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Summary Chlorophyll (chl a) concentration in coastal seas exhibits variability on various
spatial and temporal scales. Resuspension of particulate matter can somewhat limit algal growth,
but can also enhance productivity because of the intrusion of nutrient-rich pore water from
sediments or bottom water layers into the whole water column. This study investigates whether
characteristic changes in net phytoplankton growth can be directly linked to resuspension events
within the German Bight. Satellite-derived chl a were used to derive spatial patterns of net rates
of chl a increase/decrease (NR) in 2003 and 2004. Spatial correlations between NR and mean
water column irradiance were analysed. High correlations in space and time were found in most
areas of the German Bight (R2 > 0.4), suggesting a tight coupling between light availability and
algal growth during spring. These correlations were reduced within a distinct zone in the
transition between shallow coastal areas and deeper offshore waters. In summer and autumn,
a mismatch was found between phytoplankton blooms (chl a > 6 mg m�3) and spring-tidal
induced resuspension events as indicated by bottom velocity, suggesting that there is no
phytoplankton resuspension during spring tides. It is instead proposed here that frequent and
recurrent spring-tidal resuspension events enhance algal growth by supplying remineralized
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nutrients. This hypothesis is corroborated by a lag correlation analysis between resuspension
events and in-situ measured nutrient concentrations. This study outlines seasonally different
patterns in phytoplankton productivity in response to variations in resuspension, which can serve
as a reference for modelling coastal ecosystem dynamics.
# 2015 Institute of Oceanology of the Polish Academy of Sciences. Production and hosting by
Elsevier Sp. z o.o. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1 Schematic diagram of how resuspension influences
phytoplankton growth. The upper graph generalizes the seasonal
variations of the two main limiting factors in the German Bight:
light and nutrients. The +/� signs with arrows indicate the
positive/negative effects. In spring, phytoplankton reacts nega-
tively to increased resuspension induced by wind. In contrast, in
late summer and autumn, recurrent resuspension induced by the
spring tide refuels phytoplankton growth with remineralized
nutrients.
1. Introduction

Coastal areas exhibit great variability in physical and biolo-
gical processes, making it difficult to pinpoint spatio-tem-
poral algal growth distribution patterns. In large part, this
variability results from a complex interplay of sediment
resuspension, phytoplankton growth, grazing, aggregation,
and sinking of particulate matter. Primary factors controlling
coastal phytoplankton distribution and growth include sur-
face temperature, turbidity, river nutrient loads, and benthic
and pelagic consumers, as well as tidal mixing (Loebl et al.,
2009; Malone et al., 1983; Soetaert et al., 1994). These
factors interfere with strong horizontal advection (Lucas
et al., 1999).

Resuspension is a physical process that occurs when bot-
tom shear stress is high enough to lift sediment particles
(Wainright, 1990). Physical causes of resuspension include
strong winds and tidal currents. In winter and spring, strong
winds generate turbulent mixing. In shallow waters, turbu-
lence not only retains suspended particles in the water
column, but also detaches benthic material. Both processes
increase the concentration of suspended particulate matter
(SPM). SPM in turn negatively affects light availability for
phytoplankton growth (Fig. 1, May et al., 2003; Wild-Allen
et al., 2002). Wind-induced mixing has indeed been shown to
determine effectively the spreading of algal spring blooms in
coastal seas (Mei et al., 2010; Tian et al., 2009). In shallow
coastal seas, strong tidal mixing also influences phytoplank-
ton growth (Sharples et al., 2006). For instance, weakened
mixing during neap tides favours stratification (Simpson
et al., 1990). Results from harmonic analysis (von Storch
and Zwiers, 2001) of satellite SPM images in the southern
North Sea suggest pronounced spring-neap variations,
thereby revealing how changes in tidal mixing govern the
distribution of SPM (Pietrzak et al., 2011). In summer and
autumn, tidal currents cause resuspension of benthic mate-
rial, which can supply nutrients from sediment layers or
bottom water layers to the water column (Fig. 1). These
remineralized nutrients originate from the decomposition of
organic matter that sank out of the water column and
accumulated on the seabed shortly after the spring bloom
(Ehrenhauss et al., 2004). Therefore, explaining the origin of
bloom events in autumn is difficult because it involves
reconciling two conflicting resuspension effects (high turbid-
ity versus nutrient recycling) on phytoplankton growth
(Fichez et al., 1992).

To date, the role of resuspension in coastal phytoplankton
growth has rarely been addressed on a system scale. Previous
studies of the effects of resuspension were based on labora-
tory work or on local in-situ measurements (Koschinsky et al.,
2001; Sloth et al., 1996; Tengberg et al., 2003). Spatial
extrapolations of local resuspension effects are limited
because resuspension and phytoplankton growth have a
strong mesoscale component (Gerritsen et al., 2001; Lou
et al., 2000; Stanev et al., 2007). Satellite ocean colour data
provide a unique tool for monitoring these effects. However,
given spatio-temporal variations in bathymetry, atmospheric
forcing, and hydrography, resolving how mixing, nutrient
availability, and light availability promote phytoplankton
blooms in shallow coastal regions remains a challenging task,
especially when compared to simpler open ocean conditions
(Lucas et al., 1998).

The German Bight (GB), located in the south-eastern
portion of the North Sea, is a shallow area with average
water depths of about 22 m (Fig. 2). In such shallow water,
wind and tidal waves have an impact on the bottom, and
resuspension has an impact on the water column. Our synop-
tic view of biophysical processes in the GB is gradually
improving thanks to continuing in-situ measurements and
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Figure 2 Topography (with 10, 20, and 30 m isobath) of the German Bight (left panel), which is located in the south-eastern North Sea
(right panel). The black box in the left panel indicates the Helgoland area, for which a time series of MERIS data has been extracted.
The area is centred on the Helgoland Roads long-term time-series station.
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remotely sensed data (Grunwald et al., 2007; Onken and
Riethmüller, 2010; Petersen et al., 2008; Staneva et al.,
2009). Factors that limit phytoplankton growth in the GB
are typical of shallow sea areas (Cloern, 1999; Colijn and
Cadée, 2003). The primary limiting factor, as derived from
the Helgoland Roads (HR) time-series data, is light limitation
during spring blooms and nutrient limitation during summer
and autumn blooms (Fig. A.1; detailed calculations are given
in Appendix A).

This study has analysed remote-sensing data from the GB
in 2003 and 2004 to unravel the interdependencies between
algal growth and wind/tidal induced resuspension over space
and time. The central question addressed in this paper is
whether typical response patterns of spring or autumn algal
blooms can be inferred from variations in resuspension. This
study contributes to an improved quantitative and mechan-
istic description of direct coastal oceanographic effects on
biogeochemistry and plankton ecology. Hence, it serves as a
basis for multi-year studies and coupled physical—biological
models.

2. Methods

2.1. MERIS derived products

The high-resolution satellite ocean colour images used in this
study were obtained from the Medium Resolution Imaging
Spectrometer (MERIS). MERIS provides high-resolution spectral
data of water-leaving radiance for nine visible channels. These
spectral data yield detailed information which is especially
needed for case-2 waters (Bricaud et al., 1999). The North Sea
was referred to as case-2 waters by Morel and Prieur (1977).

Maps of chl a concentrations are a standard MERIS pro-
duct. Here, the version for case-2 coastal waters was used.
The Case-2-Regional (C2R) processor in version 1.1 includes
an atmospheric correction using bands in the infrared and
blue spectral regions and a neural network to determine
atmospheric contributions to the signal (Doerffer and Brock-
mann, 2006). A comparison of C2R products with buoy data
shows better agreement with water-leaving reflectances
than that obtained from standard processors (Doerffer
et al., 2010). The difference between in-situ and remote-
sensing measurements, however, is highly dependent on
patchiness, absolute concentrations, and the conversion
from absorption lengths to concentrations. For case-1
waters, deviations are on the order of 10—30%; for chl a
concentrations are above 0.5 mg m�3. In-situ validations
with case-2 waters are also very dependent on the region.
For North Sea waters, pixel-wise differences are comparable
to case-1 waters for high chl a and low suspended matter, but
they can exceed the 100% level (Doerffer, 2007). The original
1 km resolution was not part of a regular grid, which poses
difficulties for the analysis, and therefore for this study, a
2 km resolution was used. The reprocessed data included
not only the standard output, such as chl a, chromophoric
dissolved organic matter (CDOM) and total suspended
matter (TSM) concentrations, but also the apparent optical
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parameter for the attenuation coefficient Kd. In the
North Sea, the observed Secchi depth (SD) shows a higher
correlation with MERIS Kd in the transitional waters of
the GB (R. Doerffer, pers. comm.). Kd fields will therefore
be used in this study to approximate the spatial distribution
of light attenuation coefficients, also motivated by Tian
et al. (2009) who assimilated satellite-derived Kd to
improve their model predictions for spring bloom events
in the GB.

Because for 2003 and 2004 a relatively high number of
cloud-free scenes could be processed, the present study
concentrated on these years. Consequently, all subsequently
integrated data were confined to these 2 years. MERIS chl
a time-series at Helgoland were extracted by averaging chl a
within the Helgoland area (indicated in Fig. 2).

2.2. Supporting model and time-series datasets

Time series of current velocity in the bottom layer and mixed
layer depths were obtained from the model run described by
Staneva et al. (2009), who used the three-dimensional Gen-
eral Estuarine Transport Model (GETM). GETM is a free-sur-
face, baroclinic, hydrostatic model especially adapted to
tidal flats and shallow waters (Burchard and Bolding,
2002). The model system is forced by 6-hourly ECMWF re-
analysis data, hourly river run-off, and time-varying lateral
boundary conditions of sea surface elevations (Staneva et al.,
2009). Hence, the two major factors (tide and wind) con-
sidered in this paper are well described.

HR (5481101800N, 78540E) time series were used to validate
the MERIS chl a data and to investigate the correlation
between nutrients and chl a in summer and autumn. The
samples for chl a measurement at HR were extracted from
fluorescence data using an algal group analyser (Knefelkamp
et al., 2007; Tian et al., 2011).

Sea-level data were collected at the HZG Langeoog pile
(78280E, 538430N) station. Sea-level data were used to repre-
sent the spring and neap tidal cycle indices of the coastal GB.

2.3. Parameters to identify the photosynthesis—
irradiance relationship

The daily irradiance averaged over the MLD (Im, Einst m�2 d�1)
was calculated as:

Im ¼ I0
kz

½1 � expð�kzÞ�; (1)

where I0 is the daily surface irradiance [Einst m�2 d�1], k is
the attenuation coefficient [m�1], and z is the surface mixed
layer depth [m]. I0 was estimated from measurements of
photosynthetically active radiation (PAR) at Helgoland
(http://coast.hzg.de/data/helgo_rad.html), k from the
MERIS derived Kd, and mixed layer depths z from 3D GETM
results.

Net rates of chl a increase/decrease (NR, mg m�3 d�1)
were calculated according to:

NRchl;n ¼ chln � chl0
n

; (2)

where chl0 is the chl a concentration [mg m�3] at the onset of
the bloom and chln represents the chl a concentration at day n.
To estimate the spatial distribution of the NR—Im correla-
tion, the entire GB region was divided into smaller subregions
of area 0.058 by 0.058. By gradually increasing the size of
each subregion, Im was modified until the range of Im in
adjacent subregions reached a critical value of
5 Einst m�2 d�1. Hence, all subregions contained a spectrum
of light regimes. Furthermore, the correlation coefficient
between Im and NR was calculated in subregions of increased
size to represent the correlations in each smaller subregion.

3. Results

3.1. Resuspension versus photosynthesis in
winter—spring

MERIS and the in-situ HR time series depicted similar tem-
poral changes in chl a concentrations during spring 2003
and 2004 (Figs. 3 and 4, upper panel). They showed a
pronounced phytoplankton bloom at the end of March in
2003 and end of April in 2004, as indicated by the significant
increase of chl a. The local agreement between these two
independent time series generates enough confidence in
the credibility of the satellite-derived data to reflect actual
patterns in chl a concentration in space (one failed valida-
tion of MERIS data with HR time-series in 2005 was shown in
Appendix B).

Three consecutive patterns of chl a (22 March, 3 April, and
13 April 2003 in Fig. 3a—c) illustrate the spatio-temporal
development of the spring bloom. The bloom was initiated
near the coast (mean water depth <10 m), from where
filaments with elevated chl a concentrations spread into
offshore regions (Fig. 3a and b). The development of fila-
ments was more pronounced offshore of the North Frisian
Islands than in the offshore region of the East Frisian Islands
(Fig. 2). The latter region, however, was partly hidden by
clouds. After 10 days, the initial coastal bloom progressed to
the central parts of the GB (Fig. 3b and c). Eventually,
elevated chl a concentrations became widespread over the
entire central GB (Fig. 3c). At the same time, an extended
patch with reduced chl a concentrations appeared in the
deeper part of the German Bight (green colour in Fig. 3c). In
2004, MERIS and the in-situ HR time-series both showed a
pronounced spring bloom from the end of April to the end of
May (Fig. 4, upper panel). Three consecutive patterns of chl a
(21 April, 26 April and 16 May, Fig. 4a—c) were selected to
illustrate the development of the spring bloom. The general
features of the development of the bloom were similar to
2003.

The timing of the spring bloom is mainly controlled by
temporal differences in the amount of light penetrating
through the water column. Turbidity measurements reveal
sporadic changes in space and time in the GB. These varia-
tions are associated with resuspension of sediment particles.
Coastal areas are highly turbid during the winter months.
Likewise, on 22 March 2003, high turbidity was induced by
strong resuspension, as seen in MERIS-derived TSM data
(Fig. 5a). In a qualitative manner, the distribution of the
average irradiance (Im, Fig. 5b) was comparable to the
distribution of TSM, because Im is a function of the light-
attenuation coefficient that is highly correlated with TSM. NR
was calculated according to finite differences of chl a

http://coast.hzg.de/data/helgo_rad.html


Figure 3 Upper panel: overlay of MERIS chl a time series at Helgoland (black line) and HR in-situ measured chl a time series (light
purple line, cf. Tian et al., 2011) in 2003. The grey lines represent the dates of the three scenes shown in the lower panels, which
display the development phases of a spring bloom. Lower panel: selected scenes of MERIS-derived chl a in the GB on (a) 22 March, (b)
3 April, and (c) 13 April 2003. The bathymetry of the GB is given by isobath lines. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of the article.)
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between 22 March and 3 April 2003 and qualitatively matched
the distribution of Im (Fig. 5c). Substantial correlations
between these three variables indicate a high sensitivity
of phytoplankton growth to turbidity at the scale of the
whole GB. To avoid repetitive descriptions, the maps of Im
and NR in 2004 were not shown here. Im and NR in 2004 were
calculated using two scenes from the initial phase of the
spring bloom (21 and 26 April).
Figure 4 Upper panel: overlay of MERIS chl a time-series at Helgo
purple line) in 2004. The grey lines denote the dates of the three sc
phase of a spring bloom in 2004. Lower panel: selected scenes of ME
16 May 2004. The bathymetry of the GB is given by isobath lines. (For i
reader is referred to the web version of the article.)
3.2. The sensitivity map of algal growth to
limiting light

From Figs. 3 and 5, a qualitative picture of the spatial depen-
dency between algal growth and light penetration could be
obtained. To consolidate the interpretation, this correlation
was quantified by calculating the spatial distribution of the
NR-irradiance relationship in 2003 and 2004 (Fig. 6a and b).
land (black line) and HR in-situ measured chl a time series (light
enes shown in the lower panels, which display the development
RIS-derived chl a in the GB on (a) 21 April, (b) 26 April, and (c)
nterpretation of the references to colour in this figure legend, the



Figure 5 (a) MERIS-derived total suspended matter (TSM [g m�3]) as a proxy for turbidity during the onset of the spring bloom, (b)
mean water column irradiance within the mixed layer (Im [Einst m�2 d�1]) and (c) net rates of chl a increase/decrease (NR
[mg chl a m�3 d�1]). Im is a function of Kd (day 81), mean PAR (days 81—93) and mean MLD (days 81—93). NR is calculated during
the phytoplankton growth phase (days 81—93; see Fig. 3a and b).

Figure 6 Upper panel: 2D map of the coefficient of determination R2 between NR and Im (Fig. 5b and c) in 2003 (a) and 2004 (b). Pixel
resolution is 0.058. The black boxes in (a) indicate two areas with high correlation and low correlation respectively. For these two
boxes, scatter plots of NR and Im are shown in bottom panels (c and d). In the high-correlation area (R = 0.91, p < 0.001), the
illustration sheds light on the threshold of Im to positive NR is 4 Einst m�2 d�1 (dashed lines). The slope of the NR-Im relationship is
denoted by a [mg chl a Einst�1 m�1].

Response patterns of phytoplankton growth to variations in resuspension in the German Bight 333
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The correlation density distribution map showed that Im
and NR were highly correlated (R2 > 0.5) in most regions in
the central GB and within the coastal zone (depth <10 m,
Fig. 6a). Regions with low correlation between Im and NR
formed a transition zone between coastal areas and the
central GB, with depths between 10 m and 15 m. Over large
areas, this transition zone coincided with the extended patch
of decreased chl a concentrations along the coastal margin.
The correlation map in 2004 illustrated a similar spatial
pattern (Fig. 6b). To show examples of the relationship
between Im and NR in high- and low-correlation areas, scatter
plots of Im and NR are shown in 0.58 by 0.58 geographic boxes
(Fig. 6c and d). Because NR is highly dependent on Im in areas
of high correlation (Fig. 6c), a positive NR was achieved when
Im exceeded 4 Einst m�2 d�1. Scatters in low-correlation
regions (Fig. 6d) suggested that factors other than light
availability affected phytoplankton growth.

To quantify in more depth the relationship between algal
growth and light in regions of high correlation, the slope of
subregional NR—Im regressions was estimated (a), which
describes the sensitivity of algal growth to light (Fig. 7).
The areas located on the offshore side of the Frisian Islands
(black dots) and the Elbe Estuary (grey dots) showed a low
slope (a < 12 mg chl a Einst�1 m�1) and also a limited varia-
bility in a with respect to the relatively high range of light
availability (Fig. 7). In both regions, algal growth appeared to
be insensitive to light because of highly turbid coastal
waters. Moreover, a positive correlation existed between a

and Im on the offshore side of the Frisian Islands (black dots,
R = 0.29, p < 0.001), indicating that algal growth could be
sensitive to light if light conditions improved. In contrast,
the range of a was large in the deeper GB (Fig. 7, blue dots).
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flat areas in the Wadden Sea was excluded because error signals were
based observations of high Im (black) and high a values (light purple), w
plotted in grey. The black dotted areas exhibit a relatively low change
of the Frisian Islands and the Elbe estuary (in the sub-figure). The blu
the area with a large change range in a and a small one in Im. (For int
reader is referred to the web version of the article.)
The large variability in a may be due to strong variations in
hydrographic conditions along with other possible factors,
which will be discussed in Section 4.1.

3.3. Mismatch between strong resuspension
events and the peaks of chl a in summer and
autumn

Between April and October 2003 and 2004, the MERIS chl a
time series at Helgoland revealed a series of recurrent bloom
events after the spring blooms (Figs. 8d and 4). A bloom event
(chl a > 6 mg m�3) with cloud-free scenes on 13, 16, and
22 September 2003 was selected to study the chl a spatial
pattern (Fig. 8a—c). This autumn bloom revealed spatially
similar gradients from nearshore to offshore in large-scale
pigment distribution, as was also observed during the spring
bloom. Unfortunately, three cloud-free scenes could not be
found in 2004 to show the development of the autumn
blooms. Therefore, this analysis focusses on summer—
autumn bloom dynamics in 2003.

In summer and autumn 2003, significant wind storms were
absent in the GB, and repeated resuspension events were
identified as induced by tides. Low-pass filtered, daily bot-
tom current velocity (Vb) calculated by GETM exceeded the
critical Vb for resuspension of 0.006 m s�1 in almost every bi-
weekly spring phase (Fig. 9, Ziervogel and Bohling, 2003).
The magnitude of the chl a peaks tended to increase in late
autumn. Furthermore, all chl a peaks showed a timing mis-
match with the resuspension events, indicating that chl a was
not directly resuspended during the spring tide (e.g., from
benthic diatoms).
12 14 16 18 20

radiance [Einst  m−2  d−1 ]

 and the slope of the NR-Im relationship (a). The analysis of tidal
 generated when the tidal flats ran dry. The dots represent MERIS-
hereas the remaining part (where both a and Im values are low) is

 range of a when Im increases and are located on the offshore side
e pixels are located in offshore waters in the GB, which represent
erpretation of the references to colour in this figure legend, the



Figure 8 Selected scenes of MERIS-derived chl a in the GB on (a) 13 September, (b) 16 September, and (c) 22 September 2003,
embracing a typical summer-autumn bloom event. (d) The temporal change of chl a in the lower panel is compared to tidal elevation
and bottom current velocity in the upper panel. The tidal elevation is derived from Langeoog pile station time series, and the bottom
current velocity is obtained from the model results at Helgoland.
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In consideration of all these features, it was hypothesized
that spring-tide induced resuspension imported nutrient-rich
pore water from sediments or bottom water layers during
spring tides during the nutrient limitation period, which
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gradually accumulated nutrients within the water column,
eventually leading to phytoplankton blooms. Because nutrient
measurements were spatially and temporally sparse, HR data
were used to provide further verification of this hypothesis.
0 240 250 260 270 280 290 300
ay]

0

2

4

6

8

10

12
V

b 
[1

0−3
 m

 s
−1

]

nt velocity (green line, low-pass filtered) at Helgoland during
tom velocity exceeding 0.006 m s�1 (over green dashed line) are
 when the chl a concentration exceeds 6 mg m�3. Based on this
�3, four autumn bloom events were detected during late autumn
s figure legend, the reader is referred to the web version of the



336 J. Su et al.
3.4. Time lag between resuspension and peaks of
nutrients and chl a

If autumn blooms were triggered by a resuspended nutrient
supply, there should be a delay between resuspension and the
chl a peak due to the time needed to refill nutrient reserves in
depleted phytoplankton cells and to achieve a massive build-
up of biomass. Because the refilling processes of phosphate
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Figure 10 Lag correlations between HR in-situ measurements and
0.006 m s�1 (resuspension events) during summer and autumn (Jun
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p < 0.001) in 2004, indicating that resuspension events preceded th
and nitrate are different (as will be discussed in Section 4.2),
a lag correlation analysis was used for both phosphate and
nitrate. Analysis of in-situ measured phosphate at HR and
resuspension intensity (Vb > 0.006 m s�1) revealed a maxi-
mum correlation at no time lag in 2003 (R = 0.51, Fig. 10a)
and at a 1-day lag in 2004 (R = 0.46, Fig. 10b), indicating that
phosphate replenishment was directly accompanied by resus-
pension events. The lag correlation analysis for nitrate
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 bottom velocity which are greater than the critical threshold of
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nd simulated bottom velocity [m s�1]. The grey line denotes the
-day lag in 2004, indicating nutrient replenishment accompanied
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lag of 24 days (R = 0.64, p < 0.001) in 2003 and 17 days (R = 0.8,
e chl a peak by this amount of time.
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showed a maximum correlation at a 3-day time lag in
2003 and at a 1-day lag in 2004, with relatively lower
correlations (R < 0.4, Fig. 10c and d).

The same lag correlation analysis (with the lag time
extended to �30 days) between chl a peak and Vb showed
that resuspension preceded blooms by 24 days in 2003
(R = 0.64, Fig. 10e) and by 17 days in 2004 (R = 0.8,
Fig. 10f). This time lag could be the time needed for phyto-
plankton to build up biomass or a physiological response to
nutrients. Nevertheless, the existence of a time lag already
partially explains the mismatch between resuspension events
and chl a peaks, as apparent in the MERIS data in Fig. 9, and
therefore the number of days of delay should be interpreted
with caution.

4. Discussion

The combination of in-situ measurements, satellite data, and
model results provides a framework for iterative integration
and assessment of spatial and temporal variability of phyto-
plankton production in the GB. Previous studies have already
addressed bloom dynamics in the GB, but most of these have
been limited by coarse spatial and temporal resolution
(Colijn et al., 1990; Joint and Pomroy, 1993; Stoeck and
Kroncke, 2001; Sündermann et al., 1999). Although the
implementable MERIS data for the GB were restricted to
days with little to no cloud cover, these data were sufficient
to resolve extensive filament formation and to reveal details
on patches that emerged in the course of phytoplankton
bloom. Specification of these details supported model devel-
opment, pinpointing spatial variations that need to be
resolved by studies aimed at quantifying coastal primary
production on a larger scale. The results obtained here
support the establishment of causal links between turbulent
mixing, resuspension, and phytoplankton growth on shorter
time scales.

4.1. Resuspension as a negative factor: light
attenuation and photosynthesis

The hydrodynamics of the GB are extensively forced by wind
(Becker et al., 1999) and strong tidal currents (>1 m s�1,
Staneva et al., 2009). This forcing can generate high kinetic-
energy dissipation, inducing small- to large-scale erosion of
bottom sediments (Gayer et al., 2006). Local differences in
sediment composition, with varying silt and sand contents,
contribute to the variability apparent in strong temporal and
lateral gradients in suspended-matter content (Becker et al.,
1992, 1999). Reduced SPM has already been shown to act as
a primary trigger for the phytoplankton spring bloom
throughout the GB (Tian et al., 2009). In a multi-year spring
bloom study in the GB, Tian et al. (2011) found that the spring
bloom was preceded by a period of high wind speeds and
developed only as the wind slackened.

In the present study, major parts of the GB in spring have
revealed a high correlation between turbidity-related mean
light levels and net rates of chl a increase/decrease (Fig. 6a).
In such regions, chl a increments can therefore serve as an
unequivocal proxy for phytoplankton growth. Because mean
light levels depend mostly on local resuspension, high corre-
lations indicate the important role of variations in turbulent
shear stress in bloom onset. Variations in turbulent shear
stress depend on the tidal phase, but are dominated by storm
events, which are most frequent in winter and spring. Bottom
shear stress is particularly enhanced when strong winds act
against the mean current direction (Staneva et al., 2009).

In contrast to areas with a clear growth—light relationship
(in analogy to in vitro measurements of photosynthesis rates
at varying PAR), central regions within the GB at intermediate
water depths between 20 m and 30 m and located off the East
Frisian Islands do not sustain a linear growth response to light
enhancement (Fig. 6a). Whether these areas are subject to
extensive grazing cannot be assessed due to the scarcity of
measurements available for 2003. Massive grazing by zoo-
plankton would compromise estimates of algal growth
obtained from temporal changes in chl a concentration. In
2004, however, no horizontal gradients in abundance of
mesozooplankton consumers were observed before or during
the bloom phase (Renz et al., 2008). Therefore, in 2004,
grazing pressure could not explain the observed pattern
separation (high values in zones of low growth—light correla-
tion). Nevertheless, although the 2003 evidence is inconclu-
sive, grazing pressure is still a possible candidate to explain
the pattern separation observed in 2003.

Other possible reasons for moderate to low growth—light
correlation can be associated with mediocre data quality and
with temporally strong loss factors like sedimentation, wind
mixing (Koseff et al., 1993), or river runoff (Radach et al.,
1990). These errors, however, should contribute to spatial
heterogeneity, producing more scattered patterns in corre-
lation intensity than were observed in this study.

4.2. Resuspension as a positive factor: nutrient
enrichment and lagged growth response

Analysis of satellite images shows that the spring-neap tidal
mixing (fortnightly tidal cycle) controls near-surface SPM
concentration in the southern North Sea (Pietrzak et al.,
2011). Spring-neap modulation of tidal mixing can have
significant effects on the timing and magnitude of phyto-
plankton growth (Cloern, 1991; Sharples, 2008). In spring,
the spring-neap tidal cycle regulates stratification, which
may affect the timing of spring blooms. However, it was not
possible to gather enough cloud-free scenes during this
period to prove this point. Consequently, the focus shifted
to the summer—autumn period, when nutrient limitation
prevails in the system (Fig. A.1). Of course, light could also
be a limiting factor during certain months in summer and
autumn (e.g., September 2003, Fig. A.1). However, it could
be a candidate only to explain the missing correlation
between resuspension and nutrient replenishment (here it
is referred to as a secondary factor).

Was the summer—autumn chl a periodicity due to directly
resuspended subsurface chlorophyll? Balch (1981) found that
in summer, diatom blooms off Monhegan Island always
occurred at spring tides, possibly because of increased nutri-
ents or the upward movement of a subsurface chlorophyll
maximum layer. In studies of time-series chl a data off the
Connemara coast, Ireland, Roden (1994) reported chlorophyll
peaks occurring at neap tides in late summer. He argued that
the driving mechanism was a localized accumulation of
flagellates under stable neap-tide conditions. However, we
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found no increase in chl a immediately following the
spring tide and no clear match between phytoplankton
blooms and neap tides (Fig. 9). Instead, a clear mismatch
between the spring tide and the peak of chl a was observed,
indicating that resuspended chlorophyll cannot be a candi-
date for explaining the summer—autumn chl a periodicity
in the GB.

Sournia et al. (1987) recorded some variability in nutrient
concentrations associated with spring tides, but variations in
chl a did not appear to be associated with the spring-neap
cycle in the western English Channel, which is strongly
influenced by tides. This finding supports the hypothesis
that resuspension events associated with spring tides refuel
remineralized nutrients from sediments or the bottom water
layer (Fig. 10a). These benthic nitrate fluxes depend on
denitrification in the sediments (Hall et al., 1996; Wainright,
1990), and therefore spring tides refuel nitrate from sedi-
ments. This could explain why nitrate replenishment showed
a relative low correlation with resuspension events (Fig. 10c
and d). The phosphate data from the ICES dataset in the GB
showed a gradually increasing trend in summer and autumn
(Fig. A.1). Resuspension events can stimulate phosphate
transport from the bottom water layer to the whole water
column. However, the time lag between resuspension events
and phytoplankton growth needs to be further discussed
(Fig. 10b). This delay is the result of net phytoplankton
growth, which is determined by the plankton community
structure or by the physiological states of the algae. Related
model studies, like that of Wirtz and Pahlow (2010), have
shown that in addition to the time needed to build up
biomass within an exponential growth phase, phytoplankton
populations often need to acclimate their physiology (and
their internal stoichiometry) to novel nutrient conditions,
which can take up to several days. In fact, a distinct response
pattern in phytoplankton growth was observed after the
spring tide, at times when the bottom velocity exceeded
critical values of 0.006 m s�1. The response signal, however,
was delayed by a few weeks. Chl a concentrations gradually
increased with the onset of the neap tidal period, and a
short-term maximum was reached approximately 10 days
after the spring-tide resuspension event (Fig. 9). The repe-
tition of this temporal pattern in autumn therefore reflects
the modulation of two time scales, the spring tide cycle and
the net algal growth rate of phytoplankton. Anomalies seen
in this temporal pattern must be attributed to secondary
factors that could not be further specified here.

4.3. Limitations of remote-sensing data

To characterize intermediate-scale chl a variability, it was a
methodological prerequisite to rely on data accuracy and
data with sufficient temporal resolution. In a previous
remote-sensing study of the North Sea, Henderson and Steele
(1993) encountered problems in interpreting sub-mesoscale
(1—10 km) plankton dynamics using satellite chl a data
stemming from the Coastal Zone Colour Scanner (CZCS,
1978—1986). With more modern instruments like MERIS,
the sensitivity and the signal-to-noise ratio are significantly
increased. Recent reports (Doerffer et al., 2010) showed
systematic differences of less than 10% between in-situ
and satellite-measured water-leaving reflectance. The
frequency of scenes, 2 out of 3 days, is limited and must
be further reduced to a usable value of once every 3 days
(Müller et al., 2015). This remains a critical factor when
resolving temporal changes that coincide with time-series
data (e.g., Figs. 6 and 9). In addition, the systematic errors of
satellite-derived data show periodic features, which are not
yet fully understood, but most likely result from illuminating
and observing geometries and are frequencies related to
revisits under similar geometrical conditions (Müller, 2010).

This variability should also be interpreted carefully for
other reasons. Satellite-derived chl a estimates in highly
turbid water are still subject to significant uncertainties. A
mismatch was also found between MERIS data and in-situ HR
time series in 2005 (Fig. B.1). Moreover, in applications of
SeaWiFS, chl a, concentration was considerably overesti-
mated for the Bay of Biscay when SPM optically dominated
the backscatter (Gohin et al., 2005). Although accuracy has
been much improved by increasing MERIS spectral resolution
and using more elaborate (neural network) algorithms, the
presence of a remaining bias in the simultaneous determina-
tion of TSM, CDOM, and chl a cannot be fully excluded. In
fact, TSM, CDOM, and chl a can be simultaneously deter-
mined with optimal accuracy only as long as they are equally
prominent. If one of the components becomes the dominant
error on the retrieval for the other components, this error
increases significantly and can reach several hundred per
cent in extreme cases such as estuarine turbidity zones.
Because the present analysis was based mainly on a single
measurement source, the true independence of the data
compared cannot be assumed.

5. Conclusions

In spring 2003 and 2004, spatial patterns of phytoplankton
production were well described using satellite-derived light-
attenuation data within most coastal areas and the deeper
open waters of the GB. This analysis was supported by good
correlations between phytoplankton net algal growth rates
and light availability. Weak correlations prevailed only within
a distinctive zone (the coastal margin), which represents the
transition between shallow well-mixed coastal waters and
the off-shore area. Phytoplankton within this transitional
zone was found to be particularly sensitive to SPM resus-
pended from the seabed or from near-bottom water layers.
Because of opposing responses in algal growth to resuspen-
sion, phytoplankton growth becomes difficult to estimate
during post-bloom periods in summer and autumn. A mis-
match between distinct phytoplankton blooms and tidally
induced resuspension events indicates that phytoplankton
resuspension plays a limited role during spring tides. Resus-
pension-imported nutrient-rich water from sediments or
bottom water layers, however, did stimulate time-lagged
phytoplankton growth responses.

In summary, typical spring and summer—autumn bloom
patterns can be inferred on regional scales. Phytoplankton
growth co-varies with resuspension in both positive and nega-
tive directions: positively in summer—autumn, and negatively
in winter—spring, as summarized in Fig. 1. Now that regions
where phytoplankton responds differently to variations in
physical forcing have been identified, it will be possible
to describe these processes better in biogeochemical and
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ecological models to generate better explanations (or predic-
tions) of event-scale phytoplankton blooms.
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Appendix A. Limiting factors

The limiting factors on phytoplankton growth were recon-
structed according to Cloern (1999). He developed a simple
index to determine the relative importance of light and
nutrient limitation for phytoplankton growth. Colijn and
Cadée (2003) used this index to study the eutrophication
problem in the Wadden Sea and found that the light limita-
tion far exceeded the effects of nutrient limitation. Loebl
et al. (2008) followed this approach and showed increasing
nitrogen limitation during summer in the northern Wadden
Sea. These applications of this approach revealed that this
index is suitable for turbid coastal waters like the German
Bight.

To investigate seasonal changes in the limiting factors on
phytoplankton growth, this index was applied based on the
Helgoland Roads time series of 2003 (Wiltshire et al., 2008).
To calculate irradiance (I0), photosynthesis available irradi-
ance (PAR) and Secchi depth data were used. The calculation
of nutrient-limiting resources (N0) was based on phosphate
data, and KPO4 was set to 0.5 in accordance with Moll
(1998). The indices were illustrated with monthly mean data.
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dataset. The map in the upper left panel shows the locations (black d
and N0 is the nutrient limitation factor. The area of R > 10 indicates st
limitation, and the area of 0.1 < R < 10 indicates a joint limitation
The detailed equations can be found in Cloern (1999). Using I0

and N0, a contour plot of the ratio of growth rate sensitivity to
light and nutrients (R, Fig. A.1) was generated. The criteria
used in Cloern (1999) were used to interpret the resource
limitation map, where R > 10 was defined as a strong light
limitation, R < 0.1 as a strong nutrient limitation, and
0.1 < R < 10 as a joint limitation of light and nutrients.

In Fig. A.1, the light limitation was dominant in January
and February (R > 10) until the spring bloom started in March
(R � 1) in 2003, because high SPM concentration constrained
phytoplankton growth before the spring bloom (Tian et al.,
2009). Light was the factor triggering the spring bloom. From
May to August, the GB was under a nutrient limitation
(R < 0.1). Therefore, remineralization combined with tidal
mixing could be important for triggering the summer—au-
tumn blooms in terms of placing R between 0.1 and 10. The
resource limitation map supplied the background information
for the hypothesis of this paper and finally supported the
authors concept.

To describe the re-mineralization processes in summer
and autumn, nutrient data (especially for phosphate) are
needed. However, nutrient measurements were spatially and
temporally sparse. Phosphate data were obtained from an
ICES nutrient dataset (http://ecosystemdata.ices.dk/).
Phosphate data were also measured using surface bottle
samples taken during cruises close to the Elbe Estuary
(Fig. A.1 map). These nutrient data were used to construct
the resource limitation map (Fig. A.1 diamonds). The indices
showed that the nutrients started to refuel by the end of
June. By mid-August, nutrients had already ceased to be a
limiting factor, while the wind was still not very strong
(unpublished wind data from Helgoland Roads). A gradually
increasing trend in the summer and autumn period suggested
that tidal mixing could be a candidate other than wind mixing
for refuelling nutrients.
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Appendix B. Comparison of MERIS data with
HR time series data in 2005

In 2005 MERIS and the in-situ HR time-series did not match
very well, and it was not possible to find clear scenes to show
the development of the spring bloom (Fig. B.1). Because
atmospheric conditions vary from year to year, obtaining
reliable long-term satellite data is still challenging (Müller
et al., 2015). Therefore, validation of MERIS data in-situ
measurements is necessary when using multi-year satellite
data.
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Figure B.1 Overlay of MERIS chl a time-series at Helgoland
(black line) and HR in-situ measured chl a time series (light
purple line) in 2005. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web
version of the article.)
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