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Summary Ocean color satellite missions have provided more than 16-years of consistent,
synoptic observations of global ocean ecosystems. Surface chlorophyll concentrations (Chl)
derived from satellites have been traditionally used as a metric for phytoplankton biomass. In
recent years interpretation of ocean-color satellite data has progressed beyond the estimation of
Chl. One of the newer ocean color products is particulate organic carbon (POC) concentration. In

this paper we carry out comparisons of simultaneous satellite and in situ POC determinations. Our
results indicate that the performance of the standard NASA POC algorithm (Stramski et al., 2008)
is comparable to the standard empirical band ratio algorithms for Chl.
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1. Introduction

The bio-optical relationships linking optical properties of the
ocean to chlorophyll-a concentrations (Chl) have been the
focal point of numerous studies in the last three decades
(Bricaud et al., 1995; Mobley, 1994; Morel, 1988). One of the
most often investigated relationships has been that linking
the surface Chl to the remote-sensing reflectance. This was
motivated by the goal of developing reliable satellite remote
sensing methods for monitoring the phytoplankton biomass
and primary productivity from space (see Siegel et al., 2013
and the references therein). Empirical relationships for esti-
mating Chl from remote sensing reflectance have been used
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for routine processing of global satellite imagery of ocean
color since the beginning of the SeaWiFS mission in 1997
(O'Reilly et al., 1998, 2000).

In the past several years, interpretation of ocean-color
satellite data has progressed beyond the estimation of Chl to
include new products. For example, it is now possible to
determine the dominant phytoplankton functional groups
present in oceanic surface waters (e.g., Alvain et al.,
2005; Brewin et al., 2011) and to retrieve information about
particle size distribution (Kostadinov et al., 2010; Loisel
et al., 2006). In addition, information about important com-
ponents and processes of the oceanic carbon cycle such as the
primary productivity (Antoine et al., 1996; Behrenfeld and
Falkowski, 1997; Wozniak et al., 2007), the particulate
organic carbon concentration (Duforet-Gaurier et al.,
2010; Gardner et al., 2006; Stramska and Stramski, 2005;
Stramski et al., 2008), and the colored dissolved and detrital
organic matter absorption (Maritorena et al., 2002; Siegel
et al., 2002) can be derived from satellite data. Before these
new data products are broadly used in oceanographic studies,
it is extremely important to validate the performance of the
various ocean color algorithms with observations. The main
objective of this paper is to evaluate the performance of the
standard NASA POC algorithm (Stramski et al., 2008).

2. Data sets and methods

For POC product match-up analysis we have used coincident
in situ data and satellite data from SeaWiFS and MODIS Aqua.
We searched 16 years of satellite data from 1997 to 2012 for
matchups with in situ data. In situ POC data have been
obtained from public databases of the U.S. Joint Global
Ocean Flux Study (U.S. JGOFS, http://usjgofs.whoi.edu/
jg/dir/jgofs/) and the SeaWiFS Bio-optical Archive and Sto-
rage System (SeaBASS), the publicly shared archive main-
tained by the NASA Ocean Biology Processing Group (OBPG)
(http://oceancolor.gsfc.nasa.gov). We have selected only
these in situ data sets for which POC determinations were
made using JGOFS protocols (Knap et al., 1996) and filters
were acidified for removal of inorganic carbon prior to
combustion. We have assumed that POC values of 10 mg m—3
and less were invalid in situ POC determinations if found
outside the hyperoligotrophic waters of the South Pacific
Subtropical Gyre (Stramski et al., 2008). We have found
2418 surface in situ POC concentration data fulfilling these
requirements. For comparisons with in situ data we have
downloaded SeaWiFS and MODIS — Aqua Level 2 POC data
product from the NASA's Ocean Color Web (reprocessing
versions R2010.0 and R2013.1, respectively). The POC data
product provided by NASA is based on Stramski et al. (2008)
algorithm. The full details of the approach used by NASA in
standard processing of satellite ocean color data are given at
http://oceancolor.gsfc.nasa.gov/. Spatial resolution of
satellite data was about 1.1 km at nadir for the Merged Local
Area Coverage (MLAC) SeaWiFS data and 1km for the
Local Area Coverage (LAC) MODIS Aqua data. We also used
Global Area Coverage (GAC) SeaWiFS data with effective
resolution of about 4.5 km.

Satellite POC data have been stored for each pixel con-
taining a coincident in situ data point. Only data pairs with a
time difference between in situ measurement and satellite

overpass less than 2 h and with a low spatial variability in a
3 x 3 pixel square were used in the analysis. The center pixel
in satellite image was the nearest to the in situ measure-
ment. The comparison was carried out if at least 6 of 9 satel-
lite pixels were valid and the average difference between the
central pixel and all the other valid pixels was less then 25%.
In some cases not one but two overpasses during the same day
could have been matched with one in situ measurement. In
that case, if both match-ups satisfied the criteria described
above, we have used the one that had the smaller time
difference between the satellite and the in situ measure-
ment. These match-up criteria differ somewhat from those
used in Bailey and Werdell (2006).

After the compilation of the data using these criteria, the
joint satellite and in situ data set included 260 match-ups of
POC concentrations. The geographical positions of these data
are indicated in Fig. 1.

The differences between in situ and satellite-derived POC
have been quantified by standard methods (Ostasiewicz
et al., 2006):

- the absolute average error (AAE)
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where N is the total number of measurements, O;is the in situ
observation value and P; is the predicted value (satellite POC
determination).

When comparing the in situ and satellite derived POC
concentrations one has to remember that both kinds of
POC estimates are subject to errors. In-water POC determi-
nations are subject to several potential sources of errors and
there is a continued need for further improvement in the
methodology. This issue has been discussed in-depth in Gard-
ner et al. (2003) The causes for the overestimation of POC
include potential adsorption of dissolved organic carbon
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Map showing geographical locations of in situ POC measurements used in this study. Data from the following experiments

were used in our comparisons: The Atlantic Meridional Transect (AMT), the ANT-XXIII/1 cruise (ANT), the arkxix2 cruise (ARK), the
International Study of Marine Biogeochemical Cycles of Trace Elements (GEOTRACES), the Bermuda Atlantic Time-series Study (BATS),
the Eddies Dynamics, Mixing, Export, and Species Composition project (EDDIES), the North Atlantic Bloom Experiment (NAB08), POS,
the C5 line cruise (C5), the California Cooperative Oceanic Fisheries Investigations (CALCOFI), the Hawaii Ocean Time-series (HOT), the
Tropical Atmosphere Ocean project cruises (TAO), the Biogeochemistry and Optics South Pacific Experiment (BIOSOPE), the Southern
Ocean Iron Experiment (SOFeX on Melville), the Maria S. Merian cruise (msm08).

(DOC) onto filters during filtration and contamination of
samples during handling. Underestimation of POC can result,
for example, from an undersampling of the infrequent
large particles, settling of particles below the bottle spigots
(Gardner, 1977) or incomplete retention of particles on
filters. Therefore the true accuracy of in situ POC determina-
tions remains unspecified. For brevity, in this paper, we refer
to in-water POC estimates as “measured’ and to the differ-
ences between satellite-derived and in-water POC estimates
as “errors'. Regression analyses included in this paper repre-
sent Model Il major axis reduced regression (Legendre and

Legendre, 1998) as this type of regression model is suitable
when the two variables in the regression equation contain
errors.

3. Results and discussion

In Figs. 2 and 3 we present the results of comparison between
the in situ and the satellite measurements, which passed the
comparison criteria described above. Table 1 summarizes the
error statistics for data sets presented in Figs. 2 and 3.

Table 1 Summary of the error statistics i.e., the absolute average error (AAE), bias mean normalized bias (Pgjas), mean absolute
percentage error (MPE), R? coefficient and root mean square error (RMSE) for the POC concentrations [mg m—] compared in Fig. 2.
N AAE Bias Pgias [%] MPE [%] R? RMSE
All data included
North Atlantic 109 34.86 —18.59 -19.92 41.75 0.85 64.93
South Atlantic 28 73.68 —72.96 —57.78 52.24 0.41 104.66
North Pacific 74 20.68 7.44 14.63 40.73 0.49 30.84
South Pacific 49 25.50 —11.96 -11.97 20.70 0.83 44,78
AMT data excluded (see explanation in the text)
North Atlantic 88 23.14 —4.02 —5.83 41.75 0.84 40.15
South Atlantic 3 8.24 —1.57 -2.76 417.04 0.29 11.54
North Pacific 74 20.68 7.44 14.63 40.73 0.49 30.84
South Pacific 49 25.50 —11.96 —11.97 20.70 0.83 44.78
ANT and BIOSCOPE data excluded
North Atlantic 99 36.13 —22.62 —23.38 42.22 0.85 67.49
South Atlantic 28 73.68 —72.96 -57.78 52.24 0.41 104.66
North Pacific 74 20.68 7.44 14.63 40.73 0.49 30.84
South Pacific 27 9.61 —0.12 —0.24 18.38 0.16 12.12
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Figure 2 Comparison of in situ and satellite-derived POC estimates on logarithmic scale. Data represent match-ups for the
concurrent satellite and field measurements taken during several research projects in various oceanic basins as indicated. The
dashed line shows 1:1 relationship, the solid line is the best linear fit to the data. The corresponding error statistics are shown in
Table 1. The following experiments are included in Fig. 2: (a) AMT, ANT, ARK, BATS, C5, EDDIES, GEOTRACES, MSMO08, NAB08, POS; (b)

AMT, ANT; (c) CALCOFI, HOT, TAO and (d) BIOSOPE, SOFeX, TAO.

Data displayed in Fig. 2 are divided into four regions: the
North Atlantic, the South Atlantic, the North Pacific, and the
South Pacific. Some ocean regions are not shown, because
there were not enough matchups (or no matchups at all) to
justify the statistical analysis. Note that a separate evalua-
tion of POC algorithms for the Southern Ocean has been given
in Allison et al. (2010). In general, looking at Fig. 1 it is
obvious that large areas of the global ocean are not included
in our analysis because of lack of in situ POC estimates
simultaneous with satellite observations. Regionally, the
largest data set from a single experiment comes from BATS
(36 data points). However the range of in situ POC concen-
trations at BATS is rather small, as the site is located in the
oligotrophic Sargasso Sea. Analyzing Fig. 2 it would be diffi-
cult to notice any clear regional trends. The largest bias and
errors (Table 1) have been estimated for the South Atlantic,
but this might be due to the fact that almost all of the
data included in this data subset are from the AMT cruises
(2004, 2005, 2008), when POC samples were collected from a

flow-through system. Almost all of the other data shown in
Fig. 2 were collected using CTD rosettes. It is possible that
using a flow-through system on the cruise could have lead to
somewhat different estimates of POC concentration when
compared to samples collected with a CTD rosette. Never-
theless we decided to show these data points in Fig. 2 in order
to bring to the attention the fact that there might be some
unresolved issues with POC samples collected by different
methods. The problem is that so far the POC data collection
and analysis procedures were not as carefully defined, eval-
uated, and intercompared as those for chlorophyll concen-
trations. Table 1 allows one to compare in detail the
differences in error statistics if one includes or excludes
the ATM data in this statistics. In addition we show how
the errors statistics change if data used for the algorithm
development (BIOSOPE and ANT cruises) are excluded.

In Fig. 3 the data are redisplayed, but now they are
categorized according to satellite sensor and data type. First,
all available data are displayed together in Fig. 3a. Second,
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Figure 3 Comparison of in situ POC and satellite-derived POC estimates on logarithmic scale. Data represent match-ups for the
concurrent satellite and field measurements taken during several research projects and various satellite data types. The dashed line
shows 1:1 relationship, the solid line is the best linear fit to the data. The corresponding error statistics are shown in Table 2. Titles GAC,
MLAC, and LAC indicate the SeaWiFS Global Area Coverage data with spatial resolution of about 4.5 km, the SeaWiFS Merged Local Area
Coverage data recorded at 1.1 km resolution, and the MODIS-A Local Area Coverage data with 1 km spatial resolution, respectively. In

Fig. 3a all of the above data have been plotted together.

the SeaWiFS Global Area Coverage (GAC) data are shown in
Fig. 3b. These data were subsampled and recorded onboard
the spacecraft and subsequently downloaded twice a day at
Wallops and NASA/Goddard and have an effective resolution
of about 4.5 km. Next, the SeaWiFS Merged Local Area Cover-
age (MLAC) data (recorded at full 1.1 km resolution but only
in selected parts of the world) are presented in Fig. 3c.
Finally, the MODIS-A Local Area Coverage (LAC) data with
1 km nominal resolution are displayed in Fig. 3d. Note that
the AMT data are not included in Fig. 3. The error statistics
for data shown in Fig. 3 are summarized in Table 2. The
categorization of data into 3 subsets (GAC, MLAC, LAC) does
not show any evidence that either of the subsets has a much
better statistics than the other data subsets. The R? coeffi-
cient for all data subsets is about 0.8 if AMT data are not
included. The lowest mean absolute percentage error (MPE)
of about 22% is for the MODIS-A LAC data set, while the lowest
percentage of model bias (Pgas) is for the SeaWiFS GAC data
(about 1%).

The results shown in Figs. 2 and 3 indicate that the
performance of satellite POC algorithms is acceptable and
comparable to the performance of the standard correla-
tional satellite algorithms for chlorophyll (Chl) concentra-
tion (Bailey and Werdell, 2006). Similar conclusion has been
reached by Duforet-Gaurier et al. (2010), but these authors

used more limited data sets (27 data points). Allison et al.
(2010) also concluded that the band ratio algorithm is cur-
rently the best option for estimating POC from ocean color
remote sensing in the Southern Ocean, although they recom-
mended a slightly modified version of the regional algorithm.
In spite of these results one has to recognize that the POC
database (260 data points) is still modest when compared to
global Chl matchup database (~2500 data points in Siegel
etal., 2013), and more efforts are needed to carry out global
POC measurements toincrease this database in the future. In
addition, historically much less efforts have been devoted to
establishing robust POC in situ data collection protocols, and
there have been no round robin or intercomparison experi-
ments between different laboratories. More research efforts
should be focused on this issue. In recent years, satellite-
derived Chl data improved substantially our understanding
of phytoplankton biomass and primary production distribu-
tions within the world's oceans. However, of particular
interest to ocean biogeochemistry and its role in climate
change is not Chl, but carbon. It is therefore important to
continue the experimental and conceptual work to improve
the reliability of in situ and satellite POC determinations.
Another challenging task for the ocean color methods is
development of the capability to partition the POC stock
into the living and non-living components (Behrenfeld et al.,
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Table 2 Summary of the error statistics i.e., the absolute average error (AAE), bias mean normalized bias (Pgjas), mean absolute
percentage error (MPE), R? coefficient and root mean square error (RMSE) for the POC concentrations [mg m—>] compared in Fig. 3.

N AAE Bias Pgias [%] MPE [%] R? RMSE
All data included
All data 260 32.87 —15.79 —18.35 38.62 0.76 59.49
GAC 87 30.18 —8.79 —-11.35 40.40 0.72 51.51
MLAC 74 31.18 —4.88 —5.25 44.67 0.90 52.95
LAC 99 37.47 —30.09 —34.04 32.04 0.55 70.27
AMT data excluded
All data 214 22.62 —1.84 —2.65 36.12 0.80 37.91
GAC 75 24.28 —0.63 -0.93 40.12 0.79 36.13
MLAC 71 25.33 2.08 2.93 44.56 0.79 38.81
LAC 68 17.96 —7.28 —10.33 22.89 0.82 39.43
ANT | and BIOSCOPE data excluded
All data 225 32.48 —16.58 —20.62 40.49 0.76 60.32
GAC 76 30.57 -9.72 —13.14 42.45 0.71 53.11
MLAC 65 28.21 —2.14 —2.64 46.05 0.91 50.92
LAC 84 38.65 —33.95 —39.68 34.41 0.53 72.61

2005). In our final word we would like to stress that even if
scientists continue to strive to decrease errors and improve
satellite methods, the substantial scientific benefits from
use of large scale ocean color satellite observations are
unquestionable.
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