Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 19
items per page: 25 50 75
Sort by:

Abstract

We discuss epistemological and methodological aspects of the Bayesian approach in astrophysics and cosmology. The introduction to the Bayesian framework is given for a further discussion concerning the Bayesian inference in physics. The interplay between the modern cosmology, Bayesian statistics, and philosophy of science is presented. We consider paradoxes of confi rmation, like Goodman’s paradox, appearing in the Bayesian theory of confirmation. As in Goodman’s paradox the Bayesian inference is susceptible to some epistemic limitations in the logic of induction. However, Goodman’s paradox applied to cosmological hypotheses seems to be resolved due to the evolutionary character of cosmology and the accumulation of new empirical evidence. We argue that the Bayesian framework is useful in the context of falsifiability of quantum cosmological models, as well as contemporary dark energy and dark matter problem.
Go to article

Abstract

An electric power steering system (EPS) is a new type of steering system developed after a mechanical hydraulic power system (MHPS) and electric-hydraulic power steering system (EHPS). In order to coordinate and solve the portability and sensitivity of the steering system optimally, taking an induction power steering system as the research object, the control algorithm of induction motor control under the EPS is studied in this paper. In order to eliminate the feed-forward performance degradation caused by the change of feed-forward parameters, an on-line identification algorithm of feed-forward parameters is proposed. It can improve the control performance of online identification among three feed-forward parameters in the T-axle motor, it improves on the robustness of feed-forward control performance, at the same time it also gives simulation and test results. This method can improve the control performance of the three feed-forward parameter online identification of the T-axis motor and improve the robustness of feed-forward control performance. At the same time, simulation and test results are given. The simulation results show that the algorithm can significantly improve the response speed and control accuracy of EPS system control.
Go to article

Abstract

Quality of electric current delivered to the magnets of a particle accelerator is essential for safety and reliability of its operation. Even small discrepancies strongly affect the properties of particle beams. One of the sources of the disturbances is the appearance of induced currents caused by the electromagnetic interactions between the elements of the machine. In this paper the calculations of induced currents in by-pass lines of a SIS100 particle accelerator are presented. In order to find the values of the currents the self-inductances and mutual inductances of the by-pass lines are found. Due to the complex geometry of the line, especially of Ω-shaped dilatations, the numerical approach was employed. The calculations show that the size of induced currents increases with the distance between the cables in an individual bus-bar. The maximum discrepancy of the magnetic field in a dipole magnet is found to be 7.7 μT. The decrease of distance between the cables allows one to obtain a discrepancy of 1.2 μT.
Go to article

Abstract

The aim of this paper is to present a new approach to the problem of silicon integrated spiral inductors modeling. First, an overview of models and modeling techniques is presented. Based on 3D simulations and published measurement results, a list of physical phenomena to be taken into account in the model is created and based on it, the spiral inductor modeling by frequency sampling method is presented. To verify the proposed method a test circuit, containing 6 spiral inductors was designed and integrated in a silicon technology. The parameters of the spiral inductors from the test circuit were next measured and compared with simulations results. The comparison for one of those six spiral inductors is presented in the article.
Go to article

Abstract

A new observer of induction motor state variables is proposed in the paper. A nonlinearity of the main magnetic path is expressed as a function of a properly chosen parameter versus the position vector length. The value of the mutual inductance received n the identification algorithm is calculated exploiting the estimated values of the state variables. The coefficients appearing in the differential equations of the observer system are modified in each step of the algorithm on the basis of the calculated mutual inductance. The analysis of convergence of the identification algorithm is shown in this paper.
Go to article

Abstract

We present the development of a technique for studying laser-induced magnetization dynamics, based on inductive measurement. The technique could provide a simple tool for studying laser-induced demagnetization in thin films and associated processes, such as Gilbert damping and magnetization precession. It was successfully tested using a nanosecond laser and NiZn ferrite samples and – after further development – it is expected to be useful for observation of ultra-fast demagnetization. The combination of optical excitation and inductive measurement enables to study laser-induced magnetization dynamics in both thin and several micrometre thick films and might be the key to a new principle of ultrafast broadband UV–IR pulse detection.
Go to article

Abstract

This paper investigates the application of a novel Model Predictive Control structure for the drive system with an induction motor. The proposed controller has a cascade-free structure that consists of a vector of electromagnetics (torque, flux) and mechanical (speed) states of the system. The long-horizon version of the MPC is investigated in the paper. In order to reduce the computational complexity of the algorithm, an explicit version is applied. The influence of different factors (length of the control and predictive horizon, values of weights) on the performance of the drive system is investigated. The effectiveness of the proposed approach is validated by some experimental tests.
Go to article

Abstract

This paper deals with the modelling of traction linear induction motors (LIMs) for public transportation. The magnetic end effect inherent to these motors causes an asymmetry of their phase impedances. Thus, if the LIM is supplied from the three-phase symmetrical voltage, its phase currents become asymmetric. This effect must be taken into consideration when simulating the LIMs’ performance. Otherwise, when the motor phase currents are assumed to be symmetric in the simulation, the simulation results are in error. This paper investigates the LIM performance, considering the end-effect induced asymmetry of the phase currents, and presents a comparative study of the LIM performance characteristics in both the voltage and the current mode.
Go to article

Abstract

In this paper a scaling approach for the solution of 2D FE models of electric machines is proposed. This allows a geometrical and stator and rotor resistance scaling as well as a rewinding of a squirrel cage induction machine enabling an efficient numerical optimization. The 2D FEM solutions of a reference machine are calculated by a model based hybrid numeric induction machine simulation approach. In contrast to already known scaling procedures for synchronous machines the FEM solutions of the induction machine are scaled in the stator-current-rotor-frequency-plane and then transformed to the torque- speed-map. This gives the possibility to use a new time scaling factor that is necessary to keep a constant field distribution. The scaling procedure is validated by the finite element method and used in a numerical optimization process for the sizing of an electric vehicle traction drive considering the gear ratio. The results show that the scaling procedure is very accurate, computational very efficient and suitable for the use in machine design optimization.
Go to article

Abstract

The article introduced some expressions for self- and mutual slot leakage inductance of phase windings for the mathematical model of an induction machine in the natural phase coordinate system and for dq0 model and in an arbitrary coordinate frame. Calculation of self- and mutual slot leakage inductance have been performed for threephase double-layer, delta and delta-modified winding connections. Introduced expressions may be useful in the design of windings and in the analysis of dynamic states of AC electrical machines.
Go to article

Abstract

The paper introduces a comprehensive investigation in end winding inductances of large two-pole turbo-generators. With the aid of an analytic-numeric approach, where Neumann's formula is applied, the influence of geometric characteristics of double-layer stator end windings with involute shape is analysed. This parameter study results in approximation formulas for the stator self and mutual inductances at stand level as well as for the common used end winding leakage inductance. In order to consider field affecting components as pressure plate, flux shield, rotor shaft and rotor retaining ring, finite elements models for two machines (250 MVA and 1150 MVA) are created and computed. The results are integrated in the developed approximation formulas. Finally the simulation results of machine 1 are compared to the data of two different measurements. All approaches introduced in this paper show good correlation. The high speed of the analytic-numeric calculation is combined with the accuracy and opportunity to consider field affecting components within the extensive finite element computation successfully.
Go to article

Abstract

The aim of this paper is presentation and comparison of calculation methods of the inductance matrix of a 3-column multi-winding autotransformer. Main and leakage autotransformer inductance was obtained using finite elements method. Static calculations were made at the current supply for 2D and 3D models, and mono-harmonic calculations were made at the voltage supply. In the mono-harmonic calculations the eddy current losses were taken into account, this made it possible to study relationship between the autotransformer parameters and the frequency. Calculations were made using Ansys and the authors' own programs in Matlab.
Go to article

Abstract

This research presents a method of modeling and numerical simulation of a reluctance stepper motor using reduced finite-element time-stepping technique. In presented model, the circuit equations are reduced to non-stationary differential equations, i.e. the inductance mapping technique is used to find relationship between coil inductance and rotor position. A strongly coupled field-circuit model of the stepper motor is presented. In analyzed model the magnetostatic field partial differential equations are coupled with rotor motion equation and solved simultaneously in each iterative step. The nonlinearity problem is solved using Newton-Raphson method with spline approximation of the B-H curve.
Go to article

Abstract

The 15-winding and 3-column autotransformer supplying an 18-pulse rectifier circuit was developed. Presented methods can be used also for the autotransformers of other topologies supplying different kinds of converters. Presented methods make it possible to exactly calculate main and leakage inductances of the multi-winding autotransformer. The presented analysis of the eigenvalues and eigenvectors of the inductance matrix makes it possible to identify the influence nature of individual modes on the inductance matrix, and to compare the calculation results obtained using the presented methods. Frequency dependence of autotransformer parameters was shown. Also modes of the impedance matrix of the multi-winding autotransformer was investigated, this made it possible to identify the influence nature of individual modes on the inductance matrix. Using presented methods one can exactly calculate main and leakage inductances of the autotransformer. Thanks to this, one can design in optimal way autotransformers for supplying, for example, rectifier circuits, THD coefficients. The results of the measurements and simulations were also shortly presented at the end of the article.
Go to article

Abstract

This paper presents active inductor based VCO design for wireless applications based on analysis of active inductor models (Weng-Kuo Cascode active inductor & Liang Regular Cascode active inductor) with feedback resistor technique. Embedment of feedback resistor results in the increment of inductance as well as the quality factor whereas the values are 125.6@2.4GHz (Liang) and 98.7@3.4GHz (Weng-Kuo). The Weng-Kuo active inductor based VCO shows a tuning frequency of 1.765GHz ~2.430GHz (31.7%), while consuming a power of 2.60 mW and phase noise of -84.15 dBc/Hz@1MHz offset. On the other hand, Liang active inductor based VCO shows a frequency range of 1.897GHz ~2.522GHz (28.28%), while consuming a power of 1.40 mW and phase noise of -80.79 dBc/Hz@1MHz offset. Comparing Figure-of-Merit (FoM), power consumption, output power and stability in performance, designed active inductor based VCOs outperform with the stateof- the-art.
Go to article

Abstract

The detection of transformer winding deformation caused by short-circuit current is of great significance to the realization of condition based maintenance. Considering the influence of environment and measurement errors, an online deformation detection method is proposed based on the analysis of leakage inductance changes. First, the operation expressions are derived on the basis of the equivalent circuit and the leakage inductance parameters are identified by the partial least squares regression algorithm. Second, the amount of the leakage inductance samples in a detection time window is determined using the Monte Carlo simulation thought, and then the samples in the confidence interval are obtained. Last, a criteria is built by the mean value changes of the leakage inductance samples and the winding deformation is detected. The online detection method considers the random fluctuation characteristics of the leakage inductance samples, adjust the threshold value automatically, and can quantify the change range to assess the severity. Based on the field data, the distribution of the leakage inductance samples is analyzed to obey the normal function approximately. Three deformation experiments are done by different sub-winding connections and the detection results verify the effectiveness of the proposed method.
Go to article

Abstract

The new topology of three-winding welding transformer is proposed. Each secondary winding is connected in parallel through the separate bridge rectifier to the welding arc. The main feature of the proposed device is parallel working of two secondary windings with different rated voltage. The advantage is nonlinear transformation ratio of current that provides unprecedented power efficiency. The self- and mutual leakage inductances, which are important in power conversion, are calculated by 2D FEA model. The operational current of the device is modelled numerically via P-Spice simulator. The proposed topology is up to 30% more power effective than conventional welding transformer provided that the leakage inductances of primary and secondary windings are correctly fitted. This transformer is used for manual arc welding.
Go to article

Abstract

In a high-efficiency Class E ZVS resonant amplifier a matching and isolation transformer can replace some or even all inductive components of the amplifier thus simplifying the circuit and reducing its cost. In the paper a theoretical analysis, a design example and its experimental verification for a transformer Class E amplifier are presented. In the experimental amplifier with a transformer as the only inductive component in the circuit high efficiency ηMAX = 0.95 was achieved for supply voltage VI = 36 V, maximum output power POMAX = 100 W and the switching frequency f = 300 kHz. Measured parameters and waveforms showed a good agreement with theoretical predictions. Moreover, the relative bandwidth of the switching frequency was only 19% to obtain output power control from 4.8 W to POMAX with efficiency not less than 0.9 in the regulation range.
Go to article

Abstract

The study presents a calculation method of the voltage induced by power-line sagged conductor in an inductively coupled overhead circuit of arbitrary configuration isolated from ground. The method bases on the solution utilizing the magnetic vector potential for modeling 3D magnetic fields produced by sagging conductors of catenary electric power lines. It is assumed that the equation of the catenary exactly describes the line sag and the influence of currents induced in the earth on the distribution of power line magnetic field is neglected. The method derived is illustrated by exemplary calculations and the results obtained are partially compared with results computed by optional approach.
Go to article

This page uses 'cookies'. Learn more