Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 182
items per page: 25 50 75
Sort by:

Abstract

The results and method of measurements of D, H and T carried out at Hornsund in the summer of 1979 are presented. The relative and absolute values of these elements are given in reduction to the Polish magnetic station at Hornsund. An initial evaluation of changes in the magnetic field from 1957 to 1979 is carried out.
Go to article

Abstract

This paper presents the results of magnetic mapping carried out in the area of the metamorphic series of Ariekammen and Skoddefjellet. On the basis of qualitative interpretation of measurements a number of anomalous zones were distinguished, whose position can be correlated with local changes in mineralitation and polymetallic ore content in the Fuglebergsletta area. The SE-NW orientation, skew to the almost meridional run of the layers of slates and marbles making up the metamorphic complex, dominates in the course of the anomalous zones.
Go to article

Abstract

The most popular field methods of measurements of raised marine beach altitudes used by geomorphologists are presented. Compared data from clisimeter routes, altimeter routes and from readings from a photogeological map and directly from air photos compose the profiles. Advantages and disavantages of each method are discussed.
Go to article

Abstract

On the basis of about 12500 depth measurements of which 6700 were taken from r/v Profesor Siedlecki, 1300 from r/v Polarstern and the remainder from British navigation charts, a bathymetric chart of the Bransfield Strait in the scale 1:500 000 has been prepared. Within the assumed boundaries the total area of the Bransfield Strait covers 65308.6 square kilometres, of which the Western Basin covers 23.5%, Central Basin — 47.3%, and Eastern Basin 29.2%. Capacity of the whole Bransfield Strait amounts to 38451 km3 . The average depth of the Bransfield Strait is 592 m.
Go to article

Abstract

The activity of territorial self-government shaped institutionally during the development process is characterized by a significant scope of care for the financial situation, which determines the efficiency of its functioning. The general availability of public services is a condition for the assessment of the activities of municipalities (powiats, voivodeships). Institutional economy as a real one, takes into account an integrated point of view. The aim of the study is to present the territorial differentiation of the eff ectiveness of communes’ activities in the context of institutional economics and to present the possibility of using a synthetic measure in this process. The synthetic measure of development fluctuated within the limits of 0.30 – Wąchock (Starachowice poviat, urban-rural commune) to 0.41 – Ostrowiec Św. (Ostrowiecki poviat, urban commune) in 2009, 0.32 – Łączna (Skarżysko poviat, rural commune) to 0.40 – Starachowice (Starachowice poviat, municipal commune) in 2015. The results of the analysis confirm the existence of small differences in the assessment of development communes of the Kamienna Basin. This approach allows the assessment of municipalities using one size and allows you to organize the analyzed objects in terms of the considered phenomenon.
Go to article

Abstract

Four and a half years of African Swine Fever (ASF) in population of free-ranging wild boars and domestic pigs revealed a number of novel insights into the disease epidemiology. Until November 20th, 2018, in total 3048 cases in wild boars and 213 outbreaks in domestic pigs have been confirmed. In spite of low contagiosity as well as low rate of ASF spread in wild boars the disease has an enormous socio-economical impact on the production of pigs in Poland. One of the most important aspects which directly influences the dynamics of ASF spread is the unpredictable hu- man activity. Another important factor responsible for continuous ASF spread is fast recovery of wild boar population in spite of efforts taken by hunters. Assuming our scientific opinion ASF seems to be present in wildlife for the incoming few or several years. Therefore, extraordinary measures should be prepared and undertaken to limit the risk of the occurrence of future out- breaks in domestic pigs. One of the most crucial issues is implementation of strict biosecurity measures in all domestic pigs holdings.
Go to article

Abstract

The efficient protection (support reinforcement) of a wall and heading crossing ensures continuity of the production cycle, and that is a quick moving of the scraper conveyor to the wall. Using low or high bolting as a support reinforcement element in wall and heading crossings allows for the elimination of traditional methods of maintaining longwall-gate crossings, and therefore allows for the efficient use high performance modern wall complexes. The paper presents the long underground experience, of the Knurów–Szczygłowice mine of efficient support wall and heading crossing maintenance, which was bolted to the rock mass with the usage of two pairs of bolts, showing full technical and economical usefulness of this support reinforcement method. The article also highlights work safety and the increasingly common usage of endoscopies when specifying the range of crack areas which directly effects the proper choice in number, load-capacity and length of the used bolts. The underground studies the measurements of the reach of the zones of fracturing and roof stratification (using endoscopes and wire type stratification meters) and the laboratory tests (using the test stand) have allowed to determine the safety factor for maintenance of the longwall gangway crossing, directly resulting in the necessity to install additional reinforcement. The value of the safety factor Sbsc-ch greater than 1 is advantageous and safe, and the value less than or equal to 1 can lead to a significant deterioration of the conditions of maintenance of a wall and heading crossing which was bolted.
Go to article

Abstract

Meteorological conditions at Arctowski Station during 2013–2017 were presented against the background of regional climate changes, especially air temperature decline. Air temperature, relative air humidity, air pressure, solar radiation, wind speed and direction, snow cover and precipitation were collected with an automatic weather station and manual measurements and were further analysed. The obtained results were compared with data from previous years and with data from other stations located on King George Island. Our observations confirm that the vicinity of Arctowski Station experienced a decrease in air temperature during summer, which supports the hypothesis of regional cooling.
Go to article

Abstract

The main purpose of the presented research is to investigate the partial discharge (PD) phenomenon variability under long-term AC voltage with particular consideration of the selected physical quantities changes while measured and registered by the acoustic emission method (AE). During the research a PD model source generating surface discharges is immersed in the brand new insulation mineral oil. Acoustic signals generated by the continuously occurred PDs within 168 hours are registered. Several qualitative and quantitative indicators are assigned to describe the PD variability in time. Furthermore, some longterm characteristics of the applied PD model source in mineral oil, are also presented according to acoustic signals emitted by the PD. Finally, various statistical tools are applied for the results analysis and presentation. Despite there are numerous contemporary research papers dealing with long-term PD analysis, such complementary and multiparametric approach has not been presented so far, regarding the presented research. According to the presented research from among all assigned indicators there are discriminated descriptors that could depend on PD long-term duration. On the grounds of the regression models analysis there are discovered trends that potentially allow to apply the results for modeling of the PD variability in time using the acoustic emission method. Subsequently such an approach may potentially support the development and extend the abilities of the diagnostic tools and maintenance policy in electrical power industry.
Go to article

Abstract

In the paper, the results of investigations on the properties of acoustic emission signals generated in a tested pressure vessel are presented. The investigations were performed by repeating several times the following procedure: an increase in pressure, maintaining a given pressure level, a further increase in pressure, and then maintaining the pressure at new determined level. During the tests the acoustic emission signals were recorded by the measuring system 8AE-PD with piezoelectric sensors D9241A. The used eight-channel measuring system 8AE-PD enables the monitoring, recording and then basic and advanced analysis of signals. The results of basic analysis carried out in domain of time and the results of advanced analysis carried out in the discrimination threshold domain of the recorded acoustic emission signals are presented in the paper. In the framework of the advanced analysis, results are described by the defined by the author descriptors with acronyms ADC, ADP and ADNC. Such description is based on identifying the properties of amplitude distributions of acoustic emission signals by assigning them the level of advancement. It is shown that for signals including continoues AE or single burst AE signals descriptions of such registered signals by means of ADC, ADP and ADNC descriptors and by Upp and Urms descriptors provide identical ordering of registered acoustic emission signals. For complex signals, the description using ADC, ADP and ADNC descriptors based on the analysis of amplitude distributions of recorded signals gives the order of signals with more accurate connection with deformational processes being sources of acoustic emission signals.
Go to article

Abstract

The aim of the paper is to measure and forecast concentration of regional development potential on a regional basis. The study covered 14 GUS features, which measure the development potential. The forecast, nominal values and processes’ dynamics were calculated for data from 2010 to 2020, using author made method. The study reveals that key factors determining the diversification of the distribution of the potential include the relation of large agglomerations to their regional surroundings. Therefore, we are dealing with growth poles with different impact levels. Since 2010, the process of concentrating potential in Poland has taken different directions. In poorly developed regions, we observe constant distribution values. Most regions, especially those with medium and high levels of economic development, are characterized by a dynamic increase in the level of concentration 5% to 6% annually. This means that the growth poles «move away» from their surroundings and strengthen their position. Simultaneously, they slightly reduce the distance to the strongest developed region in Poland (Mazowsze). By 2020, these trends will remain unchanged, however regions with a moderately low level of development will observe the fastest growth.
Go to article

Abstract

There are more and more new development challenges emerging in Polish cities and regions recently. Because of those challenges we can observe an increase of the role of cities and associated environments. The concept of cities’ impact on the environment is a result of many processes, such as: suburbanization, reurbanization, increasing population mobility, development of transport systems, innovation, or entrepreneurship. A city is a complex entity, it is a subject to dynamic changes, to understand which we need interdisciplinary knowledge or the combination of many different approaches along with an attempt to draw many conclusions. We can find numerous theoretical examples describing city-regional environment relations in the literature. In general, these models explain the relationship between economically strong cities (metropolis) and the regions. However, there is not much literature and research explaining the nature and strength of relationships with medium-sized cities. There are also very few ideas for developing the potential of medium-sized cities in polish national policy. The aim of the article is to present disproportions in the development of medium-sized cities in voivodships of Eastern Poland in 2010-2017. The author will also present the possibility of using a synthetic measure to assess and recognize the spatial diversity of medium-sized cities development.
Go to article

Abstract

The aim of this study was to estimate the measurement uncertainty for a material produced by additive manufacturing. The material investigated was FullCure 720 photocured resin, which was applied to fabricate tensile specimens with a Connex 350 3D printer based on PolyJet technology. The tensile strength of the specimens established through static tensile testing was used to determine the measurement uncertainty. There is a need for extensive research into the performance of model materials obtained via 3D printing as they have not been studied sufficiently like metal alloys or plastics, the most common structural materials. In this analysis, the measurement uncertainty was estimated using a larger number of samples than usual, i.e., thirty instead of typical ten. The results can be very useful to engineers who design models and finished products using this material. The investigations also show how wide the scatter of results is.
Go to article

Abstract

Currently used procedures in room acoustics measurements are not automated. Particularly in medium-sized and large areas they require a lot of time and intensive labour which directly translates into an increase in the measurement cost. Introduction of an automated system would increase efficiency of the measurements, and therefore could present both practical and scientific benefit. The paper presents initial feasibility study for designing a system that permits the measurement of selected acoustic parameters for any choice of three-dimensional grid of measurement points throughout the volume of the room. The system will utilize an autonomous probe attached to a blimp, and will be able to measure and analyze acoustic characteristics of the rooms. The article discusses the initial choices of the system elements, starting from the general idea, through the mechanical design and control procedures, the software that controls positioning and flying of the probe, up to the automation of the measurement procedure and its possible impact on the acoustic field.
Go to article

Abstract

According to metrological guidelines and specific legal requirements, every smart electronic electricity meter has to be constantly verified after pre-defined regular time intervals. The problem is that in most cases these pre-defined time intervals are based on some previous experience or empirical knowledge and rarely on scientifically sound data. Since the verification itself is a costly procedure it would be advantageous to put more effort into defining the required verification periods. Therefore, a fixed verification interval, recommended by various internal documents, standardised evaluation procedures and national legislation, could be technically and scientifically more justified and consequently more appropriate and trustworthy for the end user. This paper describes an experiment to determine the effect of alternating temperature and humidity and constant high current on a smart electronic electricity meter’s measurement accuracy. Based on an analysis of these effects it is proposed that the current fixed verification interval could be revised, taking into account also different climatic influence. The findings of this work could influence a new standardized procedure in respect of a meter’s verification interval.
Go to article

Abstract

When an artificial neural network is used to determine the value of a physical quantity its result is usually presented without an uncertainty. This is due to the difficulty in determining the uncertainties related to the neural model. However, the result of a measurement can be considered valid only with its respective measurement uncertainty. Therefore, this article proposes a method of obtaining reliable results by measuring systems that use artificial neural networks. For this, it considers the Monte Carlo Method (MCM) for propagation of uncertainty distributions during the training and use of the artificial neural networks.
Go to article

Abstract

The paper presents the application of liquid crystal thermography for temperature determination and visualisation of two phase flow images on the studied surface. Properties and applications of thermochromic liquid crystals are discussed. Liquid crystals were applied for two-dimensional detection of the temperature of the heating foil forming one of the surfaces of the minichannel along which the cooling liquid flowed. The heat flux supplied to the heating surface was altered in the investigation and it was accompanied by a change in the color distribution on the surface. The accuracy of temperature measurements on the surface with liquid crystal thermography is estimated. The method of visualisation of two-phase flow structures is described. The analysis of monochrome images of flow structures was employed to calculate the void fraction for some cross-sections. The flow structure photos were processed using Corel graphics software and binarized. The analysis of phase volumes employed Techsystem Globe software. The measurement error of void fraction is estimated.
Go to article

Abstract

The paper deals with the accuracy of measurements of strains (elongation and necking) and stresses (tensile strength) in static room-temperature tensile strength tests. We present methods for calculating measurement errors and uncertainties, and discuss the determination of the limiting errors of the quantities measured for circular and rectangular specimens, which is illustrated with examples.
Go to article

Abstract

The paper formulates some objections to the methods of evaluation of uncertainty in noise measurement which are presented in two standards: ISO 9612 (2009) and DIN 45641 (1990). In particular, it focuses on approximation of an equivalent sound level by a function which depends on the arithmetic average of sound levels. Depending on the nature of a random sample the exact value of the equivalent sound level may be significantly different from an approximate one, which might lead to erroneous estimation of the uncertainty of noise indicators. The article presents an analysis of this problem and the adequacy of the solution depending on the type of a random sample.
Go to article

Abstract

When a frequency domain sensor is under the effect of an input stimulus, there is a frequency shift at its output. One of the most important advantages of such sensors is their converting a physical input parameter into time variations. In consequence, changes of an input stimulus can be quantified very precisely, provided that a proper frequency counter/meter is used. Unfortunately, it is well known in the time-frequency metrology that if a higher accuracy in measurements is needed, a longer time for measuring is required. The principle of rational approximations is a method to measure a signal frequency. One of its main properties is that the time required for measuring decreases when the order of an unknown frequency increases. In particular, this work shows a new measurement technique, which is devoted to measuring the frequency shifts that occur in frequency domain sensors. The presented research result is a modification of the principle of rational approximations. In this work a mathematical analysis is presented, and the theory of this new measurement method is analysed in detail. As a result, a new formalism for frequency measurement is proposed, which improves resolution and reduces the measurement time.
Go to article

Abstract

This study addresses the problem of magnetic field emission produced by the laptop computers. Although, the magnetic field is spread over the entire frequency spectrum, the most dangerous part of it to the laptop users is the frequency range from 50 to 500 Hz, commonly called the extremely low frequency magnetic field. In this frequency region the magnetic field is characterized by high peak values. To examine the influence of laptop’s magnetic field emission in the office, a specific experiment is proposed. It includes the measurement of the magnetic field at six laptop’s positions, which are in close contact to its user. The results obtained from ten different laptop computers show the extremely high emission at some positions, which are dependent on the power dissipation or bad ergonomics. Eventually, the experiment extracts these dangerous positions of magnetic field emission and suggests possible solutions.
Go to article

Abstract

Results of a research study into the velocity field in combustion chamber of internal combustion engine are presented in the paper. Measurements of fresh charge flow velocity in the cylinder axis and near the cylinder squeezing surface were performed. The hot-wire anemometer was used. The measurement results were used for analysis of turbulence field in the examined combustion chamber. It turned out that in the axis of cylinder the maximum of velocity occurs 30 deg before TDC and achieves 6 m/s. In the studied combustion chamber, the maximum value of turbulence intensity was close to 0.2 and it was achieved 35 deg BTDC. Additionally, the maximal velocity dispersion in the following cycles of the researched engine was at the level of 2 m/s, which is 35% of the maximum value of flow velocity. At a point located near the squeezing surface of the piston, a similar level of turbulence, but a the smaller value of the average velocity was achieved. The turbulence field turned out to be inhomogeneous in the combustion chamber.
Go to article

Abstract

This paper is devoted to measuring the continuous diagnosis capability of a system. A key metric and its calculation models are proposed enabling us to measure the continuous diagnosis capability of a system directly without establishing and searching the sequential fault tree (SFT) of the system. At first a description of a D matrix is given and its metric is defined to determine the weakness of a continuous diagnosis. Then based on the definition of a sequential fault combination, a sequential fault tree (SFT) is defined with its establishment process summarized. A key SFT metric is established to measure the continuous diagnosis capability of a system. Two basic types of dependency graphical models (DGMs) and one combination type of DGM are selected for characteristics analysis and establishment of metric calculation models. Finally, both the SFT searching method and direct calculation method are applied to two designs of one type of an auxiliary navigation equipment, which shows the high efficiency of the direct calculation method.
Go to article

Abstract

The methane hazard is one of the most dangerous phenomena in hard coal mining. In a certain range of concentrations, methane is flammable and explosive. Therefore, in order to maintain the continuity of the production process and the safety of work for the crew, various measures are taken to prevent these concentration levels from being exceeded. A significant role in this process is played by the forecasting of methane concentrations in mine headings. This very problem has been the focus of the present article. Based on discrete measurements of methane concentration in mine headings and ventilation parameters, the distribution of methane concentration levels in these headings was forecasted. This process was performed on the basis of model-based tests using the Computational Fluid Dynamics (CFD). The methodology adopted was used to develop a structural model of the region under analysis, for which boundary conditions were adopted on the basis of the measurements results in real-world conditions. The analyses conducted helped to specify the distributions of methane concentrations in the region at hand and determine the anticipated future values of these concentrations. The results obtained from model-based tests were compared with the results of the measurements in realworld conditions. The methodology using the CFD and the results of the tests offer extensive possibilities of their application for effective diagnosis and forecasting of the methane hazard in mine headings.
Go to article

This page uses 'cookies'. Learn more