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Abstract

Water flow through the beach body plays an important role in the biological status
of the organisms inhabiting the beach sand. For tideless seas, the groundwater flow
in shallow water is governed entirely by the surface wave dynamics on the beach.
As waves propagate towards the shore, they become steeper owing to the decreasing
water depth and at some depth, the waves lose their stability and start to break.
When waves break, their energy is dissipated and the spatial changes of the radia-
tion stress give rise to changes in the mean sea level, known as the set-up. The mean
shore pressure gradient due to the wave set-up drives the groundwater circulation
within the beach zone. This paper discusses the circulation of groundwater resulting
from a nonlinear set-up. The circulation of flow is compared with the classic
Longuet-Higgins (1983) solution and the time series of the set-up is considered
for a 24 h storm. Water infiltrates into the coastal aquifer on the upper part
of the beach near the maximum run-up and exfiltration occurs on the lower part
of the beach face near the breaking point.

1. Introduction

Water dynamics in the coastal zone of tideless seas is determined
by the energy transmitted in waves and currents, the decisive part being

The complete text of the paper is available at http://www.iopan.gda.pl/oceanologia/
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by surface waves impacting on the beach. Waves from the deep sea change
their shape and become steeper owing to the decreasing water depth.
At some depth, the waves lose their stability and start to break, running up
and down on the beach surface, whereby a certain amount of water seeps
into the permeable beach, generating a complex circulation in the porous
medium. When waves break, their energy is dissipated and the spatial
changes of the radiation stress give rise to changes in the mean sea level,
known as the set-up.

In the classic paper by Longuet-Higgins & Stewart (1964) the set-
up was calculated using the linear model based on the shallow-water
equation. Longuet-Higgins (1983) demonstrated that the mean onshore
pressure gradient due to wave set-up drives a groundwater circulation within
the beach zone. Water infiltrates into the coastal aquifer on the upper part
of the beach near the maximum run-up, and exfiltration occurs on the lower
part of the beach face near the breaking point. This paper presents
a theoretical attempt to predict the groundwater circulation induced by
the nonlinear wave set-up.

2. Material and methods

2.1. Theory

The proposed solution is based on the theoretical concept of multiphase
flows in the porous media of a beach. The basic value determined
experimentally or calculated in the model is pore pressure in the beach sand.
The theoretical model is based on the Biot’s theory, which takes into account
the deformation of the soil skeleton, the content of the air/gas dissolved
in pore water, and the change in volume and direction of the pore water flow
(Biot 1956), resulting from changes in vertical gradients and vertical pore
pressure. It is assumed that the deformations of the soil skeleton conform
to the law of linear elasticity. The major issue being examined is the fact
that when waves break, they inject air and gases into the porous medium.
In addition, gases are produced by organisms living in the sand. Hence,
we are dealing with a three-phase medium consisting of a soil skeleton,
pore water and gas/air. As a result, the elastic modulus of pore water E′

w

depends on the degree of water saturation with air (Verruijt 1969).

Analysis of the results of a laboratory experiment showed that in the
case where fine sand is saturated with air or gas, the rigidity of the soil
is much greater than that of the pore water. The equation for the water
pressure in the soil pores can be written in the form (Massel et al. 2005):

▽2p−
γn

KfE′

w

∂p

∂t
= 0, (1)
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where
Kf – coefficient of permeability,
γ = ρg – specific gravity of water,
n – porosity of the porous medium,
E′

w – bulk modulus of pore water,
p – pore pressure.

The solution of equation (1) is the following function:

p(x, z, t) = ℜ

{

ρwg

cosh(kh)

∣

∣

∣

∣

cosh [ψ(z + hn)]

cosh [ψ(hn − h)]

∣

∣

∣

∣

exp [iϕ)]

}

ζ(x, t), (2)

where

ψ2 = k2
(

1− i
nγω

k2KfE′

w

)

, (3)

where n is a measure of the porosity (the ratio of free pore volume to total
volume), ℜ is the real part of a complex number. According to the solution,
the presence of air in the porous medium causes a phase delay ϕ between
the deflection of the free surface and the pore pressure.
Massel et al. (2004) showed that the solutions of equations (1) coincide

well with the experimental data, and they will be used in the further analysis
of the determination of pore pressure. In addition to the pore pressure,
the filtration rates in soil pores are also interesting. The components of
the groundwater flow velocity vector (u, v) satisfy the following system
of equations (Moshagen & Torum 1975):
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(4)

In the stationary case and after ignoring the non-linear members, compo-
nents of the velocity vector may be determined from the measurements
of pressure with formulas resulting from Darcy’s law:











u(x, z, t) = −
Kf

ρwg
∂p
∂x
,

v(x, z, t) = −
Kf

ρwg
∂p
∂z
.

(5)

From relations (2) and (5), we obtain the following components of the ve-
locity of circulation of ground water caused by a surface wave of height H
and frequency ω:

u(x, z, t) = ℜ

{

i
Kf

n

kH

2

cosh [ψ(z + hn)]

cosh(kh) cosh [ψ(hn − h)]
exp [i(kx− ωt)]

}

(6)
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and

v(x,z, t) =ℜ

{

Kf

n

ψH

2

sinh [ψ(z + hn)]

cosh(kh) cosh [ψ(hn − h)]
exp [i(kx− ωt)]

}

.(7)

The wave number k satisfies the classical dispersion relation:

ω2 = gh tanh(kh). (8)

2.2. Set-up influences on the groundwater circulation

Let us assume that waves move towards the shore above the bottom
of a slope β. The water depth thus satisfies the following relationship:

h(x) = h1 − βx, (9)

where h1 is the initial water depth (Figure 1).

Figure 1. Reference scheme

During its transformation on a sloping bottom, a wave changes its parame-
ters: it becomes steeper and at some point in the coastal zone (point Obr)
the wave breaks. The dynamics before and after the breaking point
is different. Therefore, the pressure at the bottom and also the pore water
pressure and pore water velocity will depend on the location in relation
to the breaking point.

In particular, we should distinguish two zones: the pore pressure
in front of the breaking zone and behind the breaking zone (Massel et al.
2004). Experiments on the wave channel in Hannover showed that the pore
pressure in front of the breaking zone corresponds directly to the oscillation
of the sea surface ζ(x, t). Behind the breaking zone the pore pressure changes
in a different way. In addition to oscillations similar to those of the free sea
surface, there is a fixed component of the hydrostatic pressure associated
with the elevation of mean sea level ζ̄.
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Let us consider separately the two types of pore pressure and the
circulation related to them. If we assume that the slope of the bottom
in front of the breaking zone is very smooth, which is usually the case
on sandy shores, then we can use the solution from equation (1) to determine
pore pressure and circulation. The sea depth at the point where the pore
pressure is aanalysed is assumed to be locally constant. The wave height
at this point is calculated on the basis of H1 at the initial depth h1,
or the data from observations are used. The following results from
the energy conservation flux laws (after ignoring losses caused by bottom
friction):

1

8
ρgH2

1Cg(h1) =
1

8
ρgH2Cg(h) (10)

and where

H(h) =

√

Cg(h1)

Cg(h)
H1 (11)

and Cg(h1) and Cg(h) are the group velocities at the points of depths h1
and h respectively, i.e.

Cg(h) =
C

2

[

1 +
2kh

sinh 2kh

]

, (12)

where C = L
T
= ω

k
is the phase velocity of the wave. The resulting pressure p

and the velocity u and v at the point of depth h are given by formulas (2),
(6), (7).

Under such assumed conditions of changing depth, the speed of propaga-
tion C, the group velocity Cg and the length L of the waves are decreasing.
According to the principle of conservation of energy the wave height H
is increasing. However, the spreading waves, sooner or later, dissipate
as a result of their breaking. The factor controlling wave breaking is the
steepness s, defined as the ratio of wave height H to wave length L, s = H

L

(Holthuijsen 2007). This process occurs in different ways, depending on the
wave parameters and the slope of the bottom.

Figure 2. The mean sea level elevation (set-up) in a shoreline area
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Let us demonstrate briefly the mechanism by which the mean sea level
elevation ζ̄ changes.
Immediately before the wave breaking point (Figure 2), the average

water level changes slightly (a very small set-down). As a result of the wave
breaking, the wave height decreases and a negative wave energy gradi-
ent ∼ dH2

dx
< 0 is created. This gradient is compensated by the rising

mean sea level ζ̄.

2.2.1. Linear set-up mechanism

Longuet-Higgins & Stewart (1962, 1964) showed that when the wave-
motion lasts long enough, the ordinate ζ̄ of the mean sea level elevation
set-up(x) satisfies the following equation:

dSxx(x)

dx
+ ρg

(

h+ ζ̄ (x)
) dζ̄ (x)

dx
= 0, (13)

where Sxx is a component of the radiation stress tensor in the direction
perpendicular to the shore, associated with wave energy:

Sxx =
3

2
E, (14)

where E = 1
8ρgH

2.
Before the breaking zone, where waves do not break and we have

no energy loss, changes in the mean sea level are due only to the changing
depth. In this case we have:

ζ̄ = −
1

8

kH2

sinh (2kh)
. (15)

Particularly in the immediate vicinity of the breaking zone, for a very small
depth, when sinh (2kh) ≈ 2kh, from (15) we obtain:

ζbr = −
1

16
γbrHbr, (16)

where Hbr is the height of the wave at the breaking point.
Since we know where a wave begins to break down, the coefficient γ ≈ 0.8

which gives a mean decrease of water level ζ̄br of 4−5% of local depth. When
the water depth h(x) = h1 − βx, the height of the mean sea level elevation
is also a linear function of distance.
In the light of this, we thus have:

ζ̄ (x) = ζ̄br +
3

8
γ2br

(

1 +
3

8
γ2br

)

−1

[hbr − h(x)] . (17)

The maximum elevation of the mean water level set-up to the coastline,
where h(x) = 0, takes the following form:

ζ̄max = ζ̄br +
3

8
γ2br

1

1 + 3
8γ

2
br

hbr, (18)
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which for very small depths, after taking (16) into account, gives:

ζ̄max ≈
5

16
γbr. (19)

2.2.2. Nonlinear set-up mechanism

Dally et al. (1985) showed that after a wave has broken, its height H(x)
over a sloping bottom changes as follows:

H (x)

Hbr

=

(

(

h (x)

hbr

)
K
β
−

1

2

(1 + α)− α

(

h (x)

hbr

)2
)

1

2

, (20)

where

α =
KΓ2

β
(

5
2 − K

β

)

(

H
h

)2

br

, h(x) = hbr − βx. (21)

K and Γ are empirical coefficients.

This model is not valid in the immediate vicinity of a coastline,
where the depth tends to zero, as at a depth of h = 0, the wave height
is zero. Under real conditions in the immediate vicinity of a coastline,
waves run up and down the beach surface. Let us consider first the function
of mean sea level elevation when the only parameter dependent on the ex-
ternal factors is the parameter γ =

(

H
h

)

br
.

When α = −1, from (20), we obtain the following approximate relation-
ship:

H(x) =

(

H

h

)

br

h(x) = γbrh(x). (22)

In practice, the value of parameter γbr ≈ 0.7 − 0.8.
By substituting (22) in formula (14) we obtain:

Sxx ≈
3

16
ρgγ2br

(

h+ ζ̄
)2
. (23)

In the general case, the elevation of the mean sea level set-up ζ̄(x)
is not a linear function of x. Note that if instead of equation (22)
we assume relation (20), the solution of equation (13) results in a non-
linear (as a function of distance) variability of the mean sea level elevation
(Dally et al. 1985):

dζ̄(x)

dx
= −

3

16

1

h (x) + ζ̄ (x) dH2(x)
dx2

. (24)

Figure 3 compares the mean sea level elevation set-up using the linear
approximation (relation 17) and the nonlinear approximation (24). During
a controlled large-scale laboratory experiment carried out in the Large Wave
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Figure 3. Mean sea level elevation – comparison of the linear and nonlinear
approximation

Channel in Hannover, a data set was gathered which compares better with
the nonlinear set-up (Massel et al. 2005).

3. Results and discussion

The distance shown on the horizontal axis is the distance in metres
for coastal areas, reflected by the beach heaped up in the GWK laboratory
in Hannover (Figure 4), where initially, the bottom was flat. Re-profiling
into the bottom at an angle β = 1/20 starts at the point of 150 [m]
from the beginning of the channel laboratory, and 230 [m] is the point
of intersection of the sea water level with the seabed. ‘0’ is beginning of the

0

seabed

150 [m]
profile change

xbr

breaking point

still water depth

Figure 4. Seabed used for the calculation of examples
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wave channel, the point where waves are generated. This notation has been
retained to maintain consistency with the work by Massel et al. (2004).

Elevation of the mean sea level is dependent on the characteristics
of the wave arriving from the open sea.

3.1. Temporal change in nonlinear set-up

Let us consider, therefore, changes in the mean sea level elevation during
during several hours of a storm. Let us assume that as storm waves approach
the costal zone, their height H0(t) changes over deep water according
to the following formula:

H0(t) =

{

1 + cos

[

2π

(

t

24
−

1

2

)]

+H0(t0)

}

, (25)

where the height H0(t0) = 0.3 [m]. Let the wave period T = 6 [s]
and the bottom slope β = 1/20 the duration of the storm is 24 hours.

Depending on the height of the wave approaching the shore, the width
of the surf zone changes. Figure 5 shows the changes of H0(t) in time during
a 24-hour storm.
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Figure 5. The height of the initialisation wave H0(t) [m] approaching the shore
during a 24-hour storm

The narrow strip of sea, along the coast, between depth Hbr, where the
wave begins to break, and the shoreline is the surf zone.

The experiment of Singamsetti & Wind (1980) shows that the depth
at the breaking point Hbr, the breaking wave height Hbr and the value γbr
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noindent are expressed by the following formulas:

Hbr = 0.575β0.031
(

H0(t)

L0(t)

)

−0.254

H0(t), (26)

(

H

h

)

br

= 0.937β0.155
(

H0(t)

L0(t)

)

−0.130

, (27)

hbr = 0.614β−0.124

(

H0(t)

L0(t)

)

−0.124

H0(t), (28)

xbr = −
hbr − 4

β
+ 150, (29)

H0(t)
2 = H2 Cg

Cg0
, (30)

Cg0 =
ω

k
, (31)

L0(t) =
g

2π
T 2, (32)

where H0(t) and L0 are the height and the length of the wave over deep
water respectively.

Determination of the wave height after breaking takes place in the fol-
lowing steps:

• Let us consider, for example, a wave with parameters H0 = 0.3 [m]
for the beginning of the storm (t = 0) and T = 6 [s].

• Using formulas (26) and (28) we determine the depth of the breaking
and the wave height at the breaking point, and from relation (29)
we calculate the breaking point. Thus we get:
Hbr = 0.53 [m], Hbr = 0.59 [m] and xbr = 219.49 [m].

• The coefficients Γ = 0.500 and K = 0.175 depend on the bottom slope,
(Dally et al. 1985), and the coefficient α = 0.684 is calculated from
formula (21).

• Using formula (20) we calculate the wave height H(x) between
the breaking point xbr, which corresponds to depth Hbr and the
shoreline, where h = 0.

Figure 6 shows the changes of the relative wave height H
Hbr
as a function

of distance from the shoreline, and Figure 7 presents the changes of param-
eters (25) of the mean sea level elevation during a storm.

The changes of the characteristic points of the mean sea level elevation
during a storm are summarised in Table 1. The table shows that during
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Table 1. The effect of changes in storm intensity on variations in mean sea level elevation – as linear and nonlinear approximations

xbr [m] Hbr [m] ζbr [m] ζmax [m] xmax [m]
time [h] H0(h) [m] Approximation Approximation Approximation Approximation Approximation

linear nonlinear linear nonlinear linear nonlinear linear nonlinear linear nonlinear

t0 = 0 = t0 + 24 0.30 219.86 219.49 0.61 0.61 –0.046 –0.044 0.20 0.140 234.0 232.13
t0 + 1 = t0 + 23 0.33 218.86 218.46 0.66 0.66 –0.050 –0.047 0.22 0.15 234.4 232.26
t0 + 2 = t0 + 22 0.43 215.99 215.48 0.81 0.80 –0.058 –0.552 0.26 0.180 235.2 232.66
t0 + 3 = t0 + 21 0.59 211.590 210.92 1.02 1.01 –0.071 –0.067 0.32 0.22 236.4 233.22
t0 + 4 = t0 + 20 0.80 206.06 205.19 1.28 1.26 –0.085 –0.080 0.38 0.27 237.6 233.87
t0 + 5 = t0 + 19 1.04 199.85 198.75 1.55 1.54 –0.100 –0.095 0.46 0.33 239.2 234.54
t0 + 6 = t0 + 18 1.30 193.37 192.04 1.83 1.82 –0.114 –0.11 0.53 0.38 240.6 235.36
t0 + 7 = t0 + 17 1.56 187.06 185.50 2.10 2.08 –0.128 –0.121 0.59 0.43 241.8 236.13
t0 + 8 = t0 + 16 1.80 181.29 179.52 2.33 2.31 –0.140 –0133 0.65 0.48 243 236.82
t0 + 9 = t0 + 15 2.01 176.42 174.47 2.53 2.51 –0.15 –0.14 0.70 0.51 244.0 237.39
t0 + 10 = t0 + 14 2.17 172.72 170.64 2.68 2.66 –0.16 –0.15 0.73 0.54 244.6 237.81
t0 + 11 = t0 + 13 2.27 170.41 168.25 2.77 2.75 –0.161 –0.152 0.75 0.56 245.0 238.08

t0 + 12 2.30 169.62 167.43 2.80 2.78 –0.163 –0.154 0.76 0.56 245.2 238.17
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Figure 7. Changes in mean sea level rise during the storm

the storm, the height of a breaking wave (Hbr) over shallowing water depth
changes significantly, from 0.61 [m] at the beginning, to 2.78 [m] for time t=

12h, when the storm reaches its maximum. Also the place of wave breaking
changes from 167.43 [m] with the smallest waves, to 219.49 [m], for the higest
waves. As a result of this, extreme nonlinear values of the mean sea level
elevation change in the following range:

−0.044 [m] ≤ ζbr ≤ − 0.154 [m] and 0.14 [m] ≤ ζmax ≤ 0.56 [m].
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Table 2. The effect of changes in storm intensity on the width of the surf zone –
according to the linear and nonlinear approximations

Width of the surf zone [m]
Approximation

linear nonlinear

t0 = 0 = t0 + 24 14.14 12.64
t0 + 1 = t0 + 23 15.54 13.77
t0 + 2 = t0 + 22 19.21 17.18
t0 + 3 = t0 + 21 24.81 22.30
t0 + 4 = t0 + 20 31.54 22.68
t0 + 5 = t0 + 19 39.35 35.79
t0 + 6 = t0 + 18 47.23 43.32
t0 + 7 = t0 + 17 54.74 50.63
t0 + 8 = t0 + 16 61.71 57.30
t0 + 9 = t0 + 15 67.58 62.92
t0 + 10 = t0 + 14 71.88 67.17
t0 + 11 = t0 + 13 74.59 69.83

t0 + 12 75.58 70.74

Furthermore, the surf zone width (Table 2, Figure 8) changes. As shown
in Figure 3 the width is different for the linear (dependence (17)) and non-
linear relation (24).
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Figure 8. Changes in the surf zone width during the storm
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3.2. Groundwater flow due to nonlinear set-up

The raising of the mean water level due to the presence of waves causes
an additional hydrostatic pressure in the surf zone. This pressure is a driver
of water movement in the pore layer.

Massel (2001) presents a theoretical attempt to predict the groundwater
circulation due to linear wave set-up. An analogous procedure is applied
to the case when the boundary condition is not linear and the mean sea level
is assumed after Dally et al. (1985) – see formula (24).
The next step presents the results of calculation of pressure fields

and the circulating of pore waters with the assumption of a nonlinear course
of the mean sea level elevation.
Figure 9 shows the distribution of pressure and streamlines for a non-

linear mean sea level elevation.
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Figure 9. Stream function

Two different systems of water circulation are generated as a result
of pressure applied additionally to the bottom. On the left-hand side
the impact of the positive pressure gradient driving water movement towards
the shore is marked. This means that the pressure gradient is strong
enough to overcome the viscosity force in the boundary layer. On the right
the second cell of circulation caused by the negative pressure gradient
is shown. The line dividing the two systems is formed in the place where
the stream function values are zero. This observation is confirmed by
the shape of the velocity field in the porous layer (Figure 10).

As seen in Figure 10 water penetrates into porous surfaces in the form
of two circulation cells. In both cases, infiltration into the porous medium
begins in the vicinity of the place where additionally applied pressure reaches
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Figure 10. The velocity field in a porous bottom

its maximum value. The outflow is in the lower part of the beach in the first
system, and near the water line in the second system. It is worth noting that
the second system is much smaller than the first one because the velocity
field obtained is not symmetrical in relation to the axis of the local
coordinate system.
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Figure 11. Pore pressure for time t0 = t0 + 24 [h]
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Figure 12. Pore water velocity for time t0 = t0 + 24 [h]
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Figure 13. Pore pressure for time t0 + 4 [h] = t0 + 20 [h]
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Figure 14. Pore water velocity for time t0 + 4 [h] = t0 + 20 [h]
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Figure 15. Pore pressure for time t0 + 8 [h] = t0 + 16[h]
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Figure 16. Pore water velocity for time t0 + 8 [h] = t0 + 16 [h]
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Figure 17. Pore pressure for time t0 + 12 [h]
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Figure 18. Pore water velocity for time t0 + 12 [h]

The resulting changes in pore pressure and pore water velocity, induced
by a change in the mean sea level elevation during a 24 [h] hour storm,
are illustrated by Figures 11–18.

4. Conclusions

This paper presents a theoretical model attempt to predict the ground-
water circulation induced by the nonlinear wave set-up on a permeable
beach. The theory is based on the assumption that the phase-averaged,

mean pressure gradient, though small, produces effects that, because they
are cumulative in time, may be more far-reaching. When a wave breaks,
its height decreases and creates a negative pressure gradient which is
compensated for by change in mean sea level. In general, the mean sea level
elevation set-up is not a linear function. This additional pressure (gradient)

is a factor driving the movement of water in the pore layer.

Sea level elevation depends on the characteristics of waves arriving from
the open sea. During a storm we can observe very slow changes in the
mean sea level elevation over time. The height of a breaking wave above a
shallowing bottom changes significantly. Also, the point of wave breaking

changes, which results in an extreme non-linear change of mean sea level
and of the surf zone width, which is different for the linear and non-linear
approximations.

The numerical examples demonstrate the existence of two systems
of circulation due to set-up gradients. For the offshore gradient, the
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horizontal excess pressure gradient completely swamps the viscous forces
in the boundary layer and carries the flow in the offshore direction.
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