Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 29
items per page: 25 50 75
Sort by:

Abstract

Transportation noise is a main source of noise pollution. It is assumed that it consists of recognizable noise events which come from moving aircrafts, trains and boats. The noise of an isolated sound event is assessed by the sound exposure level, LAE. Much legislation and many regulations and guidelines employ the A-weighted time-average sound level, LAeq,T, with the time interval T of one hour or longer. LAE measurements enable an approximation of LAeq,T. The key point is the uncertainty of this approximation. It has been shown that an increase in the number of LAE categories brings about a decrease in uncertainty. For illustrative purposes, LAE measurements of aircrafts taking off and landing were carried out.
Go to article

Abstract

Ladle plays an important role in the metallurgical industry whose maintenance directly affects the production efficiency of enterprises. In view of the problems such as low maintenance efficiency and untimely maintenance in the current ladle passive maintenance scheme, the life prediction mechanism for ladle composite structures is established which bases on the stress analysis of steel shell and ladle lining in the production process, combining conventional fatigue analysis and extended fracture theory. The mechanism is accurate and effective according to the simulation results. Through which, the useful life of steel shell can be accurately predicted by detecting the crack length of it. Due to the large number of factors affecting the life of the lining of the ladle, it is difficult to accurately predict the life of the ladle lining, so a forecasting mean based on the thermal shock method is proposed to predict the service life of the ladle lining in this paper. The life prediction mechanism can provide data support and theoretical guidance for the active maintenance of the ladle, which is the prerequisite for scientifically formulating ladle initiative maintenance program.
Go to article

Abstract

The object of the present study is to investigate the influence of damping uncertainty and statistical correlation on the dynamic response of structures with random damping parameters in the neighbourhood of a resonant frequency. A Non-Linear Statistical model (NLSM) is successfully demonstrated to predict the probabilistic response of an industrial building structure with correlated random damping. A practical computational technique to generate first and second-order sensitivity derivatives is presented and the validity of the predicted statistical moments is checked by traditional Monte Carlo simulation. Simulation results show the effectiveness of the NLSM to estimate uncertainty propagation in structural dynamics. In addition, it is demonstrated that the uncertainty in damping indeed influences the system response with the effects being more pronounced for lightly damped structures, higher variability and higher statistical correlation of damping parameters.
Go to article

Abstract

Contemporary tools which help to design technical objects refer to the conclusions drawn from studying the changes of physical processes accompanying the exploitation, especially to vibroacoustic processes. The main problem is to define such vibroacoustic measures, where their changes would model the analyzed physical phenomena in the best way. Basing on simple indicators which refer to occurring phenomena, it is possible to obtain accurate solutions with a satisfactory reliance level without using complex computing techniques needing detailed descriptors. According to the author, the indicators which are based on the analysis of vibroacoustic energy propagation are very useful in solving engineering problems. These indicators are useful while diagnosing the condition of technical systems, identifying and minimizing the vibroacoustic risks. The possibilities of using such indicators in order to find design solution are illustrated by sample results of the research of the structures with vibroacoustic elements which reduce the noise of rail vehicles by the rail vibration damping.
Go to article

Abstract

This paper endeavours to study aspects of wave propagation in a random generalized-thermal micropolar elastic medium. The smooth perturbation technique conformable to stochastic differential equations has been employed. Six different types of waves propagate in the random medium. The dispersion equations have been derived. The effects due to random variations of micropolar elastic and generalized thermal parameters have been computed. Randomness causes change of phase speed and attenuation of waves. Attenuation coefficients for high frequency waves have been computed. Second moment properties have been briefly discussed with application to wave propagation in the random micropolar elastic medium. Integrals involving correlation functions have been transformed to radial forms. A special type of generalized thermo-mechanical auto-correlation functions has been used to approximately compute effects of random variations of parameters. Uncoupled problem has been briefly outlined.
Go to article

Abstract

In the present work, an approach to obtain a design method for the size of the plenum chamber cross-section of a marine gas turbine air supply system has been investigated. Flow in ducts makes noise which is very high in the turbine inlet part because of the large amount of flow. Therefore, this phenomenon should be considered in the design process. A suitable approach to design the duct is proposed (considering acoustic and aerodynamic performance at the same time). In this method, an air supply channel system of the marine gas turbine has been categorized into three sections according to the requirements of the aerodynamic and acoustic; inlet, plenum chamber, and outlet channels with circular cross-sections. The geometrical dimensions of inlet and outlet channels have been determined using the plane waves theory about a channel, in which the effects of flow is ignored. Space limitations of battleships at the dominant frequency have been considered. Then, the optimized size of the mid-channel section, in terms of both aerodynamic and acoustic requirements, using numerical methods and regarding the effects of flow has been calculated. Various 3D turbulent flows inside the plenum chamber have been considered, in which large eddy simulation turbulence model is utilized. Ffowcs, Williams and Hawkings models are used for the sound propagation process based on the Lighthill integral equation. The validity of the simulation has been checked by comparing results (sound pressure level) with experimental data obtained from a chamber. The comparison revealed the acceptable errors for a variety of frequencies. The results disclosed that the performance of channel system aerodynamic decreased when the fraction of plenum chamber cross-section to inlet/outlet channel cross-section increased. With an increase in the cross-section size at first Acoustic performance is improved and then worsen. Six different cases of marine gas turbine air supply system configurations have been presented, in which the limitation of the battleship space is considered. Examining and comparing the acoustic performance of different cases of the air supply channel system, it was found that the amount of sound pressure level, around the air supply channel system, and the high-pressure sound area can move along the air supply channel system. Additionally, deviations from plane waves considering the effects of flow have been inspected in all cases. The reason for this deviation is the effects of the airflow through the channel system and quadrupole sources in the production of sound in the channel system, which causes higher modes.
Go to article

Abstract

In spite of the fact that standardizing operations and increased awareness of hazards led to a significant improvement of vibroacoustic climate of operator’s stands of new machines, their long-term operation - often under difficult conditions - leads to a fast degradation of acoustic qualities of machines. Temporary operations performed during surveys and periodical overhauls are rarely effective, due to the lack of any guidelines. In this situation the authors propose the algorithm for selection of eventual screens or sound absorbing and sound insulating partitions, utilizing the measuring procedure aimed at identification, at the operator’s stand, of main noise components originated from various sources. On the basis of this procedure, the vibroacoustic energy propagation paths in the machine was estimated.
Go to article

Abstract

The propagation of EEG activity during the Continuous Attention Test (CAT) was determined by means of Short-time Directed Transfer Function (SDTF). SDTF supplied the information on the direction, spectral content and time evolution of the propagating EEG activity. The differences in propagation for target and non-target conditions were found mainly in the frontal structures of the brain.
Go to article

Abstract

Study of the sea noise has been a subject of interest for many years. The first works in this scope were published at the turn of the twentieth century by Knudsen (Knudsen et al., 1948) and G. Wenz (Wenz, 1962). Disturbances called “shipping noise” are one of the important components of the sea noise. In this work the results of an experimental research of underwater noise produced by a small ship of a classic propulsion are presented. A linear receiving antenna composed of two orthogonal components was used in the investigation. Identification of the main sources of acoustic waves related with the ship was achieved. In addition, the intensity of the wave was measured. The research was performed in conditions of the shallow sea.
Go to article

Abstract

In this paper an alternative procedure to vibro-acoustics study of beam-type structures is presented. With this procedure, it is possible to determine the resonant modes, the bending wave propagation velocity through the study of the radiated acoustic field and their temporal evolution in the frequency range selected. As regards the purely experimental aspect, it is worth noting that the exciter device is an actuator similar to is the one employed in distributed modes loudspeakers; the test signal used is a pseudo random sequence, in particular, an MLS (Maximum Length Sequence), facilitates post processing. The study case was applied to two beam-type structures made of a sandstone material called Bateig. The experimental results of the modal response and the bending propagation velocity are compared with well-established analytical solution: Euler-Bernoulli and Timoshenko models, and numerical models: Finite Element Method – FEM, showing a good agreement.
Go to article

Abstract

GNSS systems are susceptible to radio interference despite then operating in a spread spectrum. The commerce jammers power up to 2 watts that can block the receiver function at a distance of up to 15 kilometers in free space. Two original methods for GNSS receiver testing were developed. The first method is based on the usage of a GNSS simulator for generation of the satellite signals and a vector signal RF generator for generating different types of interference signals. The second software radio method is based on a software GNSS simulator and a signal processing in Matlab. The receivers were tested for narrowband CW interference, FM modulated signal and chirp jamming signals and scenarios. The signal to noise ratio usually drops down to 27 dBc-Hz while the jamming to signal ratio is different for different types of interference. The chirp signal is very effective. The jammer signal is well propagated in free space while in the real mobile urban and suburban environment it is usually strongly attenuated.
Go to article

Abstract

In the paper the author has described the visualization methods in acoustic flow fields and show how these methods may assist scientists to gain understanding of complex acoustic energy flow in real-life field. A graphical method will be presented to determine the real acoustic wave distribution in the flow field. Visualization of research results, which is unavailable by conventional acoustics metrology, may be shown in the form of intensity streamlines in space, as a shape of floating acoustic wave and intensity isosurface in three-dimensional space. In traditional acoustic metrology, the analysis of acoustic fields concerns only the distribution of pressure levels (scalar variable), however in a real acoustic field both the scalar (acoustic pressure) and vector (the acoustic particle velocity) effects are closely related. Only when the acoustic field is described by both the potential and kinetic energies, we may understand the mechanisms of propagation, diffraction and scattering of acoustic waves on obstacles, as a form of energy image. This attribute of intensity method can also validate the results of CFD/CAA numerical modeling which is very important in any industry acoustic investigations.
Go to article

Abstract

Source/filter models have frequently been used to model sound production of the vocal apparatus and musical instruments. Beginning in 1968, in an effort to measure the transfer function (i.e., transmission response or filter characteristic) of a trombone while being played by expert musicians, sound pressure signals from the mouthpiece and the trombone bell output were recorded in an anechoic room and then subjected to harmonic spectrum analysis. Output/input ratios of the signals’ harmonic amplitudes plotted vs. harmonic frequency then became points on the trombone’s transfer function. The first such recordings were made on analog 1/4 inch stereo magnetic tape. In 2000 digital recordings of trombone mouthpiece and anechoic output signals were made that provide a more accurate measurement of the trombone filter characteristic. Results show that the filter is a high-pass type with a cutoff frequency around 1000 Hz. Whereas the characteristic below cutoff is quite stable, above cutoff it is extremely variable, depending on level. In addition, measurements made using a swept-sine-wave system in 1972 verified the high-pass behavior, but they also showed a series of resonances whose minima correspond to the harmonic frequencies which occur under performance conditions. For frequencies below cutoff the two types of measurements corresponded well, but above cutoff there was a considerable difference. The general effect is that output harmonics above cutoff are greater than would be expected from linear filter theory, and this effect becomes stronger as input pressure increases. In the 1990s and early 2000s this nonlinear effect was verified by theory and measurements which showed that nonlinear propagation takes place in the trombone, causing a wave steepening effect at high amplitudes, thus increasing the relative strengths of the upper harmonics.
Go to article

Abstract

In this paper, we present the general governing equations of electrodynamics and continuum mechanics that need to be considered while mathematically modelling the behaviour of electromagnetic acoustic transducers (EMATs). We consider the existence of finite deformations for soft materials and the possibility of electric currents, temperature gradients, and internal heat generation due to dissipation. Starting with Maxwell’s equations of electromagnetism and balance laws of nonlinear elasticity, we present the governing equations and boundary conditions in incremental form in order to solve wave propagation problems of boundary value type.
Go to article

Abstract

In this paper precision of the system controlling delivery by a helicopter of a water capsule designed for extinguishing large scale fires is analysed. The analysis was performed using a numerical method of distribution propagation (the Monte Carlo method) supplemented with results of application of the uncertainty propagation method. In addition, the optimum conditions for the airdrop are determined to ensure achieving the maximum area covered by the water capsule with simultaneous preserving the precision level necessary for efficient fire extinguishing.
Go to article

Abstract

The implemented online urban noise pollution monitoring system is presented with regard to its conceptual assumptions and technical realization. A concept of the noise source parameters dynamic assessment is introduced. The idea of noise modeling, based on noise emission characteristics and emission simulations, was developed and practically utilized in the system. Furthermore, the working system architecture and the data acquisition scheme are described. The method for increasing the speed of noise map calculation employing a supercomputer is explained. The practical implementation of noise maps generation and visualization system is presented, together with introduced improvements in the domain of continuous noise monitoring and acoustic maps creation. Some results of tests performed using the system prototype are shown. The main focus is put on assessing the efficiency of the acoustic maps created with the discussed system, in comparison to results obtained with traditional methods.
Go to article

Abstract

One of the crucial advancements in next-generation 5G wireless networks is the use of high-frequency signals specifically those are in the millimeter wave (mm-wave) bands. Using mmwave frequency will allow more bandwidth resulting higher user data rates in comparison to the currently available network. However, several challenges are emerging (such as fading, scattering, propagation loss etc.), whenever we utilize mm-wave frequency wave bands for signal propagation. Optimizing propagation parameters of the mm-wave channels system are much essential for implementing in the real-world scenario. To keep this in mind, this paper presents the potential abilities of high frequencies signals by characterizing the indoor small cell propagation channel for 28, 38, 60 and 73 GHz frequency band, which is considered as the ultimate frequency choice for many of the researchers. The most potential Close-In (CI) propagation model for mm-wave frequencies is used as a Large-scale path loss model. Results and outcomes directly affecting the user experience based on fairness index, average cell throughput, spectral efficiency, cell-edge user’s throughput and average user throughput. The statistical results proved that these mm-wave spectrum gives a sufficiently greater overall performance and are available for use in the next generation 5G mobile communication network.
Go to article

Abstract

A low-dimensional physical model of small-amplitude oscillations of the vocal folds is proposed here. The model is a simplified version of the body-cover one in which mucosal surface wave propagation has been approximated by the seesaw-like oscillation of the vocal fold about its fulcrum point whose position is adjustable in both the horizontal and vertical directions. This approach works for 180 degree phase difference between the glottal entry and exit displacements. The fulcrum point position has a significant role in determining the shape of the glottal flow. The vertical position of the fulcrum point determines the amplitude of the glottal exit displacement, while its horizontal position governs the shape and amplitude of the glottal flow. An increment in its horizontal position leads to an increase in the amplitude of the glottal flow and the time period of the opening and closing phases, as well as a decrease in the time period of the closed phase. The proposed model is validated by comparing its results with the low-dimensional mucosal surface wave propagation model.
Go to article

Abstract

In marine seismic wide−angle profiling the recorded wave field is dominated by waves propagating in the water. These strong direct and multiple water waves are generally treated as noise, and considerable processing efforts are employed in order minimize their influences. In this paper we demonstrate how the water arrivals can be used to determine the water velocity beneath the seismic wide−angle profile acquired in the Northern Atlantic. The pattern of water multiples generated by air−guns and recorded by Ocean Bottom Seismometers (OBS) changes with ocean depth and allows determination of 2D model of velocity. Along the profile, the water velocity is found to change from about 1450 to approximately 1490 m/s. In the uppermost 400 m the velocities are in the range of 1455–1475 m/s, corresponding to the oceanic thermocline. In the deep ocean there is a velocity decrease with depth, and a minimum velocity of about 1450 m/s is reached at about 1.5 km depth. Be − low that, the velocity increases to about 1495 m/s at approximately 2.5 km depth. Our model compares well with estimates from CTD (Conductivity, Temperature, Depth) data collected nearby, suggesting that the modelling of water multiples from OBS data might be − come an important oceanographic tool.
Go to article

Abstract

In the paper, a noise map service designated for the user interested in environmental noise is presented. Noise prediction algorithm and source model, developed for creating acoustic maps, are working in the cloud computing environment. In the study, issues related to the noise modelling of sound propagation in urban spaces are discussed with a particular focus on traffic noise. Examples of results obtained through a web application created for that purpose are shown. In addition, these are compared to results obtained from the commercial software simulations based on two road noise prediction models. Moreover, the computing performance of the developed application is investigated and analyzed. In the paper, a flowchart simulating the operation of the noise web-based service is presented showing that the created application is easy to use even for people with little experience in computer technology.
Go to article

Abstract

The distribution of perturbations of pressure and velocity in a rectangular resonator is considered. A resonator contains a gas where thermodynamic processes take place, such as exothermic chemical reaction or excitation of vibrational degrees of a molecule’s freedom. These processes make the gas acoustically active under some conditions. We conclude that the incident and reflected compounds of a sound beam do not interact in the leading order in the case of the periodic sound with zero mean pressure including waveforms with discontinuities. The acoustic field before and after forming of discontinuities is described. The acoustic heating or cooling in a resonator is discussed.
Go to article

Abstract

The fully coupled, porous solid-fluid dynamic field equations with u−p formulation are used in this paper to simulate pore fluid and solid skeleton responses. The present formulation uses physical damping, which dissipates energy by velocity proportional damping. The proposed damping model takes into account the interaction of pore fluid and solid skeleton. The paper focuses on formulation and implementation of Time Discontinuous Galerkin (TDG) methods for soil dynamics in the case of fully saturated soil. This method uses both the displacements and velocities as basic unknowns and approximates them through piecewise linear functions which are continuous in space and discontinuous in time. This leads to stable and third-order accurate solution algorithms for ordinary differential equations. Numerical results using the time-discontinuous Galerkin FEM are compared with results using a conventional central difference, Houbolt, Wilson θ, HHT-α, and Newmark methods. This comparison reveals that the time-discontinuous Galerkin FEM is more stable and more accurate than these traditional methods.
Go to article

Abstract

The sound radiation from vehicles travelling on the city roads with T junction was considered. The wind effect on acoustic field was taken into account. The solution of this problem was found with the help of the integral Fourier transforms and stationary phase method as the superposition of solutions for the cases of vehicles moving along the straight roads and roads with right-angle bend. As an example, the numerical analysis of traffic noise characteristics was carried out for the T junction city road on one of streets in the town of Łodź (Poland).
Go to article

Abstract

Early detection of potential defects and identification of their location are necessary to ensure safe, reliable and long-term use of engineering structures. Non-destructive diagnostic tests based on guided wave propagation are becoming more popular because of the possibility to inspect large areas during a single measurement with a small number of sensors. The aim of this study is the application of guided wave propagation in non-destructive diagnostics of steel bridges. The paper contains results of numerical analyses for a typical railway bridge. The ability of damage detection using guided Lamb waves was demonstrated on the example of a part of a plate girder as well as a bolted connection. In addition, laboratory tests were performed to investigate the practical application of wave propagation for a steel plate and a prestressed bolted joint.
Go to article

Abstract

A computational approach to analysis of wave propagation in plane stress problems is presented. The initial-boundary value problem is spatially approximated by the multi-node C⁰ displacement-based isoparametric quadrilateral finite elements. To integrate the element matrices the multi-node Gauss-Legendre-Lobatto quadrature rule is employed. The temporal discretization is carried out by the Newmark type algorithm reformulated to accommodate the structure of local element matrices. Numerical simulations are conducted for a T-shaped steel panel for different cases of initial excitation. For diagnostic purposes, the uniformly distributed loads subjected to an edge of the T-joint are found to be the most appropriate for design of ultrasonic devices for monitoring the structural element integrity.
Go to article

This page uses 'cookies'. Learn more