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Abstract—We propose a concept of using Software Defined 

Network (SDN) technology and machine learning algorithms for 

monitoring and detection of malicious activities in the SDN data 

plane. The statistics and features of network traffic are generated 

by the native mechanisms of SDN technology. In order to conduct 

tests and a verification of the concept, it was necessary to obtain a 

set of network workload test data. We present virtual 

environment which enables generation of the SDN network 

traffic. The article examines the efficiency of selected  machine 

learning methods: Self Organizing Maps and Learning Vector 

Quantization and their enhanced versions. The results are 

compared with other SDN-based IDS. 
 
Keywords—Software Defined Network, intrusion detection, 

machine learning, Mininet 

I. INTRODUCTION 

oftware-defined network (SDN) is a modern approach to 

networking that abolishes the complexity and static nature 

of legacy distributed network architectures. It is achieved 

through the use of a standards-based software abstraction 

between the network control plane and underlying data 

forwarding plane, including both physical and virtual devices. 

This gives an opportunity to use the native SDN functionality 

for monitoring malicious activities within the data plane. The 

SDN-based intrusion detection system can be considered as an 

additional monitoring mechanism, besides the classic security 

solution [1] [2]. In our approach, the parameters and statistics, 

extracted from the fine-grained SDN flows, create tuples of 

features that are classified by detection mechanisms. It allows 

to identify a specific connections representing different 

network activities. However, selection of appropriate machine 

learning classification technique enabling proper identification 

of particular types of malicious traffic become an important 

issue for our approach. The variety proposals for using IDS in 

IP-based networks are presented in many papers (e.g. 

[3][4][5][6]) but only few publications deal with the 

implementation of this technique in Software Defined 

Networks [7][8][9][10][11][12]. In this paper we present the 

results of evaluation of selected machine learning algorithms 

and provide recommendations on their use for intrusion 

detection in SDN environment.  
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This paper is organized as follows. Chapter II describes the 

architecture of our approach. The third chapter introduces the 

selected machine  learning  methods SOM and LVQ1. Chapter 

 IV presents the results of the experiments and contains the 

comparison of performance of our conception with other 

SDN-based IDS methods. The paper is summarized with some 

conclusions. 

II. SYSTEM ARCHITECTURE 

We propose a concept of using the native features of SDN 

technology for monitoring and detection of malicious 

activities, which we call MADMAS. The intrusion detection 

system consists of 4 main modules as presented in Fig. 1.The 

Flow Bundle Module extracts traffic statistics from the fine 

grained data flows. The Integrator collects and processes the 

traffic statistics enabling generation some additional features. 

These two modules compose the Features Generator (FG). It 

outcomes are passed to the Machine Learning-based Classifier, 

which is responsible for detection of the malicious activities in 

the data plane. Controller supervises operations performed by 

the modules and processes the results of the traffic 

classification for visualization. At this stage of our study the 

Classifier and Controller reside on the workstation.  

  

 

Fig. 1. SDN-based intrusion detection architecture 

We assumes that the features of network traffic are measured 

by the native mechanisms of SDN technology. The Flow 

Bundle Module works at the SDN Opendaylight controller as 

an OSGi bundle.[13] The flows are matched base on the 

following parameters: 

 destination IP address, 
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 source IP address, 

 destination TCP/UDP port, 

 source TCP/UDP port, 

 protocol type (ARP, IP, TCP, UDP or unknown). 

 

For each flow an idle timeout parameter is set. It defines the 

period after the entries are deleted from the flow table. In 

addition, an identification number is assigned to each flow. 

This way of matching traffic, distinguishes flows in terms of 

different port numbers and IP addresses. The exemplary 

network activity may consist of multiple flows. In presented 

approach the collected features are used as input vector for 

detection mechanism. For each flow, a set of parameters is 

determined. For classification purposes, the input vector X(x1, 

x2,, …, x9)  is represented by: 

x1 -packet count in a flow, 

x2  -bytes count in a flow, 

x3 -destination TCP/UDP port, 

x4  -source TCP/UDP port, 

x5   -duration, 

x6  -flows with different ports from source host, 

x7  -flows with same ports to destination host, 

x8 - flow rate to the host, 

x9  -single flow rate to the host. 

III. SELECTED MACHINE LEARNING ALGORITHMS 

Let us consider the following algorithms that can be used 

for classification of malicious activities in the SDN data plane, 

i.e: 

• Self-Organizing Maps (SOM)  

• Multi-pass Self-Organizing Maps (M-SOM), 

• Learning Vector Quantization (LVQ1), 

• Multi-pass Learning Vector Quantization (M-LVQ1) 

• Hierarchical Learning Vector Quantization (H-LVQ1). 

Above algorithms are types of artificial neural networks 

(ANN) that is trained using unsupervised (SOM based) or 

supervising (LVQ1 based) learning technique. In response to 

input signals, network indicates the activation of neurons in 

varying degrees. Neurons (nodes) compete for the right to 

respond to a subset of the input data. The neuron whose weight 

vector is most similar to the input is called the best matching 

unit (BMU) or best matching neuron (BMN). A distance 

measure between input patterns must be defined, in our case it 

is a Euclidean distance (see equation 2). In the presented 

algorithms, it is necessary to carry out an initialization phase. 

This is the arrangement of specific positions of neurons in the 

considered space. Typically, the initial distribution of neurons 

can be created in a random way [14]. 

Neurons in SOM can be associated with its other 6 

neighbours in a hexagonal manner. The most stimulated 

neuron and neighbouring neurons update the weights in 

response to learning vectors. 
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where: X – input vector of features, Wi – i weight vector of the 

neuron at k time, ηi – learning rate, G(r) - neighbourhood 

function (3). 

The distances of input vector X(x1, x2, …, xj) to winner neurons 

W(w1, w2, … , wj) are calculated on base of the Euclidean 

distance. 





N

j

ijjii wxWXWXd
1

2)(),(  (2) 

where: X – input vector of features, xj – j feature in X input 

vector, Wi - i weight vector of the neuron, wij – j value of weight 

in i weight vector of the neuron. 

The degree of weight adaptation G(i) of winner and 

neighbourhoods neurons is calculated by Gaussian formula. 
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where: r - Euclidean distance of i neuron from winner neuron, 

W –winner neuron, λ– neighbourhood radius. 

During the learning process , weights of neurons are 

adapted to learning input vector. In other words, neurons or 

groups of neurons, are activated in response to stimulation, 

adapting to the form of specific patterns. When input vectors 

are labelled, SOM can be used as a classification mechanism. 

The SOM network allows to create a type of structure, which 

can represent input vectors in the best way. It can be said, that 

the single neuron represents many vectors from the dataset. 

The class is assigned to the neuron with the consideration of 

which class is the most numerous, from stimulating vectors. 

The classification step is preformed after learning. During the 

network testing, the test vectors activate neurons of a trained 

network which are the most similar. This involves determining 

which labelled neuron is activated under the input vector. After 

the process of learning, SOM network can be presented to low 

dimension space by Sammon mapping and visualised by 

U-matrix, U*-matrix, P-matrix. [14][15]. 

Multi-Pass SOM is the implementation of the SOM 

algorithm where two passes are performed on the same 

underlying model. The first pass is a rough ordering pass with 

large neighbourhood radius, learning rate and small training 

time. The second pass is the fine tuning pass that has a longer 

training time, small initial neighbourhood radius value and 

smaller initial learning rate  [16]. 

Learning Vector Quantization (LVQ) may also be 

considered as special case of an artificial neural network 

architecture, learned in a supervised way. The LVQ network 

has a set of units and weight vectors Wi associated to them. In 

this paper, we consider 3 versions of LVQ1 for traffic 

classification. In LVQ1 each input vector has a class assigned 

to them that the network would like to learn. At step k, given a 

vector X randomly chosen from the input data. Then the nearest 

Wi  vector is selected, according to the Euclidean distance  d(X, 

Wi) given by (2). After that the vector Wi is updated in the 

following way: 
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where: X – input vector of features, Wi(k) – i weight vector of 

the neuron at k time, ηi – learning rate [17]. 
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In Multi-Pass, the quick rough pass is made on the model using 

LVQ1 with relative large learning rate, then a long fine tuning 

pass is made on the model with LVQ1 and smaller learning 

rate. In Hierarchical LVQ implementation each codebook 

vector is treated as a cluster centroid. All codebook vectors are 

evaluated and part of that vectors are selected as candidates for 

sub-models. The sub-models are constructed for all candidate 

codebook vectors and those sub-models that outperform their 

parent codebook vector are kept as part of the model. During 

testing, a dataset tuple is first mapped onto its BMU, if that 

BMU has a sub-model, the sub model is used for classification, 

otherwise the class value in the BMU is used for classification  

[16]. 

IV. EXPERIMENTS  

A. Dataset generation 

The architecture of the testbed we used for evaluation of 

machine learning algorithms and their applicability for 

intrusion detection in SDN environment is shown in the 

Figure 2. A simplified SDN network is emulated in the Mininet 

[18], while the server is emulated by Metasploitable 2 virtual 

machines with the Ubuntu operating system. Vulnerabilities in 

services and operating systems, default passwords and 

misconfigurations are intentionally left on the server 

environment. The clients generate requests to the server, at the 

same time, the malicious host performs unauthorized activities 

directed to servers by using attack tools. The course of 

emulation is automated by Python scripts. Generated traffic is 

probing by the measurement module. The servers reside on 

separate virtual machines and clients are virtualized at the level 

of Mininet OS. In order to achieve the most realistic character 

of the generated attacks, malicious activity are conducted using 

special tools (see Tab I). Each class of such traffic has 

subclasses, which define the detailed course of action, types of 

attack tools or exploits that are directed at the network or server 

resources. 

For instance, the malicious hosts perform a flooding attack 

on the SDN network by Nping tool with specific parameters. 

These events have an impact both on the SDN controller 

performance and the available data plane resources, and can 

cause delays in processes of matching flows. The probe class 

includes attacks that are intended to obtain information about 

the object of attack. These attacks include ports, version, 

services or vulnerability scanning. Such malicious activities 

performed by Metasploit or Nmap tools give information to the 

intruders about the potential targets of the attacks. This kind of 

activity may be a preliminary phase of the main attack, i.e. DoS 

or buffer overflow. 

The U2R class includes network activities related with the 

back doors and remote exploitation attacks. The attacks are 

performed by Metasploit Framework scripts and commands. 

These malicious activities are carried out against the 

vulnerable services, which are used in normal traffic. 

Therefore, these attacks are characterised by a high degree of 

similarity to the short duration normal traffic. Firstly, the 

malicious requests prepared by Metasploit are sent to the 

vulnerable service. The payload contains the exploit and 

shellcode for the specified service. After the exploiting 

operation, the malicious host gains access to the shell with root 

privileges. At the next step, the malicious host establish the 

connection to the exploited service, with the reverse shell and 

execute a few Linux commands. The type of exploit and 

detailed course of the attack may vary for individual services. 

For instance, before exploit steps, the user login may take 

place. Each stage of the attack is reflected in SDN fine 

granulated flows. 

The R2L class includes the credentials guessing and the 

unauthorised access to IT accounts. The password guessing is 

conducted in the form of dictionary attack. The potential 

passwords and logins are stored in external file. The malicious 

hosts try to authorise with parameters from lists of credentials. 

Sequential requests are sent to the service. When the 

authorisation succeeds, the corresponding credentials are 

stored. These activities generate moderate number of flows.  

 

 
 

 

 
Fig. 2. Testbed architecture  

 

B. Evaluation Methodology 

All our experiments were performed using the WEKA with 

additional plugin [16][19]. For testing purposes, 10 fold cross 

validation was used. The features of input vector X are 

normalized in the range [0,1]. The formulas below show the 

metrics used for evaluation of classification models, i.e.: 

- True Positive Rate 

FNTP

TP
TPR




         

(6)

 

TABLE I 
CLASSES OF NETWORK ACTIVITIES 

Classes 

of traffic 

Description of 

activities 
Tools for traffic generation 

normal Traffic between 

clients and servers 

Clients and servers of following 

services FTP, SSH, SMB, Apache, 

Web, Tomcat, RMI Ruby, Java RMI, 
Postgres, Telnet 

probe Port probe,  

vulnerability scan, 

version scan 

Metasploit, Nmap 

R2L Credentials 

guessing 

Metasploit, Hydra 

DoS Denial of service 

attacks 

Metasploit, Hping3, Nping 

U2R Remote exploits, 

backdoors, 
Metasploit 
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where: TP – True Positive,  FN – False Negative , 

- False Positive Rate 

TNFP

FP
FPR




         

(7)

 
where: FP – False Positive, TN – True Negative,  

- Precision or Positive Predictive Value 

FPTP

TP
PPV




         

(8)

 
The conformity of the neural net with the input data was 

assessed by calculation of the average quantization error 

according to the following formula [20]: 
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where: Xi – input vector, Mc – best matching neurons (BMN) 

The best neural net is expected to have the smallest average 

quantization error. 

C. Results 

The overall results are summarized in Table II. The analysis 

indicate that it is possible to achieve an average value of TPR 

greater than 94%. However, in constructed models, size of the 

networks exceeds the number of 800 neurons. H-LVQ1 

algorithm is an effective way to improve TPR, precision and 

FPR compared to SOM, M-SOM, LVQ1, M-LVQ1 for all 

classes. Class U2R has the worst TPR and FPR metrics for all 

classification algorithms. The best TPR and PPV results are 

achieved for  Probe and DoS classes. M-SOM and M-LVQ 

algorithms slightly improve efficiency in comparison to LVQ 

and SOM. Moreover, there is the visible advantage of H-LVQ1 

in efficiency for all classes.  

 

 

 
 

 

 

 

TABLE III 

TRUE POSITIVE RATE [%] PER CLASS 

TP Rate of 

class 
SOM 

Multipass 

SOM 
LVQ1 

Multipass 

LVQ1 

Hierarchical 

LVQ1 

Normal 97,8 98,0 98,1 98,1 98,6 

Probe 96,3 96,1 96,1 96,2 98,7 

R2L 74,8 77,6 83,5 83,4 94,6 

DoS 47,0 48,3 80,5 83,2 99,6 

U2R 3,1 5,6 0,8 1,1 48,3 

 

TABLE II 

EFFICIENCY OF SELECTED ALGORITHMS  

Evaluation 

metrics 
SOM 

Multipass 

SOM 
LVQ1 

Multipass 

LVQ1 

Hierarchical 

LVQ1 

TPR [%] 94,4 94,6 95,6 95,6 98,1 

FPR [%] 3,9 3,9 3,2 3,1 1,9 

PPV [%] 93,8 94,2 95,2 95,3 98 

Total Model 

Preparation 

Time [ms] 

2151 4502 634 820 920 

 
 

TABLE IV 

FALSE POSITIVE RATE [%] PER CLASS 

FP Rate of 

class 
SOM 

Multipass 

SOM 
LVQ1 

Multipass 

LVQ1 

Hierarchical 

LVQ1 

Normal 4,8 5 4,3 4,1 2,1 

Probe 3,1 2,9 2 1,9 0,9 

R2L 1 0,8 0,5 0,5 0,3 

DoS 0,6 0,7 0,8 0,9 0 

U2R 0 0 0 3,1 0,2 
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Fig. 3. Self-organizing maps U*-matrix visualization 

 
Fig. 4. Average Quantization Error , TPR, FPR versus the number of neuron  

 

SOM and M-SOM methods are characterized by the highest 

time required to build the classification model. At the same 

time, SOM and M-SOM have the worst values of TPR and 

FPR. Visualization of U*-matrix, reflecting the average 

Euclidean distance between the codebook vectors of 

neighbouring neurons is shown in Fig 3. Let us consider 2 

clusters, represented by the blue areas of the map. The first 

cluster at left side is represented by neurons mainly assigned to 

probe and normal class. There is also individual hexagons with 

DoS, R2L and U2R class. The second cluster is located at the 

top of the map. There is a preponderance of neutrons assigned 

to class DoS. In the second cluster, there are single hexagons 

with classes normal, R2L and U2R. The green area between 

clusters contains normal class. A small cluster in the lower 

right corner, includes class DoS and normal. This means that 

the classes are not well separated.  

Fig 4 illustrates the Average Quantisation Error (AQE), TPR 

and FPR versus the number of neurons in the SOM and LVQ1. 

It is evident that LVQ1 has smaller AQE and FPR and bigger 

TPR then SOM for over the range of curves. As we can see, 

there is significant growth of efficiency to specified threshold 

(about 1000 neurons), above this level we do not get a 

significant increase in value of TPR, FPR and AQE. 

Attack classes probe, DoS and R2L are characterized by the 

best TPR and FPR. The results indicate poor efficency for U2R 

class. The most likely explanation of the negative result is that 

the features generated from flows are not optimal for remote 

exploits attacks [21]. One possible solution is to develop 

additional methods of features extraction. To overcome this 

drawback, it is necessary to adapt a Deep Packet Inspection 

(DPI) technique.  

D. MADMAS Evaluation 

Table V presents the efficency of MADMAS in  compare to 

other selected SDN-based IDS methods. We considered the 

following alternatives: 

 Method 1 - Revisiting Traffic Anomaly Detection 

Using Software Defined Net-working [7], 

 Method 2 - A Fuzzy Logic-Based Information Security 

Management for Software Defined Networks [8], 

 Method 3 - Combining OpenFlow and sFlow for an 

effective and scalable anomaly detection and 

mitigation mechanism on SDN environments [9], 

 Method 4 - Lightweight DDoS flooding attack 

detection using NOX/OpenFlow [10], 

 Method 5 - Efficient Anomaly Detection And 

Mitigation In Software Defined Networking 

Environment [11], 

 Method 6 - Flexible Network-Based Intrusion 

Detection and Prevention System on 

Software-Defined Networks [12]. 

It needs to be highlighted that verification of considered 

methods was carried out in different environments, according 

to various methodologies. Nevertheless the results presented in 

Tab. V can give a generic view on their efficiency. The 

considered  methods can detect certain types of malicious 

activities, i.e.: denial of service, distributed denial of service 

port scan, but only our method and Method 5 detect U2R and 

R2L attacks (remote exploits, passwords guessing etc.). It is 

evident that MADMAS gives higher TPR values for DoS, 

Probe, U2R classes in compare to other solutions. Method 3 

gives better results of TPR for Probe and DDoS attacks, 

however at high value of FPR (23-27%). It should be also 

noticed that efficiency of U2R detection by MADMAS is still 

too low that would require further works.  

 

 
 

V. CONCLUSIONS  

In the paper we presented the convincing concept of 

detection of malicious activities in SDN data plane. We show 

the benefits of using MADMAS for identification the selected 

threats and its advantage over other considered solutions. 

However, an additional work has to be done to improve the 

efficiency of detection of U2R attacks that would include 

implementation of deep packet inspection technique. The 

TABLE V 

COMPARISON OF EFFICIENCY (TPR AND FPR IN [%]) 

SDN based IDS 

methods 

 

DoS, DDoS 
Probe, 

Scan  
R2L  U2R  

MADMAS 
TPR 99,6  98,7 94,6 48,3 

FPR 2,1 0,9 0,3 0 

Method 1 
TPR 94 90 

x x 
FPR 0 0-4 

Method 2 

 

TPR 95 
X X X 

FPR 1,2 

Method 3 
TPR 100 100 

x X 
FPR 27 23 

Method 4 
TPR 99,11 

X x X 
FPR 0,46 

Method 5 
TPR 90,9 91,9 80,2 98,1 

FPR 0,1 0,24 0,69 0,88 

Method 6 
TPR 96,4 92,1 

x x 
FPR x x 
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obtained results indicate also some advantage of using the 

Hierarchical LVQ1 in compare to other techniques. On the 

basis of the promising findings presented in this paper, work on 

the remaining issues is still continuing. The next stage of our 

research will focus on improving of features generation and on 

applicability of other statistical techniques for detection and  

classification of  malware traffic. Further research on 

monitoring of traffic in SDN control plane is also planned. 

Therefore, it would allow to expand functionality of 

MADMAS to detect attacks against the controllers and 

management stations. 
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