2
)w j

}} (22)
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• When γ = 2, DHPFHHG operator reduces to the dual hesitant Pythagorean fuzzy
Einstein hybrid geometric (DHPFEHG) operator as follows:

DHPFEHGw,ω

(
d̃1, d̃2, · · · , d̃n

)
=

n
⊗
j=1

( ˙̃dσ( j)

)w j

= ∪γ̇σ( j)∈hσ( j),η̇σ( j)∈gσ( j)




√

2
n
∏
j=1

(
γ̇σ( j)

)ω j

√
n
∏
j=1

(
2−
(
γ̇σ( j)

)2
)ω j

+
n
∏
j=1

(
γ̇σ( j)

)2ω j

 ,


√√√√√√√

n
∏
j=1

(
1+
(
η̇σ( j)

)2
)w j

−
n
∏
j=1

(
1−
(
η̇σ( j)

)2
)w j

n
∏
j=1

(
1+
(
η̇σ( j)

)2
)w j

+
n
∏
j=1

(
1−
(
η̇σ( j)

)2
)w j




(23)

4. Dual hesitant Pythagorean fuzzy Hamacher power operators

4.1. Dual hesitant Pythagorean fuzzy Hamacher power Hamacher power weighted
average (DHPFHPWA) operator

Yager [43] developed a nonlinear weighted average aggregation operator called
power average (PA) operator, which can be defined as follows:

PA(a1,a2, · · · ,an) =

n
∑

i=1
(1+T (ai))ai

n
∑

i=1
(1+T (ai))

(24)

where T (ai) =
n
∑
j=1
j ̸=i

Sup(ai,a j), and Sup(a,b) is the support for a from b, which satisfies

the following three properties:

(1) Sup(a,b) ∈ [0,1];

(2) Sup(a,b) = Sup(b,a);

(2) Sup(a,b)> Sup(x,y).

In this section, we shall propose the dual hesitant Pythagorean fuzzy Hamacher
power weighted average (DHPFHPWA) operator based on the power average [43] oper-
ators and Hamacher operations [36].
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Definition 11 Let d̃ j ( j = 1,2, · · · ,n) be a collection of DHPFNs, then we define the dual
hesitant Pythagorean fuzzy Hamacher power weighted average (DHPFHPWA) operator
as follows:

DHPFHPWA
(

d̃1, d̃2, · · · , d̃n

)
=

n
⊕
j=1

 ω j

(
1+T

(
d̃ j

))
d̃ j

n
∑
j=1

ω j

(
1+T

(
d̃ j

))
= ∪γ j∈h j,η j∈g j





√√√√√√√√√√
n
∏
j=1

(
1+(γ−1)(γ j)

2
) ω j(1+T(d̃ j))

∑n
j=1 ω j(1+T(d̃ j)) −

n
∏
j=1

(
1− (γ j)

2
) ω j(1+T(d̃ j))

∑n
j=1 ω j(1+T(d̃ j))

n
∏
j=1

(
1+(γ−1)(γ j)

2
) ω j(1+T(d̃ j))

∑n
j=1 ω j(1+T(d̃ j)) +(γ−1)

n
∏
j=1

(
1− (γ j)

2
) ω j(1+T(d̃ j))

∑n
j=1 ω j(1+T(d̃ j))


,


√γ

n
∏
j=1

(η j)

ω j(1+T(d̃ j))
∑n

j=1 ω j(1+T(d̃ j))√√√√ n
∏
j=1

(
1+(γ−1)

(
1− (η j)

2
)) ω j(1+T(d̃ j))

∑n
j=1 ω j(1+T(d̃ j)) +(γ−1)

n
∏
j=1

(η j)

2ω j(1+T(d̃ j))
∑n

j=1 ω j(1+T(d̃ j))




(25)

where ω = (ω1,ω2, · · · ,ωn)
T be the weight vector of d̃ j ( j = 1,2, · · · ,n), γ > 0, and

T
(

d̃ j

)
=

n

∑
i=1
i̸= j

ωiSup
(

d̃ j, d̃i

)
(26)

and Sup
(

d̃ j, d̃i

)
is the support for d̃ j from d̃i, with the conditions:

• Sup
(

d̃i, d̃ j

)
∈ [0,1];

• Sup
(

d̃i, d̃ j

)
= Sup

(
d̃i, d̃ j

)
;

• Sup
(

d̃i, d̃ j

)
> Sup

(
d̃s, d̃t

)
, if dis

(
d̃i, d̃ j

)
> dis

(
d̃s, d̃t

)
, where dis is a distance

measure.

Now, we can discuss some special cases of the DHPFHWA operator with respect to
the parameter γ.
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• When γ= 1, DHPFHPWA operator reduces to the dual hesitant Pythagorean fuzzy
power weighted average (DHPFPWA) operator as follows:

DHPFPWAAω

(
d̃1, d̃2, · · · , d̃n

)

=
n
⊕
j=1

 ω j

(
1+T

(
d̃ j

))
d̃ j

n
∑
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ω j
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(
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 ,


n

∏
j=1

(η j)
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/
n
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j=1

ω j(1+T(d̃ j))




(27)

• When γ= 2, DHPFHPWA operator reduces to the dual hesitant Pythagorean fuzzy
Einstein power weighted average (DHPFEPWA) operator as follows:

DHPFEPWAω

(
d̃1, d̃2, · · · , d̃n

)
=
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⊕
j=1

 ω j

(
1+T

(
d̃ j

))
d̃ j

n
∑
j=1

ω j

(
1+T

(
d̃ j

))
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∏
j=1

(
2− (η j)

2
) ω j(1+T(d̃ j))

∑n
j=1 ω j(1+T(d̃ j)) +

n
∏
j=1

(η j)

2ω j(1+T(d̃ j))
∑n

j=1 ω j(1+T(d̃ j))




(28)
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4.2. Dual hesitant Pythagorean fuzzy Hamacher power weighted geometric
(DHPFHPWG) operator

Xu and Yager [44] developed power geometric (PG) operator on the basis of PA
operator [43] and geometric mean [45-46], which can be defined as follows:

PG(a1,a2, · · · ,an) =
n

∏
i=1

(ai)
(1+T (ai))

/
n
∑

i=1
(1+T (ai))

(29)

where T (ai) = ∑n
j=1
j ̸=i

Sup(ai,a j), and Sup(a,b) is the support for a from b, which satis-

fies the following three properties:

(1) Sup(a,b) ∈ [0,1];

(2) Sup(a,b) = Sup(b,a);

(3) Sup(a,b)> Sup(x,y), if |a−b|< |x− y|.

In this section, we shall propose the dual hesitant Pythagorean fuzzy Hamacher
power weighted geometric (DHPFHPWG) operator based on the power geometric [44]
operators and Hamacher operations [36].

Definition 12 Let d̃ j ( j = 1,2, · · · ,n) be a collection of DHPFNs, then we define the
dual hesitant Pythagorean fuzzy Hamacher power weighted geometric (DHPFHPWG)
operator as follows:

DHPFHPWG
(

d̃1, d̃2, · · · , d̃n

)
=

n
⊕
j=1

(
d̃ j

)
= ∪γ j∈h j,η j∈g j


√γ

n
∏
j=1

(γ j)

ω j(1+T(d̃ j))
∑n

j=1 ω j(1+T(d̃ j))√√√√ n
∏
j=1

(
1+(γ−1)

(
1− (γ j)

2
)) ω j(1+T(d̃ j))

∑n
j=1 ω j(1+T(d̃ j)) +(γ−1)

n
∏
j=1

(γ j)

2ω j(1+T(d̃ j))
∑n

j=1 ω j(1+T(d̃ j))


,



√√√√√√√√√√
n
∏
j=1

(
1+(γ−1)(η j)

2
) ω j(1+T(d̃ j))

∑n
j=1 ω j(1+T(d̃ j)) −

n
∏
j=1

(
1− (η j)

2
) ω j(1+T(d̃ j))

∑n
j=1 ω j(1+T(d̃ j))

n
∏
j=1

(
1+(γ−1)(η j)

2
) ω j(1+T(d̃ j))

∑n
j=1 ω j(1+T(d̃ j)) +(γ−1)

n
∏
j=1

(
1− (η j)

2
) 2ω j(1+T(d̃ j))

∑n
j=1 ω j(1+T(d̃ j))




(30)
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where ω = (ω1,ω2, · · · ,ωn)
T be the weight vector of d̃ j ( j = 1,2, · · · ,n), γ > 0, and

T
(

d̃ j

)
=

n

∑
i=1
i̸= j

ωiSup
(

d̃ j, d̃i

)
(31)

and Sup
(

d̃ j, d̃i

)
is the support for d̃ j from d̃i, with the conditions:

(1) Sup
(

d̃i, d̃ j

)
∈ [0,1];

(2) Sup
(

d̃i, d̃ j

)
= Sup

(
d̃i, d̃ j

)
;

(3) Sup
(

d̃i, d̃ j

)
> Sup

(
d̃s, d̃t

)
, if dis

(
d̃i, d̃ j

)
> dis

(
d̃s, d̃t

)
where dis is a distance

measure.

Now, we can discuss some special cases of the DHPFHPWG operator with respect
to the parameter γ.

• When γ= 1, DHPFHPWG operator reduces to the dual hesitant Pythagorean fuzzy
power weighted geometric (DHPFPWG) operator as follows:

DHPFPWGGω

(
d̃1, d̃2, · · · , d̃n

)
=

n
⊗
j=1

(
d̃ j

)ω j(1+T(d̃ j))

/
n
∑
j=1

ω j(1+T(d̃ j))

= ∪γ j∈h j,η j∈g j




n

∏
j=1

(γ j)
ω j(1+T(d̃ j))

/
n
∑
j=1

ω j(1+T(d̃ j))

 ,


√√√√√1−

n

∏
j=1

(
1− (η j)

2
)ω j(1+T(d̃ j))

/
n
∑
j=1

ω j(1+T(d̃ j))




(32)

• When γ= 2, DHPFHPWG operator reduces to the dual hesitant Pythagorean fuzzy
Einstein power weighted geometric (DHPFEPWG) operator as follows:

DHPFEPWGω

(
d̃1, d̃2, · · · , d̃n

)
=

n
⊕
j=1

(
d̃ j

)
= ∪γ j∈h j,η j∈g j



√
2

n
∏
j=1

(γ j)

ω j(1+T(d̃ j))
∑n

j=1 ω j(1+T(d̃ j))√√√√ n
∏
j=1

(
2− (γ j)

2
) ω j(1+T(d̃ j))

∑n
j=1 ω j(1+T(d̃ j)) +

n
∏
j=1

(γ j)

2ω j(1+T(d̃ j))
∑n

j=1 ω j(1+T(d̃ j))


,
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√√√√√√√√√√
n
∏
j=1

(
1+(η j)

2
) ω j(1+T(d̃ j))

∑n
j=1 ω j(1+T(d̃ j)) −

n
∏
j=1

(
1− (η j)

2
) ω j(1+T(d̃ j))

∑n
j=1 ω j(1+T(d̃ j))

n
∏
j=1

(
1+(η)2

) ω j(1+T(d̃ j))
∑n

j=1 ω j(1+T(d̃ j)) +
n
∏
j=1

(
1− (η j)

2
) ω j(1+T(d̃ j))

∑n
j=1 ω j(1+T(d̃ j))




(33)

5. An approach to multiple attribute decision making with dual hesitant
Pythagorean fuzzy information

In this section, we shall utilize the dual hesitant aggregation operators to multi-
ple attribute decision making with dual hesitant Pythagorean fuzzy information. Let
A = {A1,A2, · · · ,Am} be a discrete set of alternatives, and G = {G1,G2, · · · ,Gn} be the
state of nature. If the decision makers provide several values for the alternative Ai under
the state of nature G j with anonymity, these values can be considered as a dual hesi-
tant Pythagorean fuzzy element d̃i j = (hi j,gi j). In the case where two decision makers
provide the same value, then the value emerges only once in d̃i j. Suppose that the deci-

sion matrix D̃ =
(

d̃i j

)
m×n

is the dual hesitant Pythagorean fuzzy decision matrix, where

d̃i j (i = 1,2, · · · ,m, j = 1,2, · · · ,n) are in the form of DHPFNs.
In the following, we apply the DHPFHWA (or DHPFHWG) operator to the MADM

problems for potential evaluation of emerging technology commercialization with dual
hesitant Pythagorean fuzzy information.

Step 1 We utilize the decision information given in matrix D̃, and the DHPFHWA oper-
ator

d̃i = DHPFHWA
(

d̃i1, d̃i2, · · · , d̃in

)
=

n
⊕
j=1

(
ω jd̃i j

)

= ∪γi j∈hi j,ηi j∈hi j



√√√√√√√

n
∏
j=1

(
1+(γ−1)(γi j)

2
)ω j

−
n
∏
j=1

(
1− (γi j)

2
)ω j

n
∏
j=1

(
1+(γ−1)(γi j)

2
)ω j

+(γ−1)
n
∏
j=1

(
1− (γi j)

2
)ω j

 ,


√γ

n
∏
j=1

(ηi j)
ω j√

n
∏
j=1

(
1+(γ−1)

(
1− (ηi j)

2
))ω j

+(γ−1)
n
∏
j=1

(ηi j)
2ω j





(34)
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Or the dual hesitant Pythagorean fuzzy weighted geometric (DHPFHWG) operator:

d̃i = DHPFHWG
(

d̃i1, d̃i2, · · · , d̃in

)
=

n
⊗
j=1

(
d̃i j

)ω j

= ∪γi j∈hi j,ηi j∈hi j




√γ

n
∏
j=1

(γi j)
ω j√

n
∏
j=1

(
1+(γ−1)

(
1− (γi j)

2
))ω j

+(γ−1)
n
∏
j=1

(γi j)
2ω j

 ,


√√√√√√√

n
∏
j=1

(
1+(γ−1)(ηi j)

2
)ω j

−
n
∏
j=1

(
1− (ηi j)

2
)ω j

n
∏
j=1

(
1+(γ−1)(ηi j)

2
)ω j

+(γ−1)
n
∏
j=1

(
1− (ηi j)

2
)ω j




(35)

to derive the overall preference values d̃i (i = 1,2, · · · ,m) of the alternative Ai.

Step 2 Calculate the scores S
(

d̃i

)
(i = 1,2, · · · ,m) of the overall dual hesitant

Pythagorean fuzzy preference values d̃i (i = 1,2, · · · ,m). If there is no difference
between two scores S

(
d̃i

)
and S

(
d̃ j

)
, then we need to calculate the accuracy degrees

S (p̃i) and S (p̃i) of the collective overall preference values d̃i and d̃ j, respectively, and

then rank the alternatives Ai and A j in accordance with the accuracy degrees p
(

d̃i

)
and

p
(

d̃i

)
.

Step 3 Rank all the alternatives Ai (i = 1,2, · · · ,m) and select the best one(s) in
accordance with the scores S

(
d̃i

)
(i = 1,2, · · · ,m).

Step 3 End.

6. Numerical example

Thus, in this section we shall present a numerical example for supplier selection in
supply chain management with dual hesitant Pythagorean fuzzy information in order
to illustrate the method proposed in this paper. Let us suppose there is a problem to
deal with the supplier selection in supply chain management which is classical multiple
attribute decision making problems. There are five prospect suppliers Ai (i = 1,2,3,4,5)
for four attributes G j ( j = 1,2,3,4). The four attributes include product quality (G1),
service (G2), delivery (G3) and price (G4), respectively. In order to avoid influence each
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other, the decision makers are required to evaluate the five suppliers Ai (i = 1,2,3,4,5)
under the above four attributes in anonymity and the decision matrix D̃ =

(
d̃i j

)
5×4

is

presented in Tab. 1, where d̃i j (i = 1,2,3,4,5, j = 1,2,3,4) are in the form of DHPFNs.

Table 1: Dual hesitant Pythagorean fuzzy decision matrix

G1 G2 G3 G4

A1 {{0.3,0.4},{0.6}} {{0.4,0.5},{0.3,0.4}} {{0.2,0.3},{0.7}} {{0.4,0.5},{0.5}}
A2 {{0.6},{0.4}} {{0.2,0.4,0.5},{0.4}} {{0.2},{0.6,0.7,0.8}} {{0.5},{0.4,0.5}}
A3 {{0.5,0.7},{0.2}} {{0.2},{0.7,0.8}} {{0.2,0.3,0.4},{0.6}} {{0.5,0.6,0.7},{0.3}}
A4 {{0.7},{0.3}} {{0.6,0.7,0.8},{0.2}} {{0.1,0.2},{0.3}} {{0.1},{0.6,0.7,0.8}}
A5 {{0.6,0.7},{0.2}} {{0.2,0.3,0.4},{0.5}} {{0.4,0.5},{0.2}} {{0.2,0.3,0.4},{0.5}}

The information about the attribute weights is known as follows: ω =
(0.20,0.15,0.35,0.30). In the following, we utilize the approach developed for
supplier selection in supply chain management with dual hesitant Pythagorean fuzzy
information.

Step 1 We utilize the decision information given in matrix D̃, and the DHPFHWA opera-
tor to obtain the overall preference values d̃i of the supplier in supply chain management
Ai (i = 1,2,3,4,5). Take alternative Ai for an example (here, we take γ = 3), we have

d̃1 = DHPFHWAω

(
d̃11, d̃12, d̃13, d̃14

)
=

4
⊕
j=1

(
ω jd̃1 j

)

= ∪γ1 j∈h1 j,η1 j∈h1 j





√√√√√√√√
4
∏
j=1

(
1+(γ−1)(γ1 j)

2
)ω j

−
4
∏
j=1

(
1− (γ1 j)

2
)ω j

4
∏
j=1

(
1+(γ−1)(γ1 j)

2
)ω j

+(γ−1)
4
∏
j=1

(
1− (γ1 j)

2
)ω j

 ,


√γ

4
∏
j=1

(η1 j)
ω j√

4
∏
j=1

(
1+(γ−1)

(
1− (η1 j)

2
))ω j

+(γ−1)
4
∏
j=1

(η1 j)
2ω j




= {{{0.3,0.4},{0.5}},{{0.4,0.5},{0.3,0.4}},{{0.2,0.3},{0.5}},{{0.4,0.5},{0.5}}}
= {{0.3005,0.3146,0.3281,0.3328,0.3333,0.3412,0.3457,0.3461,0.3582,0.3586,
0.3630,0.3703,0.3707,0.3749,0.3866,0.3979},{0.3097,0.3416}}
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Step 2 Calculate the scores s
(

d̃i

)
(i = 1,2,3,4,5) of the overall dual hesitant

Pythagorean fuzzy preference values d̃i (i = 1,2,3,4,5):

s
(

d̃1

)
= 0.3828,s

(
d̃2

)
= 0.4552,s

(
d̃3

)
= 0.5008

s
(

d̃4

)
= 0.4774,s

(
d̃5

)
= 0.6171

Step 3 Rank all the suppliers Ai (i = 1,2,3,4,5) in accordance with the scores
s
(

d̃i

)
(i = 1,2,3,4,5) of the overall dual hesitant Pythagorean fuzzy numbers: A5 ≻

A3 ≻ A4 ≻ A2 ≻ A1, and thus the most desirable supplier is A5.
Based on the DHPFHWG operator, then, in order to select the most desirable

supplier, we can develop an approach to multiple attribute decision making problems
with dual hesitant Pythagorean fuzzy information, which can be described as following:

Step 1’ Aggregate all dual hesitant Pythagorean fuzzy value h̃i j ( j = 1,2,3,4) by using
the dual hesitant Pythagorean fuzzy weighted geometric (DHPFHWG) operator to derive
the overall dual hesitant Pythagorean fuzzy values d̃i (i = 1,2, · · · ,5) of the supplier Ai.
Take supplier A1 for an example (here, we take γ = 3), we have

d̃1 = DHPFHWGω

(
d̃11, d̃12, d̃13, d̃14

)
=

4
⊗
j=1

(
d̃1 j

)ω j

= ∪γ1 j∈h1 j,η1 j∈h1 j




√γ

4
∏
j=1

(γ1 j)
ω j√

4
∏
j=1

(
1+(γ−1)

(
1− (γ1 j)

2
))ω j

+(γ−1)
4
∏
j=1

(γ1 j)
2ω j

 ,



√√√√√√√√
4
∏
j=1

(
1+(γ−1)(η1 j)

2
)ω j

−
4
∏
j=1

(
1− (η1 j)

2
)ω j

4
∏
j=1

(
1+(γ−1)(η1 j)

2
)ω j

+(γ−1)
4
∏
j=1

(
1− (η1 j)

2
)ω j




= {{{0.3,0.4},{0.5}},{{0.4,0.5},{0.3,0.4}},{{0.2,0.3},{0.5)},{{0.4,0.5},{0.5}}}
= {{0.2794,0.2863,0.2934,0.3006,0.3053,0.3128,0.3204,0.3275,0.3282,0.3354,
0.3435,0.3518,0.3572,0.3657,0.3743,0.3832},{0.5913,0.6031}}
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Step 2’ Calculate the scores s
(

d̃i

)
(i = 1,2,3,4,5) of the overall dual hesitant

Pythagorean fuzzy values d̃i (i = 1,2,3,4,5) of the supplier Ai:

s
(

d̃1

)
= 0.4862,s

(
d̃2

)
= 0.4084,s

(
d̃3

)
= 0.4076

s
(

d̃4

)
= 0.4941,s

(
d̃5

)
= 0.5502

Step 3’ Rank all the suppliers in supply chain management Ai (i = 1,2,3,4,5) in accor-
dance with the scores s

(
d̃i

)
(i = 1,2,3,4,5) of the overall dual hesitant Pythagorean

fuzzy values d̃i (i = 1,2, · · · ,5) by using definition 5: A5 ≻ A4 ≻ A1 ≻ A2 ≻ A3 and thus
the most desirable supplier in supply chain management is A5.

From the above analysis, it is easily seen that although the overall rating values of
the alternatives are slightly different by using two operators respectively. However, the
most desirable supplier in supply chain management is A5.

7. Conclusion

In this paper, we investigate the multiple attribute decision making (MADM) prob-
lem based on the Hamacher aggregation operators with dual Pythagorean hesitant fuzzy
information. Then, motivated by the ideal of Hamacher operation, we have developed
some Hamacher aggregation operators for aggregating dual hesitant Pythagorean fuzzy
information: dual hesitant Pythagorean fuzzy Hamacher weighted average (DHPFHWA)
operator, dual hesitant Pythagorean fuzzy Hamacher weighted geometric (DHPFHWG)
operator, dual hesitant Pythagorean fuzzy Hamacher ordered weighted average (DH-
PFHOWA) operator, dual hesitant Pythagorean fuzzy Hamacher ordered weighted geo-
metric (DHPFHOWG) operator, dual hesitant Pythagorean fuzzy Hamacher hybrid av-
erage (DHPFHHA) operator and dual hesitant Pythagorean fuzzy Hamacher hybrid geo-
metric (DHPFHHG) operator. The prominent characteristic of these proposed operators
are studied. Then, we have utilized these operators to develop some approaches to solve
the dual hesitant Pythagorean fuzzy multiple attribute decision making problems. Fi-
nally, a practical example for supplier selection in supply chain management is given to
verify the developed approach and to demonstrate its practicality and effectiveness. In
the future, we shall continue working in the extension and application of the developed
operators to other domains and uncertain environments [47-66].
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An interval observer design for uncertain nonlinear
systems based on the T-S fuzzy model

YAMINA MENASRIA, HICHEM BOURAS and NASREDDINE DEBBACHE

A new approach to build an interval observer for nonlinear uncertain systems is presented
in this paper. Nonlinear systems modeled in the Takagi-Sugeno (T-S) form are studied. A T-S
proportional observer is first issued by pole-placement andLMI tools. Secondly, time-varying
change of coordinates for each dynamic state estimation error is used to design an interval
observer. The system state bounds are then directly deduced.

Key words: T-S model, T-S proportional observer, interval observer, time-varying systems.

1. Introduction

The problem of state vector estimation is very challenging in control and diagno-
sis thories for nonlinear systems. It have recently received considerable interest among
scientists in various fields and its solution remains expected in many applications. The
design of the classical state estimator (observer) is not possible due to presence of un-
certainty (parametric or/and signal). A called interval observer, was introduced by [9] to
estimate state bounds of biological systems that are subject to parameter uncertainties.
Later the framework of interval observers was used and extended for many biological
processes [3, 21, 15].

Actually, there exist many interval observers proposed forlinear systems in contin-
uous and discret times [13, 20, 12, 7]. For nonlinear systems, several observer were also
proposed in [14, 19, 16, 18, 6, 8, 5, 24]. By applying similarity transformation, a Hurwitz
matrix can be transformed to a Hurwitz and Metzler (cooperative) one. The transforma-
tion matrix is constant and real is considered in [18] and it is a solution of the Sylvester
equation. In [13, 12] the transformation is time-varying.

In this work, we propose the design of an interval observer for nonlinear systems
based on the Takagi-Sugeno model with the time-varying approach [12]. The T-S fuzzy
model proposed by [22] has been shown to be an universal approximator of nonlinear
dynamic systems. It’s a piecewise interpolation of severallinear or nonlinear models
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through membership functions. The fuzzy proportional observer cited in [11, 23] is de-
signed but diverges in presence of disturbances. When disturbances are with known dis-
tribution, fuzzy unknown input observer introduced by [2] can easily be applied. Fuzzy
sliding mode observer studied by [1] works if uncertaintiesare of known structure. In
the case of unknown disturbances but bounded within known bounds, the fuzzy interval
observer is a solution.

In the following, an interval observer is designed the T-S systems. Fuzzy interval ob-
server, which is quite an important issue has not been investigated yet. This motivates us
to carry out the present work. The design procedure consistsin computing proportional
observer gains as well as changes of coordinates by multipletime-varying transforma-
tions. The main contributions of this paper can be summarized as follows: (i) the fuzzy
proportional observer gain matrices are obtained by pole-placement and LMI tools, (ii)
time-varying transformation is applied for all local linear models and (iii) sufficient con-
ditions for designing interval observers for T-S systems are given. The rest of the paper
is outlined as follows. In Sect. 2, problem formulation and some necessary definitions
are given. In Sect. 3, based on time-varying transformation, sufficient conditions for the
existence of fuzzy interval observers are established. An example is provided to illustrate
the efficiency of the proposed method in Sect. 4. Conclusionsare given in Sect. 5.

2. Problem formulation and preliminaries

Consider the nonlinear system in the T-S model form:




ẋ(t) =
M
∑

i=1
µi(ξ(t))(Aix(t)+Biu(t))

y(t) =
M
∑

i=1
µi(ξ(t))Cix(t)

(1)

whereM is the number of local models function,x∈ ℜn is the state vector,u∈ ℜp is the
input andy ∈ ℜq the output. MatricesAi, Bi Ci are constant and the premisse variable
ξ(t) can be the controlu(t) and/or the state vectorx(t).

The membership functions satisfy the following convexity constraints:





M
∑

i=1
µi(ξ(t)) = 1

0¬ µi((ξ(t))¬ 1

∀i = 1,2...M

(2)
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The T-S proportional observer is an interpolation of linearproportional observers initi-
ated by [10]. It is given by the following equation:





˙̂x(t) =
M
∑

i=1
µi(ξ(t))(Ai x̂(t)+Biu(t)+Li(y(t)− ŷ(t))

ŷ(t) =
M
∑

i=1
µi(ξ(t))Ci x̂(t)

(3)

The dynamic error state estimation is then:

ė(t) =
M
∑

i=1
µi(ξ(t))(Ai −LiCi)e(t) (4)

The pair(Ai,Ci) is detectable for alli = 1...M. So, there exist constant matricesLi ∈ℜn×q

such thatAi − LiC are Hurwitz for alli = 1...M. For the sake of simplicity we choose
Ci =C for all i = 1...M andLi gains are obtained by pole-placement. Global stability is
ensured by LMI tools [4].

3. Nonlinear interval observer design

Consider the nonlinear uncertain system:




.
x(t) =

M
∑

i=1
µi(ξ(t))(Aix(t)+Biu(t)+ω1i(t))

y(t) =
M
∑

i=1
µi(ξ(t))Cix(t)+ω2(t)

(5)

where ω1i(t), for i = 1...M and ω(t) are unknown Lipschitz functions with known
bounds and the initial conditionx(t0) = x0 is assumed to be bounded by two known
bounds:

ω−
1i(t)¬ ω1i(t)¬ ω+

1i(t)

for all i = 1...M and
{

ω−
2 (t)¬ ω2(t)¬ ω+

2 (t)

x−0 ¬ x0¬ x+0

The dynamic error state estimation is:

.
e(t) =

M

∑
i=1

µi(ξ(t))((Ai −LiC)e(t))+
M

∑
i=1

µi(ξ(t))(ω1i(t)−Liω2(t)) (6)
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Remark 1 For i = 1...M, if the corresponding(Ai −LiC) Jordan matrices [17] are not
cooperatives (off diagonal entries negative), the system state estimation error (6) can be
transformed into cooperative one combining M linear time-varying change of coordi-
nates.

Theorem 3 The following system:




ż+(t) =
M
∑

i=1
µi(ξ(t))(Giz++E+

i (t)ϕ
+
i (t)−E−

i (t)ϕ−
i (t))

ż−(t) =
M
∑

i=1
µi(ξ(t))(Giz−+E+

i (t)ϕ
−
i (t)−E−

i (t)ϕ+
i (t))

e+(t) =
M
∑

i=1
µi(ξ(t))(F+

i (t)z+(t)−F−
i (t)z−(t))

e−(t) =
M
∑

i=1
µi(ξ(t))(F+

i (t)z−(t)−F−
i (t)z+(t))

(7)

where E+i (t) = max(Ei(t),0),E
−
i (t) = E+

i (t)−Ei(t) and the matrix Fi(t) is the inverse
of Ei(t) with F+

i (t) = max(Fi(t),0),F
−
i (t) = F+

i (t)−Fi(t), is a T-S interval observer
of system(6). Disturbances functionsϕ−

i (t) and ϕ+
i (t) are known bounds ofϕi(t) =

ω1i −Liω2 for i = 1...M.

Consequently, the system state bounds are:
{

x+(t) = e+(t)+ x̂(t)

x−(t) = e−(t)+ x̂(t)

Proof We use a time-varying change of coordinatez(t) = Ei(t)e(t) for each local model
ė= (Ai −LiC)e+ϕi(t) and from the convexity constraints of the membership functions
µi we prove that system (7) is an T-S interval observer of system(6). Globally and from
the T-S model:

ż(t) =
M
∑

i=1
µi(ξ(t))(Giz(t)+Ei(t)ϕi(t))

let Ai −LiC= Āi, then locally, fori = 1...M, we have:

ż= Ei(t)ė+ Ėi(t)e(t)

= Ei(t)(Āie+ϕi(t))+ (GiEi(t)−Ei(t)Āi)e(t)

= GiEi(t)e(t)+Ei(t)ϕi(t)

= Giz(t)+Ei(t)ϕi(t)

The stability of (7) when bothϕ+
i (t) and ϕ−

i (t) are identically equal to zero is a
consequence of the fact thatĀi are Hurwitz for allt ∈ ℜ.
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Consider a solution(z(t),e(t)) of (7) with known initial conditionse(t0) = e0,
z(t0) = (z+(t0),z−(t0)) ande+0 , e−0 the state error vectors such that:

e−0 ¬ e0¬ e+0
Because the entriesE+

i andE−
i are nonnegative we get:

{
E+

i (t0)e
−
0 ¬ E+

i (t0)e0 ¬ E+
i (t0)e

+
0

E−
i (t0)e

−
0 ¬ E−

i (t0)e0 ¬ E−
i (t0)e

+
0

for all i = 1...M. We get:
{

E+
i (t0)e

−
0 −E−

i (t0)e
+
0 ¬ z(t0)

z(t0)¬ E+
i (t0)e

+
0 −E−

i (t0)e
−
0

for all i = 1...M. From the constraints of the membership functions in (2), wealso get:




M
∑

i=1
µi(ξ(t0))(E+

i (t0)e
−
0 −E−

i (t0)e
+
0 )¬ z(t0)

z(t0)¬
M
∑

i=1
µi(ξ(t0))(E+

i (t0)e
+
0 −E−

i (t0)e
−
0 )

(8)

Then the initial conditions of the proposed observer are deduced:




z+(t0) =
M
∑

i=1
µi(ξ(t0))(E+

i (t0)e
+
0 −E−

i (t0)e
−
0 )

z−(t0) =
M
∑

i=1
µi(ξ(t0))(E+

i (t0)e
−
0 −E−

i (t0)e
+
0 )

Moreover, for alli = 1...M:
{

E+
i (t)ϕ−

i (t)¬ E+
i (t)ϕi(t)¬ E+

i (t)ϕ+
i (t)

E−
i (t)ϕ−

i (t)¬ E−
i (t)ϕi(t)¬ E−

i (t)ϕ+
i (t)

and
{

E+
i (t)ϕ−

i (t)−E−
i (t)ϕ+

i (t)¬ Ei(t)ϕi(t)

Ei(t)ϕi(t)¬ E+
i (t)ϕ+

i (t)−E−
i (t)ϕ

−
i (t)

Since matricesGi are cooperatives for alli = 1...M, membership functionsµi satisfy
constraints (2) and inequalities in (8) hold:





M
∑

i=1
µi(ξ(t))(Giz−(t)+E+

i (t)ϕ−
i (t)−E−

i (t)ϕ+
i (t))

¬
M
∑

i=1
µi(ξ(t))(Giz(t)+Ei(t)ϕi(t)) ¬

M
∑

i=1
µi(ξ(t))(Giz+(t)+E+

i (t)ϕ+
i (t)−E−

i (t)ϕ−
i (t))
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and then:
{

ż−(t)¬ ż(t)¬ ż+(t)

z−(t)¬ z(t)¬ z+(t)

Also and locally for all i = 1...M:

z−(t)¬ Ei(t)e(t) ¬ z+(t)

Since the matricesF+
i (t) andF−

i (t) for all i = 1...M are nonnegative, for allt  0, we
get:

{
F−

i (t)z−(t)¬ F−
i (t)Ei(t)e(t) ¬ F−

i (t)z+(t)

F+
i (t)z−(t)¬ F+

i (t)Ei(t)e(t) ¬ F+
i (t)z+(t)

and
{

F+
i (t)z−(t)−F−

i (t)z+(t)¬ Fi(t)Ei(t)e(t)

Fi(t)Ei(t)e(t) ¬ F+
i (t)z+(t)−F−

i (t)z−(t)

From the fact that,Fi(t) are inverse ofEi(t), for all i = 1...M following inequalities hold:
{

e(t)¬ F+
i (t)z+(t)−F−

i (t)z−(t)

F+
i (t)z−(t)−F−

i (t)z+(t)¬ e(t)

and from the properties of the membership functions in (2) weget:




e(t) ¬
M
∑

i=1
µi(ξ(t))(F+

i (t)z+(t)−F−
i (t)z−(t))

M
∑

i=1
µi(ξ(t))(F+

i (t)z−(t)−F−
i (t)z+(t)) ¬ e(t)

Finally, lower and upper bounds for the system states are directly deduced:




x+(t) =
M
∑

i=1
µi(ξ(t))(F+

i (t)z+(t)−F−
i (t)z−(t))+ x̂(t)

x−(t) =
M
∑

i=1
µi(ξ(t))(F+

i (t)z−(t)−F−
i (t)z+(t))+ x̂(t)
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4. Simulation

Let us consider the T-S system with two local models (M = 2):





A1 =




−2 −0.2 0.4

5 −1 2

3 −1 −2


 ;B1 =




1

−1

2


 ;

C1 =
[

0 1 1
]
.

A2 =




−2 0 1

1 −2 3

0 −0.2 −1


 ;B2 =




−2

1

−1


 ;

C2 =C1.

The pairs(A1,C1) and(A2,C2) are detectables and the T-S proportional observer gains
(L1,L2) are calculated by pole-placement in a stable complex plane region using LMIs.
The two state estimation error matrices are Hurwitz and eachone has two complex con-
jugate and one real eigen-values. Consequently, the corresponding Jordan matrices (9)
are not cooperatives.





J1 =




−1.8641 0 0

0 −2.1082 −2.6595

0 2.6595 −2.1082




J2 =




−2.2162 0 0

0 −2.433 −1.1521

0 1.1521 −2.433




(9)

The system state estimation error must be transformed into cooperative one using two
linear time-varying change of coordinates. In Fig. 1, the inputu(t) is variable on its entire
range[−1,1] in order to excite all local modes. It is also chosen the premisse variableξ(t)
for the T-S system. Fig. 2 illustrates two membership functions that satisfy the convexity
criterion (2) at each time. State and output disturbances(ω11(t),ω12(t) andω2(t)) are
choosen uniformly distributed noise respectively in interval: [−0.5,+0.5], [−0.5,+0.5]
and[−1,+1]. Like is shown in Figure 3, the statesx1, x2 andx3 remain inside the interval
[xiin f (t),xisup(t)] respctively fori = 1,2,3.
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Figure 2: The membership functions:µ1 in red line andµ2 in black line

5. Conclusions

Based on interval analysis, which we believe to be an extremely promising approach for
the investigation of the properties of nonlinear systems, aguaranteed technique for non-
linear state estimation in a bounded error context have beenpresented. In First, the fuzzy
proportional observer is built without uncertainties. Then Pole-placement ensures that
state estimation error matrices are Hurwitz but rarely cooperatives. Finally, time-varying
change of coordinates approach changes T-S error state estimation system with distur-
bances into cooperative one. By knowing initial state interval, T-S interval observer for
error state estimation system is designed. From error stateestimation bounds, system
states bounds are deduced at each time. The fuzzy interval observer proposed in this pa-
per can be applied to several practical systems with unknowndisturbances but bounded
within known bounds like waste water treatment plants.
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A new 3-D jerk chaotic system with two cubic
nonlinearities and its adaptive backstepping control

SUNDARAPANDIAN VAIDYANATHAN

This paper presents a new seven-term 3-D jerk chaotic system with two cubic nonlinear-
ities. The phase portraits of the novel jerk chaotic system are displayed and the qualitative
properties of the jerk system are described. The novel jerk chaotic system has a unique equilib-
rium at the origin, which is a saddle-focus and unstable. The Lyapunov exponents of the novel
jerk chaotic system are obtained as L1 = 0.2974, L2 = 0 and L3 = −3.8974. Since the sum of
the Lyapunov exponents of the jerk chaotic system is negative, we conclude that the chaotic
system is dissipative. The Kaplan-Yorke dimension of the new jerk chaotic system is found as
DKY = 2.0763. Next, an adaptive backstepping controller is designed to globally stabilize the
new jerk chaotic system with unknown parameters. Moreover, an adaptive backstepping con-
troller is also designed to achieve global chaos synchronization of the identical jerk chaotic sys-
tems with unknown parameters. The backstepping control method is a recursive procedure that
links the choice of a Lyapunov function with the design of a controller and guarantees global
asymptotic stability of strict feedback systems. MATLAB simulations are shown to illustrate all
the main results derived in this work.

Key words: chaos, chaotic systems, jerk systems, chaos control, adaptive control, back-
stepping control, synchronization.

1. Introduction

Modeling and applications of chaotic systems are active research areas in the lit-
erature [1, 2, 3]. The first famous chaotic system was discovered by Lorenz, when he
was designing a weather model in 1963 [4]. Some well-known chaotic systems are Chen
system [5], Lü system [6], Cai system [7], Tigan system [8], Sprott systems [9], etc.

Some well-known paradigms of 3-D chaotic systems are Arneodo system [10],
Hénon-Heiles system [12], Lü-Chen system [13], Liu system [14], etc. Many new
chaotic systems have been also discovered like Li system [15], Sundarapandian sys-
tems [16, 17], Vaidyanathan systems [18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30,
31, 32, 33], Pehlivan system [34], Tacha system [35], Jafari system [36], Sampath sys-
tem [37], Pham systems [38, 39, 40, 41, 42, 43, 44], Volos system [45], Akif system [46],
etc.

The author is with Research and Development Centre, Vel Tech University, Avadi, Chennai-600062,
Tamil Nadu, India. E-mail: sundarvtu@gmail.com

Received 18.11.2016.
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Chaos theory has applications in several fields of science and engineering such
as oscillators [47, 48, 49, 50, 51, 52, 53, 54, 55], dynamos [56, 57, 58, 59], Toka-
mak systems [60, 61], chemical reactions [62, 63, 64, 65, 66, 67, 68, 69, 70, 71],
neural networks [72, 73, 74, 75, 76, 77], neurology [78, 79, 80, 81, 82, 83], biol-
ogy [84, 85, 86, 87, 88, 89, 90, 91, 92], electrical circuits [93, 94, 95], induction mo-
tors [96], cryptosystems [97, 98], memristors [99, 100, 101], random bit generator [102],
etc.

In classical mechanics, a jerk system is expressed by an explicit third order differen-
tial equation describing the time evolution of a single scalar variable x according to the
dynamics

d3x
dt3 = f

(
d2x
dt2 ,

dx
dt

,x
)

(1)

A particularly simple example of a jerk system is the famous Coullet system [103]
given by

d3x
dt3 +a

d2x
dt2 +

dx
dt

= g(x) (2)

where g(x) is a nonlinear function such as g(x) = b(x2 − 1). The Coullet system (2)
exhibits chaos for a = 0.6 and b = 0.58.

A classical example of a cubic dissipative jerk chaotic flow was found by Sprott
[104]. In this research work, we modify the dynamics of the jerk system in [104] by
introducing two linear terms and taking different set values for the system parameters.
Thus, we obtain a novel chaotic jerk system with two cubic nonlinearities.

In most of the synchronization approaches, the master-slave or drive-response for-
malism is used. If a particular chaotic system is called the master or drive system and
another chaotic system is called the slave or response system, then the idea of syn-
chronization is to use the output of the master system to control the response of the
slave system so that the slave system tracks the output of the master system asymptoti-
cally [105, 106, 107, 108].

In the chaos literature, an impressive variety of techniques have been proposed for
chaos synchronization such as active control method [109, 110, 111, 112, 113, 114, 115],
adaptive control method [116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127],
backstepping control method [128, 129, 130, 131, 132, 133, 134, 135], sliding mode
control method [136, 137, 138, 139, 140, 141, 142, 143, 144], etc.

All the main adaptive backstepping control results in this paper are proved using Lya-
punov stability theory [145]. MATLAB simulations are depicted to illustrate the phase
portraits of the novel jerk chaotic system, adaptive stabilization and synchronization re-
sults for the novel 3-D jerk chaotic system.

This research paper is organized as follows. Section 2 contains the dynamics and
phase portraits of the novel chaotic jerk system. Section 3 details the qualitative prop-
erties of the novel chaotic jerk system. In Section 4, we apply adaptive backstepping
control method to design an adaptive feedback control law that stabilizes the states of
the novel jerk system.
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In Section 5, we apply adaptive backstepping control method to design an adap-
tive feedback control law that achieves complete and exponential synchronization of the
states of identical novel chaotic jerk systems. Finally, Section 6 contains a summary of
the main results obtained in this work.

2. A new jerk chaotic system

A classical example of a cubic dissipative jerk chaotic flow was found by Sprott [104]
and described by the third-order differential equation

...x =−aẍ+ xẋ2 − x3 (with a = 3.6) (3)

In system form, Sprott’s differential equation (3) corresponds to the jerk system
ẋ1 = x2

ẋ2 = x3

ẋ3 = −ax3 + x1x2
2 − x3

1

(4)

where a = 3.6 yields a chaotic attractor.
Using Wolf’s algorithm [146], the Lyapunov exponents of the Sprott system (4) for

a = 3.6 are numerically obtained as

L1 = 0.1360, L2 = 0, L3 =−3.7367 (5)

From (5), we see that the Maximal Lyapunov Exponent (MLE) of the Sprott system
(4) is L1 = 0.1360. Since L1 > 0, the Sprott system (4) is chaotic.

The Kaplan-Yorke dimension of a chaotic system of order n is defined as

DKY = j+
L1 +L2 + · · ·+L j

|L j+1|
(6)

where L1  L2  · · ·  Ln are the n Lyapunov exponents of the chaotic system and j is
the largest integer for which L1 +L2 + · · ·+L j  0. Thus, the Kaplan-Yorke dimension
of the Sprott jerk system (4) is calculated as

DKY = 2+
L1 +L2

|L3|
= 2.0364 (7)

In this work, we propose a new jerk chaotic system, which is obtained by adding two
linear systems −bx and cẋ, where b,c > 0, to the Sprott’s jerk function in the ODE (3).
Thus, our new jerk chaotic flow is described by the third order ODE

...x =−aẍ+ xẋ2 − x3 −bx+ cẋ (8)
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In system form, the third order ODE (8) corresponds to the jerk system
ẋ1 = x2

ẋ2 = x3

ẋ3 = −ax3 −bx1 + cx2 + x1x2
2 − x3

1

(9)

where a,b and c are positive parameters.
In this paper, we shall show that the system (9) is chaotic when the parameters a and

b take the values
a = 3.6, b = 1.3, c = 0.1 (10)

Using Wolf’s algorithm [146], the Lyapunov exponents of the novel system (9) for
the parameter values (10) are numerically obtained as

L1 = 0.2974, L2 = 0, L3 =−3.8974 (11)

From (11), we see that the Maximal Lyapunov Exponent (MLE) of the novel system
(9) is L1 = 0.2974. Since L1 > 0, the novel system (9) is chaotic. Moreover, we also
note that the MLE of the novel jerk system (9) is greater than the MLE of the Sprott jerk
system (4). Also, the Kaplan-Yorke dimension of the novel jerk system (9) is calculated
as

DKY = 2+
L1 +L2

|L3|
= 2.0763, (12)

which is greater than the Kaplan-Yorke dimension of the Sprott jerk system (4).
For numerical simulations, we take the initial conditions of the system (9) as

x1(0) = 0.5, x2(0) = 0.5, x3(0) = 0.5 (13)

The initial conditions in (13) have been chosen arbitrarily for the sake of simulations.
For other initial conditions in R3 also, the system (9) is chaotic with a similar strange
attractor.

Figure 1 depicts the chaotic attractor of the novel jerk system (9) in 3-D view. Figures
2-4 depict the 2-D projection of the strange chaotic attractor of the novel jerk chaotic
system (9) on (x1,x2),(x2,x3) and (x3,x1) planes, is shown, respectively.
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Figure 1: Strange attractor of the 3-D novel jerk chaotic System
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Figure 2: 2-D projection of the novel jerk chaotic system on the (x1,x2) plane
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Figure 3: 2-D projection of the novel jerk chaotic system on the (x2,x3) plane
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Figure 4: 2-D projection of the novel jerk chaotic system on the (x1,x3) plane
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3. Analysis of the 3-D novel jerk chaotic system

3.1. Dissipativity

In vector notation, the new jerk system (9) can be expressed as

ẋ = f (x) =

 f1(x1,x2,x3)

f2(x1,x2,x3)

f3(x1,x2,x3)

 , (14)

where 
f1(x1,x2,x3) = x2

f2(x1,x2,x3) = x3

f3(x1,x2,x3) = −ax3 −bx1 + cx2 + x1x2
2 − x3

1

(15)

Let Ω be any region in R3 with a smooth boundary and also, Ω(t) = Φt(Ω), where
Φt is the flow of f . Furthermore, let V (t) denote the volume of Ω(t). By Liouville’s
theorem, we know that

V̇ (t) =
∫

Ω(t)

(∇ · f )dx1 dx2 dx3 (16)

The divergence of the novel jerk system (14) is found as:

∇ · f =
∂ f1

∂x1
+

∂ f2

∂x2
+

∂ f3

∂x3
=−a < 0 (17)

Inserting the value of ∇ · f from (17) into (16), we get

V̇ (t) =
∫

Ω(t)

(−a)dx1 dx2 dx3 =−aV (t) (18)

Integrating the first order linear differential equation (18), we get

V (t) = exp(−at)V (0) (19)

From Eq. (19), it is clear that V (t)→ 0 exponentially as t → ∞. This shows that the novel
3-D jerk chaotic system (9) is dissipative. Hence, the system limit sets are ultimately
confined into a specific limit set of zero volume, and the asymptotic motion of the novel
jerk chaotic system (9) settles onto a strange attractor of the system.

3.2. Equilibrium Points

The equilibrium points of the 3-D novel jerk chaotic system (9) are obtained by
solving the equations

f1(x1,x2,x3) = x2 = 0
f2(x1,x2,x3) = x3 = 0
f3(x1,x2,x3) = −ax3 −bx1 + cx2 + x1x2

2 − x3
1 = 0

(20)
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We take the parameter values as in the chaotic case (10), i.e.

a = 3.6, b = 1.3, c = 0.1 (21)

Thus, the equilibrium points of the system (9) are characterized by the equations

x2 = 0, x3 = 0, x1(x2
1 +b) = 0 (22)

Solving the system (22), we get the equilibrium points of the system (9) as

E0 =

 0
0
0

 (23)

The Jacobian matrix of the novel jerk chaotic system (9) at E0 is obtained as

J0 = J(E0) =

 0 1 0
0 0 1
−b c −a

=

 0 1 0
0 0 1

−1.3 0.1 −3.6

 (24)

We find that J0 has the eigenvalues

λ1 =−3.7208, λ2,3 = 0.0604±0.5880 i (25)

This shows that the equilibrium E0 is a saddle-focus point, which is unstable.

3.3. Lyapunov exponents and Kaplan-Yorke dimension

We take the parameter values of the novel jerk system (9) as

a = 3.6, b = 1.3, c = 0.1 (26)

Then the Lyapunov exponents are numerically obtained using Wolf’s algorithm [146] as

L1 = 0.2974, L2 = 0, L3 =−3.8974 (27)

Thus, the maximal Lyapunov exponent (MLE) of the novel jerk system (9) is L1 =
0.2974 > 0, which shows that the system (9) has chaotic behavior.

Since L1 +L2 +L3 = −3.6 = −a < 0, it follows that the novel jerk chaotic system
(9) is dissipative. Also, the Kaplan-Yorke dimension of the novel jerk chaotic system (9)
is obtained as

DKY = 2+
L1 +L2

|L3|
= 2.0763, (28)

which is fractional.
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4. Adaptive control of the 3-D novel jerk chaotic system

In this section, we use backstepping control method to derive an adaptive feedback
control law for globally stabilizing the 3-D novel jerk chaotic system with unknown
parameters. Thus, we consider the 3-D novel jerk chaotic system given by

ẋ1 = x2

ẋ2 = x3

ẋ3 = −ax3 −bx1 + cx2 + x1x2
2 − x3

1 +u

(29)

where a,b,c are unknown constant parameters, and u is a backstepping control law to be
determined using estimates of the unknown system parameters.

The parameter estimation errors are defined as:
ea(t) = a− â(t)

eb(t) = b− b̂(t)

ec(t) = c− ĉ(t)

(30)

Differentiating (30) with respect to t, we obtain the following equations:
ėa(t) = − ˙̂a(t)

ėb(t) = − ˙̂b(t)

ėc(t) = − ˙̂c(t)

(31)

Next, we shall state and prove the main result of this section.

Theorem 1 The 3-D novel jerk chaotic system (29), with unknown parameters a,b and
c, is globally and exponentially stabilized by the adaptive feedback control law,

u(t) =−[3− b̂(t)]x1 − [5+ ĉ(t)]x2 − [3− â(t)]x3 − x1x2
2 + x3

1 − kz3 (32)

where k > 0 is a gain constant,

z3 = 2x1 +2x2 + x3, (33)

and the update law for the parameter estimates â(t), b̂(t), ĉ(t) is given by
˙̂a(t) = −z3x3

˙̂b(t) = −z3x1

˙̂c(t) = z3x2

(34)
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Proof We prove this result via Lyapunov stability theory [145].
First, we define a quadratic Lyapunov function

V1(z1) =
1
2

z2
1 (35)

where
z1 = x1 (36)

Differentiating V1 along the dynamics (29), we get

V̇1 = z1ż1 = x1x2 =−z2
1 + z1(x1 + x2) (37)

Now, we define
z2 = x1 + x2 (38)

Using (38), we can simplify the equation (37) as

V̇1 =−z2
1 + z1z2 (39)

Secondly, we define a quadratic Lyapunov function

V2(z1,z2) =V1(z1)+
1
2

z2
2 =

1
2
(
z2

1 + z2
2
)

(40)

Differentiating V2 along the dynamics (29), we get

V̇2 =−z2
1 − z2

2 + z2(2x1 +2x2 + x3) (41)

Now, we define
z3 = 2x1 +2x2 + x3 (42)

Using (42), we can simplify the equation (41) as

V̇2 =−z2
1 − z2

2 + z2z3 (43)

Finally, we define a quadratic Lyapunov function

V (z1,z2,z3,ea,eb,ec) =V2(z1,z2)+
1
2

z2
3 +

1
2
(e2

a + e2
b + e2

c) (44)

which is a positive definite function on R6. Differentiating V along the dynamics (29),
we get

V̇ =−z2
1 − z2

2 − z2
3 + z3(z3 + z2 + ż3)− ea ˙̂a− eb

˙̂b− ec ˙̂c (45)

Eq. (45) can be written compactly as

V̇ =−z2
1 − z2

2 − z2
3 + z3S− ea ˙̂a− eb

˙̂b− ec ˙̂c (46)
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where
S = z3 + z2 + ż3 = z3 + z2 +2ẋ1 +2ẋ2 + ẋ3 (47)

A simple calculation gives

S = (3−b)x1 +(5+ c)x2 +(3−a)x3 + x1x2
2 − x3

1 +u (48)

Substituting the adaptive control law (32) into (48), we obtain

S =−[b− b̂(t)]x1 +[c− ĉ(t)]x2 − [a− â(t)]x3 − kz3 (49)

Using the definitions (31), we can simplify (49) as

S =−ebx1 + ecx2 − eax3 − kz3 (50)

Substituting the value of S from (50) into (46), we obtain

V̇ =−z2
1 − z2

2 − (1+ k)z2
3 + ea

(
−z3x3 − ˙̂a

)
+ eb

(
−z3x1 − ˙̂b

)
+ ec

(
z3x2 − ˙̂c

)
(51)

Substituting the update law (34) into (51), we get

V̇ =−z2
1 − z2

2 − (1+ k)z2
3, (52)

which is a negative semi-definite function on R6. From (52), it follows that the vec-
tor z(t) = (z1(t),z2(t),z3(t)) and the parameter estimation error (ea(t),eb(t),ec(t))) are
globally bounded, i.e.[

z1(t) z2(t) z3(t) ea(t) eb(t) ec(t)
]
∈ Lin f ty (53)

Also, it follows from (52) that

V̇ ¬−z2
1 − z2

2 − z2
3 =−∥z∥2 (54)

That is,
∥z∥2 ¬−V̇ (55)

Integrating the inequality (55) from 0 to t, we get

t∫
0

|z(τ)|2 dτ¬V (0)−V (t) (56)

From (56), it follows that z(t) ∈ L2. From Eq. (29), it can be deduced that ż(t) ∈ L∞.
Thus, using Barbalat’s lemma [145], we conclude that z(t)→ 0 exponentially as t → ∞
for all initial conditions z(0) ∈ R3. Hence, it is immediate that x(t)→ 0 exponentially as
t → ∞ for all initial conditions x(0) ∈ R3. This completes the proof.



420 SUNDARAPANDIAN VAIDYANATHAN

For the numerical simulations, the classical fourth-order Runge-Kutta method with
step size h = 10−8 is used to solve the system of differential equations (29) and (34),
when the adaptive control law (32) is applied.

The parameter values of the novel jerk chaotic system (29) are taken as in the chaotic
case (10), i.e.

a = 3.6, b = 1.3, c = 0.1 (57)

The positive gain constant k is taken as k = 10. As initial conditions of the novel jerk
chaotic system (29), we take

x1(0) = 7.5, x2(0) = 12.1, x3(0) = 15.4 (58)

Also, as initial conditions of the parameter estimates, we take

â(0) = 3.1, b̂(0) = 6.8, ĉ(0) = 9.2 (59)

In Figure 5, the exponential convergence of the controlled states is depicted, when the
adaptive control law (32) and parameter update law (34) are implemented.
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Figure 5: Time-history of the controlled states x1(t),x2(t),x3(t)

5. Adaptive synchronization of the identical 3-D novel jerk chaotic systems

In this section, we use backstepping control method to derive an adaptive control
law for globally and exponentially synchronizing the identical 3-D novel jerk chaotic
systems with unknown parameters.
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As the master system, we consider the 3-D novel jerk chaotic system given by
ẋ1 = x2

ẋ2 = x3

ẋ3 = −ax3 −bx1 + cx2 + x1x2
2 − x3

1

(60)

where x1,x2,x3 are the states of the system, and a,b,c are unknown constant parameters.
As the slave system, we consider the 3-D novel jerk chaotic system given by

ẏ1 = y2

ẏ2 = y3

ẏ3 = −ay3 −by1 + cy2 + y1y2
2 − y3

1 +u

(61)

where y1,y2,y3 are the states of the system, and u is a backstepping control to be deter-
mined using estimates of the unknown system parameters.

We define the synchronization errors between the states of the master system (60)
and the slave system (61) as 

e1 = y1 − x1

e2 = y2 − x2

e3 = y3 − x3

(62)

Then the error dynamics is easily obtained as
ė1 = e2

ė2 = e3

ė3 = −ae3 −be1 + ce2 + y1y2
2 − x1x2

2 − y3
1 + x3

1 +u

(63)

The parameter estimation errors are defined as:
ea(t) = a− â(t)

eb(t) = b− b̂(t)

ec(t) = c− ĉ(t)

(64)

Differentiating (64) with respect to t, we obtain the following equations:
ėa(t) = − ˙̂a(t)

ėb(t) = − ˙̂b(t)

ėc(t) = − ˙̂c(t)

(65)

Next, we shall state and prove the main result of this section.
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Theorem 2 The identical 3-D novel jerk chaotic systems (60) and (61) with unknown
parameters a,b and c are globally and exponentially synchronized by the adaptive con-
trol law  u(t) = −[3− b̂(t)]e1 − [5+ ĉ(t)]e2 − [3− â(t)]e3

−y1y2
2 + x1x2

2 + y3
1 − x3

1 − kz3
(66)

where k > 0 is a gain constant,

z3 = 2e1 +2e2 + e3, (67)

and the update law for the parameter estimates â(t), b̂(t) is given by
˙̂a(t) = −z3e3

˙̂b(t) = −z3e1

˙̂c(t) = z3e2

(68)

Proof We prove this result via backstepping control method and Lyapunov stability
theory.

First, we define a quadratic Lyapunov function

V1(z1) =
1
2

z2
1 (69)

where
z1 = e1 (70)

Differentiating V1 along the error dynamics (63), we get

V̇1 = z1ż1 = e1e2 =−z2
1 + z1(e1 + e2) (71)

Now, we define
z2 = e1 + e2 (72)

Using (72), we can simplify the equation (71) as

V̇1 =−z2
1 + z1z2 (73)

Secondly, we define a quadratic Lyapunov function

V2(z1,z2) =V1(z1)+
1
2

z2
2 =

1
2
(
z2

1 + z2
2
)

(74)

Differentiating V2 along the error dynamics (63), we get

V̇2 =−z2
1 − z2

2 + z2(2e1 +2e2 + e3) (75)
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Now, we define
z3 = 2e1 +2e2 + e3 (76)

Using (76), we can simplify the equation (75) as

V̇2 =−z2
1 − z2

2 + z2z3 (77)

Finally, we define a quadratic Lyapunov function

V (z1,z2,z3,ea,eb,ec,ep) =V2(z1,z2)+
1
2

z2
3 +

1
2
(
e2

a + e2
b + e2

c
)

(78)

which is a positive definite function on R6. Differentiating V along the error dynamics
(63), we get

V̇ =−z2
1 − z2

2 − z2
3 + z3(z3 + z2 + ż3)− ea ˙̂a− eb

˙̂b− ec ˙̂c (79)

Eq. (79) can be written compactly as

V̇ =−z2
1 − z2

2 − z2
3 + z3S− ea ˙̂a− eb

˙̂b− ec ˙̂c (80)

where
S = z3 + z2 + ż3 = z3 + z2 +2ė1 +2ė2 + ė3 (81)

A simple calculation gives

S = (3−b)e1 +(5+ c)e2 +(3−a)e3 + y1y2
2 − x1x2

2 − y3
1 + x3

1 +u (82)

Substituting the adaptive control law (66) into (48), we obtain

S =−[b− b̂(t)]e1 +[c− ĉ(t)]e2 − [a− â(t)]e3 − kz3 (83)

Using the definitions (65), we can simplify (83) as

S =−ebe1 + ece2 − eae3 − kz3 (84)

Substituting the value of S from (84) into (80), we obtain{
V̇ = −z1 − z2 − (1+ k)z2

3 + ea[−z3e3 − ˙̂a]+ eb[−z3e1 − ˙̂b]

+ec[z3e2 − ˙̂c]
(85)

Substituting the update law (68) into (85), we get

V̇ =−z2
1 − z2

2 − (1+ k)z2
3, (86)

which is a negative semi-definite function on R6. From (86), it follows that the vec-
tor z(t) = (z1(t),z2(t),z3(t)) and the parameter estimation error (ea(t),eb(t),ec(t)) are
globally bounded, i.e.[

z1(t) z2(t) z3(t) ea(t) eb(t) ec(t)
]
∈ Lin f ty (87)
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Also, it follows from (86) that

V̇ ¬−z2
1 − z2

2 − z2
3 =−∥z∥2 (88)

That is,
∥z∥2 ¬−V̇ (89)

Integrating the inequality (89) from 0 to t, we get

t∫
0

|z(τ)|2 dτ¬V (0)−V (t) (90)

From (90), it follows that z(t) ∈ L2. From Eq. (63), it can be deduced that ż(t) ∈ L∞.
Thus, using Barbalat’s lemma, we conclude that z(t) → 0 exponentially as t → ∞ for
all initial conditions z(0) ∈ R3. Hence, it is immediate that e(t) → 0 exponentially as
t → ∞ for all initial conditions e(0) ∈ R3. This completes the proof.

For the numerical simulations, the classical fourth-order Runge-Kutta method with
step size h = 10−8 is used to solve the system of differential equations (60) and (61).

The parameter values of the novel jerk chaotic systems are taken as in the chaotic
case, (10), i.e.

a = 3.6, b = 1.3, c = 0.1 (91)

The positive gain constant is taken as k = 10. As initial conditions of the master chaotic
system (60), we take

x1(0) =−5.8, x2(0) = 3.7, x3(0) =−4.9 (92)

As initial conditions of the slave chaotic system (61), we take

y1(0) = 4.5, y2(0) = 8.4, y3(0) =−8.5 (93)

Also, as initial conditions of the parameter estimates, we take

â(0) = 11.2, b̂(0) = 6.1, ĉ(0) = 12.6 (94)

In Figs. 6-8, the complete synchronization of the identical 3-D jerk chaotic systems
(60) and (61) is shown, when the adaptive control law (66) and the parameter update law
(68) are implemented.

Also, in Fig. 9, the time-history of the synchronization errors e1(t),e2(t),e3(t), is
shown.



A NEW 3-D JERK CHAOTIC SYSTEM WITH TWO CUBIC NONLINEARITIES
AND ITS ADAPTIVE BACKSTEPPING CONTROL 425

0 1 2 3 4 5 6 7 8 9 10
−6

−4

−2

0

2

4

6

8

Time (sec)

x 1, y
1

x
1

y
1

Figure 6: Synchronization of the states x1(t) and y1(t)
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Figure 8: Synchronization of the states x3(t) and y3(t)

0 1 2 3 4 5 6 7 8 9 10
−50

−40

−30

−20

−10

0

10

20

30

Time (sec)

e 1, e
2, e

3

e
1

e
2

e
3

Figure 9: Time-history of the synchronization errors e1(t),e2(t),e3(t)
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6. Conclusions

In this paper, we announced a seven-term novel 3-D jerk chaotic system with two
cubic nonlinearities. The phase portraits of the novel jerk chaotic system were displayed
and the qualitative properties were discussed. Next, an adaptive backstepping controller
was designed to globally stabilize the novel jerk chaotic system with unknown parame-
ters. Moreover, an adaptive backstepping controller was also designed to achieve global
chaos synchronization of the identical jerk chaotic systems with unknown parameters.
MATLAB simulations were depicted to illustrate the phase portraits of the novel jerk
chaotic system and also the adaptive backstepping control results.
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Relationship between the observability of standard
and fractional linear systems

TADEUSZ KACZOREK

The relationship between the observability of standard and fractional discrete-time and
continuous-time linear systems are addressed. It is shown that the fractional discrete-time and
continuous-time linear systems are observable if and only if the standard discrete-time and
continuous-time linear systems are observable.
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1. Introduction

The notion of controllability and observability of linear systems have been intro-
duced by Kalman [14, 15]. Those notions are the basic concepts of the modern control
theory [1, 6, 13, 16, 21, 24, 25]. They have been extended to positive and fractional
linear and nonlinear systems [2, 4, 5, 7-11, 22, 23]. The mathematical fundamentals of
fractional calculus are given in the monographs [18-20]. The positive fractional linear
systems have been introduced in [8, 11].

In the paper [17] it has been shown that the fractional discrete-time and continuous-
time linear systems are controllable if and only if the standard discrete-time and
continuous-time systems are controllable.

In this paper it will be shown that the fractional discrete-time and continuous-time
linear systems are observable if and only if the standard discrete-time and continuous-
time linear systems are observable.

The paper is organized as follows. In section 2 the basic definitions and theorems
concerning standard and fractional discrete-time and continuous-time linear systems
are recalled. The relationship between the observability of the standard and fractional
discrete-time linear systems is considered in section 3 and of continuous-time linear
systems in section 4. Concluding remarks are given in section 5.

The authors is with Bialystok University of Technology, Faculty of Electrical Engineering, Wiejska
45D, 15-351 Bialystok, Poland. E-mail: kaczorek@ee.pw.edu.pl

The studies have been carried out in the framework of work No. S/WE/1/2016 and financed from the
funds for science by the Polish Ministry of Science and Higher Education.

Received 01.03.2017.



442 T. KACZOREK

The following notation will be used: ℜn×m is the set of n×m real matrices and
ℜn = ℜn×1, Z+ is the set of nonnegative integers, In is the n×n identity matrix.

2. Preliminaries

Consider the standard discrete-time linear system

xi+1 = Axi +Bui, i ∈ Z+ = {0,1, ...}, (1a)

yi =Cxi, (1b)

where xi ∈ ℜn, ui ∈ ℜm, yi ∈ ℜp are state, input and output vectors and A ∈ ℜn×n,
B ∈ ℜn×m, C ∈ ℜp×n.

The solution to the equation (1a) is given by

xi = Aix0 +
i−1

∑
j=0

Ai− j−1Bu j. (2)

Substituting (2) into (1b) we obtain

yi =CAix0 +
i−1

∑
j=0

CAi− j−1Bu j. (3)

Now let us consider the fractional discrete-time linear system

∆αxi+1 = Axi +Bui, 0 < α < 2, (4a)

yi =Cxi, (4b)

where

∆αxi =
i

∑
j=0

(−1) j

(
α
j

)
xi− j, (4c)

(
α
j

)
=

{
1 for j = 0
α(α−1)...(α− j+1)

j! for j = 1,2, ...
(4d)

is the fractional α-order difference of xi and xi ∈ ℜn, ui ∈ ℜm, yi ∈ ℜp are state, input
and output vectors and A ∈ ℜn×n, B ∈ ℜn×m, C ∈ ℜp×n.

Substitution of (4c) into (4a) yields

xi+1 = (A+ Inα)xi +
i+1

∑
j=2

c jxi− j+1 +Bui, i ∈ Z+, (5a)
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where

c j = c j(α) = (−1) j+1

(
α
j

)
, j = 2,3, ... (5b)

The solution to the equation (5a) has the form [11]

xi+1 = (A+ Inα)xi +
i+1

∑
j=2

c jxi− j+1 +Bui, i ∈ Z+, (6a)

where

Φ j+1 = Φ j(A+ Inα)+
j+1

∑
k=2

ckΦ j−k+1, Φ0 = In (6b)

and ck is defined by (5b).
Substituting (6a) into (4b) we obtain

yi =CΦix0 +
i−1

∑
j=0

CΦi− j−1Bu j. (7)

Consider the standard continuous-time linear system

ẋ(t) = Ax(t)+Bu(t), (8a)

y(t) =Cx(t), (8b)

where x(t) ∈ ℜn, u(t) ∈ ℜm, y(t) ∈ ℜp are state, input and output vectors and A ∈ ℜn×n,
B ∈ ℜn×m, C ∈ ℜp×n.

The solution to the equation (8a) has the form

x(t) = eAtx0 +

t∫
0

eA(t−τ)Bu(τ)dτ (9)

and

y(t) =CeAtx0 +

t∫
0

CeA(t−τ)Bu(τ)dτ. (10)

Now let us consider the fractional continuous-time linear system

dαx(t)
dtα = Ax(t)+Bu(t), 0 < α < 2 (11a)

y(t) =Cx(t), (11b)

where
dαx(t)

dtα =
1

Γ(n−α)

t∫
0

x(n)(τ)
(t − τ)α+1−n dτ, x(n)(τ) =

dnx(τ)
dτn (12)
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is the Caputo fractional derivative of order n− 1 < α < n (n ∈ N) of x(t), Γ(x) is the
Euler gamma function, xi ∈ ℜn, ui ∈ ℜm, yi ∈ ℜp are state, input and output vectors and
A ∈ ℜn×n, B ∈ ℜn×m, C ∈ ℜp×n.

The solution of the equation (11a) is given by [11]

x(t) = Φ0(t)x0 +

t∫
0

Φ(t − τ)Bu(τ)dτ, x0 = x(0), (13a)

where

Φ0(t) =
∞

∑
k=0

Aktkα

Γ(kα+1)
, (13b)

Φ(t) =
∞

∑
k=0

Akt(k+1)α−1

Γ[(k+1)α]
(13c)

and

y(t) =CΦ0(t)x0 +

t∫
0

CΦ(t − τ)Bu(τ)dτ. (14)

Theorem 4 (Cayley-Hamilton) Let A ∈ ℜn×n and

det[Inλ−A] = λn +an−1λn−1 + ...+a1λ+a0. (15)

Then
An +an−1An−1 + ...+a1A+a0In = 0. (16)

Proof Proof is given in [3, 12].

Theorem 5 (Kronecker-Capelli) The linear matrix equation

Ax = b, A ∈ ℜn×n, b ∈ ℜn (17)

has a solution x ∈ ℜn if and only if

rank[A,b] = rankA. (18)

Proof Proof is given in [12].

3. Observability of standard and fractional discrete-time linear systems

It is well-known [1, 2, 7] that the observability of the standard and fractional linear
systems depends only of the pair (A,C) and it is independent of the matrix B.
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Definition 13 The standard linear discrete-time linear system (1) is called observable
in the interval [0,q] if knowing the output yi for i = 0,1, ...,q−1, q¬ n, it is possible to
find the unique x0 of the system.

Theorem 6 The standard linear discrete-time linear system (1) is observable if and only
if

rank


C

CA
...

CAn−1

= n. (19)

Proof Proof is given in [1, 6, 13].

Definition 14 The fractional discrete-time linear system (4) is called observable in the
interval [0,q] if knowing the output yi for i = 0,1, ...,q− 1, q < n, it is possible to find
the unique x0 of the system.

We shall show that the fractional discrete-time linear system (4) is observable in the
interval [0,q] if and only if the standard linear discrete-time system (1) is observable in
the same interval.

From (7) for B = 0 and (6b) for i = 0,1, ...,q−1 we have

y0q =


y0

y1
...

yq−1

=


CΦ0

CΦ1
...

CΦq−1

x0 = O0qx0, (20a)

where

O0q =



C
C(A+ Inα)

C[(A+ Inα)2 + c2In]
...

C[(A+ Inα)q−1 + ...+(αq−1 + ...+ cq−1)In]


. (20b)

By Kronecker-Capelli theorem the equation (20a) has a unique solution x0 for any given
y0q if and only if

rankO0q = n. (20c)

Therefore, the following theorem has been proved.

Theorem 7 The fractional discrete-time linear system (4) or equivalently (5a), (4b), is
observable in the interval [0,q] if and only if the condition (20c) is satisfied.
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It will be shown that the condition (20c) is equivalent to the condition (19). Note that

O0q =



C
C(A+ Inα)

C[(A+ Inα)2 + c2In]
...

C[(A+ Inα)q−1 + ...+(αq−1 + ...+ cq−1)In]



=



In 0 0 · · · 0
αIn In 0 · · · 0

(c2 +α2)In 2αIn In · · · 0
...

...
...

. . .
...

(cq−1 + ...+αq−1)In · · · · · · · · · In




C

CA
...

CAq−1



(21)

since
(A+ Inα)k = Ak + kαAk−1 + ...+αkIn for k = 2,3, ...,q−1. (22)

From (21) it follows that

rankO0q = rank


C

CA
...

CAq−1

 (23)

since the matrix 

In 0 0 · · · 0
αIn In 0 · · · 0

(c2 +α2)In 2αIn In · · · 0
...

...
...

. . .
...

(cq−1 + ...+αq−1)In · · · · · · · · · In


(24)

is nonsingular for all values of α and ck, k = 1,2, ...,q− 1. Therefore, the following
theorem has been proved.

Theorem 8 The fractional discrete-time linear system (4) is observable in the interval
[0,q], q ¬ n, if and only if the standard discrete-time linear system (1) is observable in
the same interval [0,q].

Example 1 Consider the standard system (1) and the fractional system (4) for α = 0.5
with the same matrices

A =

[
0 1
−1 −3

]
, C = [ 1 1 ]. (25)
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Using (19) and (25) for q = 2 we obtain

rank

[
C

CA

]
= rank

[
1 1
−1 −2

]
= 2 (26)

and by Theorem 6 the standard system is observable in the interval [0,2].
For the fractional system with (25) using (20b) we obtain

rank

[
C

C(A+αI2)

]
= rank

[
1 1

−0.5 −1.5

]
= 2. (27)

By Theorem 7 the fractional system with (25) is also observable in the interval [0,2].

4. Observability of standard and fractional continuous-time linear systems

Definition 15 The standard continuous-time linear system (8) is called observable in
the interval [0, t f ] if knowing the output y(t) for t ∈ [0, t f ] it is possible to find the unique
x0 of the system.

Theorem 9 The standard continuous-time linear system (8) is observable if and only if

rank


C

CA
...

CAn−1

= n. (28)

Proof Proof is given in [1, 6, 13].

Definition 16 The fractional continuous-time linear system (11) is called observable in
the interval [0, t f ] if knowing the output y(t) for t ∈ [0, t f ] it is possible to find the unique
x0 of the system.

We shall show that the fractional continuous-time linear system (11) is observable
in the interval [0, t f ] if and only if the standard continuous-time linear system (8) is
observable in the same interval.

Using the Cayley-Hamilton theorem (the equality (10)) it is possible to eliminate the
powers k = n,n+1, ... of the matrix Ak in (13b) and we obtain

Φ0(t) =
n−1

∑
k=0

ck(t)Ak. (29)

The coefficients ck in (29) can be computed as follows.
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To simplify the calculations it is assumed the eigenvalues λk of the matrix A are
distinct, i.e. λi ̸= λ j for i ̸= j. In this case using (29) we obtain

Φ0(λ1)

Φ0(λ2)
...

Φ0(λn)

= H


c0(t)
c1(t)

...
cn−1(t)

 , (30)

where

H =


1 λ1 · · · λn−1

1

1 λ2 · · · λn−1
2

...
...

. . .
...

1 λn · · · λn−1
n

 . (31)

If the eigenvalues are distinct, then the matrix (31) is nonsingular and from (30) we have
c0(t)
c1(t)

...
cn−1(t)

= H−1


Φ0(λ1)

Φ0(λ2)
...

Φ0(λn)

 . (32)

The coefficients ck(t), k = 0,1, ...,n − 1 can be also found using the well-known
Lagrange-Sylvester formula [3, 12].

Substitution of (29) into (14) for B = 0 yields

y(t) =CΦ0(t)x0 =
n−1

∑
k=0

ck(t)CAk = [ c0(t) c1(t) · · · cn−1(t) ]


C

CA
...

CAn−1

x0. (33)

From (33) it follows that it is possible to find y(t) for given t ∈ [0, t f ], if and only if

rank


C

CA
...

CAn−1

= n (34)

since ck(t) ̸= 0 for t ∈ [0, t f ]. Therefore, the following theorem has been proved.
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Theorem 10 The fractional continuous-time linear system (11) is observable in the in-
terval [0, t f ] if and only if the standard continuous-time linear system (8) is observable
in the same interval.

Example 2 Consider the standard system (8) and the fractional system (11) with the
same matrices

A =

[
0 1
0 0

]
, C = [ 1 0 ]. (35)

Using (28) and (35) we obtain

rank

[
C

CA

]
= rank

[
1 0
0 1

]
= 2 (36)

and by Theorem 10 the standard system is observable. In this case for the fractional
system (11) with (35) we obtain

Φ0(t) = I2 +
Atα

Γ(α+1)
= I2 +

Atα

α
=

[
1 tα

α
0 1

]
= c0(t)I2 + c1(t)A, (37)

where
c0(t) = 1, c1(t) =

tα

α
. (38)

By Theorem 10 the fractional system is also observable.

5. Concluding remarks

The relationship between the observability of the standard and fractional discrete-
time and continuous-time linear systems has been addressed. It has been shown that:
1) the fractional discrete-time linear systems are observable if and only if the standard
discrete-time linear systems are observable (Theorem 8); 2) the fractional continuous-
time linear systems are observable if and only if the standard continuous-time linear
systems are observable (Theorem 10). The considerations have been illustrated by nu-
merical examples. The considerations can be extended to the standard and fractional
time-varying linear systems.
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Stabilization of a certain class of fuzzy control systems
with uncertainties

NIZAR HADJ TAIEB, MOHAMED ALI HAMMAMI and FRANÇOIS DELMOTTE

In this paper, we investigate the global uniform practical exponential stability for a class
of uncertain Takagi-Sugeno fuzzy systems. The uncertainties are supposed uniformly to be
bounded by some known integrable functions to obtain an exponential convergence toward a
neighborhood of the origin. Therefore, we use common quadratic Lyapunov function (CQLF)
and parallel distributed compensation (PDC) controller techniques to show the global uniform
practical exponential stability of the closed-loop system. Numeric simulations are given to val-
idate the proposed approach.

Key words: Takagi-Sugeno fuzzy systems, PDC controller, global uniform practical expo-
nential stability, Lyapunov stability, parametric uncertainty.

1. Introduction

It is well known that most plants in industry show significant nonlinearities, which
usually make the analysis and controller design difficult. In order to overcome such dif-
ficulties, various schemes have been developed in the past two decades, among which a
successful approach is the fuzzy control ( [20], [22], [23], [30]). In recent years, Takagi-
Sugeno (T-S) fuzzy models [22] have become a useful tool to deal with a class of non-
linear systems. The models can be described by a set of ”if-then” rules which gives local
linear approximations of an underlying system.

The stability analysis and control design for T-S fuzzy systems keep attracting re-
searchers for decades ( [1], [6], [7], [26], [27], [31]). The Lyapunov stability theory is
the main approach for these kinds of problems. Among them, the simplest approaches
consists in looking for a common quadratic Lyapunov function (CQLF) by using the con-
cept of the parallel distributed compensation (PDC) technique ( [19], [26], [27], [29]) to
design a stabilizing controller. However, another important issue in stability analysis of
nonlinear systems may be how to study the behavior of the solutions in the case when
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they converge to a small neighborhood of the origin. To deal with these situation, the
concept of practical stability ( [12], [13], [16]), which is derived from the so called, fi-
nite time stability, is more useful. Indeed, the practical stability for nonlinear systems
has been widely investigated in mathematical theory. In these studies, the origin was not
supposed to be an equilibrium point of the system. So, we can no longer expect to design
a controller that guarantees the stability of the origin as an equilibrium point. In [3], [17]
and [18], some controllers are constructed to guarantee exponential stability of a ball
containing the origin of the state space where the radius of this ball can be made arbi-
trary small. The authors in [33], introduced the notion of input to state practical stability
to design of robust adaptive controllers for nonlinear systems with dynamic uncertain-
ties. In [32], the concept of input to state practical stability is extended to stochastic case
and an output feedback controller is proposed for a class of stochastic nonlinear systems
with uncertain nonlinear functions. By using the fuzzy approach the authors in [14], have
investigated the practical stability of a class of uncertain T-S fuzzy systems where the
uncertainties satisfy the so called matching conditions.

In this paper, we deal with the uniform ultimate boundedness for a class of Takagi-
Sugeno fuzzy systems in presence of external disturbances. The objective is to guarantee,
no matter how we select the uncertain external disturbances, that the state will eventually
end up and remain within some pre-specified region. When this region is a small neigh-
borhood about the origin, the concept of uniform ultimate boundedness is equivalent to
practical stability. Therefore, we are interested in studying the global uniform practical
exponential stability for a class of uncertain Takagi-Sugeno fuzzy systems in term of
convergence toward a neighborhood of the origin. The main novelty of this paper relies
on the fact that the proposed approach for stability analysis allows for the computation of
the bound which characterize the exponential rate of convergence of the solutions. The
common quadratic Lyapunov function and parallel distributed compensation controller
are used to show the ultimate boundedness of the solutions of the uncertain T-S fuzzy
systems, even when the origin is not an equilibrium point of the system, provided that
the uncertainties are supposed uniformly bounded by known integrable functions. Com-
pared to classical LMIs conditions, the new LMIs are a little bit more severe in order to
handle the uncertainties. Then, it is possible to prove systems performance by adjusting
the practical stability conditions.

The remainder of this paper is organized as follows: section 2 reviews the conven-
tional T-S fuzzy model and issues about stability. Section 3 presents the global uniform
practical exponential stability for T-S fuzzy uncertain systems in term of convergence
toward a neighborhood of the origin, furthermore new LMIs are presented in order to
handel the uncertainties. Section 4 presents the numerical examples.
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2. Takagi-Sugeno fuzzy systems

Consider a class of the continuous-time T-S fuzzy control system which can be de-
scribed by the following fuzzy rules,

Rule i : If z1(t) is Mi1 and z2(t) is Mi2 ... and zp(t) is Mip, then

ẋ(t) = Aix(t)+Biu(t), i = 1,2, ...,r,

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the control input vector, Ai ∈ Rn×n and
Bi ∈ Rn×m are the system matrix input matrix, i = 1, ...,r is the number of fuzzy rules,
Mi j are the inputs fuzzy sets, z(t) = [z1(t), ...,zp(t)]T are measurable variables, i.e., the
premise variables. Using weighted average defuzzifiers, the aggregated fuzzy model is
given by

ẋ(t) =

r

∑
i=1

wi(z)
(
Aix(t)+Biu(t)

)
r

∑
i=1

wi(z)
,

where

wi(z) =
r

∏
i=1

Mi j(z j).

Let µi(z) be the membership functions that belong to class C 1, i,e., they are continu-
ous differentiable and defined as

µi(z) =
wi(z)

r

∑
i=1

wi(z)
.

Then the fuzzy system has the state-space form

ẋ(t) =
r

∑
i=1

µi(z)
(
Aix(t)+Biu(t)

)
. (1)

µi are such that µi(z) 0 for i = 1,2, ...,r and
r

∑
i=1

µi(z) = 1.

Many published results, concerning the control of the fuzzy system, are based on
the PDC principle. The design of the fuzzy controller shares the same antecedent as the
fuzzy system and employs a linear state feedback control in the consequent part. For
each local dynamics the controller is defined as

Rule i : If z1(t) is Mi1 and z2(t) is Mi2 ... and zp(t) is Mip, then

u(t) =−Kix(t), i = 1,2, ...,r, (2)
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where Ki is the local state feedback gain. Consequently, the defuzzified result is

u(t) =−
r

∑
i=1

µi(z)Kix(t). (3)

The system (1) in closed-loop with the fuzzy controller (3) yields the following fuzzy
system,

ẋ(t) =
r

∑
i=1

r

∑
j=1

µi(z)µ j(z)
(
Ai −BiK j

)
x(t). (4)

A sufficient condition for the stability is deduced using Lyapunov’s direct method. Sup-
pose that a common positive definite matrix P exists, so that the following conditions are
satisfied [9].

(Ai −BiKi)
T P+P(Ai −BiKi)< 0, i = 1,2, ...,r,

and
1
2
(Ai −BiK j +A j −B jKi)

T P+
1
2

P(Ai −BiK j +A j −B jKi)< 0, 1¬ i < j ¬ r.

When these conditions are satisfied, the fuzzy system (4) is asymptotically stable. The
design work can be transformed into a convex problem [8], which is efficiently solved
by linear matrix inequalities optimization. If the solution is feasible, meaning that the
stabilization constraints are met, then local state feedback gains are obtained. Relaxed
results on stabilization and state feedback H∞ Control conditions for T-S Fuzzy systems
were given in [24].

3. Control of uncertain fuzzy systems

Motivated by the results of the above section concerning the control of fuzzy-model,
we will extend the T-S fuzzy system with the presence of external disturbances [21].
Consider the following T-S fuzzy uncertain model,

Rule i : If z1(t) is Mi1 and z2(t) is Mi2 ... and zp(t) is Mip, then

ẋ(t) = Aix(t)+Biu(t)+ fi(t,x(t)), i = 1,2, ...,r. (5)

The fuzzy system is then inferred to be

ẋ(t) =
r

∑
i=1

µi(z)
(

Aix(t)+Biu(t)+ fi(t,x(t))
)
. (6)

The function fi represent the uncertain external disturbance of each fuzzy subsystem and
are time-varying satisfying the following inequality,

∥ fi(t,x(t))∥¬ αi(t)∥x(t)∥+βi(t), i = 1,2, ...,r, (7)

for all t  0 and x ∈ Rn, where αi and βi are known nonnegative continuous functions.
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Remark 2 Inequality (7) means that the time-varying function fi may be bounded
and/or unbounded on time. For the knowledge of the authors, this is new.

Suppose the following assumption,

(H1) The pairs (Ai,Bi), i = 1, ...,r, are controllable, that is each nominal local model is
controllable.

The fuzzy control rule is defined as above and we will consider the fuzzy uncertain
system (6) Therefore, the closed-loop system with respect the fuzzy control (2 - 3) is
given by

ẋ(t) =
r

∑
i=1

r

∑
j=1

µi(z)µ j(z)
(
Ai −BiK j

)
x(t)+

r

∑
i=1

µi(z) fi(t,x(t)). (8)

Thus,

ẋ(t) =
r

∑
i=1

µ2
i Giix(t)+2

r

∑
i< j

µiµ jGi jx(t)+
r

∑
i=1

µi fi(t,x(t)),

where
Gii = Ai −BiKi

and
Gi j =

1
2
(Ai −BiK j +A j −B jKi).

The controller synthesis initially considers the stability of the local fuzzy dynamics. That
is, the stable feedback gains are determined for every subsystem. Suppose that there exist
positive symmetric and definite matrices P, Qi, and Qi j (i < j), and some matrices Ki,
i = 1, ...,r, such that the following inequalities [15] hold,

GT
ii P+PGii <−Qi, i = 1,2, ...,r, (9)

and
GT

i jP+PGi j <−Qi j, 1¬ i < j ¬ r. (10)

Based on this assumption, each nominal local model is controllable and a suitable feed-
back gain can be obtained.

As a first step, we need to recall what is meant by uniformly ultimately bounded
and uniform global practical exponential stability of dynamic systems ( [2], [4], [5]).
Consider a system described by

ẋ = F(t,x) (11)

with t ∈ R+ is the time and x ∈ Rn is the state.

Definition 1 The system (11) is said uniformly ultimately bounded if there exists R > 0,
such that for all R1 > 0, there exists a T = T (R1)> 0 such that

∥x(t0)∥¬ R1 ⇒∥x(t)∥¬ R for all t  t0 +T and t0  0.
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Definition 2 The system (11) is said uniformly globally practically exponentially stable,
if there exists a ball

Bη = {x ∈ Rn / ∥x∥¬ η},
such that Bη is uniformly globally practically exponentially stable, it means that, there
exists η > 0 such that, for all ε > η, there exists ε = ε(ε) > 0 such that, for all t0  0,
∥x(t0)∥¬ ε, we have

∥x(t)∥¬ γ∥x(t0)∥e−υ(t−t0)+η, for all t  t0, (12)

with γ > 0, υ > 0.

The inequality (12) implies that x(t) will be bounded by a small bound η > 0, that
is, ∥x(t)∥ will be small for sufficiently large t. It means that (11) will be uniformly
ultimately bounded for sufficiently large t. If in (12) η can be replaced by a smooth map
η(t) as a function of t which tends to zero as t tends to +∞, then the ultimate bound
approaches to zero.

Remark 3 The goal of this paper is to find some conditions on the functions αi(t) and
βi(t) such that the fuzzy system (8) is globally uniformly practically exponentially stable.
If βi(t) = 0, for all i = 1, ...,r, the fuzzy uncertain system (8) has an equilibrium point at
the origin. In this case, we can analyze the stability of the closed-loop system behavior
for the origin as an equilibrium point. If βi(t) ̸= 0, for some i = 1, ...,r, then the origin
can will not be an equilibrium point of the fuzzy uncertain system (8). In this case, we
study the convergence of the solutions toward a neighborhood of the origin.

Let

α(t) :=

(
r

∑
i=1

αi(t)2

) 1
2

,

such that α is bounded and to satisfy: there exists Mα a positive scalar constant satisfy,
+∞∫
0

α(t)dt ¬Mα <+∞.

In the first part, let consider the following assumption,

(H2) There exists Mβ a positive scalar constant satisfy,

+∞∫
0

β2(t)dt ¬Mβ <+∞,

where

β(t) :=

(
r

∑
i=1

βi(t)2

) 1
2

.
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To find an estimation as in (12), we will impose a restriction on the upper bound of the
uncertain term formulated in the following condition,

(H3)

α(t)<
1
2

λ0

λmax(P)
(13)

where λ0 = inf{(λmin(Qi); i = 1, ...,r);(λmin(Qi j);1¬ i < j ¬ r)}, λmin(max) denotes the
smallest (largest) eigenvalue of the matrix.

Remark 4 The inequality (13) is equivalent to the following LMIs,

P <
1

2α(t)
Qi, i = 1, ...,r, (14)

and
P <

1
2α(t)

Qi j, 1¬ i < j ¬ r. (15)

Compared to classical LMI conditions, the new LMIs are a little bit more sever in order
to handle the time varying uncertain term.

Remark 5 The matrices P, Qi, Qi j (i < j) and Ki can be obtained using the following
LMIs,

X > 0,

X <
1

2α(t)
XQiX , i = 1, ...,r,

X <
1

2α(t)
XQi jX , 1¬ i < j ¬ r,

XAT
i +AiX −MT

i BT
i −BiMi <−XQiX , i = 1, ...,r,

XAT
i +AiX +XAT

j +A jX −MT
j BT

i −MT
i BT

j −BiM j −B jMi <−2XQi jX , 1¬ i < j ¬ r,

and 
Q1 Q12 . . . Q1r

Q12 Q22
...

...
. . . Qr(r−1)

Q1r . . . Qr(r−1) Qr

> 0,

where X = P−1, Ki = MiP.

Now, one can state the following theorem.
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Theorem 3 Suppose that the assumptions (H1), (H2) and (H3) hold and there exist a
common positive definite matrix P and some feedback gain matrices Ki, i = 1, ...,r, such
that the stability conditions (9-10) are satisfied, then the fuzzy closed-loop system (8)
with the control laws (2-3) is guaranteed to be globally uniformly practically exponen-
tially stable.

Proof. Consider the Lyapunov function candidate V (t,x) = xT Px. It’s derivative with
respect to time is given by,

V̇ (t,x) =
r

∑
i=1

µ2
i xT (GT

ii P+PGii)x+2
r

∑
i< j

µiµ jxT (GT
i jP+PGi j)x+2xT P

r

∑
i=1

µi fi(t,x(t)).

The first two terms on the right-hand side constitute the derivative of the Lyapunov
function V (x) with respect the nominal system, while the third term is the effect of the
perturbation. On the one hand, we have

xT (GT
ii P+PGii)x¬−λmin(Qi)∥x∥2, i = 1,2, ...,r,

and
xT (GT

i jP+PGi j)x¬−λmin(Qi j)∥x∥2, 1¬ i < j ¬ r.

It follows that,

V̇ (t,x)¬−
r

∑
i=1

µ2
i λmin(Qi)∥x∥2 −2

r

∑
i< j

µiµ jλmin(Qi j)∥x∥2 +2xT P
r

∑
i=1

µi fi(t,x(t)).

Thus,

V̇ (t,x)¬−
( r

∑
i=1

µ2
i λmin(Qi)+2

r

∑
i< j

µiµ jλmin(Qi j)
)
∥x∥2 +2xT P

r

∑
i=1

µi fi(t,x(t)).

Then, one gets

V̇ (t,x)¬−λ0∥x∥2
r

∑
i=1

r

∑
i=1

µiµ j +2xT P
r

∑
i=1

µi fi(t,x(t)).

Since,
r

∑
i=1

r

∑
j=1

µiµ j = 1,

then, we have

V̇ (t,x)¬−λ0∥x∥2 +2xT P
r

∑
i=1

µi fi(t,x(t)).

On the other hand, we have

∥
r

∑
i=1

µi fi(t,x(t))∥¬
r

∑
i=1

µi(αi(t)∥x∥+βi(t)).
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Taking into account the above expressions, it follows that

V̇ (t,x)¬−λ0∥x∥2 +2∥x∥∥P∥
r

∑
i=1

µi(αi(t)∥x∥+βi(t)).

Thus, by using the Cauchy-Schwartz inequality, one has

V̇ (t,x)¬−λ0∥x∥2 +2∥x∥∥P∥
(
(

r

∑
i=1

µ2
i )

1
2 (

r

∑
i=1

αi(t)2)
1
2 ∥x∥+(

r

∑
i=1

µ2
i )

1
2 (

r

∑
i=1

βi(t)2)
1
2
)
.

It follows that,

V̇ (t,x)¬−λ0∥x∥2 +2∥P∥(
r

∑
i=1

αi(t)2)
1
2 ∥x∥2 +2∥P∥(

r

∑
i=1

βi(t)2)
1
2 ∥x∥.

Hence,

V̇ (t,x)¬−
(

λ0 −2∥P∥(
r

∑
i=1

αi(t)2)
1
2

)
∥x∥2 +2∥P∥(

r

∑
i=1

βi(t)2)
1
2 ∥x∥.

Since,
λmin(P)∥x∥2 ¬V (t,x) = xT Px¬ λmax(P)∥x∥2,

then, by taking ∥P∥= λmax(P), yields

V̇ (t,x)¬− 1
λmax(P)

(
λ0 −2λmax(P)α(t)

)
V (t,x)+2

λmax(P)

λ
1
2
min(P)

β(t)V (t,x)
1
2 .

Let,

a(t) =
1

λmax(P)

(
λ0 −2λmax(P)α(t)

)
,

b(t) = 2
λmax(P)

λ
1
2
min(P)

β(t).

With the previous notations, it follows that

V̇ (t,x)¬−a(t)V (t,x)+b(t)V (t,x)
1
2 .

In the last expression, we make the following change of variable, w(t) = V (t,x)
1
2 . The

derivative with respect to time is given by

ẇ(t) =
V̇ (t,x)

2V (t,x)
1
2
.
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This implies that,

ẇ(t)¬−1
2

a(t)w(t)+
1
2

b(t).

Letting
z(t) = w(t)e

1
2
∫ t

t0
a(s)ds

it follows that,

ż(t) =
(
ẇ(t)+

1
2

a(t)w(t)
)
e

1
2
∫ t

t0
a(s)ds ¬ 1

2
b(t)e

1
2
∫ t

t0
a(s)ds

.

Integrating between t0 and t, one obtains for all t  t0,

z(t)¬ z(t0)+
1
2

t∫
t0

b(s)e
1
2
∫ s

t0
a(ξ)dξds.

By the fact that z(t) = w(t)e
1
2
∫ t

t0
a(s)ds

, we obtain

w(t)¬ w(t0)e
− 1

2
∫ t

t0
a(s)ds

+
1
2

 t∫
t0

b(s)e
1
2
∫ s

t0
a(ξ)dξds

e−
1
2
∫ t

t0
a(s)ds

. (16)

Using the forms of a(t) and b(t), we first compute −1
2
∫ t

t0 a(s)ds.

−1
2

t∫
t0

a(s)ds =−1
2

λ0

λmax(P)
(t − t0)+

t∫
t0

α(s)ds¬−1
2

λ0

λmax(P)
(t − t0)+Mα.

It follows that, the first term on the right-hand side of (3.12) satisfies,

e

−1
2

t∫
t0

a(s)ds

¬ eMαe−
1
2

λ0
λmax(P)

(t−t0). (17)

Next, consider the second term on the right-hand side of (3.12). We have,

1
2

 t∫
t0

b(s)e
1
2
∫ s

t0
a(ξ)dξds

e−
1
2
∫ t

t0
a(s)ds

=

 t∫
t0

λmax(P)

λ
1
2
min(P)

β(s)e
1
2

λ0
λmax(P)

(s−t0)−
∫ s

t0
α(ξ)dξds

eMαe−
1
2

λ0
λmax(P)

(t−t0).
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Note that, since α(t) 0 for all t  0, then it is clear that

e

−
t∫

t0

α(ξ)dξ

¬ 1.

Thus,

1
2

 t∫
t0

b(s)e
1
2
∫ s

t0
a(ξ)dξds

e−
1
2
∫ t

t0
a(s)ds¬

 t∫
t0

λmax(P)

λ
1
2
min(P)

β(s)e
1
2

λ0
λmax(P)

(s−t0)ds

eMαe−
1
2

λ0
λmax(P)

(t−t0)

¬ λmax(P)

λ
1
2
min(P)

eMαe−
1
2

λ0
λmax(P)

(t−t0)

 t∫
t0

(β(s))2ds

 1
2
 t∫

t0

e
λ0

λmax(P)
(s−t0)ds

 1
2

.

Hence,

1
2

 t∫
t0

b(s)e
1
2
∫ s

t0
a(ξ)dξds

e−
1
2
∫ t

t0
a(s)ds ¬M

1
2
β eMα

λ
3
2
max(P)

λ
1
2
min(P)λ

1
2
0

. (18)

The inequality (16) in conjunction with (17) and (18), yields

w(t)¬ w(t0)eMαe−
1
2

λ0
λmax(P)

(t−t0)+M
1
2
β eMα

λ
3
2
max(P)

λ
1
2
min(P)λ

1
2
0

.

It follows that,

V (t,x)
1
2 ¬V (t0,x(t0))

1
2 eMαe−

1
2

λ0
λmax(P)

(t−t0)+M
1
2
β eMα

λ
3
2
max(P)

λ
1
2
min(P)λ

1
2
0

.

Therefore,

∥x(t)∥¬ λ
1
2
max(P)

λ
1
2
min(P)

eMα∥x(t0)∥e−
1
2

λ0
λmax(P)

(t−t0)+M
1
2
β eMα

λ
3
2
max(P)

λmin(P)λ
1
2
0

.

Hence, we obtain an estimation as in (12) with

γ =
λ

1
2
max(P)

λ
1
2
min(P)

eMα ,

υ =
1
2

λ0

λmax(P)
,
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and

η f = M
1
2
β eMα

λ
3
2
max(P)

λmin(P)λ
1
2
0

.

Therefore, Bη f is globally uniformly practically exponentially stable.

Remark 6 This bound can be minimized by solving the following optimization prob-
lem: Find P, Qi, Qi j i < j and Ki, i, j = 1, ...,r, and maximize ε1, ε2, ε3, ε4, ε5 and ε6
subject to:

P = PT > 0, P > ε1I, −P >−ε2I,

P <
1

2α(t)
Qi − ε3I, i = 1, ...,r,

P <
1

2α(t)
Qi j − ε4I, 1¬ i < j ¬ r,

GT
ii P+PGii <−Qi − ε5I, i = 1, ...,r,

GT
i jP+PGi j <−Qi j − ε6I, 1¬ i < j ¬ r,

and 
Q1 Q12 . . . Q1r

Q12 Q22
...

...
. . . Qr(r−1)

Q1r . . . Qr(r−1) Qr

> 0.

Where I is the matrix identity.

Remark 7 Compared to the existing results, such as the input-output methods and slack
matrix method as in ( [10], [11], [25]), in this work the quadratic Lyapunov function
and the PDC controller techniques can be used to show the ultimate boundedness of the
solutions of the uncertain T-S fuzzy systems, even when the origin is not an equilibrium
point of the system. Therefore, we can study the convergence of the solutions toward a
neighborhood of the origin and this is what we mean by practical stability.

In the second part, we suppose the following assumption.

(H ′
2)

δ(t)¬Mδ, for all i = 1,2, ...,r and t  0, (19)

where

δ(t) :=
r

∑
i=1

µiβi(t)

and Mδ is a positive constant.
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Theorem 4 Suppose that the assumptions (H1), (H ′
2) and (H3) hold and there exist

a common positive definite matrix P and some feedback gain matrices Ki, i = 1, ...,r,
such that the stability conditions (9 - 10) are satisfied, then the fuzzy closed-loop sys-
tem (8) with the control laws (2 - 3) is guaranteed to be globally uniformly practically
exponentially stable.

Proof. Let consider the Lyapunov function candidate V (t,x) = xT Px. It’s derivative with
respect to time is given by,

V̇ (t,x) =
r

∑
i=1

µ2
i xT (GT

ii P+PGii)x+2
r

∑
i< j

µiµ jxT (GT
i jP+PGi j)x+2xT P

r

∑
i=1

µi fi(t,x(t)),

then, we have

V̇ (t,x)¬−λ0∥x∥2 +2xT P
r

∑
i=1

µi fi(t,x(t)).

Thus, by using the following inequality,

∥ fi(t,x(t))∥¬ αi(t)∥x∥+βi(t),

one has

V̇ (t,x)¬−
(

λ0 −2∥P∥(
r

∑
i=1

αi(t)2)
1
2

)
∥x∥2 +2Mδ∥P∥∥x∥.

Then, by taking ∥P∥= λmax(P), yields

V̇ (t,x)¬− 1
λmax(P)

(
λ0 −2λmax(P)α(t)

)
V (t,x)+2Mδ

λmax(P)

λ
1
2
min(P)

V (t,x)
1
2 .

By using the same idea as in the proof of theorem 1, we obtain the following estimation

∥x(t)∥¬ λ
1
2
max(P)

λ
1
2
min(P)

∥x(t0)∥eMαe−
1
2

λ0
λmax(P)

(t−t0)+2MδeMα
λ2

max(P)
λmin(P)λ0

.

It follows that,

Bη = {x ∈ Rn / ∥x∥¬ η = 2MδeMα
λ2

max(P)
λmin(P)λ0

},

is globally uniformly practically exponentially stable.

Motivated by the above results, the design principle can be extended to the T-S fuzzy
system with parametric uncertainties. Indeed, one can consider the following T-S fuzzy
uncertain model,

Rule i : If z1(t) is Mi1 and z2(t) is Mi2 ... and zp(t) is Mip, then

ẋ(t) = (Ai +∆Ai)x(t)+Biu(t)+ fi(t,x(t)), i = 1,2, ...,r. (20)
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Notably, the model is almost the same as (5) except for the term ∆Ai which stand for the
parametric uncertainties for each subsystem and time-varying with appropriate dimen-
sions. The fuzzy system is then inferred to be

ẋ(t) =
r

∑
i=1

µi(z)
(
(Ai +∆Ai)x(t)+Biu(t)+ fi(t,x(t))

)
. (21)

Then, let us consider the following assumptions.

(H4) The parametric uncertainties ∆Ai is norm bounded and structured, in the form

∆Ai = ρi(t)DiEi(t)Fi,

where Di, and Fi are known real constant matrices with appropriate dimensions, Ei(t), is
unknown matrix function which satisfy,

ET
i (t)Ei(t)¬ I, and Ei(t)ET

i (t)¬ I for all t  0,

and ρi(t) is a known continuous nonnegative scalar function and I is the identity matrix
of appropriate dimension. Let

ρ(t) :=

(
r

∑
i=1

ρ2
i (t)

) 1
2

such that, there exists Mρ a positive scalar constant satisfy,

+∞∫
0

ρ(t)dt ¬Mρ <+∞.

(H5) We suppose that ρ(t) satisfies the following restriction,(
λ0 −2σ1(λ2

max(P)+σ2)ρ(t)−2λmax(P)α(t)
)
> 0, for all t  0, (22)

where λ0 = inf{(λmin(Qi); i = 1, ...,r),(λmin(Qi j);1 < i¬ j < r)}, σ1 = max(∥Di∥2, i =
1, ...,r) and σ2 = max(∥Fi∥2, i = 1, ...,r).

Remark 8 The inequality (22) is equivalent to the following LMIs,

P <
1

2σρ(t)
Qi, i = 1, ...,r, (23)

P <
1

2α(t)
Qi, i = 1, ...,r, (24)
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P <
1

2σρ(t)
Qi j, 1¬ i < j ¬ r, (25)

and
P <

1
2α(t)

Qi j, 1¬ i < j ¬ r, (26)

where σ = inf(σ1,σ2).

Remark 9 Similar to the remark (8), in this case the matrices P, Qi, Qi j (i < j) and Ki
can be obtained using the following LMIs,

X > 0,

X <
1

2α(t)
XQiX , i = 1, ...,r,

X <
1

2σρ(t)
XQiX , i = 1, ...,r,

X <
1

2α(t)
XQi jX , 1¬ i < j ¬ r,

X <
1

2σρ(t)
XQi jX , 1¬ i < j ¬ r,

XAT
i +AiX −MT

i BT
i −BiMi <−XQiX , i = 1, ...,r,

XAT
i +AiX +XAT

j +A jX −MT
j BT

i −MT
i BT

j −BiM j −B jMi <−2XQi jX , 1¬ i < j ¬ r,

and 
Q1 Q12 . . . Q1r

Q12 Q22
...

...
. . . Qr(r−1)

Q1r . . . Qr(r−1) Qr

> 0,

where X = P−1, Ki = MiP.

Then, let consider the following theorem.

Theorem 5 Suppose that the assumptions (H1), (H2), (H4) and (H5) hold and there ex-
ist a common positive definite matrix P and some feedback gain matrices Ki, i = 1, ...,r,
such that the stability conditions (9-10) are satisfied, then the fuzzy closed-loop system
(21) with the control laws (2-3) is guaranteed to be globally uniformly practically expo-
nentially stable.
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Proof. Consider the Lyapunov function candidate V (t,x) = xT Px. It’s derivative with
respect to time is given by,

V̇ (t,x) =
r

∑
i=1

µ2
i xT (GT

ii P+PGii)x+2
r

∑
i< j

µiµ jxT (GT
i jP+PGi j)x+2xT

r

∑
i=1

µiP∆Aix

+2xT P
r

∑
i=1

µi fi(t,x(t)).

By the fact that,

2xT P∆Aix = xT (∆AT
i P+P∆Ai)x

2xT P∆Aix¬ ρi(t)xT PDiDT
i Px+ρi(t)FT

i Fix

¬ ρi(t)xT (PDiDT
i P+FT

i Fi)x.

we have

V̇ (t,x)¬−λ0∥x∥2 +2
r

∑
i=1

µiρi(t)∥P∥2∥Di∥2∥x∥2 +2
r

∑
i=1

µiρi(t)∥Fi∥2∥x∥2

+2λmax(P)α(t)∥x∥2 +2λmax(P)β(t)∥x∥.

Then,

V̇ (t,x)¬−λ0∥x∥2 +2σ1λ2
max(P)

r

∑
i=1

µiρi(t)∥x∥2 +2σ2

r

∑
i=1

µiρi(t)∥x∥2

+2λmax(P)α(t)∥x∥2 +2λmax(P)β(t)∥x∥.

By using the Cauchy-Schwartz inequality, one has

V̇ (t,x)¬−λ0∥x∥2 +2σ1λ2
max(P)ρ(t)∥x∥2 +2σ2ρ(t)∥x∥2 +2λmax(P)α(t)∥x∥2

+2λmax(P)β(t)∥x∥.

It follows that,

V̇ (t,x)¬−
(

λ0 −2
(
σ1λ2

max(P)+σ2
)
ρ(t)−2λmax(P)α(t)

)
∥x∥2

+2λmax(P)β(t)∥x∥.

Then,

V̇ (t,x)¬− 1
λmax(P)

(
λ0 −2

(
σ1λ2

max(P)+σ2
)
ρ(t)−2λmax(P)α(t)

)
V (t,x)

+2
λmax(P)

λ
1
2
min(P)

β(t)V (t,x)
1
2 .
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Let,

a(t) =
1

λmax(P)

(
λ0 −2

(
σ1λ2

max(P)+σ2
)
ρ(t)−2λmax(P)α(t)

)
,

b(t) = 2
λmax(P)

λ
1
2
min(P)

β(t).

It follows that
V̇ (t,x)¬−a(t)V (t,x)+b(t)V (t,x)

1
2 .

Using the same idea as in the proofs of theorems 1 and 2 we obtain the following esti-
mation of the state,

∥x(t)∥¬ λ
1
2
max(P)

λ
1
2
min(P)

eρMρeMα∥x(t0)∥e−
1
2

λ0
λmax(P)

(t−t0)+M
1
2
β eρMρeMα

λ
3
2
max(P)

λmin(P)λ
1
2
0

,

where

ρ =
σ1λ2

max(P)+σ2

λmax(P)
.

Here, we obtain an estimation as in (12) with

γ =
λ

1
2
max(P)

λ
1
2
min(P)

eρMρeMα ,

υ =
1
2

λ0

λmax(P)
,

and

ηρα = M
1
2
β eρMρeMα

λ
3
2
max(P)

λmin(P)λ
1
2
0

.

So, Bηρα is uniformly globally practically exponentially stable.

Corollary 1 If we suppose that the assumptions (H1), (H ′
2), (H4) and (H5) hold and

there exist a common positive definite matrix P and some feedback gain matrices Ki, i =
1, ...,r, such that the stability conditions (9-10) are satisfied, then the fuzzy closed-loop
system (21) with the control laws (2-3) is guaranteed to be uniformly globally practically
exponentially stable such that the ball ,

Bηρα = {x ∈ Rn / ∥x∥¬ η = 2MδeρMρeMα
λ2

max(P)
λmin(P)λ0

},

is globally uniformly practically exponentially stable.
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According to the above analysis, the design procedure for uncertain Takagi-Sugeno
fuzzy systems is summarized as follows.

Step 1: Confirm that assumption (H1) is satisfied for the designed system.
Step 2: Verify that the functions α(t), ρ(t) and β(t) satisfy the assumptions of integra-
bility.
Step 3: Solve the LMI problem indicated in remark 3.8 and obtain P, Qi, Qi j (i < j), and
Ki, i = 1, ...,r.
Step 4: Simulate the system in order to plot its trajectories.

4. Simulation examples

To illustrate the proposed fuzzy control approach we propose the following exam-
ples.

Example 1 Consider a flexible-joint robot arm. The system is described by the following
equations ( [28]):

I1θ̈1(t)+mglsin(θ1)+ k(θ1 −θ2) = 0, (27)

I2θ̈2(t)+ k(θ2 −θ1) = u. (28)

where u is the torque input, I1 is the link inertia, I2 is the motor inertia, m is the mass,
g is the gravity constant, l is the link length, k is the stiffness, θ1 and θ2 are the angular
positions of the first and second joints respectively. Let x1 = θ1, x2 = θ̇1, x3(t) = θ2,
x4 = θ̇2. The dynamic equations (27) and (28) can be rewritten as

ẋ1(t) = x2(t)
ẋ2(t) = I−1

1 (−mglsin(x1(t))+ kx3(t)− kx1(t))
ẋ3(t) = x4(t)
ẋ4(t) = I−1

2

(
k(x1 − x3)+u(t)

)
,

where x(t) =
[
x1(t) x2(t) x3(t) x4(t)

]T
, is the state vector. One can represent

exactly the system by the following two-rule fuzzy model:

Rule 1 : If x1 is M11 then
ẋ(t) = A1x(t)+B1u(t)

Rule 2 : If x1 is M21 then
ẋ(t) = A2x(t)+B2u(t),
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where

A1 =


0 1 0 0

(mgl − k)I−1
1 0 kI−1

1 0
0 0 0 1

kI−1
2 0 −kI−1

2 0

 , B1 =


0
0
0

I−1
2

 ,

A2 =


0 1 0 0

(−mgl − k)I−1
1 0 kI−1

1 0
0 0 0 1

kI−1
2 0 −kI−1

2 0

 , B2 =


0
0
0

I−1
2

 .
The membership functions for rule 1 and 2 are respectively:

µ1(x1) =


1
2
− sin(x1)

2x1
if x1 ̸= 0

0 if x1 = 0
and µ2(x1) = 1−µ1(x1).

In this simulation, we choose I1 = I2 = 1kgm2, m = 0.01kg, k = 0.05Nm/rad, l = 1m,
g = 9.8ms−2. Using an LMI optimisation algorithm, we obtain:

P =


0.0439 0.1845 0.0155 0.0081
0.1845 0.8899 0.0754 0.0424
0.0155 0.0754 0.0067 0.0037
0.0081 0.0424 0.0037 0.0026

 ,
the following feedback gains:

K1 =
[
26.2016 131.2200 11.7453 6.7109

]
and

K2 =
[
17.7564 90.4835 8.2953 4.7677

]
.

and the following positive definite matrices:

Q1 =


46.8501 −23.1530 11.5634 −0.2938
−23.1530 13.6945 −12.3291 0.1252
11.5634 −12.3291 228.6668 0.8527
−0.2938 0.1252 0.8527 292.7310

 ,
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Q2 =


46.8501 −2.8481 11.5634 −0.2282
−2.8481 2.4814 −8.6590 −0.0128
11.5634 −8.6590 228.6668 0.8683
−0.2282 −0.0128 0.8683 292.7303

 ,
and

Q12 =


416.0678 21.4119 −4.9959 −2.3294
21.4119 482.9281 9.8489 1.4868
−4.9959 9.8489 297.6419 1.3142
−2.3294 1.4868 1.3142 292.7490

 .
It can be easily shown that the following stability conditions are satisfied:

GT
ii P+PGii <−Qi, i = 1,2,

and
GT

12P+PG12 <−Q12.

Then, we have
λmin(P) = 0.0003, λmax(P) = ∥P∥= 0.9367

and
λ0 = inf{(λmin(Qi); i = 1,2),(λmin(Q12))}= 1.6513.

The resulting PDC control law is as follows:

Rule 1: If x1 is M11 then
u(t) =−K1x(t)

Rule 2: If x1 is M21 then
u(t) =−K2x(t).

That is,
u(t) =−µ1(x1(t))K1x(t)−µ2(x1(t))K2x(t).

This nonlinear control law guarantees the stability of the fuzzy control system (fuzzy
model + PDC control). Fig. 1 shows the response of the system using fuzzy model with
the PDC control for initial condition x1 = 1, x2 = 0, x3 = 0 and x4 = 0.

Now, we introduce the external disturbances and we approximate the system by the
following two-rule fuzzy model:
Rule 1 : If x1 is M11 then

ẋ(t) = A1x(t)+B1u(t)+ f1(t,x(t))

Rule 2 : If x1 is M21 then

ẋ(t) = A2x(t)+B2u(t)+ f2(t,x(t)),
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Figure 1: The state of the controlled system
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where

f1(t,x(t)) = f2(t,x(t)) =


0
0

λ0

4λmax(P)(1+ t2)
x2 +

1
2− sin(t)2

0

 .
We can see that

∥ f1(t,x)∥= ∥ f2(t,x)∥¬
λ0

4λmax(P)(1+ t2)
∥x∥+ 1

2− sin(t)2 , for all t  0.

Therefore, we can choose

α1(t) = α2(t) =
λ0

4λmax(P)(1+ t2)
,

and
β1(t) = β2(t) =

1
2− sin(t)2 .

It follows that,
α(t) = (2)

1
2 α1(t), and δ(t) = β1(t).

Since
+∞∫
0

α(s)ds =
λ0π

2λmax(P)
, and δ(t)¬ 1,

then we can choose Mα =
λ0π

2λmax(P)
and Mδ = 1. Thus, by using theorem 1 the trajec-

tories of the system are globally uniformly exponentially convergent to the following
ball,

Bη = {x ∈ R2 / ∥x∥¬ η = 2MδeMα
λ2

max(P)
λmin(P)λ0

= 56479}.

Fig. 2 shows the response of the flexible-joint robot arm system for initial condition
x1 = 1, x2 = 0, x3 = 0 and x4 = 0. Also, it shows that the trajectories of the system are
globally uniformly ultimately bounded and they converge toward a neighborhood of the
origin, under external disturbances.
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Figure 2: The state of the controlled system under external disturbances



476 N.H. TAIEB, M.A. HAMMAMI, F. DELMOTTE

Example 2 Consider the following nonlinear fuzzy planar system,

ẋ1 =−2x1 + sin(x1)u (29)
ẋ2 = x1 sin(x1)+u, (30)

where x(t) = [x1(t) x2(t)]T ∈ R2 is the state vector and u(t) is the input vector.
One can represent exactly the system by the following two-rule fuzzy model:

Rule 1 : If x1 is M11 then
ẋ(t) = A1x(t)+B1u(t)

Rule 2 : If x1 is M21 then
ẋ(t) = A2x(t)+B2u(t)

where

A1 =

[
−2 0
−1 0

]
, B1 =

[
−1
1

]
,

A2 =

[
−2 0
1 0

]
, B2 =

[
1
1

]
,

We define the membership functions as

µ1(x1(t)) =
1− sin(x1(t))

2
and µ2(x1(t)) =

sin(x1(t))+1
2

.

Using an LMI optimisation algorithm, yields

P =

[
0.0377 0.0000
0.0000 0.0183

]
,

the following feedback gains:

K1 =
[
−0.0452 0.7962

]
and K2 =

[
0.0452 0.7962

]
,

and the matrices:

Q1 =

[
0.0771 −0.0063
−0.0063 0.0145

]
, Q2 =

[
0.0771 0.0063
0.0063 0.0145

]
and Q12 =

[
0.1024 0.0000
0.0000 0.0196

]
.

Then, we have
λmin(P) = 0.0183, λmax(P) = ∥P∥= 0.0377

and
λ0 = inf{(λmin(Qi); i = 1,2),(λmin(Q12))}= 0.0139.
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Figure 3: The state responses of the system

Fig. 3 shows the stability of the fuzzy control system (4.1) and (4.2) (fuzzy model +
PDC control) with x1 = 1 and x2 = 0 as initial condition.

Now, we introduce parametric uncertainties and external disturbances and we
approximate the system by the following two-rule fuzzy models:

Rule 1 : If x1 is M11 then

ẋ(t) = (A1 +∆A1)x(t)+B1u(t)+ f1(t,x(t))

Rule 2 : If x1 is M21 then

ẋ(t) = (A2 +∆A2)x(t)+B2u(t)+ f2(t,x(t))

where
∆A1 = ρ1(t)FT

1 E1(t)F1,

∆A2 = ρ2(t)FT
2 E2(t)F2,

with

F1 = F2 =
[
0.1 0.1

]
and ρ1(t) = ρ2(t) =

λ0

4(2)
1
2 (∥F∥2λ2

max(P)+∥F∥2)(1+ t2)
,

and

f1(t,x(t)) = f2(t,x(t)) =

[
µ1 +µ2

0

]
On the one hand, we can see that

ρ(t) =
( r

∑
i=1

ρi(t)2) 1
2=

λ0

4(∥F1∥2λ2
max(P)+∥F1∥2)(1+ t2)

,
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also

+∞∫
0

ρ(s)ds =
λ0

4(∥F1∥2λ2
max(P)+∥F1∥2)

+∞∫
0

1
(1+ s2)

ds

=
πλ0

8(∥F1∥2λ2
max(P)+∥F1∥2)

,

therefore, we can get

Mρ =
πλ0

8(∥F1∥2λ2
max(P)+∥F1∥2)

.

On the other hand, we have

∥ f1(t,x(t))∥= ∥ f2(t,x(t))∥¬ 1,

then we can get

α1(t) = α2(t) = 0, β1(t) = β2(t) = 1 and δ(t) =
2

∑
i=1

µiβi(t) = 1,

therefore, we can choose Mα = 0 and Mδ = 1. Thus, by using Corollary (3.4), it follows
that, the system is uniformly globally exponentially converge to the following ball,

Bηρα = {x ∈ R2 / ∥x∥¬ η = 2MδeρMρeMα
λ2

max(P)
λmin(P)λ0

= 11.2365}.

where ρ = ∥F1∥2λ2
max(P)+ ∥F1∥2. The simulation results with initial conditions x1 = 1

and x2 = 0 are shown in figure 4. It shows that the trajectories of the system converge
toward a neighborhood of the origin, under parametric uncertainties and external distur-
bances.
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Figure 4: The state responses of the system under parametric uncertainties and external
disturbances
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5. Conclusion

In this paper, we have studied the global uniform practical exponential stability for
a class of uncertain T-S fuzzy systems in term of convergence toward a neighborhood of
the origin. The uncertainties are supposed uniformly to be bounded by known integrable
functions. We have used quadratic Lyapunov function and parallel distributed compen-
sation (PDC) controller techniques to show the global uniform practical exponential
stability of the closed-loop system. Therefore, new LMIs are obtained for the controller
in order to handel the uncertainties. Then, systems’ performance is proved by adjusting
the practical stability conditions. The effectiveness of the proposed theory is illustrated
by computer simulation of a flexible-joint robot arm and a planar systems.
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