
INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2016, VOL. 62, NO. 3, PP. 247-252

Manuscript received May 5, 2016; revised June, 2016. DOI: 10.1515/eletel-2016-0033

www

Abstract—We propose a concept of using Software Defined

Network (SDN) technology and machine learning algorithms for

monitoring and detection of malicious activities in the SDN data

plane. The statistics and features of network traffic are generated

by the native mechanisms of SDN technology. In order to conduct

tests and a verification of the concept, it was necessary to obtain a

set of network workload test data. We present virtual

environment which enables generation of the SDN network

traffic. The article examines the efficiency of selected machine

learning methods: Self Organizing Maps and Learning Vector

Quantization and their enhanced versions. The results are

compared with other SDN-based IDS.

Keywords—Software Defined Network, intrusion detection,

machine learning, Mininet

I. INTRODUCTION

oftware-defined network (SDN) is a modern approach to

networking that abolishes the complexity and static nature

of legacy distributed network architectures. It is achieved

through the use of a standards-based software abstraction

between the network control plane and underlying data

forwarding plane, including both physical and virtual devices.

This gives an opportunity to use the native SDN functionality

for monitoring malicious activities within the data plane. The

SDN-based intrusion detection system can be considered as an

additional monitoring mechanism, besides the classic security

solution [1] [2]. In our approach, the parameters and statistics,

extracted from the fine-grained SDN flows, create tuples of

features that are classified by detection mechanisms. It allows

to identify a specific connections representing different

network activities. However, selection of appropriate machine

learning classification technique enabling proper identification

of particular types of malicious traffic become an important

issue for our approach. The variety proposals for using IDS in

IP-based networks are presented in many papers (e.g.

[3][4][5][6]) but only few publications deal with the

implementation of this technique in Software Defined

Networks [7][8][9][10][11][12]. In this paper we present the

results of evaluation of selected machine learning algorithms

and provide recommendations on their use for intrusion

detection in SDN environment.

This work was supported by the research project PBS 17/WAT.

All the authors are with the Institute of Telecommunication, Faculty of
Electronics, Military University of Technology, Poland (e-mail:

{damian.jankowski, marek.amanowicz}@wat.edu.pl).

This paper is organized as follows. Chapter II describes the

architecture of our approach. The third chapter introduces the

selected machine learning methods SOM and LVQ1. Chapter

 IV presents the results of the experiments and contains the

comparison of performance of our conception with other

SDN-based IDS methods. The paper is summarized with some

conclusions.

II. SYSTEM ARCHITECTURE

We propose a concept of using the native features of SDN

technology for monitoring and detection of malicious

activities, which we call MADMAS. The intrusion detection

system consists of 4 main modules as presented in Fig. 1.The

Flow Bundle Module extracts traffic statistics from the fine

grained data flows. The Integrator collects and processes the

traffic statistics enabling generation some additional features.

These two modules compose the Features Generator (FG). It

outcomes are passed to the Machine Learning-based Classifier,

which is responsible for detection of the malicious activities in

the data plane. Controller supervises operations performed by

the modules and processes the results of the traffic

classification for visualization. At this stage of our study the

Classifier and Controller reside on the workstation.

Fig. 1. SDN-based intrusion detection architecture

We assumes that the features of network traffic are measured

by the native mechanisms of SDN technology. The Flow

Bundle Module works at the SDN Opendaylight controller as

an OSGi bundle.[13] The flows are matched base on the

following parameters:

 destination IP address,

On Efficiency of Selected Machine Learning

Algorithms for Intrusion Detection in Software

Defined Networks
Damian Jankowski, Marek Amanowicz

S

248 D. JANKOWSKI, M. AMANOWICZ

 source IP address,

 destination TCP/UDP port,

 source TCP/UDP port,

 protocol type (ARP, IP, TCP, UDP or unknown).

For each flow an idle timeout parameter is set. It defines the

period after the entries are deleted from the flow table. In

addition, an identification number is assigned to each flow.

This way of matching traffic, distinguishes flows in terms of

different port numbers and IP addresses. The exemplary

network activity may consist of multiple flows. In presented

approach the collected features are used as input vector for

detection mechanism. For each flow, a set of parameters is

determined. For classification purposes, the input vector X(x1,

x2,, …, x9) is represented by:

x1 -packet count in a flow,

x2 -bytes count in a flow,

x3 -destination TCP/UDP port,

x4 -source TCP/UDP port,

x5 -duration,

x6 -flows with different ports from source host,

x7 -flows with same ports to destination host,

x8 - flow rate to the host,

x9 -single flow rate to the host.

III. SELECTED MACHINE LEARNING ALGORITHMS

Let us consider the following algorithms that can be used

for classification of malicious activities in the SDN data plane,

i.e:

• Self-Organizing Maps (SOM)

• Multi-pass Self-Organizing Maps (M-SOM),

• Learning Vector Quantization (LVQ1),

• Multi-pass Learning Vector Quantization (M-LVQ1)

• Hierarchical Learning Vector Quantization (H-LVQ1).

Above algorithms are types of artificial neural networks

(ANN) that is trained using unsupervised (SOM based) or

supervising (LVQ1 based) learning technique. In response to

input signals, network indicates the activation of neurons in

varying degrees. Neurons (nodes) compete for the right to

respond to a subset of the input data. The neuron whose weight

vector is most similar to the input is called the best matching

unit (BMU) or best matching neuron (BMN). A distance

measure between input patterns must be defined, in our case it

is a Euclidean distance (see equation 2). In the presented

algorithms, it is necessary to carry out an initialization phase.

This is the arrangement of specific positions of neurons in the

considered space. Typically, the initial distribution of neurons

can be created in a random way [14].

Neurons in SOM can be associated with its other 6

neighbours in a hexagonal manner. The most stimulated

neuron and neighbouring neurons update the weights in

response to learning vectors.

)]()[()()1(kWXrGkWkW iiii

(1)

where: X – input vector of features, Wi – i weight vector of the

neuron at k time, ηi – learning rate, G(r) - neighbourhood

function (3).

The distances of input vector X(x1, x2, …, xj) to winner neurons

W(w1, w2, … , wj) are calculated on base of the Euclidean

distance.

N

j

ijjii wxWXWXd
1

2)(),((2)

where: X – input vector of features, xj – j feature in X input

vector, Wi - i weight vector of the neuron, wij – j value of weight

in i weight vector of the neuron.

The degree of weight adaptation G(i) of winner and

neighbourhoods neurons is calculated by Gaussian formula.

N

j

jj wiWiWidr
1

2)(),((3)

2

2

2
exp)(

r
rG (4)

where: r - Euclidean distance of i neuron from winner neuron,

W –winner neuron, λ– neighbourhood radius.

During the learning process , weights of neurons are

adapted to learning input vector. In other words, neurons or

groups of neurons, are activated in response to stimulation,

adapting to the form of specific patterns. When input vectors

are labelled, SOM can be used as a classification mechanism.

The SOM network allows to create a type of structure, which

can represent input vectors in the best way. It can be said, that

the single neuron represents many vectors from the dataset.

The class is assigned to the neuron with the consideration of

which class is the most numerous, from stimulating vectors.

The classification step is preformed after learning. During the

network testing, the test vectors activate neurons of a trained

network which are the most similar. This involves determining

which labelled neuron is activated under the input vector. After

the process of learning, SOM network can be presented to low

dimension space by Sammon mapping and visualised by

U-matrix, U*-matrix, P-matrix. [14][15].

Multi-Pass SOM is the implementation of the SOM

algorithm where two passes are performed on the same

underlying model. The first pass is a rough ordering pass with

large neighbourhood radius, learning rate and small training

time. The second pass is the fine tuning pass that has a longer

training time, small initial neighbourhood radius value and

smaller initial learning rate [16].

Learning Vector Quantization (LVQ) may also be

considered as special case of an artificial neural network

architecture, learned in a supervised way. The LVQ network

has a set of units and weight vectors Wi associated to them. In

this paper, we consider 3 versions of LVQ1 for traffic

classification. In LVQ1 each input vector has a class assigned

to them that the network would like to learn. At step k, given a

vector X randomly chosen from the input data. Then the nearest

Wi vector is selected, according to the Euclidean distance d(X,

Wi) given by (2). After that the vector Wi is updated in the

following way:

iiii

iiii

i
Wass than e other clif X in th

ss as We same claif X in th

 (k)), (X-W (k)- ηW

 (k)), (X-W (k)+ η(W
)= (k+W 1

(5)

where: X – input vector of features, Wi(k) – i weight vector of

the neuron at k time, ηi – learning rate [17].

ON EFFICIENCY OF SELECTED MACHINE LEARNING ALGORITHMS FOR INTRUSION DETECTION IN SOFTWARE DEFINED NETWORKS 249

In Multi-Pass, the quick rough pass is made on the model using

LVQ1 with relative large learning rate, then a long fine tuning

pass is made on the model with LVQ1 and smaller learning

rate. In Hierarchical LVQ implementation each codebook

vector is treated as a cluster centroid. All codebook vectors are

evaluated and part of that vectors are selected as candidates for

sub-models. The sub-models are constructed for all candidate

codebook vectors and those sub-models that outperform their

parent codebook vector are kept as part of the model. During

testing, a dataset tuple is first mapped onto its BMU, if that

BMU has a sub-model, the sub model is used for classification,

otherwise the class value in the BMU is used for classification

[16].

IV. EXPERIMENTS

A. Dataset generation

The architecture of the testbed we used for evaluation of

machine learning algorithms and their applicability for

intrusion detection in SDN environment is shown in the

Figure 2. A simplified SDN network is emulated in the Mininet

[18], while the server is emulated by Metasploitable 2 virtual

machines with the Ubuntu operating system. Vulnerabilities in

services and operating systems, default passwords and

misconfigurations are intentionally left on the server

environment. The clients generate requests to the server, at the

same time, the malicious host performs unauthorized activities

directed to servers by using attack tools. The course of

emulation is automated by Python scripts. Generated traffic is

probing by the measurement module. The servers reside on

separate virtual machines and clients are virtualized at the level

of Mininet OS. In order to achieve the most realistic character

of the generated attacks, malicious activity are conducted using

special tools (see Tab I). Each class of such traffic has

subclasses, which define the detailed course of action, types of

attack tools or exploits that are directed at the network or server

resources.

For instance, the malicious hosts perform a flooding attack

on the SDN network by Nping tool with specific parameters.

These events have an impact both on the SDN controller

performance and the available data plane resources, and can

cause delays in processes of matching flows. The probe class

includes attacks that are intended to obtain information about

the object of attack. These attacks include ports, version,

services or vulnerability scanning. Such malicious activities

performed by Metasploit or Nmap tools give information to the

intruders about the potential targets of the attacks. This kind of

activity may be a preliminary phase of the main attack, i.e. DoS

or buffer overflow.

The U2R class includes network activities related with the

back doors and remote exploitation attacks. The attacks are

performed by Metasploit Framework scripts and commands.

These malicious activities are carried out against the

vulnerable services, which are used in normal traffic.

Therefore, these attacks are characterised by a high degree of

similarity to the short duration normal traffic. Firstly, the

malicious requests prepared by Metasploit are sent to the

vulnerable service. The payload contains the exploit and

shellcode for the specified service. After the exploiting

operation, the malicious host gains access to the shell with root

privileges. At the next step, the malicious host establish the

connection to the exploited service, with the reverse shell and

execute a few Linux commands. The type of exploit and

detailed course of the attack may vary for individual services.

For instance, before exploit steps, the user login may take

place. Each stage of the attack is reflected in SDN fine

granulated flows.

The R2L class includes the credentials guessing and the

unauthorised access to IT accounts. The password guessing is

conducted in the form of dictionary attack. The potential

passwords and logins are stored in external file. The malicious

hosts try to authorise with parameters from lists of credentials.

Sequential requests are sent to the service. When the

authorisation succeeds, the corresponding credentials are

stored. These activities generate moderate number of flows.

Fig. 2. Testbed architecture

B. Evaluation Methodology

All our experiments were performed using the WEKA with

additional plugin [16][19]. For testing purposes, 10 fold cross

validation was used. The features of input vector X are

normalized in the range [0,1]. The formulas below show the

metrics used for evaluation of classification models, i.e.:

- True Positive Rate

FNTP

TP
TPR

(6)

TABLE I
CLASSES OF NETWORK ACTIVITIES

Classes

of traffic

Description of

activities
Tools for traffic generation

normal Traffic between

clients and servers

Clients and servers of following

services FTP, SSH, SMB, Apache,

Web, Tomcat, RMI Ruby, Java RMI,
Postgres, Telnet

probe Port probe,

vulnerability scan,

version scan

Metasploit, Nmap

R2L Credentials

guessing

Metasploit, Hydra

DoS Denial of service

attacks

Metasploit, Hping3, Nping

U2R Remote exploits,

backdoors,
Metasploit

250 D. JANKOWSKI, M. AMANOWICZ

where: TP – True Positive, FN – False Negative ,

- False Positive Rate

TNFP

FP
FPR

(7)

where: FP – False Positive, TN – True Negative,

- Precision or Positive Predictive Value

FPTP

TP
PPV

(8)

The conformity of the neural net with the input data was

assessed by calculation of the average quantization error

according to the following formula [20]:

1

1

i

cit MX
N

E

(9)

where: Xi – input vector, Mc – best matching neurons (BMN)

The best neural net is expected to have the smallest average

quantization error.

C. Results

The overall results are summarized in Table II. The analysis

indicate that it is possible to achieve an average value of TPR

greater than 94%. However, in constructed models, size of the

networks exceeds the number of 800 neurons. H-LVQ1

algorithm is an effective way to improve TPR, precision and

FPR compared to SOM, M-SOM, LVQ1, M-LVQ1 for all

classes. Class U2R has the worst TPR and FPR metrics for all

classification algorithms. The best TPR and PPV results are

achieved for Probe and DoS classes. M-SOM and M-LVQ

algorithms slightly improve efficiency in comparison to LVQ

and SOM. Moreover, there is the visible advantage of H-LVQ1

in efficiency for all classes.

TABLE III

TRUE POSITIVE RATE [%] PER CLASS

TP Rate of

class
SOM

Multipass

SOM
LVQ1

Multipass

LVQ1

Hierarchical

LVQ1

Normal 97,8 98,0 98,1 98,1 98,6

Probe 96,3 96,1 96,1 96,2 98,7

R2L 74,8 77,6 83,5 83,4 94,6

DoS 47,0 48,3 80,5 83,2 99,6

U2R 3,1 5,6 0,8 1,1 48,3

TABLE II

EFFICIENCY OF SELECTED ALGORITHMS

Evaluation

metrics
SOM

Multipass

SOM
LVQ1

Multipass

LVQ1

Hierarchical

LVQ1

TPR [%] 94,4 94,6 95,6 95,6 98,1

FPR [%] 3,9 3,9 3,2 3,1 1,9

PPV [%] 93,8 94,2 95,2 95,3 98

Total Model

Preparation

Time [ms]

2151 4502 634 820 920

TABLE IV

FALSE POSITIVE RATE [%] PER CLASS

FP Rate of

class
SOM

Multipass

SOM
LVQ1

Multipass

LVQ1

Hierarchical

LVQ1

Normal 4,8 5 4,3 4,1 2,1

Probe 3,1 2,9 2 1,9 0,9

R2L 1 0,8 0,5 0,5 0,3

DoS 0,6 0,7 0,8 0,9 0

U2R 0 0 0 3,1 0,2

ON EFFICIENCY OF SELECTED MACHINE LEARNING ALGORITHMS FOR INTRUSION DETECTION IN SOFTWARE DEFINED NETWORKS 251

Fig. 3. Self-organizing maps U*-matrix visualization

Fig. 4. Average Quantization Error , TPR, FPR versus the number of neuron

SOM and M-SOM methods are characterized by the highest

time required to build the classification model. At the same

time, SOM and M-SOM have the worst values of TPR and

FPR. Visualization of U*-matrix, reflecting the average

Euclidean distance between the codebook vectors of

neighbouring neurons is shown in Fig 3. Let us consider 2

clusters, represented by the blue areas of the map. The first

cluster at left side is represented by neurons mainly assigned to

probe and normal class. There is also individual hexagons with

DoS, R2L and U2R class. The second cluster is located at the

top of the map. There is a preponderance of neutrons assigned

to class DoS. In the second cluster, there are single hexagons

with classes normal, R2L and U2R. The green area between

clusters contains normal class. A small cluster in the lower

right corner, includes class DoS and normal. This means that

the classes are not well separated.

Fig 4 illustrates the Average Quantisation Error (AQE), TPR

and FPR versus the number of neurons in the SOM and LVQ1.

It is evident that LVQ1 has smaller AQE and FPR and bigger

TPR then SOM for over the range of curves. As we can see,

there is significant growth of efficiency to specified threshold

(about 1000 neurons), above this level we do not get a

significant increase in value of TPR, FPR and AQE.

Attack classes probe, DoS and R2L are characterized by the

best TPR and FPR. The results indicate poor efficency for U2R

class. The most likely explanation of the negative result is that

the features generated from flows are not optimal for remote

exploits attacks [21]. One possible solution is to develop

additional methods of features extraction. To overcome this

drawback, it is necessary to adapt a Deep Packet Inspection

(DPI) technique.

D. MADMAS Evaluation

Table V presents the efficency of MADMAS in compare to

other selected SDN-based IDS methods. We considered the

following alternatives:

 Method 1 - Revisiting Traffic Anomaly Detection

Using Software Defined Net-working [7],

 Method 2 - A Fuzzy Logic-Based Information Security

Management for Software Defined Networks [8],

 Method 3 - Combining OpenFlow and sFlow for an

effective and scalable anomaly detection and

mitigation mechanism on SDN environments [9],

 Method 4 - Lightweight DDoS flooding attack

detection using NOX/OpenFlow [10],

 Method 5 - Efficient Anomaly Detection And

Mitigation In Software Defined Networking

Environment [11],

 Method 6 - Flexible Network-Based Intrusion

Detection and Prevention System on

Software-Defined Networks [12].

It needs to be highlighted that verification of considered

methods was carried out in different environments, according

to various methodologies. Nevertheless the results presented in

Tab. V can give a generic view on their efficiency. The

considered methods can detect certain types of malicious

activities, i.e.: denial of service, distributed denial of service

port scan, but only our method and Method 5 detect U2R and

R2L attacks (remote exploits, passwords guessing etc.). It is

evident that MADMAS gives higher TPR values for DoS,

Probe, U2R classes in compare to other solutions. Method 3

gives better results of TPR for Probe and DDoS attacks,

however at high value of FPR (23-27%). It should be also

noticed that efficiency of U2R detection by MADMAS is still

too low that would require further works.

V. CONCLUSIONS

In the paper we presented the convincing concept of

detection of malicious activities in SDN data plane. We show

the benefits of using MADMAS for identification the selected

threats and its advantage over other considered solutions.

However, an additional work has to be done to improve the

efficiency of detection of U2R attacks that would include

implementation of deep packet inspection technique. The

TABLE V

COMPARISON OF EFFICIENCY (TPR AND FPR IN [%])

SDN based IDS

methods

DoS, DDoS
Probe,

Scan
R2L U2R

MADMAS
TPR 99,6 98,7 94,6 48,3

FPR 2,1 0,9 0,3 0

Method 1
TPR 94 90

x x
FPR 0 0-4

Method 2

TPR 95
X X X

FPR 1,2

Method 3
TPR 100 100

x X
FPR 27 23

Method 4
TPR 99,11

X x X
FPR 0,46

Method 5
TPR 90,9 91,9 80,2 98,1

FPR 0,1 0,24 0,69 0,88

Method 6
TPR 96,4 92,1

x x
FPR x x

252 D. JANKOWSKI, M. AMANOWICZ

obtained results indicate also some advantage of using the

Hierarchical LVQ1 in compare to other techniques. On the

basis of the promising findings presented in this paper, work on

the remaining issues is still continuing. The next stage of our

research will focus on improving of features generation and on

applicability of other statistical techniques for detection and

classification of malware traffic. Further research on

monitoring of traffic in SDN control plane is also planned.

Therefore, it would allow to expand functionality of

MADMAS to detect attacks against the controllers and

management stations.

REFERENCES

[1] D. Kreutz, F. M Ramos, P. Esteves Verissimo, C. Esteve Rothenberg, S.

Azodolmolky, and S. Uhlig, "Software-defined networking: A

comprehensive survey," in Proceedings of the IEEE 103.1, 2015, pp.

14-76. doi:10.1109/JPROC.2014.2371999

[2] S. Hayward, Sandra, S. Natarajan, and S. Sezer, "A survey of security in

software defined networks," 2015. doi:0.1109/COMST.2015.2474118.

[3] C. Modi, D. Patel, B. Borisaniya, H. Patel, A. Patel and M. Rajarajan,. “A

survey of intrusion detection techniques in cloud,” in Journal of Network

and Computer Applications, vol 36(1), 2013, pp. 42-57.

doi:0.1016/j.jnca.2012.05.003

[4] H. J. Liao, C. H. R. Lin, Y. C.Lin, and K. Y. Tung, “Intrusion detection

system: A comprehensive review,” in Journal of Network and Computer

Applications, vol. 36(1), 2013, pp. 16-24. doi:10.1016/j.jnca.2012.09.004

[5] N. F. Haq, A. R. Onik, M. Avishek, K. Hridoy, M. Rafni, F. M. Shah, and

D. M. Farid, “Application of Machine Learning Approaches in Intrusion

Detection System: A Survey,” in International Journal of Advanced

Research in Artificial Intelligence, 2015.

doi:10.14569/IJARAI.2015.040302

[6] M. Kruczkowski, E. Niewiadomska-Szynkiewicz, and A. Kozakiewicz.

"FP-tree and SVM for Malicious Web Campaign Detection," in

Intelligent Information and Database Systems, Springer International

Publishing, 2015, pp. 193-201. doi: 10.1007/978-3-319-15705-4_19

[7] M. S. Akbar, J. Khalid, and S. A. Khayam, "Revisiting traffic anomaly

detection using software defined networking," in Recent Advances in

Intrusion Detection, Springer Berlin Heidelberg, 2011, pp. 161-180.

doi:10.1007/978-3-642-23644-0_9

[8] S. Dotcenko, A. Vladyko, and I. Letenko, “A fuzzy logic-based

information security management for software-defined networks,” in

Advanced Communication Technology, 16th International Conference on

IEEE, 2014, pp. 167-171. doi:10.1109/ICACT.2014.6778942

[9] K. Giotis, C. Argyropoulos, G. Androulidakis, D. Kalogeras, and V.

Maglaris, “Combining OpenFlow and sFlow for an effective and scalable

anomaly detection and mitigation mechanism on SDN environments,” in

Computer Networks, vol 62, 2014, pp. 122-136.

doi:10.1016/j.bjp.2013.10.014

[10] R. Braga, E. Mota, A. Passito, “Lightweight DDoS Flooding Attack

Detection Using NOX/OpenFlow,” in Local Computer Networks (LCN),

35th Conference on. IEEE, 2010. pp. 408-415. doi:

10.1109/LCN.2010.5735752

[11] R. Sathya and R. Thangarajan, “Efficient Anomaly Detection And

Mitigation In Software Defined Networking Environment,” in

Electronics and Communication Systems, 2nd International Conference

on IEEE, 2015, pp. 479-484. doi:10.1109/ECS.2015.7124952

[12] A. Le, P. Dinh, H. Le, and N. C. Tran, “Flexible Network-Based

Intrusion Detection and Prevention System on Software-Defined

Networks,” presented at International Conference on Advanced

Computing and Applications, November 2015, pp. 106-111.

doi:10.1109/ACOMP.2015.19

[13] OpenDaylight Platform [Online]. Available:

https://www.opendaylight.org/

[14] T. Kohonen, “Essentials of the self-organizing map,” in Neural

Networks, vol. 37, 2013, pp. 52-65. doi:10.1016/j.neunet.2012.09.01

[15] T. Kohonen, “The self-organizing map,” in Proceedings of the IEEE, vol.

78(9), 1990, pp. 1464-1480.

[16] WEKA Classification Algorithms, A WEKA Plug-in, [Online].

Available: http://wekaclassalgos.sourceforge.net/

[17] T. Kohonen,, “Learning vector quantization,” Springer Berlin

Heidelberg, 1995, pp. 175-189.

[18] Mininet, An Instant Virtual Network on your Laptop (or other PC),

[Online]. Available: http://minimet.org

[19] M. Hall, E. rank, G. Holmes, B. Pfahringer, P. Reutemann and I. H.

Witten, “The WEKA data mining software: an update,” in ACM SIGKDD

explorations newsletter, vol. 11(1), 2009, pp. 10-18.

doi:10.1145/1656274.1656278

[20] G. Pölzlbauer, “Survey and comparison of quality measures for

self-organizing maps,“ 2004.

[21] A. Sperotto, G. Schaffrath, R. Sadre, C. Morariu, A. Pras, and B. Stiller,

“An overview of IP flow-based intrusion detection,” in Communications

Surveys & Tutorials, IEEE, 12(3), 2010, pp. 343-356. doi:

10.1109/SURV.2010.032210.00054

