Search results

Filters

  • Journals
  • Date

Search results

Number of results: 4
items per page: 25 50 75
Sort by:

Abstract

Relatively cold die material comes into contact with the substantially higher temperature melt during the casting cycle, causing high thermal fluctuations resulting into the cyclic change of thermal field. The presented contribution is devoted to the assessment of the impact of temperature distribution on individual zones in the die volume. The evaluated parameter is the die temperature. It was monitored at two selected locations with the 1 mm, 2 mm, 5 mm, 10 mm and 20 mm spacing from the die cavity surface to the volume of cover die and ejector die. As a comparative parameter, the melt temperature in the middle of the runner above the measuring point and the melt temperature close to the die face were monitored. Overall, the temperature was monitored in 26 evaluation points. The measurement was performed using the Magmasoft simulation software. The input settings of the casting cycle in the simulation were identical to those in real operation. It was found, that the most heavily stressed die zones by temperature were within the 20 mm from the die face. Above this distance, the heat supplied by the melt passes gradually into the entire die mass without significant temperature fluctuations. To verify the impact of the die cooling on the thermal field, a tempering system was designed to ensure different heat dissipation conditions in individual locations. At the end of the contribution, the measures proposals to reduce the high change of thermal field of dies resulting from the design of the tempering channel are presented. These proposals will be experimentally verified in the following research work.
Go to article

Abstract

Nowadays, there are growing demands on the accuracy of production. Most of this is reflected in precise manufacturing, such as the investment casting process. Foundries are looking for causes of defects in some cases for a very long time, and it may happen that the source of defects is completely different from what was originally assumed. During the casting process there exist potential causes of defects as oxygen inclusions. This paper represents a summary of the beginnings of a wider research that will address the problems of gating systems in investment casting technology. In general, the influence of the melt flow is underestimated and the aim of the whole scientific research is to demonstrate the significant influence of laminar or turbulent flow on the resulting casting quality. Specifically, the paper deals with the analysis of the most frequent types of defects found in castings made of expensive types of materials casted in an open atmosphere and demonstration of connection with the design of gating systems in the future.
Go to article

This page uses 'cookies'. Learn more