Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:

Abstract

A sediment core (LS-1) collected from Long Lake in King George Island, South Shetland Islands (West Antarctica) was analyzed for a variety of textural, geochemical, isotopic and paleontological properties together with 14C age dates. These data combined with published records of other studies provide a detailed history of local/regional postglacial paleoproductivity variation with respect to terrestrial paleoclimate change. The lithologic contrast of a lower diamicton and an upper fine-grained sediment demonstrates glacial recession and subsequent lake formation. The upper fine-grained deposit, intercalated by mid-Holocene tephra-fallout followed by a tephra gravity flow, was formed in a lacustrine environment. Low total organic carbon (TOC) and biogenic silica (Sibio) contents with high C/N ratios characterize the diamicton, whereas an increase of TOC and Sibio contents characterize the postglacial lacustrine fine-grained sediments, which are dated at c. 4000 yrBP. More notable are the distinct TOC maxima, which may imply enhanced primary productivity during warm periods. Changes in Sibio content and δ13C values, which support the increasing paleoproductivity, are in sympathy with these organic matter variations. The uniform and low TOC contents that are decoupled by Sibio contents are attributed to the tephra gravity flows during the evolution of the lake rather than a reduced paleoproductivity. A very recent TOC maximum is also characterized by high Sibio content and δ13C values, clearly indicating increased paleoproductivity consequent upon gradual warming across King George Island . Comparable with changes in sediment geochemistry, the occurrence and abundance of several diatom species corroborate the paleoproductivity variations together with the lithologic development. However, the paleoclimatic signature in local terrestrial lake environment during the postglacial period (for example the Long Lake) seems to be less distinct, as compared to the marine environment.
Go to article

Abstract

Polybrominated diphenyl ethers (PBDEs) levels in environmental media have increased over the last 20-25 years in the world. In aquatic environments PBDEs were found to be accumulated along food chain and Endocrine disruptors toxicity. In this study PBDEs were investigated in sediment and fish tissues from Lake Chaohu in central eastern China. There were 10 PBDEs congeners detected out of all 41 PBDEs. BDE-47 was of the highest with 5.17 ng/g in sediment and 58.47 ng/g in fish. PBDEs were evenly distributed across the surface sediment in the whole lake. It implied that the main source of PBDEs may not be an inflow river like Nanfei. Tissue distribution patterns of PBDEs in four fish species were in the order of BDE-47 > BDE-99 > BDE-100 > BDE-66 > BDE-138 > BDE-183 > BDE-154 > BDE-153. Octa- and deca-BDEs were below the detection limit. The concentrations of all PBDE congeners were higher in gills, livers, and kidneys than those in muscles and adipose tissue. Furthermore, PBDEs in different tissues had some different distribution patterns with fish size. Those discrepancies appeared to be correlated with the PBDEs pollution fluxes varying with the change of the year and their metabolism divergences in fish tissues.
Go to article

Abstract

Gala Lake National Park that has an international importance is one of the most important wetland ecosystems for Turkey. As same as many aquatic habitats, Gala Lake is under a significant anthropogenic pressure originated from agricultural activities conducted around the lake and from industrial discharges by means of Ergene River. The aim of this study was to evaluate the sediment quality of Gala Lake and Irrigation Canal by investigating some toxic element accumulations (As, B, Ni, Cr, Pb, Cd, Zn and Cu) from a statistical perspective. Pearson Correlation Index (PCI) and Factor Analysis (FA) were applied to detected data in order to determine the associated contaminants and effective factors on the system. Potential Ecological Risk Index (RI) and Biological Risk Index based sediment quality guidelines (mERM-Q) applied to detected data in order to assess the ecological and biological risks of heavy metals in the ecosystem. Also Geographic Information System (GIS) technology was used to make visual explanations by presenting distribution maps of investigated elements. According to the results of PCI, significant positive correlations were recorded among the investigated toxic elements at 0.01 significance level. According to the results of FA, two factors, which were named as “Agricultural Factor” and “Industrial Factor”, explained 86.6% of the total variance. According to the results of Potential Ecological Risk Index, cadmium was found to be the highest risk factor and according to results of Biological Risk Index, nickel and chromium were found to be the highest risk factors for Gala Lake and Irrigation Canal. As a result of the present study, it was also determined that heavy metal contents in sediments of Gala Lake National Park reached to critical levels and the system is intensively under effect of agricultural and industrial originated pollution.
Go to article

This page uses 'cookies'. Learn more